当前位置:文档之家› 实验十一 集成稳压器

实验十一 集成稳压器

实验十一   集成稳压器
实验十一   集成稳压器

D1

1B4B42

1

2

4

3

T2

1

2

3

V1

220 Vrms

50 Hz

XMM1

XMM2

XSC1

A B

Ext Trig

+

+

_

_+_

实验十一集成稳压器

一、实验目的

1、研究单相桥式整流、电容滤波电路的特性

2、了解集成三端稳压器的特性和使用方法。

1、掌握集成稳压器主要性能指标的测试方法。

二、实验预习与仿真

实验预习

1、复习《电子技术基础》(模电部分)中集成稳压电路的有关内容。

2、了解相关章节的整流、滤波等内容

3、了解集成稳压器7812的主要技术参数。

4、设计实验思路及自拟实验数据表。

实验仿真

在Multisim10中绘制实验电路图4.11.1,变压器输出16v,用示波器观察桥式整流后的输出波形,用电压表的直流与交流分别测量输出。

图4.11.1桥式整流线路

图4.11.2桥式整流波形图4.11.3输入电压

D1

1B4B42

1

2

4

3

T2

1

2

3

V1

220 Vrms

50 Hz

XMM1

XMM2

XSC1

A B

Ext Trig

+

+

_

_+_

R1

240Ω

C1

100uF

图4.11.3输出直流测量图4.11.4输出交流测量

在Multisim10中绘制实验电路图4.11.5,变压器输出16v,观察加入滤波电容后的输出波形与输出交流、直流测量的电压,分别观察滤波电容100μ和470μ的情况。

图4.11.5桥式整流和电容滤波线路

图4.11.6桥式整流和电容滤波输出波形(电容容量100μ)

图4.11.7滤波电容100μ时图4.11.8滤波电容100μ时输出直流输出交流

图4.11.9桥式整流和电容滤波输出波形(电容容量470μ)

图4.11.7滤波电容470μ时图4.11.8滤波电容470μ时输出直流输出交流

D1

1B4B42

1

2

4

3

T2

1

2

3

V1

220 Vrms

50 Hz

0??

XMM2

XSC1

A B

Ext Trig

+

+

_

_+_

R1

240|?

C1

470uF

XMM3

U1

LM7812CT

LINE VREG

COMMON

VOLTAGE

C2

330nF

C3

100nF

C4

100uF

在Multisim10中绘制实验电路图4.11.9,变压器输出16v,观察加入集成稳压7812后输出波形及交、直流电压。

图4.11.9集成稳压电源

图4.11.10集成稳压电源输出波形

图4.11.11集成稳压电源输出交、直流电压

三、实验原理与参考电路

直流稳压电源几乎是所有电子设备不可缺少的。它由变压器、整流器、滤波器和稳器四部分组成。稳压器只是直流稳压电源的一部分

图4.11.12单相桥式整流电路图4.11.13单相桥式整流波形

1、整流

单相桥式整流电路是最基本的整流器,在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图4.11.12电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。当负半周时二极管D2、D4导通,在负载电阻上得到正弦波仍是正半周。

流过负载的平均电流为:

图4.11.14 桥堆管脚图

2、滤波

2

2

π

2

L

O

9

.0

π

2

2

d

sin

2

π

1

V

V

t

t

V

V

V=

=

=

=?ω

ω

L

2

L

2

L

9.0

π

2

2

R

V

R

V

I=

=

滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。

电容滤波电路在负载电阻上并联了一个滤波电容C。若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C 充电。此时C 相当于并联在v2上,所以输出波形同v2 ,是正弦形。在刚过90°时,正弦曲线下降的速率很慢。所以刚过90°时二极管仍然导通。在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。所以,在t1到t2时刻,二极管导电,C充电,vC=vL 按正弦规律变化;t2到t3时刻二极管关断,vC=vL按指数曲线下降,放电时间常数为RLC。这就是电容滤波过程。

图4.11.15 滤波波形

3、稳压

常用的稳压线路:典型的串联型稳压电路如图图4.11.16 所示。它由调整管、放大环节、比较环节、基准电压源几个部分组成。

图4.11.16串联型稳压电路

目前,由分立元件构成的稳压器几乎被淘汰,取而代之的是应用广泛的集成稳压器。集成稳压器具有性能指标高,使用、组装十分方便等特点。其型号较多,如μA7800系列是美国仙童公司生产的,LM7800系列是美国国家半导体公司生产的。我国生产的型号为CW7800系列。该系列的后两位数字代表固定稳压输出值,如7812表示稳压输出为+12V ;7900系列是负输出稳压器,如7912表示稳压输出为—12V 。

(1)7800系列三端固定正输出稳压器

7800系列的集成稳压器广泛应用于各种整机或电路板电源上。其稳定输出电压从+5~+24有七个档次;加装散热器后输出额定电流可达1.5A 。稳压器内部具有过流、过热和安全工作区保护电路,一般不会因过载而损坏。如果外部接少量元件还可构成可调式稳压器和恒流源。7800系列集成稳压器的外形图及外引线排列见图4.11.17。其典型应用电路见图4.11.18.

(a ) (b ) 图4.11.17 7800系列集成稳压器外形及其外引线排列 (a )塑料直插式 (b )金属菱形封装式

1 2

3

1. 输入端

2. 接地端

3. 输出端

1

2

3

1——输入端

2——输出端 3——接地端

图4.11.18 7800系列稳压器典型应用电路

图4.11.2所示电路中,C2用于抑制过压和纹波;C4用于改善负载瞬态响应。为保证稳压器能正常工作,对输入直流电压也有所要求,一般输入直流电压应比输出直流电压高出2~3V ,不宜高出太多,高出太多使稳压器功耗过大,已损坏稳压器。

(2)7900系列三端固定负输出稳压器

7900系列的稳压器与7800系列基本相同,只是输出的电流较小,加装散热器后,输出额定电流只能达到500mA 左右。7900系列集成稳压器的外形及引线排列见图4.11.19.

(a ) (b)

图4.11.193 7900系列集成稳压器外形及外引线排列

(a) 塑封直插 (b) 金属菱形封装

2、稳压器的主要参数及测试方法 (1)稳压系数S V

直流稳压电源可用图4.11.20所示框图表示。当输出电流不变(且负载为确定值)时,输入电压变化将引起输出电压变化,则输出电压相对变化量与输入电压相对变化量之比,定义为稳定系数,用S V 表示

S

V

=V V V V I

I O O //??

=?

I L

1 2

3

1 输入端

2 接地端

3 输出端

1

2

3

1——接地端

2——输出端

3——输入端

Ui

U0

R L 稳压源

Ii

测量时,如选用直流数字电压表,可直接测出当输入电压V I 增加或减少10%时,其相应的输出电压V O 、V O 1、V O 2,求出V O 1、V O 2,并将其中数值较大的V O ?代入S V 表达式中。显然,S V 愈小,稳压效果愈好。

图4.11.20 稳压电源框图

(2)输出电阻R O

输入电压不变,当负载变化是输出电流增加或减小,回忆起输出电压发生很小变化,则输出电压变化量与输出电流变化量之比,定义为稳压电源的输出电阻,用R O 表示。

R O

=

I V L

O ??0=?V I I

L

式中

I L ?=I L ?—I L min (I L max

为稳定器额定输出电流,I L min =0).

