当前位置:文档之家› 第1章-光学分析法导论

第1章-光学分析法导论

《现代仪器分析》课程

《现代仪器分析》课程

第一章

光学分析法导论

Chapter One

Guide of Optics Analytical Method

光学分析法是基于能量作用于物质后产生电磁辐射信号或电磁辐射与物质相互作用后产生辐射信号的变化而建立起来的一类分析方法。

§1.1 电磁辐射及电磁波谱

一. 电磁辐射的波粒二象性

1.电磁辐射的波动性

波长—λcm 、μm 、nm 、A

频率—υHz sec -1

波数—σcm -1

传播速度—νυc λ=λ

υν×=cm/ sec 在真空中为2.99792×1010cm ·s -1

散射折射与反射衍射干涉偏振

2.电磁辐射的粒子性

光电效应康普敦效应黑体辐射

普朗克(Planch )公式

λhc h E ==υ E --光子的能量J, 焦耳υ---光子的频率Hz, 赫兹

λ---光子的波长cm

C ---光速

2.99792×1010cm.s -1h ---Planch 常数 6.6256×10-34J.s 焦耳. 秒

1eV=1.602x10-19J

能量换算表nm

?cm -1eV MHz J nm

10107 1.240x103 2.9979x1011 1.986x10-16?1

108 1.240x104 2.9979x1012 1.986x10-15cm -1107

108 1.240x10-4 2.9979x104 1.986x10-23eV 1.240x103

1.240x1048.0655x103

2.418x108 1.602x10-19MHz 2.9979x1011

2.9979x1012

3.3356x10-5

4.1355x10-9 6.626x10-28J 1.986x10-16

1.986x10-15 5.034x1022 6.241x1018 1.509x1027Spectrometric region

UV-vis X-ray

UV Infrared X-ray Radiofrequency (NMR)

3.电磁波谱

将各种电磁辐射按照波长或频率的大小顺序排列所成的图或表称为电磁波谱

0.005nm 10nm 200nm 400nm 800nm 0.1cm100cm 104cm

γ射线X射线远紫外近紫外区可见区红外微波无线电波

光学光谱区

二.电磁辐射与物质的相互作用及其光谱

原子、离子、分子

1.物质的能态λ

hc h νE E E ==?=?012.电磁辐射的吸收与发射

h ν

E E hc E hc =?=?=0

发射光谱

物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到底能态或基态时产生发射光谱,多余的能量以光的形式发射出来

M* →M + hν

通过测量物质的发射光谱的波长和强度来进行定性和定量分析的方法叫发射光谱法。

吸收光谱

当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需的能量满足⊿E=hν的关系时,将产生吸收光谱

M + hν→M*

通过测量物质的吸收光谱的波长和强度来进行定性和定量分析的方法叫吸收光谱法。

原子光谱是由原子外层或内层电子能级的变化产生的。

A. 原子光谱线光谱

Line spectra E 2

E 0

E 1E 3

波长A O A Na 5890、5896

Single wavelength ~ finite spectral bandwidth

Specctral bandwidth Power Appears to eye:

分子光谱是由分子中电子能级、振动和转动能级的变化产生的

B. 分子光谱带光谱Band spectra 有机、无机分子)

/()

(?????平动转动振动电子平动转动振动电子平动

转动振动电子分子λλλλhc ννννh E E E E E +++=+++=+++=

§1.2 光学分析法波谱

将各种电磁辐射按照波长或频率的大小顺序排列所成的图或表称为电磁波谱

0.005nm 10nm 200nm 400nm 800nm 0.1cm100cm 104cm

γ射线X射线远紫外近紫外区可见区红外微波无线电波

光学光谱区

1.电磁波谱与现代仪器分析方法莫斯鲍尔光谱法:γ-射线→原子核→γ-射线吸收

波谱区

γ-射线波长

5~140 pm 跃迁类型核能级X -射线远紫外光10-3~10nm 10~200nm 原子内层电子原子外层电子/分子成键电子400~750nm 200~400nm 可见光近远紫外光----真空紫外区。此部分光谱会被空气吸收

