当前位置:文档之家› 龙门起重机结构分析

龙门起重机结构分析

龙门起重机结构分析
龙门起重机结构分析

龙门起重机结构分析(ANSYS高级工程实例) [原创 2007-07-13 15:04:50]

字号:大中小

对所有载荷进行简化,只考虑起吊载荷和小车自重,小车有四个车轮,同一轨道上两车轮的间距为D=8m。动载系数:起重小车在主梁的轨道上运行时,由于起升机构起动或制动产生垂直惯性力,所以计算时考虑动力系数。根据起重机工作制度决定,这里将动载荷系数取为1.2。

单位采用国际单位制,力:N;长度:m;质量:kg;时间:s

分析说明:

分析类型载荷说明主要用途

静力分析自重应力场模拟静载荷作用下的变形及其受力情况

瞬态分析同时考虑重力和移动载荷确定移动载荷作用下变形及其内力情况

摸态分析自由摸态确定结构的振动信息

命令流:

FINI

/CLE

/FILNAME,EX

/TITLE,THE ANALYSIS OF THE LMD

!*******************************参数区************************************ !整体尺寸(到中轴线)

*SET,B,40 !宽度

*SET,H,15 !高度

*SET,L,120 !跨度

!*************************************局部尺寸**************************** !伸臂部分

*SET,L_S,20 !伸臂长度

*SET,L_S_1,10 !伸臂等截面段长

*SET,H_S_1,4 !伸臂等截面段高

*SET,B_S_1,2 !伸臂等截面段宽

*SET,L_S_2,10 !伸臂变截面段长

*SET,H_S_2,2 !伸臂变截面段高

*SET,B_S_2,2 !伸臂变截面段宽

!横梁

*SET,L_H,40

*SET,B_H,2

*SET,H_H,2

!跨中部分

*SET,L_KZ,80 !跨中长度

*SET,H_KZ,4 !跨中高度

*SET,B_KZ,2 !跨中宽度

!支撑部分

*SET,L_ZC,15 !支撑长度

*SET,HS_ZC,4 !支撑高度上截面高*SET,B_ZC,2 !支撑宽度

!框架脚

*SET,L_KJ,40 !框架脚长度

*SET,H_KJ,4 !框架脚高度

*SET,B_KJ,2 !框架脚宽度

*SET,T,0.5 !箱形板厚度均为0.5 /PREP7

ET,1,63

MP,EX,1,2.1E10

MP,PRXY,1,0.3

MP,DENS,1,7850

R,1,T,T,T,T

!***********************载荷************************ F=0.25*(45E4*1.02+60E4*1.2)

!建立四分之一模型

!生成跨中关键点

K,1,0,H+H_KZ/2,-B/2+B_KZ/2

K,2,0,H+H_KZ/2,-B/2-B_KZ/2

K,3,0,H-H_KZ/2,-B/2-B_KZ/2

K,4,0,H-H_KZ/2,-B/2+B_KZ/2

KGEN,2,1,4,1,L_KZ/2,,,100 !跨中部分

KGEN,2,103,104,1,-B_ZC/2 !定位支撑位置KGEN,2,103,104,1,B_ZC/2

KGEN,2,1,4,1,L_KZ/2+L_S_1,,,200 !伸臂等截面段!生成伸臂端面关键点

K,301,L/2+B_H/2,H+H_KZ/2,-B/2+B_KZ/2

K,302,L/2+B_H/2,H+H_KZ/2,-B/2-B_KZ/2

K,303,L/2+B_H/2,H+H_KZ/2-H_H,-B/2-B_KZ/2

K,304,L/2+B_H/2,H+H_KZ/2-H_H,-B/2+B_KZ/2 !支撑

KGEN,2,5,8,1,,-L_ZC,

!横梁

KGEN,2,302,303,1,B_H

KGEN,2,13,14,1,,,L_H/2+B_KZ

KGEN,2,15,16,1,-B_H

!框架脚

KGEN,2,9,11,2,,-H_KJ

KGEN,2,19,20,1,,,L_H/2+B_KZ

KGEN,2,21,22,1,,H_KJ

A,1,2,302,301,1

A,2,202,203,3,2

A,202,302,303,203,202

A,201,301,304,204,201

A,201,204,4,1,201

A,6,10,12,8,6

A,8,12,11,7,8

A,7,11,9 ,5,7

A,6,10,9,5,6

A,3,4,6,5,3

A,203,204,304,303,203 A,302,303,14,13,302 A,201,204,304,301,201

A,13,15,16,14,13

A,302,17,15,13,302 A,301,17,18,304,301 A,303,18,16,14,303

A,9,19,20,11,9

A,11,24,22,20,11

A,20,22,21,19,20

A,21,19,9,23,21

A,10,23,24,12,10

ARSYM,X,ALL ARSYM,Z,ALL

ALLSEL

NUMMRG,KP

ESIZE,1

AMESH,ALL

ALLSEL

NUMMRG,ALL

SAVE,LMD,DB,,ALL !保存为LMD.DB

ASEL,S,AREA,,1,5,4

ASEL,A,AREA,,22,26,4

ASEL,A,AREA,,43,47,4

ASEL,A,AREA,,64,68,4

ASEL,A,AREA,,30,72,42

ASEL,A,AREA,,41,83,42

ASEL,A,AREA,,20,62,42

ASEL,A,AREA,,9,51,42

ASEL,A,AREA,,36,78,42

ASEL,A,AREA,,15,57,42

ASEL,A,AREA,,75,80,5

ASEL,A,AREA,,54,59,5

ASEL,A,AREA,,12,17,5

ASEL,A,AREA,,33,38,5

ASEL,A,AREA,,53,58,5

ASEL,A,AREA,,11,16,5

ASEL,A,AREA,,32,37,5

ASEL,A,AREA,,74,79,5

ASEL,A,AREA,,10,31,21

ASEL,A,AREA,,52,73,21

AREVERSE,ALL

SAVE,LMD1,DB,,ALL !保存为LMD.DB

!约束

ASEL,S,,,40,82,42

ASEL,A,,,19,61,42

NSLA,S,1

D,ALL,ALL

ALLS

!************************ 静力求解*********************** /SOLU

ANTYPE,STATIC !指定为静力分析

ACEL,0,9.8 !施加重力加速度

SOLVE

/POST1

PLDISP,0 !变形图

PLNSOL,U,Y,0,1 !Y向位移云图

ETABLE, ,S,EQV !定义单元表

PLETAB,SEQV,NOAV !绘等效应力云图

ETABLE,MX,SMISC,4

PLETAB,MX,NOAV

ETABLE,MY,SMISC,5

PLETAB,MY,NOAV

!************************** !同时考虑重力和移动荷载**************************** /SOLU !进入求解器

ANTYPE,TRANS !定义瞬态求解

TRNOPT,FULL !指定为完全瞬态分析

TIMINT,OFF !关闭时间积分开关

NLGEOM,OFF !关闭大变形开关

TIME,1E-8 !设置一个十分小的时间步

NSUBST,2 !设两个子步

KBC,1 !设置为加载方式为阶跃式ACEL,0,9.8 !施加重力加速度

SOLVE !求解

TIMINT,ON !打开时间积分开关

TIM=0 !初始化

DELT=1 !时间增量

*DO,I,1,114,1.000 !进入循环

TIM=TIM+1 !循环控制

TIME,TIM !循环控制

FDELE,ALL,ALL !删除所有载荷ALLSEL !选择所有元素NSEL,S,LOC,X,-61+(I-1) !由位置选择点NSEL,R,LOC,Y,17 !由位置重选点NSEL,R,LOC,Z,-20 !由位置重选点