测量时,令V I =常数,用直接测量法(或差值法)分别测出I L max 时的V O 1

和I L min =0时的V O 2,求出V O ?,即可算出R O 。

(3)纹波电压

纹波电压是指输出电压交流分量有效值,一般为毫伏数量级。

测量时,保持输出电压V O 和输出电流I L 为额定值,用交流电压表直接测量即可。

四、实验内容

1、 整流滤波电路测试

按图图4.11.21 连接实验电路。取可调工频电源电压为16V , 作为整流电路输入电压u 2。

图4.11.21整流滤波电路

1) 取R

L =240Ω,不加滤波电容,测量直流输出电压U

L

及纹波电压L,

并用示波器观察u

2和u

L

波形,记入表18-1 。

2) 取R

L

=240Ω,C=100μf ,重复内容1)的要求,记入表4.11.1。

3) 取R

L

=120Ω,C=470μf ,重复内容1)的要求,记入表4.11.1。

表4.11.1 U

2

=16V

电路形式U

L (V)

L

(V)u L波形

R

L

=240Ω

R

L

=240Ω

C=100μf

R

L

=240Ω

C=470μf

注意①每次改接电路时,必须切断工频电源。

②在观察输出电压u

L

波形的过程中,“Y 轴灵敏度”旋钮位置调好以后,不要再变动,否则将无法比较各波形的脉动情况。

2、用差值法测试图4.11.21稳压器的稳压系数S V 。具体线路下图,测试交流输入不同时,U I 、U O 值。表格记录并计算

3、。

3、测试输出电阻R O 。

取U 2=16V ,分别去R L ,使I 0为空载、50mA 和100mA ,测量相应的U 0值,

改变负载,得出不同的输出电压与电流,计算输出电阻R0。 4、测试纹波电压值。

取U 2=16V ,U 0=12V ,I 0=100mA ,测量输出纹波电压U 0,记录之。

测 试 值 计算值 U 2(V ) U I (V ) U O

(V ) S 6 S 12= S 23= 14

16 17

测 试 值 计算值

I 0(mA ) U 0(V ) R 0(Ω) 空载 R 012=

R 023=

50 100

五、实验报告要求

1、记录测试条件和测试结果。

2、分析、整理实验结果,对集成稳压器的性能给与评价

六、注意事项

虽然集成稳压器的内部有很好的保护电路,但在实际使用中仍会因为使用不当而损坏。故应特别注意以下几点:

1、输入、输入不能接反,若反接电压超过7V,将会损坏稳压管。

2、输入端不能短路,故应在输入、输出端接一个保护二极管。

3、防止浮地故障。由于三端稳压器的外壳为公共端,当它装在设备底板或

外机箱上时,迎接上可靠的公共连接线。

七、实验元器件

三端稳压器 CW7815 1片

电阻 300Ω、56Ω、10Ω、1.5Ω各一只

电位器 680Ω 1只;1kΩ 1只

电容 2000μF 、200μF、100μF、0.22μF、0.1μF各一只;1μF 2只

线性集成稳压器及应用

线性集成稳压器 3.4.1 三端固定集成稳压器 1.三端固定集成稳压器的特点 三端固定集成稳压器包含7800和7900两大系列,7800系列是三端固定正输出稳压器,7900系列是三端固定负输出稳压器。它们的最大特点是稳压性能良好,外围元件简单,安装调试方便,价格低廉,现已成为集成稳压器的主流产品。7800系列按输出电压分有5V、6V、9V、12V、15V、18V、24V等品种;按输出电流大小分有0.1A、0.5A、1.5A、3A、5A、10A等产品;具体型号及电流大小见表3-6。例如型号为7805的三端集成稳压器,表示输出电压为5V,输出电流可达1.5A。注意所标注的输出电流是要求稳压器在加入足够大的散热器条件下得到的。同理7900系列的三端稳压器也有-5V~-24V七种输出电压,输出电流有0.1A、0.5A、1.5A三种规格,具体型号见表3-7。 表3-6 CW7800系列稳压器规格 型号输出电流(A) 输出电压(V) 78L00 0.1 5、6、9、12、15、18、24 78M00 0.5 5、6、9、12、15、18、24 7800 1.5 5、6、9、12、15、18、24 78T00 3 5、12、18、24 78H00 5 5、12 78P00 10 5 表3-7 CW7900系列稳压器规格 型号输出电流(A) 输出电压(V) 79L00 0.1 -5、-6、-9、-12、-15、-18、-24 79M00 0.5 -5、-6、-9、-12、-15、-18、-24 7900 1.5 -5、-6、-9、-12、-15、-18、-24 7800系列属于正压输出,即输出端对公共端的电压为正。根据集成稳压器本身功耗的大小,其封装形式分为TO-220塑料封装和TO-3金属壳封装,二者的最大功耗分别为10W 和20W(加散热器)。管脚排列如图3.4.1(a)所示。U I为输入端,U O为输出端,GND是公共端(地)。三者的电位分布如下:U I>U O>U GND(0V)。最小输入—输出电压差为2V,为可靠起见,一般应选4~6V。最高输入电压为35V。 7900系列属于负电压输出,输出端对公共端呈负电压。7900与7800的外形相同,但管脚排列顺序不同,如图3.4.1(b)所示。7900的电位分布为:U GND(0V)>-U O>-U I。另外在使用7800与7900时要注意,采用TO-3封装的7800系列集成电路,其金属外壳为地端;而同样封装的7900系列的稳压器,金属外壳是负电压输入端。因此,在由二者构成多路稳压电源时若将7800的外壳接印刷电路板的公共地,7900的外壳及散热器就必须与印刷电路板

集成稳压器

实验十七 集成稳压器 实验目的: 电工2班 1.了解集成稳压器的特性和使用方法。 王婉婷 2.掌握直流稳压电源主要参数测试方法。 2009118050 实验仪器: 示波器 数字万用表 直流电源 实验原理: 采用集成工艺,将调整管、基准电压、取样电路、误差放大和保护电路等集成在一块芯片上,就够成了集成稳压电源。如图A 所示的外引角图(本实验中所用的芯片LM7805CT )。 1、三端固定输出集成稳压器 此类稳压器有三个引出端:输入端、输出端和公共端。根据其输出电压极性可分为固定正输出集成稳压器(W78系列)和固定负输出集成稳压器(W79系列)。根据输出电流的大小又可分为W78XX 型(表示输出电流为1.5A )、W78MXX 型(表示输出电流为0.5A )和CW78LXX 型(表示输出电流为0.1A )。后面两位数字XX 表示输出电压的数值,一般有5V 、6V 、9V 、12V 、15V 、18V 、24V ,固定负输出集成稳压器相应也有W79XX 、W79MXX 和W79LXX 型。利用固定输出集成稳压器可组成各种应用电路,W78XX 型集成稳压器的基本应用电路如图B 所示。对三端固定输出集成稳压器,其输入电压选取 原则为: min Im ()O I O I ax U U U U U +-<< 式中,O U ----------集成稳压器的固定输出电压值。 Im ax U -----------集成稳压器规定的最大允许输入电压值。 min ()I O U U ------------集成稳压器规定允许的最小输入电压差,一般为2V 。 如果只有固定输出稳压器,又希望输出电压扩大或可调,可采用图C 所示电路来完成。电路中的C1、C2为频率补偿电容,防止自激振荡。