X -射线吸收光谱法:X -射线/放射源→原子内层电子(n>10)→X -射线吸收X -荧光光谱法:X -射线→原子内层电子→特征X -射线发射

紫外光原子光谱:原子发射光谱、原子吸收光谱、原子荧光光谱

波谱区

近红外光中红外光波长

0.75~2.5μm 2.5~50μm 跃迁类型分子振动电子、核自旋

分子转动

1~100 m 0.1~100cm 50~1990μm 射频微波远红外光近红外光谱区:配位化学的研究对象

红外吸收光谱法:红外光→分子→吸收远红外光谱区

电子自旋共振波谱法:微波→分子未成对电子→吸收

核磁共振波谱法:射频→原子核自旋→吸收

2.光学分析法的分类

光谱法:以光的波长与强度为特征信号的仪器分析方法

吸收光谱法、发射光谱法、散射光谱法

非光谱法:以光辐射的某些性质变化特征信号的仪器分析方法折射法、旋光法、圆二色法、比浊法、衍射法

§1.3 光学分析法仪器

用来研究吸收、发射或荧光的电磁辐射的强度和波长的关系的仪器叫做光谱仪或分光光度计

基本组成单单元:光源、单色器、样品容器、检测器、读出器件

Emission Spectrometry

Light emitting

Sample,e.g.,

an ICP torch

2Output

Wavelength Selector (monochromator or filter)Transducer h νout 31

光学分析部分习题.docx

第二章光分析方法导论 一、选择题 1、 请按能量递增的次序,排列下列电磁波谱区:红外、射频、可见光、紫外、X 射线、微波、丫射 线( A 、 微波、射频、红外、可见光、紫外、X 射线、丫射线 B 、 射频、微波、红外、可见光、紫外、X 射线、丫射线 C 、 丫射线、X 射线、紫外、可见光、红外、微波、射频 D 、 丫射线、X 射线、紫外、可见光、红外、射频、微波 2、 请按波长递增的次序,排列下列电磁波谱区:红外、射频、可见光、紫外、X 射线、微波、丫射线( 微波、射频、红外、可见光、紫外、X 射线、丫射线 射频、微波、红外、可见光、紫外、X 射线、丫射线 Y 射线、X 射线、紫外、可见光、红外、微波、射频 丫射线、X 射线、紫外、可见光、红外、射频、微波 请按能量递增的次序,排列下列电磁波谱区:远红外、可见光、近紫外、近红外、远紫外( 某分了的转动能级差△ E=0.05eV ,产生此能级跃迁所需吸收的电磁辐射的波长为( 248pm D 、2480pm A 、 B 、 D 、 3、 A 、 远红外、 近红外、 可见光、近紫外、 远紫外 B 、 远红外、 近红外、 可见光、远紫外、 近紫外 C 、 远紫外、 近紫外、 可见光、近红外、 远红外 D 、 近紫外、 远紫外、 可见光、近红外、 远红外 4、 A 、 请按波长递增的次序,排列下列电磁波谱区:远红外、可见光、近紫外、近红外、远紫外( 可见光、近紫外、 远红外、 近红外、 远紫外 B 、 远红外、 近红外、 可见光、远紫外、 近紫外 C 、远紫外、 近紫外、 可见光、近红外、 远红外 D 、 近紫外、 远紫外、 可见光、近红外、 远红外 5、 下列哪种光谱分析法不属于吸收光谱( A 、 C 、 分了荧光光谱法 原了吸收光谱法 B 、 D 、 紫外■可见分光光度 法 6、 A 、 下列哪种光谱分析属于发射光谱法( 紫外■可见分光光度法 B 、 原了吸收分光光度法 C 、 原了荧光光谱法 D 、 激光拉曼光谱法 7、 A 、 2.48pm 24.8屮Yi C 、

(整理)信息光学导论第二章.

第二章 信息光学的数学基础 ◆引言 在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。 2.1傅里叶变换 ◆傅里叶级数 首先.让我们回忆周期函数的傅里叶级数展开式, 这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量n f x i e 2π的 幅值. ◆频谱的概念 频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。因此,傅立叶分析也称频谱分析。频谱分为振幅型频谱和相位型频谱。相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。 为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。为了讨论问题方便, 设光栅狭缝总数N 无限大 . )(x g 是周期性函数 则: 上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为 ), ()(md x g x g +=) ,2,1,( ±±=m ++-+=)52cos(52)32cos(32)2cos(221)(000x p x f x f x g ππππππ

这里f 称为空间频率. 0f 是f 的基频.。周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量. 透过率函数也可用复数傅里叶级数表示: 再回到光栅装置.由光栅方程, 在近轴条件下 因此透镜后焦面上频率为 当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的. 故傅立叶变换能达到分频的目的。 ◆傅里叶变换 在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下, 上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变换和逆变换的积分式为 简单地表示为 ,5 ,3,1, d d d f =x f i n x f i x f i x f i x p i x f i x f i n e G e e e e e e x g 25252323222 )(51)(31)(121)(000000ππππππππ ππ∑ =++++-++=--- ,sin λθn d =) ,2,1,0( ±±=n ,sin 0λλθnf d n f x =='≈λ f x nf f '==0