F,ALL,FY,-F !加集中载荷ALLSEL !选择所有元素NSEL,S,LOC,X,-53+(I-1) !由位置选择点NSEL,R,LOC,Y,17 !由位置重选点NSEL,R,LOC,Z,-20 !由位置重选点

F,ALL,FY,-F !加集中载荷

ALLSEL !选择所有元素NSEL,S,LOC,X,-61+(I-1) !由位置选择点NSEL,R,LOC,Y,17 !由位置重选点NSEL,R,LOC,Z,20 !由位置重选点F,ALL,FY,-F !加集中载荷

ALLSEL !选择所有元素NSEL,S,LOC,X,-53+(I-1) !由位置重选点NSEL,R,LOC,Y,17 !由位置重选点NSEL,R,LOC,Z,20 !由位置重选点F,ALL,FY,-F !加集中载荷ALLSEL !选择所有元素NSUBST,1 !设置子步数OUTRES,ALL,ALL !输出所有结果SOLVE !求解

*ENDDO !循环结束

!后处理

/POST26 !进入后处理模块

/AXLAB,Y,UY !制定Y轴名称

NSOL,2,22,U,Y,UY_2 !选择2号节点的Y向变形作为变量2 PLVAR,2 !显示时程关系曲线

/AXLAB,Y,UX !制定Y轴名称

NSOL,3,2,U,X,UX_2 !选择2号节点的X向变形作为变量3 PLVAR,3 !显示时程关系曲线

/AXLAB,Y,UZ !制定Y轴名称

NSOL,4,2,U,Z,UZ_2 !选择2号节点的Z向变形作为变量4 PLVAR,4 !显示时程关系曲线

/AXLAB,Y,UY !制定Y轴名称

NSOL,5,1628,U,Y,UY_1628 !选择1628号节点的Y向变形作为变量5 PLVAR,5 !显示时程关系曲线

/AXLAB,Y,UX !制定Y轴名称

NSOL,6,1628,U,X,UX_1628 !选择1628号节点的X向变形作为变量6 PLVAR,6 !显示时程关系曲线

/AXLAB,Y,UZ !制定Y轴名称

NSOL,7,1628,U,Z,UZ_1628 !选择1628号节点的X向变形作为变量6 PLVAR,7 !显示时程关系曲线

!特殊位置处的变形和应力云图

set,1

PLDISP,0 !显示变形云图PLNSOL,U,X,0,1 !小车在悬臂端时X向位移云图

PLNSOL,U,Y,0,1 !小车在悬臂端时Y向位移云图

PLNSOL,U,Z,0,1 !小车在悬臂端时Z向位移云图

ETABLE, ,S,EQV !定义单元表

PLETAB,SEQV,NOAV !绘等效应力云图

!小车在跨中附近

set,57

PLDISP,0 !显示变形云图PLNSOL,U,X,0,1 !小车在跨中时X向位移云图

PLNSOL,U,Y,0,1 !小车在跨中时Y向位移云图

PLNSOL,U,Z,0,1 !小车在跨中时Z向位移云图

ETABLE, ,S,EQV !定义单元表PLETAB,SEQV,NOAV !绘等效应力云图

!*****************************模态分析************************************

/SOLU !进入求解器ANTYPE,MODAL !指定为模态分析MODOPT,LANB,20,0,0,,OFF !选择模态分析方法MXPAND,20, , ,YES !扩展振形

OUTPR,BASIC,ALL !控制求解屏幕输

OUTRES,ALL,ALL !输出所有项,每一步都输出

ALLSEL !选择所有元素

SOLVE !求解

!********************************模态分析后处理

************************************

/POST1

SET,LIST !结果列表

SET,1,1 !读入第一个载荷子步的结果

PLDISP,0 !显示一阶振型

SET,1,2 !读入第二个载荷子步的结果

PLDISP,0 !显示二阶振型

SET,1,3 !读入第三个载荷子步的结果

PLDISP,0 !显示三阶振型

SET,1,4 !读入第四个载荷子步的结果

PLDISP,0 !显示四阶振型

龙门起重机结构设计(完整版)

龙门起重机计算说明书 一龙门起重机的结构形式、有限元模型及模型信息。 该龙门起重机由万能杆、钢管以及箱形梁组成。上部由万能杆拼成,所有万能杆由三种型号组成,分别为2N1,2N4,2N5,所有最外围的竖杆由2N1组成,其他竖杆由2N4组成,所有斜杆由2N5组成,其他杆均为2N4;龙门起重机两侧下部得支撑架由钢管组成,钢管的型号为φ219?6、φ83?5,其中斜竖的钢管为φ219X6,其他钢管为φ83X5;龙门起重机上部和下支撑架之间由箱型梁连固接而成,下支撑架最下端和箱型梁相固连。所有箱型梁由厚为6mm的钢板焊接而成。 对龙门起重机进行建模时,所选单元类型为Link8、Pipe16、Shell63三种单元类型。有限元单元模型见图1。模型的基本信息见下: 关键点数 988 线数 3544 面数 162 体数 0 节点数 1060 单元数 3526 加约束的节点数 48 加约束的关键点数 0 加约束的线数 0 加约束的面数 12 加载节点数 18 加载关键点数 18 加载的单元数 0 加载的线数 0 加载的面数 0 二结构分析的建模方法和边界条件说明。 应力分析采用有限元的静力学分析原理,其建模方法采用实体建模法,采用体、面、线、点构造有限元实体。其中所有箱形梁用面素建模,其余用线素建模,然后在实体上划分有限元网格,具体见单元图。对于边界条件和约束条件,是在支撑架下的箱型梁的底面两端加X,Y,Z三方向的约束以模拟龙门起重机的实际情况。载荷分布有4种情况:工作时的吊重、小车自重、风载荷、考虑两度偏摆时的水平惯性力,具体见下。 三载荷施加情况。 (1)工作时的吊重 工作时的吊重为40t,此载荷分布在小车压在轨道的4个位置,每个位置为10t。由于小车在轨道上移动,故载荷的分布位置随小车的移动而改变,由于小车移动速度慢,我们只把吊重载荷的施加作两种情况处理:在最左端(或最右

龙门式起重机设计毕业设

更多精彩毕业设计强咨询245250987 1概述 1.1起重机械的发展简史及发展动向 简单的起重运输装置的诞生,可以追溯到公元前5000~4000年的新石器时代末期,为埋葬和纪念死者而修筑石棺和石台,我国古代劳动人民已能开凿和搬运巨石。蒸气机的出现,推动了第一次工业革命,起重机械也因之有了较大发展。1827年,出现了第一台用蒸气机驱动的固定式回转起重机,从此结束了起重机采用人力驱动的历史。在工业发展中,电力驱动的出现是起重机械蓬勃发展的转折点。1880年,出现了第一台电力驱动的载客升降机。1885年,制成了电力驱动的回转起重机,从后制成了电力驱动的桥式起重机和门座起重机等。二次世界大战期间,新产品、新材料、新工艺不断出现。例如:由于自动焊接新技术的出现,箱形结构的桥式起重机越来越受到人们的欢迎;由于计算机技术的推广应用,利用计算机进行辅助设计(CAD)和辅助制造(CAM),使起重机的整机布置更趋优化,基本零部件更加紧凑耐用;由于自控技术和数显技术的广泛普及,使起重机的控制和安全保护装置大为改善,保证了操作的安全性和可靠性。 纵观世界各国起重机械发展的现状,对今后的动向,可归纳如下: 1、大型化 由于石油、化工、冶炼、造船以及电站等的工程规模越来越大,所以吊车起吊物品的重量也越来越大。 2、重视“三化”,逐步采用国际标准 所谓“三化”,是指起重机械的标准化、系列化和通用化。贯彻“三化”可以缩短设计周期,保证产品制造质量,便于管理和提高经济效益。 3、实现产品的机电一体化 机械产品需要更新换代。在当今计算机技术、数控技术及数显技术大发展的年代里,