开关稳压电源设计

开关电源的设计 同组参与者:李方舟、周恒、张涛开关式直流稳压电源的控制方式可分为调宽式和 调频试两种,实际应用中,而调宽式应用的较多,在 目前开发和使用的开关电源集成电路中,绝大多数也 为脉宽调制(PWM)型。 开关稳压电源具有效率高,输出功率大,输入电 压变化范围宽,节约能耗等优点。 开关电源的工作原理就是通过改变开关器件的开 通时间和工作周期的比值即占空比来改变输出电压; 通常有三种方式:脉冲宽度调制(PWM),脉冲频率 调制(PFM)和混合调制。PWM调制是指开关周期 恒定,通过改变脉冲宽度来改变占空比的方式,因为 周期恒定,滤波电路的设计比较简单,也是应用能够 最广泛的调制方式。开关稳压电源的主要结构框架如 图1-1所示,有隔离变压器产生一个15-18V的交流电 压,在经过整流滤波电路,将交流电变成直流电,然 后再经过DC—DC变换,由PWM的驱动电路去控 制开关管的导通和截止,从而产生一个稳定的电压源, 如图1-1所示;

图1-1 一开关转换电路 1:滤波电路 输入滤波电路具有双向隔离作用,它可以抑制交流电网输入的干扰信号,同时也防止开关电源工作时产生的谐波和电磁干扰信号影响交流电网。如图1-2所示滤波电路中C1用以滤除直流份量中的交流成分,隔离电容应选用高频特性较好的碳膜电容,电阻R给电容提供放电回路,避免因电容上的电荷积累而影响滤波器的工作特性,C2、C3跨接在输出端,能有效地抑制共模干扰,为了减小漏电流C2、C3宜选用陶瓷电容器. 图1-2 2.电压保护电路 如图1-3所示为输出过压保护电路。稳压管VS的

击穿电压稍大于输出电压额定值,输出电压正常时,VS不导通,晶闸管VS的门极电压为零,不导通,当输出过压时,VS击穿,VS受触发导通,使光电耦合器输出三极管电流增大,通过UC3842控制开关管关断。 图1-3 输出过压保护电路 3.电压反馈电路 电压反馈电路如图1-4所示。输出电压通过集成稳压器TL431和光电耦合器反馈到的1脚,调节R1 R2的分压比可设定和调节输出电压,达到较高的稳压精度。如果输出电压U0升高,集成稳压器TL431的阴极到阳极的电流在增大,UC3842的输出脉宽相应变窄,输出电压U0变小,同样,如果输出电压U0减小,可通过反馈调节使之升高。

多用途步降开关稳压器L5973AD及其应用解析

多用途步降开关稳压器L5973AD及其应用 摘要:L5973AD是ST公司推出的一种带2A开关电流限制的步降单片开关稳压器IC。文中介绍了多用途步降开关稳压器L5973AD的内部结构、主要特点和工作原理,同时给出了L5973AD在不同工作方式下的典型应用电路。 关键词:步降开关稳压器;多用途芯片;L5973AD L5973AD是ST公司推出的一种带2A开关电流限制的步降单片开关稳压器IC。这种新型器件的输入电压范围为4.4~36V,输出电压可以在1.235V到35V之间进行设置。由于该开关稳压器具有宽范围的电压输入和输出特点,因此可广泛应用于网络、工业控制、消费电子产品以及与计算机有关的应用领域之中。 1L5973AD的功能原理 L5973AD采用SO8封装形式,其引脚排列如图1所示。图2所示是L5973AD芯片的内部结构组成框图。L5973AD的内部电源电路由启动电路、预调节器、带隙电压参考和偏置电路组成。 L5973AD中的电压监视器可连续感测VCC和VREF,只要电压高于它们的门限电平,稳压器就会开始工作。 L5973AD的振荡器电路由频率移位器、时钟发生器、斜坡产生器和同步器组成。其中时钟产生器可为器件产生500kHz的开关频率,频率移位器则可在过电流或短路情况下,用于降低开关频率。时钟信号可应用在内部逻辑电路中,同时也是斜坡产生器和同步器的输入信号。斜坡产生器电路可为PWM控制和内部电压前馈提供锯齿波信号。 L5973AD有一个同步脚,可以以主/从模式工作。当作为主机时,可将外部器件同步到内部开关频率上;而在作从器件时,则可将自己同步到外部信号上。如果将两个器件连接在一起,其开关频率较低的一个应作为从机,另一个则作为主机。 图2 L5973AD中的电流限制保护电路具有脉冲接脉冲和频率折回两种电流限制保护方式。 由于最小接通时间不足以在500kHz下产生足够的占空比,因此,在较大的过电流或短路条件下,输出电流会再次增加。这样,为保持电感电流在它的门限电平之下,开关频率也必须降低。随着反馈电压因占空比的减小而减小,频率移位器也会使开关频率降低。

集成稳压器

实验三直流稳压电源 ─集成稳压器 一、实验目的 1、研究集成稳压器的特点和性能指标的测试方法。 2、了解集成稳压器扩展性能的方法。 二、实验原理 电子设备一般都需要直流电源供电。这些直流电除了少数直接利用干电池和直流发电机外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。 图3-1 直流稳压电源框图 随着半导体工艺的发展,稳压电路也制成了集成器件。由于集成稳压器具有体积小,外接线路简单、使用方便、工作可靠和通用性等优点,因此在各种电子设备中应用十分普遍,基本上取代了由分立元件构成的稳压电路。集成稳压器的种类很多,应根据设备对直流电源的要求来进行选择。对于大多数电子仪器、设备和电子电路来说,通常是选用串联线性集成稳压器。而在这种类型的器件中,又以三端式稳压器应用最为广泛。 W7800、W7900系列三端式集成稳压器的输出电压是固定的,在使用中不能进行调整。W7800系列三端式稳压器输出正极性电压,一般有5V、6V、9V、12V、15V、18V 、24V 七个档次,输出电流最大可达1.5A(加散热片)。同类型78M系列稳压器的输出电流为0.5A,78L系列稳压器的输出电流为0.1A。若要求负极性输出电压,则可选用W7900 系列稳压器。图3-2 为 W7800系列的外形和接线图。 它有三个引出端