第02章 光学分析法导论2006.10.22

第二章光学分析法导论 一、教学内容 1、电磁辐射及电磁波谱的概念、特性及相关物理量 2、物质与电磁辐射相互作用及相关的光谱学 3、光学分析法的分类及特点 4、光学分析法的基本仪器 二、重点与难点 1、电磁辐射与电磁波谱的性质 2、各物理量的相互换算 3、物质与电磁辐射相互作用的机制 三、教学目标 1、牢固掌握电磁辐射和电磁波谱的概念及性质 2、熟练掌握电磁辐射各种物理量之间的换算 3、清楚理解物质与电磁辐射相互作用所产生的各种光谱 4、清晰光学分析法分类的线索 5、掌握光谱法的基本仪器部件 四、教学学时 2学时 第一节电磁辐射 一、电磁辐射的性质 以电磁辐射为分析信号的分析方法在广义上都称为光学分析法。红外光、可见光、紫外光、X射线等都是电磁辐射。电磁辐射具有波粒二象性。 图2-1 电磁波示意图 1、波动性 按照经典物理学的观点,电磁辐射是在空间传播着的交变电磁场,称之为电磁波。 电磁波可以用频率(υ)、波长(λ)和波数(δ)等波参数来表征。 频率υ定义为ls内电磁场振荡的次数,单位为赫兹(Hz)。频率与辐射传播的介质无关,对于一个确定的电磁辐射,它是一个不变的特征量。 波长λ是电磁波相邻两个同位相点之间的距离,常用的单位有厘米

(cm),微米(μm,10-6m),纳米(nm,10-9m)。 波长与频率的乘积就是电磁辐射传播的速度。在真空中,电磁辐射的速度与频率无关,并达到最大值,精确测量的数值是2.99792×1010cm·s-1。这一速度称作光速,用符号c表示。于是有: c=υλ(2-1)在介质中,电磁辐射的电磁场与构成介质的原子或分子的外层电子相互作用,使其传播速度减小。介质不同,传播速度不同,因而波长亦不相同。在不加说明的情况下,辐射的波长指的是在真空中的波长,此时它具有确定的数值。 辐射在空气中的速度与光速差别很小,故式(2-1)也适用于空气。 波数δ是lcm内波的数目,单位为cm-1。当波长以cm为单位时,波数与波长的关系为: 1 (2-2) δ= λ 电磁辐射的波动性表现为电磁辐射的衍射和干涉现象。 2、微粒性 根据量子理论,电磁辐射是在空间高速运动的光量子(或称光子)流。可以用每个光子所具有的能量来表征。 普朗克方程将电磁辐射的波动性和微粒性联系在一起。 c =υ=(2-3) E h h λ 式中h为普朗克常数,它等于6.63×10-34焦耳·秒(J·s)。显而易见,辐射的频率越高(波长越小)光子的能量就越高。一个X射线的光子(λ=10-8cm)所具有的能量比热钨丝发出的光子(λ=10-4cm)大约高l万倍。 光子的能量常以电子伏特(eV)为单位表示 1eV=1.6×10-19J 电磁辐射是具有波动性和微粒性的物质运动形式。所以,频率、波长、波数和光子的能量都可以用作表征电磁辐射的特征参数。一般常用的参数是波长。 二、电磁波谱 电磁辐射按照波长(或频率、波数、能量)大小的顺序排列就得到电磁波谱。电磁波谱一般分成如表2-1所示的一些不同的波长区域,不同的波长区域对应着物质不同类型能级的跃迁。

信息光学导论第四章

第四章 标量衍射理论 如图所示,衍射理论所要解决的问题是:光场中任一点Q 的复振幅能否用光场中其它各点的复振幅表示出来,例如由孔径平面上的场分布计算孔径后面任一点处的复振幅.显然,这是一个根据边界值求解波动方程的问题. 4.1 标量衍射理论 ◆惠更斯—菲涅耳原理及其数学形式 历史上第一个给出求解衍射理论所要解决问题的学者,是法国物理学家菲涅耳(A .J .Fresnel ,1788—1827).他汲取了惠更斯原理中的次波概念,并以光波干涉的思想补充了惠更斯原理,提出了“次波相干叠加”的理念,据此成功地解释了衍射现象,它为衍射现象的分析确立了一个统一的理论框架,从此光波衍射研究进入了正确轨道.后人称之为惠更斯—菲涅耳原理的内容,可表述如下:波前上的每个面元可以看为次波源,它们向四周发射次波;波场中任一场点的扰动,是所有次波源所贡献的次级扰动的相干叠加,见下图 参见上图,设波前上任一面元dS 对场点P 贡献的次级扰动为)(p dU ,则场点的总扰动)(p U 按惠更斯—菲涅耳原理应当表达为 其中