更新换代的重要标志是实现产品的机电一体化。在起重机械上应用计算机技术,可以提高作业性能,增加安全性,以至实现无人自动操作。 4、人机工程学的应用 起重机械一般应用在沉重和繁忙的、环境比较恶劣的场合。为减少司机的作业强度,保持旺盛的注意力,应根据人机工程学的理论,设计驾驶室,改善振动于噪声的影响,防止废气污染,使其符合健康规范的要求。 1.2起重机械的用途、工作特点及其在经济建设中的地位 起重机械是用来对物料进行起重、运输、装卸、或安装等作业的机械设备。它在国民经济各部门都有广泛的应用,起着减轻体力劳动、节省人力、提高劳动生产率和促进生产过程机械化的作用。例如,一个现代化的大型港口,每年的吞吐量有几千万吨乃至上亿吨,被运送的物料品种繁多,有成件物品,也有散装材料或液态材料。为了尽快地完成如此繁重的装卸任务,如不采用成套的起重运输设备,那是不可想象的。码头边上,吊车林立,成了现代化港口的重要特点。因此说,起重机械在现代化的生产过程中决不是可有可无的辅助工具,而是合理组织生产的必不可少的生产设备。 起重机械在搬运物料时,经历上料、运送、卸料和回到原处的过程,有时运转,有时停转,所以它是一种间歇动作的机械。一个工作循环时间一般从几分钟到二三十分钟,其间各机构在不同时刻有短暂的停歇时间。这一特点决定了电动机的选择和发热计算方法;由于反复运动和制动,各机构和结构将承受强烈的振动和冲击,载荷是正反向交替作用的,许多重要构件承受不稳定变幅应力的作用,这些都将对构件的强度计算产生较大的影响。 起重机属于有危险性作业的设备,它发生事故造成的损失将是巨大的。所以,起重机设计和制造一定要严格按照国家标准和有关规定进行。 1.3起重机械的组成和类型 1.3.1起重机械的组成 起重机由产生运动的机构、承受载荷的金属机构、提供动力和起控制作用的电气设备及各种安全指示装置等四大部分组成。 起重机机构有四类,即:使货物升降的起升机构;作平面运动的运行机构;使起重机旋转的回转机构;改变回转半径的变幅机构。每一机构均由电动机、减速传动系统及执行装置等组成。设计时应尽可能采用标准的零部件加以组合,以利于制造和维修。金属结构则要根据使用要求进行设计制造。电动机和控制设备大多是标准产品,安全指示装置通常从市场购买,特殊的由制造厂设计制造。 1.3.2起重机械的类型 根据使用要求,设计任何合适的起重机形式。但从构造特征看,种类繁多的起重设备可归纳为三大类。 1、单动作起重设备 这类起重设备是使货物作升降运动的起升机构。常见的下列几种:(1)千斤顶一种升降行程很小,举升能力较大的小型起重设备。螺旋千斤顶或齿条千斤顶可用于汽车维修;液压千斤顶可将大型起重机顶起以更换车轮。 (2)滑车(俗称葫芦)一种用链条或钢丝绳与滑轮构成的省力滑轮组,结构紧凑,质量轻,是一种可携带的起重工具,有手动和电动两种。电动葫芦则是 一种电动起升机构,配有运行小车后可在空间布置的工字钢轨上运行,构成

汽轮机课程设计-闫煜.

银川能源学院电力学院 课程设计任务书 设计题目:300MW亚临界机组轴向推力的计算_ 年级专业:热动(本)1202 班 学生姓名:闫煜 学号: 1210240198 指导教师:于淼

电力学院《课程设计》任务书课程名称:汽轮机原理 说明:1、此表一式三份,院、学生各一份,报送实践部一份。 2、学生那份任务书要求装订到课程设计报告前面。

目录 一、引言 (1) 1、汽轮机课程设计目的 (1) 2、汽轮机课程设计内容与要求 (1) 3、汽轮机课程设计的一般原则 (1) 二、轴向推力的计算 (1) 1、轴向推力 (2) 1.1、冲动式汽轮机的轴向推力 (2) 三、推力轴承的安全系数 (4) 四、计算 (5) 1、求解第一级平均直径 (6) 2、轴向推力的计算 (6) 3、叶根反动度的计算 (7) 4、叶轮反动度 (7) 5、当量隔板漏气面积 (7) 6、叶根齿隙面积A5 (7) 7、平衡孔面积A4 (8) 8、α的计算 (8) 9、β的计算 (8) 10、轮盘面积的计算 (8) 五、汇总 (9) 六、参考文献 (9)

一、引言 汽轮机是以蒸汽为的旋转式热能动力机械,与其他原动机相比,它具有单机功率大、效率、运行平稳和使用寿命长等优点。汽轮机的主要用途是作为发电用的原动机。在使用化石燃料的现代常规火力发电厂、核电站及地热发电站中,都采用汽轮机为动力的汽轮发电机组。汽轮机的排汽或中间抽汽还可用来满足生产和生活上的供热需要。在生产过程中有余能、余热的工厂企业中,还可以应用各种类不同品位的热能得以合理有效地利用。由于汽轮机能设计为变速运行,所以还可用它直接驱动各种从动机械,如泵、风机、高炉风机、压气机和船舶的螺旋桨等。因此,汽轮机在国民经济中起着极其重要的作用。 蒸汽在汽轮机级内流动时,由于各段压力分布的不同,从而产生于轴线平行的轴向推力,气方向与气流在汽轮机内的流动方向相同,使转子产生由高压向移动的趋势。因此,为了保证汽轮机的安全运行,必须进行轴向推力的计算。 1、汽轮机课程设计目的 汽轮机课程设计是对在汽轮机课程中所学到的理论知识的系统总结、巩固和加深;要求掌握汽轮机热力计算及变工况下热力核算的原则、方法和步骤,还要综合各方面的实践经验和理论知识,结合结构强度、调节运行、辅助设备等有关基本知识来分析问题,才能较合理的选定汽轮机设计的基本方案。 2、汽轮机课程设计内容与要求 (1)确定轴向推力的组成 (2)以高压缸冲动级为计算依据,确定级数并分别计算各个级的轴向推力 (3)必须给出各个级的轴向推力的详细计算过程 (4)将数据以表格形式列出 (5) 数据来源:通过给定的机组类型,学生自己查阅资料所需基本数据及公式3、汽轮机课程设计的一般原则 (1)设计过程中要保证数据选择正确,计算正确,绘图清晰美观。 (2)设计成品要求效率高,结构合理,安全可靠,成本低廉。 二、轴向推力的计算