输入端(不稳定电压输入端)标以“1” 输出端(稳定电压输出端)标以“3” 公共端标以“2” 除固定输出三端稳压器外,尚有可调式三端稳压器,后者可通过外接元件对输出电压进行调整,以适应不同的需要。 本实验所用集成稳压器为三端固定正稳压器W7812,它的主要参数有:输出直 流电压 U 0=+12V,输出电流 L:0.1A,M:0.5A,电压调整率 10mV/V,输出电阻 R =0.15Ω,输入电压U I 的范围15~17V 。因为一般U I 要比 U 大3~5V ,才能保 证集成稳压器工作在线性区。 图3-2 W7800系列外形及接线图 图3-3 是用三端式稳压器W7812构成的单电源电压输出串联型稳压电源的实验电路图。其中整流部分采用了由四个二极管组成的桥式整流器成品(又称桥堆),型号为2W06(或KBP306),内部接线和外部管脚引线如图 3-4所示。 滤波电容C 1、C 2 一般选取几百~几千微法。当稳压器距离整流滤波电路比较远时, 在输入端必须接入电容器C 3 (数值为0.33μF ),以抵消线路的电感效应,防止产 生自激振荡。输出端电容C 4 (0.1μF)用以滤除输出端的高频信号,改善电路的暂态响应。 图3-3 由W7812构成的串联型稳压电源

稳压器说明书

·WG-3000 ·WG-5000 ·WG-8000 交流自动稳压器 说明书 使用前请认真阅读本说明书

感谢您选用了‘JUTA’牌交流自动稳压器,愿我们的产品及服务能为您带来更多方便和实惠 功能:在市电输入变化时自动调整稳压输出,确保家用电器在恶劣的电网条件 下也能正常运行;同时具备了全方位保护及实用的稳压、市电直通功能,使用方便,更安全更可靠,大大延长了家用电器的使用寿命。 ⊙稳压精确:在电网电压变化不稳时,能输出 稳定的安全电压,使用电器不受影响。 ⊙输入欠压、过压保护:由电网及其他因素引 起的电压输入过高或过低时,为保证用电器和人 身财产安全,稳压器会自动切断输出,待电网电 压恢复稳定后可自动(延时)开启。 ⊙缺相保护:在三相供电情况下,由于一相断 掉或者零线断掉,会导致单相供电电压异常升高, 甚至高过380V,危及到用电器及人身财产安全, 此时稳压器会自动关闭输出进入保护状态。 ⊙误断电保护:在遇到电网老化、输电线过细 距离过长时,有感性负载(如冰箱、空调等带有 压缩机的)或大型用电器启动,瞬间会导致电网 电压降低,此时稳压器能保证负载的正常供电而不至于误断电。 ⊙市电稳压切换:机身侧面设有稳压接入和市电直通转换开关,使用时若觉得电网电压很稳定,不想用稳压功能时,把此开关拨至“OFF”市电状态即可。通常情况下都要将此开关拨至“ON”稳压状态,此时自动稳压功能才能启动。 ⊙延时供电功能:为避免短时间停电又来电情况的发生,设有了2-3分钟自动延时供电功能(如电冰箱或空调器在停止工作后,再次启动需3分钟延时);若不需要此延时,可按下“延时开关”按钮启动短延时,本机可在5秒内开启供电。 安装连接:(如图所示) 将启动开关拨至“OFF”关状态,拉下电网闸刀开关或空气开关断开市电,取下稳压器端子板两颗固定螺丝拔出端子板,按对应端位指示正确连接 1.把家庭供电总线(墙壁插座及所有用电器用线)插入到对应输出的“火线”、 “零线”端口内,拧紧固定螺丝。 2.把供电输入连接线插入到对应输入的“火线”、“零线”端口内,拧紧固定 螺丝。 3.再把安全接地线插入到对应的(端子中间“接地”符号)端口内,拧紧固 定螺丝。

开关型稳压IC

开关稳压类电源IC ——AE2596 AE2576 AE1501 AE1509简介 锐和微电子有限公司 https://www.doczj.com/doc/f46967974.html, https://www.doczj.com/doc/f46967974.html,

https://www.doczj.com/doc/f46967974.html, 内容提纲 市场分析 产品特性 对比分析

https://www.doczj.com/doc/f46967974.html, 市场分析(1) 产品应用领域:高效率降压调节器,单片开关电压调节器,正、负电压转换器,电信系统,汽车系统,电池管理数字设备. 移动硬盘、LCD 显示器、POS 机、网络交换设备、电机供电设备、车载电子产品、税控机、LCD 电压调节器、LCM 、汽车充电器、液晶电视、机顶盒、工业和汽车音频电源、大功率LED 电源和12V/24V 分布式电源.

https://www.doczj.com/doc/f46967974.html, 市场分析(2) 国内开关稳压器市场现状及前景 在过去的几年里,主要由于散热方面的限制,开关稳压器一直在逐步取代线性稳压器。开关电源的优点包括较高的效率和较小的占位面积,这使得复杂度的增加以及EMI 问题变得不那么重要. 如果考虑电源管理系统中的开关稳压器限制条件,则其将需要拥有下列特点和特性: 宽输入工作范围 在一个宽负载范围内具有良好的效率 在正常操作、待机和停机状态下具有低静态电流 低热阻 最低的噪声和EMI 辐射

https://www.doczj.com/doc/f46967974.html, 市场分析(3) 从应用领域看,电源管理器件市场的焦点仍集中在便携式设备、计算机、通信和网络设备应用等领域,同时工业设备对电源管理器件的需求也呈上升趋势。这些需求的增长让电源管理器件市场更添活力,各供应商积极进行技术创新,不断推出新产品来满足OEM 的特殊需求。同时,厂商之间也一改传统,尝试着以合作方式拓展生存空间。 面向便携式应用的电源器件市场将在2008年继续攀升至72亿美元。 便携式设备中新增加的音视频、数据输入、无线连接等功能将对电源管理形成新的需求。 在这些新的需求变化下,便携式设备的电源管理呈现出下面几个特征:最重要的当然是效率。

高度集成的开关稳压器单片式解决方案解析

高度集成的开关稳压器单片式解决方案解析 开关稳压器可以采用单片结构,也可以通过控制器构建。在单片式开关稳压器中,各功率开关(一般是MOSFET)会集成在单个硅芯片中。使用控制器构建时,除了控制器IC,还必须单独选择半导体和确定其位置。选择MOSFET 非常耗费时间,且需要对开关的参数有一定了解。使用单片式设计时,设计人员无需处理这些问题。此外,相比高度集成的解决方案,控制器解决方案通常会占用更多的电路板空间。所以,毫不意外多年来人们越来越多地采用单片式开关稳压器,如今,即使对于更高功率,ADI公司也有大量的解决方案可供选择。图1左侧是单片式降压转换器,右侧是控制器解决方案。 图1.单片式降压转换器(左);带外部开关的控制器解决方案(右) 虽然单片式解决方案需要的空间较少,也简化了设计流程,但另一方面,控制器解决方案的优势是更加灵活。设计人员可以为控制器解决方案选择经过优化、适合特定应用的开关管,也可以控制开关管的栅级,所以能够通过更巧妙地部署无源组件来影响开关边沿。此外,控制器解决方案适合高功率,因为可以选择大型分立式开关管,且开关损耗会远离控制器IC。