上述积分称为菲涅耳衍射积分式,它可以作为惠更斯—菲涅耳原理的数学表达式。 ◆基尔霍夫衍射积分式 约六十年后的1880年,德国物理学家基尔霍夫,从定态波场的亥姆霍兹方程出发,利用矢量场论中的格林公式,在1>>kr ,即λ>>r 条件下,导出了无源空间边值定解的表达式, 与菲涅耳凭借朴素的物理思想所构造的衍射积分式(*****)比较,两者主体结构是相同的.基 尔霍夫的新贡献是: (1)明确了倾斜因子2/)cos (cos ),(00θθθθ+=f ,据此,那些2/πθ>的次波面元依然对场点扰动有贡献,即闭合波前面上的各次波源均对场点扰动有贡献. (2)给出了比例系数,λλπ//2 /i e i K -=-=. (3)指出波前面( ∑ )并不限丁等相面,凡是隔离实在的点光源与场点的任意闭合面,都 可以作为衍射积分式中的积分面,如图(a,b,c ) 所示.形象地说,立足于场点P 而环顾四周是看不见真实光源的,看到的只有边界面上的大量次波源,在这个被包围的空间中是无源的.积分面不限于等相面这一点.有重要理论价值.它为求解实际衍射场分行大开方便之门。 ◆亥姆霍兹方程 在自由空间中电磁场),(t r E ),(t r H 具有波动性,满足波动方程 若以标量场),(~ t r U 代表六个分量中的任一个,则波动方程表现为

第二章 光学分析法导论

第二章 光学分析法导论 1、解释下列名词 (1)原子光谱和分子光谱 (2)发射光谱和吸收光谱 (3)统计权重和简并度 (4)分子振动光谱和分子转动光谱 (5)禁戒跃迁和亚稳态 (6)光谱项和光谱支项 (7)分子荧光、磷光和化学发光 (8)拉曼光谱 答:(1)由原子的外层电子能级跃迁产生的光谱称原子光谱; 由分子成键电子能级跃产生的光谱称分子光谱。 (2)原子受外界能量(如热能、电能)作用时,激发到较高能态,但很不稳定,再返回基态或较低能态而发射特征谱线形成的光谱称原子发射光谱。 由基态原子蒸气选择性地吸收一定频率的光辐射后跃迁到较高能态产生的原子特征光谱称原子吸收光谱。 (3)由能级简并引起的概率权重称为统计权重。 在磁场作用下,同一光谱支项会分裂成2J+1个不同的支能级,2J+1称为简并度。 (4)由分子在振动能级间跃迁产生的光谱称分子振动光谱; 由分子在不同转动能级间跃迁称分子转动光谱。 (5)不符合光谱选择定则的跃迁叫禁戒跃迁; 若两光谱项之间为禁戒跃迁,处于较高能级的原子有较长寿命,称为亚稳态。 (6)光谱项:用n 、L 、S 、J 四个量子数来表示能量状态,符号n 2S+1L J ; 光谱支项: J 值不同的光谱项。 (7)荧光和磷光都是光致发光。 荧光是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,再由激发态回到基态产生的二次辐射; 磷光是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁产生的光辐射; 化学发光是化学反应物或产物受反应释放的化学能激发产生的光辐射。 (8)拉曼光谱:入射光子与溶液中试样分子间非弹性碰撞引起能量交换而产生的与入射光频率不同的散射光谱。 2、阐明光谱项中各符号的意义和计算方法。 答:光谱项:n 2S+1L J ; 其中 n 为主量子数,与个别单独价电子的主量子数相同,取值仍为1,2,3,…任意正整数。 L 为总角量子数,其数值为外层价电子角量子数l 的矢量和,即:∑=i i l L 两个价电子耦合所得的总角量子数与单个价电子的角量子数l 1、l 2有如下的取值关系: L = (l 1+l 2),(l 1+l 2 -1),(l 1+l 2 -2),…,|l 1-l 2| 其值可能为L =0,1,2,3,…,相应的光谱项符号为S ,P ,D ,F ,…。若价电子数为3时,应先把2个价电子的角量子数的矢量和求出后,再与第三个价电子求出矢量和,就是3个价电子的总角量子数,依此类推。 S 为总自旋量子数,价电子自旋与自旋之间的相互作用也是较强的,多个价电子的总自旋量子数是单个价电子量子数m s 的矢量和,即:∑=i i s m S ,