龙门起重机文献综述

毕业设计(论文) 文献综述 题目轨道式龙门起重机 专业机械设计制造及其自动化 班级06级1班 学生陈成 指导教师周老师 西南交通大学 2010-4-27 年

1、轨道式集装箱龙门起重机国内发展现状 在我国集装箱港口的装卸作业中,通常采用岸边集装箱起重机加轮胎式集装箱龙门起重机的装卸方案,以轮胎式集装箱龙门起重机作为后方堆场的主要装卸机械。几年,随着港口的发展,轨道式集装箱龙门起重机在港口的使用越来越多。其电控系统、管理系统等方面以达到现有的港口机械水平,完全能满足现代港口集装箱的需要。 目前我国已能批量生产具有上个世纪90年代国际先进水平的岸边集装箱起重机和轮胎式集装箱龙门起重机,轨道式集装箱龙门起重机的研究与开发能力也越来越强。 由于大车行走和小车行走属于一般负载,没有特殊要求,因此变频器在V/F模式下即可正常工作,不需要做特殊设置就能投入使用,而主副钩吊属于重型负载,要求起钩和松钩都能保证不溜钩,上下行平稳迅速,要求在直流制动后马上投入制动器进行制动。 2、轨道式集装箱龙门起重机国外发展现状 长期以来,轨道式集装箱龙门起重机仅小车运行机构采用交流驱动,近年来,起升机构和大车运行也相继采用了交流驱动技术,这样减少了维护和修理费,降低了营运成本。日本三井公司最早成功地采用了交流变频调速装置,解决了起升机构位势负载和车轮支承压力变化导致车轮转速变化的关键技术,达到了集装箱堆6层作业的使用要求。派纳公司将其在自动控制领域所拥有的丰富经验成功地应用在大型轨道式集装箱龙门起重机上,满足了现代化集装箱堆场对自动化控制的需要。欧洲联合码头公司应用光缆传输技术,可靠地将轨道式集装箱龙门起重机与港站管理计算机联网,实现了无人装卸作业和堆场全盘自动化。 据统计,欧洲作为传统上的轮胎式集装箱龙门起重机的大订户,1995年订购的轨道式集装箱龙门起重机多达58台,从一个侧面反映出轨道集装箱龙门起重机的市场潜力和应用前景。另一方面,从世界一些著名的港口的发展趋势看,轨道式集装箱龙门起重机将向大型化、高效化、自动化方向发展。 目前,一些先进设计思想逐渐被采用,一些先进设计手段也被引入轨道式集装箱龙门起重机领域。如果有限元分析、结构优化设计、机电液一体化技术、CAD设计模块化技术、可靠性设计方法、机械结构动态设计等。这些方法在轨

汽轮机课程设计zhong

汽轮机课程设计 第一部分:设计题目与任务 题目:汽轮机热力计算与设计 根据给定的汽轮机原始参数来进行汽轮机热力计算与设计: 1、分析与确定汽轮机热力设计的基本参数,这些参数包括汽轮机的容量、进汽参数、转速、排汽压力或冷却水温度、回热加热级数及给水温度、供热汽轮机的供热蒸汽压力等; 2、分析并选择汽轮机的型式、配汽机构形式、通流部分形状及有关参数; 3、拟订汽轮机近似热力过程线和原则性回热系统,进行汽耗率及热经济性的初步计算; 4、根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的型式、比烩降、叶型及尺寸等: 5、根据通流部分形状和回热抽汽点要求,确定压力级即非调节级的级数和排汽口数,并进行各级比焙降分配; 6、对各级进行详细的热力计算,求出各级通流部分的几何尺寸、相对内效率和内功率,确定汽轮机实际的热力过程线; 7、根据各级热力计算的结果,修正各回热抽汽点压力以符合实际热力过程线的要求,并修正回热系统的热平衡计算; 8、根据需要修正汽轮机热力计算结果. 第二部分:设计要求 1)运行时具有较高的经济性; 2)不同工况下工作时均有高的可靠性; 3)在满足经济性和可靠性要求的同时,还应考虑汽轮机的结构紧凑、系统简单、布置合理、成本低廉、安装和维修方便及零部件通用化、系列标准化等因素。 第三部分:设计内容 一、汽轮机热力计算与设计原始参数 主蒸汽压力3.43Mpa,主蒸汽温度435℃;

冷却水温度20℃,给水温度160℃; 额定功率e P :23MW,调节级速比a x :0.24 二、汽轮机设计基本参数确定 1、汽轮机容量 额定功率e P :23MW 2、进气参数 汽轮机初压P 0=3.43Mpa 汽轮机初温t0=435℃ 3、汽轮机转速n=3000rad/min 4、排气压力 汽轮机排气压力Pc=0.005Mpa 冷却水温tc1= 20℃ 5、回热级数及给水温度 给水温度tfw=160℃ 回热级数Z=3级 三、选型、配汽及流通部分的设计计算 1、汽轮机型号 由排气压力和冷却水温可知汽轮机为:凝气式汽轮机。 型号:N23-3.43/435 2、配汽方式 汽轮机的配汽机构又称调节方式,与机组的运行要求密切相关。通常的喷嘴配汽、节流配汽、变压配汽以及旁通配汽四种方式。喷嘴配汽是国产汽轮机的主要配汽方式,由已知参数以及设计要求选用喷嘴配汽方式。 四、拟定汽轮机近似热力过程曲线和原则性热力系统,进行汽耗量、回热系统 热平衡及热经济性的初步计算 1、近似热力过程曲线的拟定 (1)进排汽机构及连接管道的各项损失 蒸汽流过各阀门及连接管道时,会产生节流损失和压力损失。下表列出这些 损失通常的取值范围。

汽轮机课程设计指导书-经典版

第一部分汽轮机课程设计指导书 一、课程设计的目的与要求 1.系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,重点掌握汽轮机热力设计的方法、步骤。 2.汽轮机热力设计的任务,一般是按照给定的设计条件,确定流通部分的几何参数,力求获得较高的相对内效率。就汽轮机课程设计而言其任务通常是指各级几何尺寸的确定及级效率和内功率的计算。 3.汽轮机设计的主要内容与设计程序大致包括: (1) 分析并确定汽轮机热力设计的基本参数,如汽轮机容量、进汽参数、转速、排汽压力或循环水温度、回热加热级数及给水温度、供热汽轮机的供汽压力等。 (2) 分析并选择汽轮机的型式、配汽机构型式、通流部分形状及有关参数。 (3) 拟定汽轮机近似热力过程线和原则性热力系统,进行汽耗量与热经济性的初步计算。 (4) 根据汽轮机运行特性、经济要求及结构强度等因素,比较和确定调节级的型式、比焓降、叶型及尺寸等。 (5) 根据流通部分形状和回热抽汽压力要求,确定压力级的级数,并进行各级比焓降分配。 (6) 对各级进行详细的热力计算,求出各级流通部分的几何尺寸、相对内效率和内功率,确定汽轮机的实际热力过程线。 (7) 根据各级热力计算的结果,修正各回热抽汽点压力以符合实际热力过程线的要求。 (8) 根据需要修正热力计算结果。 (9) 绘制流通部分及纵剖面图。 4.通过设计对整个汽轮机的结构作进一步的了解,明确主要部件在整个机组中的作用、位置及相互关系。 5.通过设计了解并掌握我国当前的技术政策和国家标准、设计资料等。 6.所设计的汽轮机应满足以下要求: (1) 运行时具有较高的经济性。 (2) 不同工况下工作时均有高的可靠性。 (3) 在满足经济性和可靠性要求的同时,还应考虑到汽轮机的结构紧凑、系统简单、布局合理、成本低廉、安装与维修方便以及零部件通用化、系列标准化等因素。 7.由于课程设计的题目接近实际,与当前国民经济的要求相适应,因而要求设计者具有高度的责任感,严肃认真。应做到选择及计算数据精确、合理、绘图规范,清楚美观。 二、课程设计题目 以下为典型常规题目,也可以设计其他类型的机组。 机组型号: B25-8.83/0.981 机组型式:多级冲动式背压汽轮机 1