但是,除了这些熟知的单片式解决方案的有利和不利因素之外,还有一个因素容易忽略。在开关稳压器中,所谓的热回路是实现低辐射的决定因素。在所有开关稳压器中,应尽量优化EMC。实现优化的基本原则之一是: 化各个热回路中的寄生电感。在降压转换器中,输入电容和高压侧开关之间的路径,高压侧开关和低压侧开关之间的连接,以及低压侧开关和输入电容之间的连接都是热回路的一部分。它们都是电流路径,其中的电流随开关切换的速度而变化。通过快速的电流变化,因寄生电感形成电压偏移,可以作为干扰耦合到不同的电路部分。 图2.单片式开关稳压器(左)和带控制器IC的解决方案(右),每个都有一些不同形式的热回路 所以,这些热回路中的寄生电感必须保持尽可能低。图2用红色标出各热回路路径,左侧为单片式开关稳压器,右侧为控制器解决方案。我们可以看到,单片式解决方案具有两大优势。一,其热回路比控制器解决方案的热回路小。二,高压侧开关和低压侧开关之间的连接路径非常短,且只在硅芯片上完成走线。两者相比,对于带控制器IC的解决方案,连接的电流路径必须通过封

降压型开关稳压器AP1510及其应用

降压型开关稳压器AP1510及其应用介绍了降压型PWM控制器APl5lO的工作原理,并给出了一个典型应用电路。测试结果验证了它的实用性。 引言 随着信息技术与集成电路的高速发展,电子产品逐渐向智能化、小型化、低功耗方面发展,同时电源必须做到小体积、高效率、低功耗,以适应电子产品的高速发展。因此,高度集成的PWM控制器在电子产品中得到了广泛应用。 易亨(AnachiD)电子公司推出的降压型PWM控制器APl510可以广泛应用于电子产品的电源中。由于APl510芯片内包含基准电压源、振荡电路、误差放大器、内部PMOS 开关管等电路,所以只须外加电感、电容、二极管等少量元器件,便可组成小体积、高效率的降压型开关稳压电源。 l APl5lO的工作原理 APl510的原理框图如图l所示。 1.1 引脚功能及描述 脚1 (FB)反馈端,误差放大器的反相输入,通过分压电阻连接电源输出端。 脚2 (EN)使能端,工作或待机控制,高电平:正常运行,低电平:待机运行。 脚3(OCSET)输出电流设定端,通过外部电阻设定最大输出电流。 脚4 (VCC IC)电源输入正端。 脚5、6 (Output)开关输出端,P沟MOS场效应管漏极,连接外部续流二极管和电感。 脚7、8 (VSS IC)电源输入负端。 1.2 工作原理

由图1可知,APl510由基准电压源、振荡电路、误差放大器、PWM控制器、过热关断控制电路以及P沟MOS场效应管等部件组成。 基准电压源为芯片内部电路提供稳定的供电电压,并为误差放大器的同相输入端提 供0.8V的电压基准。它具有软启动功能,可以防止电源启动时的冲击,它还具有欠压锁定功能,当输入电压低于3.3V时APl510停止工作;当输入电压高于3.5V时,它自动恢复工作。 振荡电路产生300 kHz的振荡波形,当发生过流保护或短路保护时,工作频率将从300 kHz减小到30kHz。 输出电压的取样信号进入误差放大器的反相输入端,经比较后进入PWM控制器,输出占空比变化的方波去驱动内部的P沟M0S管:APl510调节脉冲的占空比可以从O%~100%,这使得APl510可以在很宽的输入电压范围内正常工作。 过热关断电路使芯片结温达到125℃时关断,保护芯片不会因为过热而损坏。其恢复温度为100℃,25℃的温度回差确保芯片过热保护时不会振荡。 APl510内部具有P沟MOS管的限流功能,其计算方法为 式中:ILOAD为内部P沟MOS管设定的工作电流,APl51O中MOS管的最大工作电流为3 A; RDS(ON)为APl510中MOS管的导通电阻,其值为100mΩ; IOCSET为APl5lO中内部恒流源的工作电流,其值为100μA; ROCSET为脚OCSER对地的外接电阻。 APl510的输入电压范围为3.6~23V,由于内置了P沟MOS管,所以只需外加电感、电容、二极管等,便可组成降压型开关稳压电源。由于采用固定频率工作方式,因而内部补偿电路简单,输出纹波低,瞬态响应好,电源的效率也很高。 2 应用电路 图2所示的电路是一个由APl510组成的典型降压型DC/DC变换器,其输入电压为12 V,输出电压为5V。 图2电路中RA、RB为输出电压设定电阻,输出电压VOUT与RA、RB阻值的关系如式(1)所列。

集成稳压电源实验报告

电子电工教学基地 实 验 报 告 实验课程:模拟电子技术实验 实验名称:集成直流稳压电源的设计 班级: 姓名 小组成员: 实验时间: 上课时间:

集成直流稳压电源实验报告 一.设计目的 1.掌握集成稳压电源的实验方法。 2.掌握用变压器、整流二极管、滤波电容和集成稳压器来设计直流稳压电源。 3.掌握直流稳压电源的主要性能参数及测试方法。 4.进一步培养工艺素质和提高基本技能。 二.设计要求 (1)设计一个双路直流稳压电源。 (2)输出电压Vo=±12V,+5V最大输出电流Iomax=1A (3)输出纹波电压ΔVop-p≤5mV, 稳压系数Sv≤5×10-3。 三.总电路框图及总原理图。 LM7912CT 四.设计思想及基本原理分析 直流电源是能量转换电路,将220V(或380V)50Hz的交流电转换为直流电。 直流稳压电源一般有电源变压器T r、整流、滤波电路及稳压电路所组成,基本框图如图:

各部分作用如下: (1)电源变压器 电源变压器T r的作用是将电网220V的交流电压变换为整流滤波电路所需要的交流电压U i,变压器的副边与原边的功率比为P2/P1=η,η为变压器的效率。 (2)整流电路 整流电路将交流电压U i变换成脉动的直流电压。 常用的整流电路有全波整流电路,桥式整流电路、倍压整流电路等。 本实验我们采用的是桥式整流电路: 二极管选择: 考虑到电网波动范围为±10%,二极管 的极限参数应满足: (3)滤波电路 滤波电路将脉动直流电压的纹波减小或滤除,输出直流电压U1。 常用的滤波电路有电容滤波电路,电感滤波电路、复式滤波电路等。 2 max R 2U U= L 2 L(AV) D(AV) 45 .0 2R U I I≈ = ? ? ? ? ? > ? > 2 R L 2 F 2 1.1 45 .0 1.1 U U R U I