光学分析法导论习题

光学分析法导论习题 一.填空题 1. 光速c≈3×1010cm·s-1是在中测得的。 2.原子内层电子跃迁的能量相当于光,原子外层电子跃迁的能量相当于光和。 3.分子振动能级跃迁所需的能量相当于光,分子中电子跃迁的能量相当于光。 4.钠的基态光谱支项为 ,钠的共振谱线以表示。 5.,和三种光分析方法是利用线光谱进行检测的。 6.指出下列电磁辐射所在的光谱区(光速为3×1010cm·s-1)。 (1)波长588.9nm ;(2)波数400cm-1; (3)频率2.5×1013Hz ;(4)波长300nm 。 二.选择题 1.电磁辐射的微粒性表现在下述哪种性质上 A. 能量 B. 频率 C. 波长 D. 波数 2.当辐射从一种介质传播到另一种介质中时,下述哪种参量不变? A. 波长 B.频率 C.速度 D.方向 3.镁的L=2光谱项可具有几个J值? A.1 B.2 C.3 D.4 4.下述哪种分析方法是基于发射原理的? A.红外光谱法 B.荧光光度法 C.核磁共振波谱法 D.分光光度法 5.带光谱是由于 A 炽热固体发射的结果 B 受激分子发射的结果

C 受激原子发射的结果 D 简单离子发射的结果 ?习题 一.填空题 1. 光速c≈3×1010cm·s-1是在头真空中测得的。 2.原子内层电子跃迁的能量相当于 X 光,原子外层电子跃迁的能量相当于紫外光和可见光。 3.分子振动能级跃迁所需的能量相当于红外光,分子中电子跃迁的能量相当于紫外可见光。 4.钠的基态光谱项为 32S 1/2 ,钠的共振谱线以 32P 3/2 或32P 312 表 示。 5.原子发射,原子吸收和原子荧光三种光分析方法是利用线光谱进行检测的。 6.指出下列电磁辐射所在的光谱区(光速为3×1010cm·s-1)。 (1)波长588.9nm ;(2)波数400cm-1; (3)频率2.5×1013Hz ;(4)波长300nm 。 二.选择题 1.电磁辐射的微粒性表现在下述哪种性质上(A) A. 能量 B. 频率 C. 波长 D. 波数 2.当辐射从一种介质传播到另一种介质中时,下述哪种参量不变?(B) A. 波长 B.频率 C.速度 D.方向 3.镁的L=2光谱项可具有几个J值?(C) A.1 B.2 C.3 D.4 4.下述哪种分析方法是基于发射原理的?(B) A.红外光谱法 B.荧光光度法 C.核磁共振波谱法 D.分光光度法 5.带光谱是由于(B) A 炽热固体发射的结果 B 受激分子发射的结果 C 受激原子发射的结果 D 简单离子受激发射的结果 一、选择题 1、请按能量递增的次序,排列下列电磁波谱区:红外、射频、可见光、紫外、X射线、

信息光学课程大纲-2014年版

《信息光学》教学大纲 课程编号:PY5402 课程名称:信息光学英文名称:Information Optics 学分/学时:3/48 课程性质:必修 适用专业:应用物理学建议开设学期:第六学期 先修课程:光学、电动力学,信号与系统开课单位:物理与光电工程学院 一、课程的教学目标与任务 本课程为应用物理学专业的一门专业必修课。在经典光学基础上,利用线性系统理论和傅里叶分析方法分析光学问题,从光的物理本质电磁波出发,系统学习现代光学的基础理论,其中包括标量衍射理论,光学成像系统频率特性以及光学全息等;学习空间光调制器、光信息存储、光学信息处理等应用技术原理以及最新技术进展。 二、课程具体内容及基本要求 (一) 二维线性系统分析 (2学时) 线性系统,二维线性不变系统,二维傅里叶变换,抽样定理 1.基本要求 (1)掌握二维线性不变系统特点和分析方法。 (2)掌握傅里叶变换性质和常用函数的傅里叶变换。 2.重点、难点 重点:二维线性不变系统的定义、传递函数以及本征函数 难点:将线性系统理论应用于光学系统分析的条件 3.作业及课外学习要求:本章主要复习线性系统理论和傅里叶变换相关概念,初步了解线性系统理论研究光学系统相关理论和方法的条件和特点。 (二)标量衍射的角谱理论(8学时) 光波数学描述,复振幅分布的角谱及角谱传播,标量衍射的角谱理论,菲涅耳衍射和夫琅和费衍射 1.基本要求 (1)掌握平面波空间频率的概念和计算方法。 (2)掌握标量衍射的角谱理论(基尔霍夫衍射、菲涅耳衍射和夫琅和费衍射) (3)掌握夫琅和费衍射与傅里叶变换关系 (4)了解菲涅耳衍射与分数傅里叶变换关系 2.重点、难点 重点:平面波空间频率概念和标量衍射角谱理论 难点:(1)基尔霍夫衍射公式的光学物理意义 (2)复振幅分布和标量衍射理论的角谱理论物理意义 3.作业及课外学习要求:本章主要介绍光波传播过程中的空间域以及空间频域描述方法,是本课程理论基础,其研究方法、研究特点以及结论和公式是此后各章都要用到的,本