汽车起重机毕业设计文献综述

本科毕业设计(论文) 文献综述 文献综述题目:汽车起重机液压技术 学院:机电学院 专业:机械设计制造及其自动化 学生姓名:XXX 学号:1234567890 指导教师:XXX 完成时间: 2017年3月12日

汽车起重机液压技术 摘要:本文阐述了目前国内外汽车起重机的发展概况和发展趋势,汽车起重机液压系统,分析液压系统漏油问题。还例举了部分汽车起重机液压系统上应用的技术:负载敏感平衡阀在汽车起重机液压系统上的应用;顺序阀在汽车起重机液压系统上的应用;智能液压缸在汽车起重机液压系统上的应用;平衡回路在汽车起重机液压系统上的应用; 关键词:汽车起重机;液压系统;负载敏感平衡阀;顺序阀;平衡回路 1 国内汽车起重机的发展概况和发展趋势 1.1国内汽车起重机的发展概况 中国汽车起重机行业诞生于上世纪的60年代,经过了近50多年的发展,经过了从模仿到自主研发,从小载重量到大载重量的发展历程。在发展初期以引进国外先进技术为主,先后有三次重要技术引进,分别为70年代引进苏联的技术,80年代引进日本的技术,90年代引进德国的技术[1]。从99年以来,随经济建设新一轮启动,工程起重机市场竞争格局发生巨大变化,各企业不断调整思路、更新观念、转换机制、提高核心竞争力,努力开发产品,开拓市场。但是总体来说,中国的汽车起重机产业始终走着自主创新的道路,有着自己清晰的发展脉络,尤其是近几年,中国的汽车起重机产业取得了长足的发展,虽然与国外相比还有一定的差距,这些差距主要体现在起重臂及起重臂的伸缩技术、底盘技术、电液控制技术、结构的优化设计以及配套零部件落后等方面,但是这个差距正在逐渐的缩小[2]。 经过十几年的努力,国内起重机厂家取得了巨大进步。现在国内徐工、三一、中联重科等汽车起重机生产企业自主研发的部分产品已经处于国际领先水平,与国外著名的汽车起重机生产企业的差距越来越小[3]。 1.2国内汽车起重机的主要发展趋势 (1)扩大产品的品种。在企业内部应建立完善的产品研究和开发体系,使产品系

桥梁式集装箱起重机设计

优秀设计 XXXX大学 毕业设计说明书 学生姓名:学号: 学院: 专业: 题目:桥梁式集装箱起重机设计 指导教师:职称: 职称: 20**年12月5日

目录 前言 (2) 一主要设计内容及参数 (4) 二主梁结构设计 (5) 三小车设计 (7) 四起吊机构设计 (12) 五支架设计 (14) 设计小结 (15) 参考文献 (16)

前言 起重机被喻为“巨人之臂”,是广泛用于国民经济各部门进行物质生产和装卸搬运的重要设备。起重机的设计制造,从一个侧面反映了国家的工业现代化水平。我国起重机制造业奠基于20世纪50年代。70年代以来,起重机的类型、规格、性能和技术水平获得很大的发展。近年来在物流和工业企业发展的带动下,起重机行业进入飞速发展时期。 起重机主要分为桥梁式、悬臂式、塔式、龙门式、拉索式、液压伸缩臂式等形式。本设计以桥式双梁单小车集装箱起重机为例,介绍起重机的设计思路、设计内容以及设计方法。 起重机设计主要根据客户要求,在符合国家标准及机械工业标准中对起重机的要求下进行设计。设计方案的选择主要通过与客户沟通取得一致意见后确定,设计内容主要包括在起重机的实际工作环境下确定起重机的最大额定载荷、非正常载荷(如冲击载荷,风力载荷、震动载荷等)、操纵形式、使用寿命、检修方式以及安全等级等;确定起重机主要零部件的选材以及机加工和材料处理的方法;确定起重机的工作级别;确定其主要受力梁的截面形式、截面大小以及梁的材料选择和加工方法。由于桥梁式起重机体积和质量都比较大,所以在设计过程中还应考虑起重机的运输方案和安装方法。

一主要设计内容及参数 1、起重机首先要确定的是工作级别 本设计的起重机用于集装箱生产制造或物流行业。 起吊件为生产下线的集装箱,或物流行业待装货的集装箱,所以都是空箱。起吊重量为5T 根据起重机行业标准,不管是集装箱生产行业还是物流行业都是生产节奏比较快的,因此该起重机的工作级别定为A5级,起吊机构工作级别为M5。 2、根据以上所规定级别设置设计内容及参数 a.主梁结构 主梁涉及到的主要设计内容或参数主要有:主梁的截面形式、截面大小、所用材料、制作方法、主梁上平面的平面度、侧面的平面度和垂直度、主梁应该具有的上拱度,还有主梁上的轨道安装等等。 b.支架结构 支架需要设计的主要内容和参数包括:截面形式、截面大小、使用材料、制作方法、支腿的垂直度误差、支腿与地面的连接方式等等。 c.小车机构 小车机构要设计的主要内容和参数包括:小车架设计;起吊机构设计; 小车行走机构设计。根据起吊重量设计小车架截面;根据所需要元件的安装位置设计小车架的结构;根据工作级别设计行走机构中电机的功率和类型; 根据起吊高度确定卷筒的直径和长度;根据工作级别确定主电机的功率以及减速机的型号。确定其他一些元件的型号。 d.控制机构 控制机构主要设计其控制室的制作和安装、控制电路的安装、进出控制室的方法。控制室的制作和安装应符合起重机行业标准中的相关内容;控制电路属于电气范畴在此不予讨论。 f.安装调试 根据起重机行业标准规定,起重机在生产完备后需要在本厂安装调试,合格后方能出厂。调试的主要内容有小车的运行情况;司机室的视野状况和温度;在1.25倍额定起重量下把小车开到中跨,持续30分钟,卸载后主梁不得有永久变形,主梁和其它部件上的油漆不得有剥落现象,小车架不能有永久变形。

汽轮机课程设计报告

汽轮机课程设计报告 姓名: 学号: 班级: 学校:华北电力大学

汽轮机课程设计报告 一、课程设计的目的、任务与要求 通过设计加深巩固《汽轮机原理》中所学的理论知识,了解汽轮机热力设计的一般步骤,掌握设计方法。并通过设计对汽轮机的结构进一步了解,明确主要零件的作用与位置。具体要求就是按给定的设计条件,选取有关参数,确定汽轮机通流部分尺寸,力求获得较高的汽轮机效率。 二、设计题目 机组型号:B25-8.83/0.981 机组型式:多级冲动式背压汽轮机 新汽压力:8.8300Mpa 新汽温度:535.0℃ 排汽压力:0.9810Mpa 额定功率:25000.00kW 转速:3000.00rpm 三、课程设计: (一)、设计工况下的热力计算 1.配汽方式:喷嘴配汽 2.调节级选型:单列级 3.选取参数: (1)设计功率=额定功率=经济功率 (2)汽轮机相对内效率ηri=80.5% (3)机械效率ηm=99.0% (4)发电机效率ηg=97.0% 4.近似热力过程线拟定 (1)进汽节流损失ΔPo=0.05*Po 调节级喷嘴前Po'=0.95*Po=8.3885Mpa (2)排汽管中的压力损失ΔP≈0 5.调节级总进汽量Do的初步估算 由Po、to查焓熵图得到Ho、So,再由So、Pc查Hc。 查得Ho=3474.9375kJ/kg,Hc=2864.9900kJ/kg 通流部分理想比焓降(ΔHt(mac))'=Ho-Hc=609.9475 kJ/kg Do=3.6*Pel/((ΔHt(mac))'*ηri*ηg*ηm)*m+ΔD Do=3.6*25000.00/(609.9475*0.805*0.970*0.990)*1.05+5.00=205.4179(kJ/kg) 6.调节级详细热力计算 (1)调节级进汽量Dg Dg=Do-Dv=204.2179t/h (2)确定速比Xa和理想比焓降Δht 取Xa=0.3535,dm=1100.0mm,并取dn=db=dm 由u=π*dm*n/60,Xa=u/Ca,Δht=Ca^2/2