线性稳压器和开关模式电源的基本概念

线性稳压器和开关模式电源的基本概念 关键字:线性稳压器开关模式电源SMPS 摘要 本文阐述了线性稳压器和开关模式电源(SMPS)的基本概念。目的是针对那些对电源设计和选择可能不很熟悉的系统工程师。文章说明了线性稳压器和SMPS的基本工作原理,并讨论了每种解决方案的优势和劣势。以降压型转换器为例进一步解释了开关稳压器的设计考虑因素。 引言 如今的设计要求在电子系统中有越来越多的电源轨和电源解决方案,且负载范围从几mA(用于待机电源)到100A以上(用于ASIC电压调节器)。重要的是必需选择针对目标应用的合适解决方案并满足规定的性能要求,例如:高效率、紧凑的印刷电路板(PCB)空间、准确的输出调节、快速瞬态响应、低解决方案成本等。对于系统设计师来说,电源管理设计正成为一项日益频繁和棘手的工作,而他们当中许多人可能并没有很强的电源技术背景。 电源转换器利用一个给定的输入电源来产生用于负载的输出电压和电流。其必需在稳态和瞬态情况下满足负载电压或电流调节要求。另外,它还必须在组件发生故障时对负载和系统提供保护。视具体应用的不同,设计师可以选择线性稳压器(LR)或开关模式电源(SMPS)解决方案。为了选择最合适的解决方案,设计师应熟知每种方法的优点、不足和设计关注点,这是十分重要。 本文将着重讨论非隔离式电源应用,并针对其工作原理和设计的基本知识作相关介绍。 线性稳压器 线性稳压器的工作原理 我们从一个简单的例子开始。在嵌入式系统中,可从前端电源提供一个12V总线电压轨。在系统板上,需要一个3.3V电压为一个运算放大器(运放)供电。产生3.3V电压最简单的方法是使用一个从12V总线引出的电阻分压器,如图1所示。这种做法效果好吗?回答常常是―否‖。在不同的工作条件下,运放的V CC引脚电流可能会发生变化。假如采用一个固定的电阻分压器,则IC V CC电压将随负载而改变。此外,12V总线输入还有可能未得到良好的调节。在同一个系统中,也许有很多其他的负载共享12V电压轨。由于总线阻抗的原因,12V总线电压会随着总线负载情况的变化而改变。因此,电阻分压器不能为运放提供一个用于确保其正确操作的3.3V稳定电压。于是,需要一个专用的电压调节环路。如图2所示,反馈环路必需调整顶端电阻器R1的阻值以动态地调节V CC上的3.3V。

集成稳压器的稳压电源电路设计

绪论 电源技术是一门实践性很强的技术,服务于各行各业之中。当今电源技术融合了电器、电子、系统集成、控制理论、材料等诸多科学领域。随着计算机和通信技术发展而带来现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源技术提出了更高的要求! 电源可分为交流电源和直流电源。前者在此不做介绍。而直流电源又可分为两类:一类是能直接提供给直流电流或电压的,如电池、太阳能电池、硅光电池等。另一类就是将交流电变换成所需的稳定的直流电流或电压的。这就是我们本次实习所需要的设计。当今的大多数电子设备中,几乎都必须用到直流稳压电源来使其正常工作。而最常用的就是能将交流电网电压转换为稳定直流电压的直流电源,可见集成直流稳压电源在电子设备中起到的重要作用。集成稳压器在近十多年发展很快,目前国内外已发展到几百个品种。按电路的工作方式分,有线性集成稳压器和开关式集成稳压器。按电路的结构形式分,有单片式集成稳压器和组合式集成稳压器。按管脚的连接方式分,有三端式集成稳压器和多端式集成稳压器。按制造工艺分,有半导体集成稳压器、薄膜混合集成稳压器和厚膜混合集成稳压器。 集成稳压器的稳压电源电路一般由四部分组成,他们分别是电源变压器、整流电路、滤波电路、稳压电路。

总体设计 一、设计目的 认识要求 1)认识变压器、二极管、电阻、电容等基本元件; 2)理解桥式整流,滤波,稳压的作用; 3)明确桥式稳压电源的设计方法,能根据稳压电源的输出要求,选择适当的电源变压器,二极管。 功能要求 1)设计:集成稳压器的稳压电源电路 2)功能:能将输入的交流电压运用本身稳压功能输出+5V直流电压 二、性能指标 1、使用集成稳压器的直流稳压电源电路指标要求: (1)输入电压为:220V,频率50Hz (2)输出电压为:+5V (3)稳压部分:采用三端集成稳压器 (4)电路采用全波桥式整流滤波电路 (5)负载:一个1K电阻。

降压型开关稳压器TPS5410

降压型开关稳压器TPS5410~TPS5450 为了取代降压型线性稳压器,推出新一代开关型降压稳压器系列,其输入电压为5.5V~36V,输出电流分别为1A(TPS5410),2A(TPS5420),3A(TPS5430)及5A(TPS5450)系列,其主要性能及特点: * 宽的输入电压范围从5.5V~36V。 * 高的转换效率,从90%~95%,内部功率开关导通电阻分别为110mΩ的MOSFET开关。 * 输出电压范围从1.22V~35V,精度为1.5%。 * 设置好内部放大器补偿网络,大幅度减少外部元件。 * 固定开关频率在500KHZ,大幅度减小了外部电感电容的体积。 * 好的线性调整率和瞬态响应能力。 * 保护系统包括过流保护和芯片过热保护。 * 工作环境为-40℃~+125℃。 * 采用有散热底板的POWER-SO-8封装。 该器件有广泛的市场空间,如机顶盒,DVD,LCD-TV,工业电子产品,音频系统电源,电池充电,LED驱动,适用于输入电压为24V及12V的电子系统。 其8个引脚功能如下: 1PIN——BOOT,为高边MOSFET驱动用的升压电容接线端,外接0.01μF电容从BOOT 到PH端。 2PIN——NC。 3PIN——NC。 4PIN——VSENSE。反馈输入端,外部用电阻分压器接到输出。 5PIN——ENA,芯片的ON/OFF控制端,其电平在0.5V以下时,器件停止开关,将其浮动时,芯片即使能。 6PIN——GND,IC公共端。 7PIN——VIN,外部电压输入端。紧靠IC外接旁路电容。 8PIN——PH,高边功率开关的源极,接到外部电感及回流二极管。 POWER PAD,封装底部金属板,外接至PGND。 TPS5410~50系列开关稳压器内部等效电路如图1所示,基本应用电路如图2。 图1 TPS5410 系列内部等效方块电路