光学分析法导论发射光谱习题

第二章光学分析法导论习题(P223) 1、光谱法的仪器由哪几部分组成?它们的作用是什么? 2、单色器由几部分组成?它们的作用是什么? 3、简述光栅和棱镜分光的原理。 4、影响光栅色散率(线色散率)的因素有哪些?线色散率的单位是什么? 5、波长为500nm和520nm的光谱线垂直照射到光栅上,经焦距为两米的成像物镜系统进 行光谱测量,若光栅刻线数分别为600条/mm,1200条/mm,问一级光谱和二级光谱中这两条线之间的距离为多少? 6、一台配有长63.5mm,刻线数为600条/mm光栅的光谱仪,理论上至少要用哪一级光谱 才能分辨开309.990nm和309.997nm的铁双线? 7、某光谱仪光栅长5cm,刻线数为1000条/mm,暗箱物镜焦距为1m,光线垂直光栅入射, 问分别用一、二级光谱时在衍射为30°处的波长各为多少?在此波长下所能分辨开的最小波长差各为什么?此时的倒线色散率为多大? 第三张原子发射光谱法习题(P242) 1、光谱项的意义是什么? 2、光谱分析常用的激发光源有哪几种?比较它们各自的特点? 3、发射光谱分析中,如何选择分析线和分析线对? 补充题 1、原子发射光谱是怎样产生的?其特点是什么? 2、原子发射光谱仪由哪几部分组成?其主要作用是什么? 3、名词解释:(1)激发电位;(2)电离电位;(3)原子线;(4);离子线;(5)共振线;(6) 灵敏线(7)等离子体;(8)自吸;(9)基体效应 4、简述ICP的形成原理及其特点。 5、光谱定性分析摄谱时,为什么要使用哈特曼光阑?为什么要同时摄取铁光谱? 6、光谱定量分析的依据是什么?为什么要采用内标法?简述内标法的原理。 7、为什么原子发射光谱可采用内标法来消除实验条件的影响? 8、采用原子发射光谱分析下列试样时,选用什么光源为宜? (1)矿石中组分的定性、半定量分析; (2)合金中铜的质量分数(10-2数量级) (3)钢中锰的质量分数(10-4~10-3数量级) (4)污水中的Cr、Mn、Cu、Fe等的质量分数(10-6~10-3数量级) 9、某合金中Pb的光谱的定量测定,以Mg作为内标,实验测得数据如下:根据下面数据,(1) 绘制工作曲线; (2)求溶液中A、B、C的质量浓度。 溶液黑度计读数(透光率)Pb的浓度(mg mL-1) Mg Pb 1 7.3 17.5 0.151 2 8.7 18.5 0.201 3 7.3 11.0 0.301 4 10.3 12.0 0.402 5 11. 6 10.4 0.502 A 8.8 15.5 B 9.2 12.5 C 10.7 12.2

现代仪器分析第二章习题及答案

第二章光学分析法导论 一、选择题 1.电磁辐射的粒子性主要表现在哪些方面() A.能量B.频率C.波长D.波数 2.当辐射从一种介质传播到另一种介质时,下列哪种参量不变() A.波长B.速度C.频率D.方向 3.电磁辐射的二象性是指() A.电磁辐射是由电矢量和磁矢量组成B.电磁辐射具有波动性和电磁性 C.电磁辐射具有微粒性和光电效应D.电磁辐射具有波动性和粒子性 4.可见光区、紫外区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为() A.紫外区和无线电波区B.可见光区和无线电波区 C.紫外区和红外区D.波数越大 5.有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的() A.能量越大B.频率越高C.波长越长D.波数越大 6.波长为0.0100nm的电磁辐射的能量是() A.0.124B.12.4eV C.124eV D.1240 eV 7.受激物质从高能态回到低能态时,如果以光辐射形式辐射多余的能量,这种现象称为()A.光的吸收B.光的发射C.光的散射D.光的衍射 8.利用光栅的()作用,可以进行色散分光。 A.散射B.衍射和干涉C.折射D.发射 9.棱镜是利用其()来分光的。 A.散射作用B.衍射作用C.折射作用D.旋光作用 10.光谱分析仪通常由以下()四个基本部分组成。 A.光源、样品池、检测器、计算机 B.信息发生系统、色散系统、检测系统、信息处理系统 C.激发源、样品池、光电二级管、显示系统 D.光源、棱镜、光栅、光电池 二、填空题