龙门起重机安全操作规程

龙门起重机安全操作规程 1.0 特别提示: 1.1 龙门起重机操作人员必须是经过培训、考核合格并持有技术监督局核发操作证的熟练司机,新司机必须由经验丰富的司机带领三个月的时间才能独立操作。 1.2司机必须了解本起重机主要结构、工作原理及各机构的构造和技术性能、各安全装置,严格按照龙门起重机安全操作规程和使用说明书操作。 1.3龙门起重机的起重指挥必须经过培训、考核合格并持有技术监督局核发的操作证;巡道人员(两名)必须经司机认可的人员从事(可以是司机兼职)。 1.4司机带病、身体疲劳、睡眠不足以及酒后严禁开车。 1.5操作人员必须穿戴整齐的劳动保护用品。 2.0起动前的准备: 2.1司机按日常检查内容的要求对制动器、吊钩、钢丝绳和安全装置等部位进行检查,发现异常情况,应予排除后动车,如排除不了应通知维修部门排除,排除后才能动车。 2.2检查起重机外表、应确认起重机的金属结构无裂纹变形等问题。 2.3检查起重机传动部分有无障碍物,并检查其安全罩,制动器及联轴器的紧固情况。 2.4起重机轨道两侧各2m范围内禁止堆放物品。\ 2.5按润滑图表及规定进行润滑工作。

2.6认真查看上班次的运行记录和交接班记录,如有异常情况未排除,严禁作业。 2.7每日及时获取当地气象信息,遇到大风预报超过起重机允许的作业风速,则必须将起重机开至锚定位置进行锚定、锚固及夹轨;以确保安全。下班时同样必须将起重机开至锚定位置进行锚定、锚固及夹轨,以确保安全;在冬季雨雪天气后,开车前应仔细检查上、下小车电缆拖链及其滑道上有无结冰现象,风速仪在正常工作风速 <13.8m/sec时为“绿色”,大风时(风速为13.9~20.0m/sec)为“黄色”,蜂鸣器同时发出音响,通过按钮,可以消除音响。当超过最大工作风速20m/sec时信号为“红色”,此时应停止作业并将起重机停至锚定或锚固区。 2.8确认各电气装置的开关以及操纵杆是否都在正常的位置,若发现没有处于正常位置的及时复位;确认高压室和电气房门已经关闭;合上总电源;解除锚固,至各限位开关动作;解除夹轨器,至夹轨器松开;解除锚定,至锚定松开;各机构电气系统需自检正常,CMS终端上无异常提示;风速仪,广播系统,电话通讯系统,消防报警系统,监控系统均运行正常。以上各系统均检查无误后,方可进入正常吊装作业。 2.9开车前认真观察工作现场及起重机上的情况,确保起重机上没有正在进行中的维修及维护性工作和其它无关人员;然后在得到巡道人员开车确认后,服从起重指挥的正确指挥开车。 3.0作业中

50吨双梁龙门起重机金属结构设计

设计任务书 设计题目: 50吨双梁龙门起重机金属结构设计 设计要求: 1.能提升重物并使重物沿水平方向移动,即起重机能够提升重物一道水平面内不同的地点,而不像升降机只是一种提升机械。门式起重机的承重梁不是支撑在像桥式起重机的高架牵引箱上,而是支撑在能在地面钢轨上行驶的行走箱上。这样,可以在露天的场地行动自如。 2.双梁龙门起重机适用于工矿企业、车站、港口、露天仓库及物资部门的货场等,在固定跨距间对各种物料进行装卸及起重搬运工作。 3.本起重机由电器设备、小车、大车运行机构、门架四大部分组成。按工作繁忙程度和载荷状态分为轻级、中级、重级、特种级四种。标准电源为三相交流、50赫、380伏,电源线为架空滑线、电缆两种。本论文设计的起重机是一台50T-35m,U型变频,箱形双主梁集装箱龙门起重机总起重量50T,吊具以下起重量为50T,全长59m,跨度35m,有效悬臂9m,工作级别A5。 设计进度要求: 第一周:确定题目, 借阅相关的材料

第二周:深入现场进行实践,针对门机常有问题请教有关技师,准备编稿第三、四周:编写硬软件手写稿 第五、六周:上机编写电子稿 第七周:调试程序,找出问题,改进设计 第八周:撰写论文,准备答辩 指导教师(签名):

摘要 龙门起重机是提高装卸作业效率、减轻工人劳动强度、用途十分广泛的大型起重设备。在铁路货场、港口码头装卸集装箱,在水电站起吊大坝闸门,在建筑工地进行施工作业,在贮木场堆积木材等都得到了广泛的应用。 根据要求和用途不同,龙门起重机的参数、规格和结构形式也是各式各样。由于偏轨箱形龙门起重机具有许多优点,目前,国内外生产的龙门起重机以偏轨箱形龙门起重机居多,本论文主要研究偏轨箱形龙门起重机金属结构的设计计算,按照《起重机设计规范》规定的载荷组合,分析起重机的受力情况,计算起重机承受的自重载荷、起升载荷、水平惯性载荷、起重机运行时的风载荷等,并将上述各种载荷分为垂直载荷和水平载荷计算主梁所受的内力。根据相应的计算结果校核主梁危险截面(即小车位于跨中时的跨中截面和小车位于有效悬臂端时的支座截面)的强度、刚度及稳定性,从而判断该主梁结构的是否满足设计要求。 本论文以实际结构为例,对起重机结构系统进行了详细的分析计算,可为起重机相关的设计提供一定的辅助和参考作用。 关键词:龙门起重机,金属结构,主梁,支腿

汽轮机课程设计(调节级强度)

能源与动力工程学院汽轮机课程设计 题目:600MW超临界汽轮机调节级叶片强度核算时间:2006年11月13日-2006年12月4日 学生姓名:杨雪莲杨晓明吴建中单威李响梅闫指导老师:谭欣星 热能与动力工程036503班