集成稳压器

姓名: 学号: 班级: 集成稳压器 实验目的: 1.了解集成稳压器的特性和使用方法。 2.掌握直流稳压电源主要参数测试方法。 实验仪器: 示波器 数字万用表 直流电源 实验原理: 采用集成工艺,将调整管、基准电压、取样电路、误差放大和保护电路等集成在一块芯片上,就够成了集成稳压电源。如图A 所示的外引角图(本实验中所用的芯片LM7805CT )。 三段固定输出集成稳压器 此类稳压器有三个引出端:输入端、输出端和公共端。根据其输出电压极性可分为固定正输出集成稳压器(W78系列)和固定负输出集成稳压器(W79系列)。根据输出电流的大小又可分为W78XX 型(表示输出电流为1.5A )、W78MXX 型(表示输出电流为0.5A )和CW78LXX 型(表示输出电流为0.1A )。后面两位数字XX 表示输出电压的数值,一般有5V 、6V 、9V 、12V 、15V 、18V 、24V ,固定负输出集成稳压器相应也有W79XX 、W79MXX 和W79LXX 型。利用固定输出集成稳压器可组成各种应用电路,W78XX 型集成稳压器的基本应用电路如图B 所示。对三端固定输出集成稳压器,其输入电压选取 原则为: m i n I m ()O I O I ax U U U U U +-<< 式中,O U ----------集成稳压器的固定输出电压值。

Im ax U -----------集成稳压器规定的最大允许输入电压值。 min ()I O U U -----------集成稳压器规定允许的最小输入电压差,一般为2V 。 如果只有固定输出稳压器,又希望输出电压扩大或可调,可采用图C 所示电路来完成。电路中的C1、C2为频率补偿电容,防止自激振荡。 C61uF 1、三端可调输出集成稳压器 三端可调输出集成稳压器分为正可调输出集成稳压器(如W117)与负可调输出集成稳压器(如CW137),正可调输出集成稳压器的输出电压范围为1.2~37V ,输出电流可调范围0.1~1.5A 。他同样有三个端子,即输入端、输出端和调整端,在输入端与调整端之间为Uref=1.25V 的基准电压,从调整端流出的电流d I =50uA 。常用基本稳压电路如图D 所示。 U450%

三端可调式集成稳压器

三端可调式集成稳压器 三端可调式集成稳压器输出电压可调,稳压精度高,输出纹波小,只需外接两只不同的电阻,即可获得各种输出电压。 1.分类 它分为三端可调正电压集成稳压器和三端可调负电压集成稳压器。 三端可调式集成稳压器产品分类见表7.3.3。 表7.3.3 三端可调式集成稳压器分类 类型产品系列或型号最大输出电流I OM/A输出电压U O/V 正电压输出 LM117L/217L/317L0.1 1.2∽37 LM117M/217M/317M0.5 1.2∽37 LM117/217/317 1.5 1.2∽37 LM150/250/3503 1.2∽33 LM138/238/3385 1.2∽32 LM196/39610 1.25∽15负电压输出LM137L/237L/337L0.1-1.2∽-37

LM137M/237M/337M0.5-1.2∽-37 LM137/237/337 1.5-1.2∽-37 2.引脚排列 三端可调式集成稳压器引脚排列图如图7.3.6所示。除输入、输出端外,另一端称为调整端。 图7.3.6 三端可调式集成稳压器引脚排列图 a)TO-220 封装 b)TO-3封装 3. 三端可调式集成稳压器基本应用电路 1).基本应用电路及输出电压估算 电路如图7.3.7所示。U O=1.2~37V连续可调。I OM=1.5A,I Omin≥5mA. CW317的U REF固定在1.2V,I ADJ=50 A,忽略不计。 U O=1.2(1+R2/R1)V 。

图7.3.7 三端可调式集成稳压电路 2).外接元器件选取 为保证负载开路时I Omin ≥5mA ,R 1max =U REF /5mA=240Ω。U Omax =37V ,R 2为调节电阻,代入U O 表达式求得R 2为7.16k Ω左右,取6.8k Ω。 C 2是为了减小R 2两端纹波电压而设置的,一般取10μF 。C 3是为了防止输出端负载呈感性时可能出现的 阻尼振荡,取1μF 。C 1为输入端滤波电容,可抵消电路的电感效应和滤除输入线窜入干扰脉冲,取0.33μF 。VD 1、VD 2是保护二极管,可选整流二极管2CZ52。 3). I U 选取 I U =28∽40V ,O I U U -≥3V 。当V U V U U I O O 40,37max ===。

稳压器的构造

一个典型的开关电容式转换器包括四个大型MOS 开关,其开关顺序为典型的开关、加倍或减半输入电源电压。能量的传递与存贮由外部电容器提供,公司举例随着我国隔离变压器产品在市场环境、生产经营、产品进出口、行业投资环境以及可持续发展上的问题我国在此基础上对行业发展趋势做出了定性与定量相结合的分析预测。 从事变压器、稳压器、调压器等低压配套产品的生产、研发、销售,“坚持企业创新,主要产品有:SBW大功率补偿式电力稳压器、SBW-F分调式电力稳压器、SVC高精度全自动交流稳压器、精密净化稳压器、微电脑无触点稳压器、SG\SBK隔离变压器、OSG\QZB自耦变压器、ZSG\ZDG整流变压器、SSG 伺服变压器、DN电阻焊接水冷变压器、电抗器、接触式自耦调压器、柱式大功率电动调压器等成套电器设备。产品设计新颖、体积小、造型美观、具有低损耗、低噪声、耐冲击等优点。广泛用于工矿企业、纺织机械、印刷包装、石油化工、学校、商场、电梯、邮电通信、医疗机械等所有需要正常电压保证的场合。 在开关周期的第一部分,输入电压作用于一个电容器(C1)。在开关周期的第二部分,电荷从C1 传送到第二个电容器C2 上。最传统的开关电容式转换器的构造是一个反用换流器,其中C2 具有一个接地正端,其负端传递负输出电压。经过几个周期之后,通过C2 的电压将被施加到输入电压。假设C2 上没有负载、开关上没有损耗并且在电容器中没有连续的电阻,则输出电压将正好是输入电压的负数。 在现实中,电荷传送的效率(以及由此导致的输出电压的精确性)取决于开关频率、开关的电阻、电容器的值和连续电阻。一种类似的拓扑结构倍压器使用相同的开关和电容器组,但更改了接地连接和输入电压。其它更复杂的变种产品使用附加开关和电容器实现输入电压与输出电压的其它变换比率,并且在一些情况下,使用专门的开关次序来产生分数关系(例如3/2)。 在各种最简单的形式中,开关电容式转换器是不具备稳压功能的。一些新的National半导体开关电容式转换器具有自动调节的增益级别以产生经过稳压的输出;其它开关电容式转换器使用一个内置的低压降线性稳压器产生未经过稳压的输出。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.doczj.com/doc/f46967974.html,/

集成稳压器的参数(精)