1.不同波长的光具有不同的能量,波长越长,频率、波数越(),能量越();反之,波长越短,能量越()。 2.在光谱分析中,常常采用色散元件获得()来作为分析手段。 3.物质对光的折射率随着光的频率变化而变化,这中现象称为()。 4.吸收光谱按其产生的本质分为()、()、()等。 5.由于原子没有振动和转动能级,因此原子光谱的产生主要是()所致。 6.当光与物质作用时,某些频率的光被物质选择性的吸收并使其强度减弱的现象,称为(),此时,物质中的分子或原子由()状态跃迁到()的状态。 7.原子内层电子跃迁的能量相当于()光,原子外层电子跃迁的能量相当于()和()。 三、简答题 1.什么是光学分析法? 2.何谓光谱分析法和非光谱分析法? 3.简述光学分析法的分类。 4.简述光学光谱仪器的基本组成。 5.简述瑞利散射和拉曼散射的不同。 答案 一、选择题 ACDACDBBCB 二、填空题 1.越小小高 2.单色光 3.色散 4.分子吸收光谱原子吸收光谱核磁共振波普 5.电子能级跃迁 6.光的吸收能级较低能量较高 7.x紫外线可见光 三、简答题

信息光学导论 第一章

第一章 信息光学的物理基础 1.1光是一种电磁波 ◆特定波段的电磁波 光的波动性由大量的光的干涉、衍射和偏振现象和实验所证实,这是19世纪上半叶的 事.到了19世纪下半叶,麦克斯韦电磁场理论建立以后,光的电磁理论便随之诞生.光是一种特定波段的电磁波.可见光的波长A 在380~760 nm ,相应的光频按λ/c f =计算约为 1414104~108??Hz 。虽然齐整个电磁波增中光波仅占有一很窄的波段,它却对人类的生 命和生存、人类生活的进程和发展,有着巨大的作用和影响,还由于光在发射、传播和接收方面具有独特的性质,以致很久以来光学作为物理学的一个工要分支—直持续地皮勃发展着. ◆主要的电磁性质 光的电磁理论全面地揭示了光波的主要性质.现扼要分列如下,在以后的章节中不免时 有引用这其中的某些性质. (1)光扰动是—种电磁扰动. 光扰动随时间变化和随空间分布的规律,遵从麦克斯韦电磁场方程组, 这是普遍的麦充斯卡韦方程组在介质分区均匀空间中的表现形式.这里没有自由电荷,也没有传导电流,人们称其为自内空间.其中,ε是介质的相对介电常数、μ是介质的相对磁导率;),(t r E 表水电场强度矢量, ),(t r H 表示磁场强度矢量。 (2)光波是一种电磁波. 由方程组(1.1)按矢量场论运算规则,推演出以下方程 这里,2 ?称为拉普拉斯算符,其运算功能在直角坐标系中表现为 由此可见,(1.2)式正是波动方程的标准形式,这表明白由空间中交变电磁场的运动和变化

具有波动形式,而形成电磁波.不论它是多么复杂的电磁波,具传播速度v 已被方程制约为 由此获得真空中的电磁波速度公式为 这里,00,με是两个可以由实验确定的常数,故真空电磁波速是一个恒定常数.按数据 22120/1085.8m N C ??=-ε,270/104A N -?=πμ,得真空电磁波速s m C /1038?=, 如此巨大约波速惟有光速可以相比且惊人地相近.莫非光就是一种电磁波。 (3)平面电磁波是自由空间电磁波的一基元成分. 平面电磁波函数 是满足被动方程(1.2)式的,其中k 称作波矢,其方向与平面等相面正交,即k 指向波法线方 向,其大小k 与平面波的空间周期即波长λ相对应, (4)光是横波. 将平面波函数代入散度为零的那两个方程0,0=??=??H E .可以 得到k H H E ⊥⊥,,这表明,电磁场振荡方向与波矢方向正交。沿等相面的切线方向,在与波矢正交的横平面个振动.换言之,自由空间中光波是横波. (5)电场与磁场之间的正交性相同步性 将平面波函数代入旋度方程 可以导出 进而得 E H H E E H 000,,εεμμ??==⊥ 这表明,振荡着的电场与磁场,彼此之间在方向上是时时正交的.k H E ,,三者方向构成一个右手螺旋,即k H E //)(?.如图1.1所示;相位是相等的.两者变化步调是一致的;振幅之间有一个简单的比例关系. (6)电磁波能流密度——坡印亭矢量. 伴随着波的传播必定有能量的传输.电磁波或光波也是如此,即光波携带能量离开光源而向外辐射.人们称这种有定向能流离源远行的电磁场或光场为辐射场或电磁辐射.经推导,电磁波能流密度矢量为 t H E ??-=??0 μμE k H ?= ω μμ1