2006-12-4 600MW超临界汽轮机调节级叶片强度核算 [摘要]本次课程设计是针对600MW超临界汽轮机调节级叶片强度的校核, 并主要对第一调节阀全开,第二调节阀未开时的调节级最危险工况对叶片强度的校核。 首先确定了最危险工况下的蒸汽流量。部分进汽度选择叶型为HQ-1型,喷嘴叶型HQ-2型。根据主蒸汽温度确定叶片的材料为Cr12WmoV马氏体-铁素体钢。 其次,计算了由于汽轮机高速旋转时叶片自身质量和围带质量引起的离心力和蒸汽对叶片的作用力。 选取了安全系数,计算屈服强度极限、蠕变强度极限和持久强度极限,三者中的最小值为叶片的许用用力,叶片拉弯应力的合成并校核,确定叶片是否达到强度要求。 最后,论述了调节级的变化规律即压力-流量之间的关系。 一、课程设计任务书 课程名称:汽轮机原理 题目:600MW超临界汽轮机调节级叶片强度核算 指导老师:谭欣星 课题内容与要求 设计内容: 1、部分进汽度的确定,选择叶型 2、流经叶片的蒸汽流量计算蒸汽对叶片的作用力计算 3、叶片离心力计算 4、安全系数的确定 5、叶片拉弯合成应力计算与校核 6、调节级后的变化规律 设计要求: 1、运行时具有较高的经济性 2、不同工况下工作时均有高的可靠性 已知技术条件与参数: 1、600MW 2、转速:3000r/min 3、主汽压力:24.2Mpa; 主汽温度:566C 4、单列调节级,喷嘴调节 5、其他参数由高压缸通流设计组提供 参考文献资料: 1、汽轮机课程设计参考资料冯慧雯,水利电力出版社,1998 2、汽轮机原理翦天聪,水利电力出版社 3、叶轮机械原理舒士甑,清华大学出版社,1991

龙门起重机设计计算(完整版)

龙门起重机设计计算 」?设计条件 1. 计算风速 最大工作风速:6级 最大非工作风速:10级(不加锚定) 最大非工作风速:12级(加锚定) 2. 起升载荷 Q=4 0 吨 3. 起升速度 满载:v=1 m/min 空载:v=2 m/min 4?小车运行速度: 满载:v=3 m/min 空载:v=6 m/min 5. 大车运行速度: 满载:v=5 m/min 空载:v=10 m/min 6. 采用双轨双轮支承型式,每侧轨距 2米 7. 跨度44米,净空跨度40米。 8. 起升高度:H 上=50米,H 下=5米 二.轮压及稳定性计算 (一)载荷计算 1. 起升载荷:Q=40t 2. 自重载荷 小车自重 G 龙门架自重 G 大车运行机构自重 G 司机室 G 电气 G 3. 载荷计算 1 =6.7t 2=260t 3=10t 4=0.5t 5=1.5t

工作风压:q i =114 N/m 2 q n=190 N/m 2 q m=800 N/m 2(10 级) q m=1000 N/m 2(12 级) 正面:Fw i=518x114N=5.91 104N Fw U=518x190N=9.86 104N Fw m=518x800N=41.44 104N (10 级) Fw m=518x1000N=51.8 104N (12 级) 侧面:Fw i =4.61 104N Fw n=7.68 104N Fw m=32.34 104N (10 级) Fw rn =40.43 104N (12 级) 二)轮压计算 1. 小车位于最外端, U类风垂直于龙门吊正面吹大车,运行机构起制 动,并考虑惯性力的方向与风载方向相同。 龙门吊自重:G=G1+ G2+G3+G4+G5=6.7+260+10+2=278.7t 起升载荷: Q=40t 水平风载荷:Fw U=9.86t 水平风载荷对轨道面的力矩:Mw U=9.86 X 44.8=441.7 tm 水平惯性力:F a=(G+Q) X a =(278.7+40) X 0.2 X 1000 = 6.37 X 10000 N =6.37 t 小车对中心线的力矩:M2=(6.7+40)X 16=747.2tm 最大腿压:P =0.25 max=0.25 (G+Q) + M 1/2L + M q/2K 318.7 + 722.0/48 + 747.2/84 水平惯性力对轨道面的力矩:总的水平力力矩:M M a = 6.37 X 44=280.3tm 1 = M a+ Mw U =722 tm =79.675+15.04+8.9 =103.6t

龙门起重机设计计算

龙门起重机设计计算一.设计条件 1.计算风速 最大工作风速:6级 最大非工作风速:10级(不加锚定) 最大非工作风速:12级(加锚定) 2.起升载荷 Q=40吨 3.起升速度 满载:v=1m/min 空载:v=2m/min 4.小车运行速度: 满载:v=3m/min 空载:v=6m/min 5.大车运行速度: 满载:v=5m/min 空载:v=10m/min 6.采用双轨双轮支承型式,每侧轨距2米。 7.跨度44米,净空跨度40米。

8.起升高度:H 上=50米,H 下 =5米 二.轮压及稳定性计算 (一)载荷计算 1.起升载荷:Q=40t 2.自重载荷 小车自重G 1 =6.7t 龙门架自重G 2 =260t 大车运行机构自重G 3 =10t 司机室G 4 =0.5t 电气G 5 =1.5t 3.载荷计算 名称 正面侧面 风力 系数 C 高度 系数 K h 挡风 面积 A 计算 结果 CK h A 高度 h 风力 系数 C 高度 系数 K h 挡风 面积 A 计算 结果 CK h A 高度 h 货物 1.2 1.62 22 42.8 50 1.2 1.62 22 42.8 50 小车 1.1 1.71 6 11.3 68 1.1 1.71 6 11.3 68 司机 1.1 1.51 4.5 7.5 40 1.1 1.51 3 5.0 40

室 门架 1.6 1.51 188 454.2 44 1.6 1.51 142 343 44 大车 1.1 1.0 2 2.2 0.5 1.1 1.0 2 2.2 0.5 合计 518 44.8 404 工作风压:q Ⅰ=114N/m 2 q Ⅱ=190N/m 2 q Ⅲ=800N/m 2(10级) q Ⅲ=1000N/m 2(12级) 正面:Fw Ⅰ=518x114N=5.91410?N Fw Ⅱ=518x190N=9.86410?N Fw Ⅲ=518x800N=41.44410?N(10级) Fw Ⅲ=518x1000N=51.8410?N(12级) 侧面:Fw Ⅰ=4.61410?N Fw Ⅱ=7.68410?N Fw Ⅲ=32.34410?N(10级) Fw Ⅲ=40.43410?N(12级) (二)轮压计算

龙门起重机开题报告

一、选题背景和意义: 起重机是现代工业在实现出产过程机械化、自己主动化,改善物料搬运前提,提高劳动出产率必不可少的重要机械设备。它对于发展国民经济,改善人们的事物、文化生活的需要都起着重要的作用。随着经济建设的迅速发展,机械化、自己主动化程度也在不停提高,与此相适应的起重机技能也在高速发展,产物种类不停增加,使用规模越来越广。一些企业由于没有起重机械,不仅工作效率低,劳动强度大,甚至难以工作。高层建筑的施工,上万吨级或几十万吨级的大型船只的建造,火箭和导弹的发射,大型电站的施工和安装,大重件的装卸与搬运等,都离不开起重机的作业。 起重机不仅可以作为辅助的出产设备,完成原料、半成品、产物的装卸、搬运,进行机电设备、船体分段的吊运与安装,而且也是一些出产过程及工艺操作中的必需的装备。再如冶炼金属工业出产中的炉料筹办、加料、钢水浇铸成锭、脱模取锭等,必需依靠起重机进行出产作业。据统计,在国内的冶炼金属、煤炭部门的机械设备总数量或总自重中,起重运输机械约占45%。起重机是机械化作业的重要的事物基础,是一些工业企业中主要的固定资产。对于工矿企业、港口码头、车站库场、建筑施工工地,和海洋开发、宇宙航行等部门,起重机已成为主要的出产力要素,在出产中进行着高效的工作,组成合理社团批量出产和机械化流水作业的基础,是现代化出产的重要标志之一。 龙门起重机作为物料搬运机械中的最主要的一种,在各行各业中得到广泛的应用,龙门起重机起重范围可以从几吨到几十吨甚至几百吨,在机械制造、冶金、钢铁、码头集装箱装运等行业都必须有龙门起重机。而起升机构更是起重机的咽喉设备,因此对其进行研究,改进其结构使其更加合理,使用更加方便,成本更加低廉,具有重要的现实意义。 龙门起重机的市场份额越来越大,使用非常广泛,这是产品本身及起重 机厂家以及国家政策等多种因素共同作用下的结果,随着经济的不断发展, 尤其是目前经济危机的刺激,国家的一揽子计划的推动,龙门起重机市场的 需求、发展前景大好。 龙门起重机(gantry crane)是水平桥架设置在两条支腿上构成门架形状的一种桥架型起重机。这种起重机在地面轨道上运行,主要用在露天贮料场、船坞、电站、港口和铁路货站等地进行搬运和安装作业。 课题研究目的及价值: 我们研究这一课题的目的是:设计、分析、计算龙门起重机的各个部分的结构、受力、运作情况;通过研究龙门起重机机械系统结构了解龙门起重机的运作,运用机械知识并进一步优化其结构设计。 本项目所设计的龙门起重机是起重机中应用最广泛的一种,其主要由主梁