集成稳压器的参数 1.电压调整率Sv它是表示当输出电流(负载)和环境温度保持不变时,由于输人电压的变化所引起的输出电压的相对变化量。电压调整率有时也用在某一输人电压变化范围内的输出电压变化量表示。该参数表征了稳压器在输人电压变化时稳定输出电压的能力。2.电流调整率SI它是指当输人电压和环境温度保持不变时,由于输出电流的变化所引起的输出电压的相对变化量。电流调整率有时也用负载电流变化时输出电压变化量表示。该参数也表示稳压器 1.电压调整率Sv 它是表示当输出电流(负载)和环境温度保持不变时,由于输人电压的变化所引起的输出电压的相对变化量。电压调整率有时也用在某一输人电压变化范围内的输出电压变化量表示。该参数表征了稳压器在输人电压变化时稳定输出电压的能力。 2.电流调整率SI 它是指当输人电压和环境温度保持不变时,由于输出电流的变化所引起的输出电压的相对变化量。电流调整率有时也用负载电流变化时输出电压变化量表示。该参数也表示稳压器的负载调整能力。 3.输出阻抗ZO 它是在规定的输入电压Ui和输出电流几的条件下,在输出端上所测得的交流电压U与交流电流I之比,即Zo=U/I 。 4.输出电压长期稳定性ST 它是当输入电压、输出电流及环境温度保持不变时,在规定的时问内稳压器输出电压的最大相对变化量。 5.输出电压温漂SP 它是在规定温度范围内,当输人电压和输出电流保持不变时,由温度的变化所引起的每单位的变化率。该参数表示稳压器输出电压的温度稳定性。 6.纹波抑制比SRR 它是当输入和输出条件保持不变时,输人的纹波电压峰-峰值与输出的纹波电压峰~峰值之比。该参数表示稳压器对输人端所引人的纹波电压的抑制能力。 7.最大输入电压UImax

线性稳压器和开关稳压器比较

线性稳压器和开关稳压器比较 本文对线性稳压器和开关稳压器进行了比较,并介绍了在考虑能效的同时,如何相应考虑简洁性、低成本、稳定性等因素。 开关稳压器:高效但复杂开关稳压器效率高,并且能够轻松实现升压输出、降压输出和电压逆变。目前的模块化芯片结构紧凑、性能可靠,许多供应商都有供应。尽管开关稳压器具有许多优势,但也存在不足之处(表1)。 首先,开关稳压器属于复杂芯片,因此为确保新产品正常工作,可能需要更多的设计工作。其次,目前的开关稳压器集成度越高,成本也越高,并且还需增大芯片尺寸。最后,所有的高频率开关往往会产生噪声。 在高频工作模式下,开关稳压器会在输入和输出滤波器上产生电压和电流纹波,这是在设计中使用该器件所面临的主要问题。而解决这些问题需要时间和设计技能。 线性稳压器可以解决开关稳压器的所有主要缺点。它们简单且低成本,需要较少外部元器件,并且不会因开关产生多余的噪声。如表 1 所示,对于恰当的应用选择这些合适的线性稳压器才是明智之举。 仅支持降压工作模式上段描述中有一关键词“恰当的应用”,那是因为线性稳压器存在局限性,这意味着它们可能不适合某些设计,但却会是另一些设计的合适之选。 例如,线性稳压器输出只能低于输入电压(“降压”)。因为存在局限性,所以需要增加额外的电池来提高基本DC 供电电压,才能确保电压超过LDO 需要的输入电压。每个稳压器需使用五个标称电压为1 至1.5 伏的电池,每个电池需要在其整个放电周期内确保可靠的 5 伏输出电压。而额外增加电池的成本很快会超出使用较少电池即可运行的开关稳压器成本。此外,额外的电池还占据了宝贵的空间。 另外还有一个问题,如果产品中的元器件需要高于所有其他元器件的电压,线性稳压器无法实现升压输出。还有类似的问题,在某些模拟电路需要负电压的情况下,由于线性稳压器无法逆转正电源,因而无法使用。

直流稳压电源__集成稳压器

实验八直流稳压电源 ─集成稳压器─ 一、实验目的 1、研究集成稳压器的特点和性能指标的测试方法。 2、了解集成稳压器扩展性能的方法。 二、实验原理 W7800、W7900系列三端式集成稳压器的输出电压是固定的,在使用中不能进行调整。W7800系列三端式稳压器输出正极性电压,一般有5V、6V、9V、12V、15V、18V 、24V 七个档次,输出电流最大可达1.5A(加散热片)。同类型78M 系列稳压器的输出电流为0.5A,78L系列稳压器的输出电流为0.1A。若要求负极性输出电压,则可选用W7900 系列稳压器。 除固定输出三端稳压器外,尚有可调式三端稳压器,后者可通过外接元件对输出电压进行调整,以适应不同的需要。 本实验所用集成稳压器为三端固定正稳压器W7812,它的主要参数有:输出直流电压 U0=+12V,输出电流 L:0.1A,M:0.5A,电压调整率 10mV/V,输出电阻 R0=0.15Ω,输入电压U I的范围15~17V 。因为一般U I要比 U0大3~5V ,才能保证集成稳压器工作在线性区。 图8-1 W7800系列外形及接线图 图8-2 是用三端式稳压器W7812构成的单电源电压输出串联型稳压电源的实验电路图。其中整流部分采用了由四个二极管组成的桥式整流器成品

(又称桥堆),型号为2W06(或KBP306),内部接线和外部管脚引线如图8-3所示。滤波电容C1、C2一般选取几百~几千微法。当稳压器距离整流滤波电路比较远时,在输入端必须接入电容器C3(数值为0.33μF ),以抵消线路的电感效应,防止产生自激振荡。输出端电容C4(0.1μF)用以滤除输出端的高频信号,改善电路的暂态响应。 图8-2 由W7815构成的串联型稳压电源 附:(1) 图8-7为W7900系列(输出负电压)外形及接线图 图8-7 W7900系列外形及接线图 (2) 图8-8为可调输出正三端稳压器W317外形及接线图。

开关稳压电源设计方案

开关电源的设计 同组参与者:李方舟、周 恒、张涛开关式直流稳压电源的控制方式可分为调宽式和调频试两种,实际应用中,而调宽式应用的较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制

图1-1 一开关转换电路 1:滤波电路 输入滤波电路具有双向隔离作用,它可以抑制交流电网输入的干扰信号,同时也防止开关电源工作时产生的谐波和电磁干扰信号影响交流电网。如图1-2 所示滤波电路中C1用以滤除直流份量中的交流成分,隔离电容应选用高频特性较好的碳膜电容,电阻R给电容提供放电回路,避免因电容上的电荷积累而影响滤波器的工作特性,C2、C3跨接在输出端,能有效地抑制共模干扰,为了减小漏电流C2、C3宜选 用陶瓷电容器. 图1-2 2.电压保护电路 如图1-3所示为输出过压保护电路。稳压管VS 的击穿电压稍大于输出电压额定值,输出电压正常时,V不导通,晶闸管VS的门极电压为零,不导通,当输出过压

相关主题
文本预览
相关文档 最新文档