汽轮机课程设计

第一章23 MW凝汽式汽轮机设计任务书 1.1设计题目:23MW凝汽式汽轮机热力设计 1.2设计任务及内容 根据给定条件完成汽轮机各级尺寸的确定及级效率和内功率的计算。在保证运行安全的基础上,力求达到结构紧凑、系统简单、布置合理、使用经济性高。 汽轮机设计的主要内容: 1.确定汽轮机型式及配汽方式; 2.拟定热力过程及原则性热力系统,进行汽耗量于热经济性的初步计算; 3.确定调节级型式、比焓降、叶型及尺寸等; 4.确定压力级级数,进行比焓降分配; 5.各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整 机实际热力过程曲线; 6.整机校核,汇总计算表格。 1.3设计原始资料 额定功率:23MW 设计功率:18.4MW 新汽压力:3.43MR 新汽温度:435 C 排汽压力:0.005MR 冷却水温:22 C 机组转速:3000r/mi n 回热抽汽级数:5 给水温度:168 C 1.4设计要求 1.严格遵守作息时间,在规定地点认真完成设计,设计共计两周; 2.完成设计说明书一份,要求过程完整,数据准确; 3.完成通流部分纵剖面图一张(A0图) 4.计算结果以表格汇总。

第二章多极汽轮机热力计算 2.1近似热力过程曲线的拟定 一、进排汽机构及连接管道的各项损失 蒸汽流过个阀门及连接管道时,会产生节流损失和压力损失。表2-1列出了这些损失通常选取范围。 表2-1汽轮机各阀门及连接管道中节流损失和压力估取范围 s

二、汽轮机近似热力过程曲线的拟定 根据经验,对一般非中间再热凝汽式汽轮机可近似地按图 2-2所示方法拟定近似 热力过程曲线。 由已知的新汽参数p o 、t o ,可得汽轮机进汽状态点0,并查得初比焓 h °=3304.2kj/kg 。由前所得,设进汽机构的节流损失 △ P °=0.04 R=0.1372 MPa 寻到调 节级前压力R = P 0 - △ P °=3.2928MPa 并确定调节级前蒸汽状态点1。过1点作等 比熵线向下交于P x 线于2点,查得h 2t =2152.1kj/kg ,整机的理想比焓降 (少罟)=h ° -h 2t =330422228=11764j 2kg 。由上估计进汽量后得到的相对内效率 n ri =83.1%,有效比焓降△ ht mac = ( A ht mac f n 『=1176X 0.831=977.3kj/kg ,排汽比 接1、Z 两点,在中间3'点处沿等压线下移21?25 kj/kg Z 点,得该机设计工况下的近似热力过程曲线,如图 2-2所示 3.43Mpa 焓 h z =0「hT 二:3304.^-99863 2231kj/872 ,在h-s 图上得排汽点乙用直线连 得3点,用光滑连接1、3、 h ° =3304.2kJ/kg 2t h 2t =2152.1kj/kg 3.2928Mp K 3 747 *1 435 C 0.005Mpa

龙门起重机设计问题汇总

起重机设计应严格执行“起重机设计规范”等有关的技术法规。我在多年起重机钢结构设计中经常要使用钢结构设计规范” GBJ1-89。在使用中应注意: 1 ,许用应力按“起重机设计规范”选取。“起重机设计规范”的制定是按半概率分析,许用应力法而来的。“钢结构设计规范”的制定是按全概率分析。极限状态设计法,分项系数表达式而来的。两者是不同的。如:起重机 2 类载荷(最大使 用载荷)的许用应力:180Mpa。钢结构设计规范”强度设计值(第一组):215Mpa。不能用错! 2 ,杆件的计算方法可用“钢结构设计规范”。因按全概率分析导出的公式,则结果与实际接近。 3 ,起重机钢结构计算中按不同的起重机工作制度,按不同的载荷组合,按不同的静载分析外力,按动载的实际发生,查表确定动载系数。然后计算杆件的内力。而建筑钢结构则不同:应用分项系数表达式进行分析,如:静载乘以分项系数。恒载:1.2;动载:1. 4 来进行计算。两者的计算方法是不同的。 所以在设计起重机钢结构时,一定要注意规范的合理使用,否则是有危险的!在运输机械中,半挂车与全挂车钢结构也是同样。方法近似起重机设计。由于我国道路状况的原因。其设计中选用动载系数一般在: 1.8-2.5。其疲劳系数一般为:1.2 -1.4 。挂车在土路上行走,车速:40 公里/ 小时时。动载系数可达:3 -4。 所以不同的钢结构,要注意其特点:挂车计算中: 1 ,动载大; 2 ,钢结构杆件应力集中现象十分显著。 3 ,低周疲劳现象明显。 挂车钢结构的计算方法: 1 ,静应力值乘以动载系数小于许用应力值。 2 ,材料的屈服强度值与静应力值之比大于许用安全系数值在起重机钢结构设计中经 常要在选用行架式还是格构式杆件上拿不定主意(外 观基本一样)。我认为: 1 ,梁结构应选用行架式。其内部的各杆全部是二力杆。受力明确。上下弦杆按弯矩图规律分配。腹杆按剪力图规律分配。计算方法:节点法和截面法。对杆件的轴线相交要求严格。节点处的偏差最大3 毫米。 2 ,立柱结构当弯矩较大(与轴向力比较)时,选用行架式。 3 ,立柱结构当轴向力较大(与弯矩比较)时,选用格构式。格构式对杆件的轴线相交无要求。制造容易。计算方法:整体虚轴长细比的计算,整体压弯杆的计算,腹杆最大剪力的确定(计算剪力与实际剪力进行比较),单杆件稳定性的计算,焊缝计算电动葫芦行架式龙门起重机主梁的计算方法:现在有不少电动葫芦行架式龙门起重机主梁是正三角形。是由一片主行架和两片副行架组成。如何计算各杆件的内力? 1 ,应用刚度分配理论进行计算。一般主行架分配0.9 2 -0.97 的外载。其 余由两片副行架承受。 主行架的分配系数:(腹杆截面不计) K = E*A1/ (E*A1+E*A2 ) 式中:E—钢的弹性模量, A1 -主行架上下弦杆的截面积。 A2 -两片副行架上下弦杆的截面积上式化简:

相关主题
文本预览
相关文档 最新文档