光学分析法概论

第九章光学分析法概论 1、光学分析法有哪些类型。 基于辐射的发射建立的发射光谱分析法、火焰光度分析法、分子发光分析法、放射分析法等;基于辐射的吸收建立的UV-V is光度法、原子吸收光度法、红外光谱法、核磁共振波谱法等;基于辐射的散射建立的比浊法、拉曼光谱法;基睛辐射的折射建立的折射法、干涉法;基于辐射的衍射建立的X-射线衍射法、电子衍射法等;基于辐射的旋转建立的偏振法、旋光法、圆二色光谱法等。 2、吸收光谱法和发射光谱法有何异同? 吸收光谱法为当物质所吸收的电磁辐射能由低能态或基态跃迁至较高的能态(激发态),得到的光谱发射光谱法为物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子,当从激发态过渡到低能态或基态时产生的光谱。 3、什么是分子光谱法?什么是原子光谱法? 原子光谱法:是由原子外层或内层电子能级的变化产生的光谱,它的表现形式为线光谱。属于这类分析方法的有原子发射光谱法、原子吸收光谱法,原子荧光光谱法以及X射线荧光光谱法等。 分子光谱法:是由分子中电子能级、振动和转动能级的变化产生的光谱,表现形式为带光谱。属于这类分析方法的有紫外-可见分光光度法,红外光谱法,分子荧光光谱法和分子磷光光谱法等。 4、简述光学仪器三个最基本的组成部分及其作用。 辐射源(光源):提供电磁辐射。 波长选择器:将复合光分解成单色光或有一定宽度的谱带。 检测器:将光信号转换成电信号。 5、简述常用的分光系统的组成以及各自作用特点。 分光系统的作用是将复合光分解成单色光或有一定宽度的谱带。分光系统又分为单色器和滤光片。单色器由入射狭缝和出射狭缝、准直镜以及色散元件,如棱镜或光栅等组成。 棱镜:色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率。 光栅:利用多狭缝干涉和单狭缝衍射两者联合作用产生光栅光谱。 干涉仪:通过干涉现象,得到明暗相间的干涉图。 滤光器是最简单的分光系统,只能分离出一个波长带或只能保证消除给定消长以上或以下的所有辐射。 6、简述常用辐射源的种类典型的光源及其应用范围。

《仪器分析》第二章 光学分析法导论习题答案

第二章光学分析法导论 1. 已知1电子伏特=1. 602×10-19J,试计算下列辐射波长的频率(以兆赫为单位),波数(以cm-1为单位)及每个光子的能量(以电子伏特为单位):(1)波长为900pm的单色X射线;(2)589.0nm的钠D线;(3)1 2.6μm的红外吸收峰;(4)波长为200cm的微波辐射。 解:已知1eV=1.602×10-19J, h=6.626×10-34J·s, c=3.0×108m·s-1 ①λ=900pm的X射线 Hz,即3.333×1011MHz cm-1 J 用eV表示,则eV ②589.0nm的钠D线 Hz,即5.093×108MHz cm-1 J 用eV表示,则eV ③12.6μm的红外吸收峰 Hz,即2.381×107MHz cm-1 J 用eV表示,则eV ④波长为200cm的微波辐射 Hz,即1.50×102MHz

cm-1 J 用eV表示,则eV 2. 一个体系包含三个能级,如果这三个能级的统计权重相同,体系在300K温度下达到平衡时,试计算在各能级上的相对分布(N i/N).能级的相对能量如下。 (1) 0eV,0.001eV,0.02eV;(2) 0eV,0.01eV,0.2eV; (3) 0eV,0.1eV, 2eV。 解:已知T=300K, k=1.380×10-23J·K-1=8.614×10-5eV·K-1, kT=8.614×10-5×300=0.0258eV ①E0=0eV, E1=0.001eV, E2=0.02eV ②E0=0eV, E1=0.01eV, E2=0.2eV ③E0=0eV, E1=01eV, E2=2eV

信息光学 1、常用函数

信息光学 信息光学(傅立叶光学)是综合性大学、工科院校和高等师范院校近代光学、信息光学、激光、光电子等专业研究生和大学高年级的必修课,它是从事光学和光电子领域科学研究和产品开发人员必须的理论基础。其主要内容一般包括傅立叶光学、标量衍射理论、透镜的性质、部分相干光理论、光学全息及光信息处理等。限于本课程的课时限制,我们准备主要讲授傅立叶光学、透镜性质、标量衍射理论、部分相干光理论的内容本课程的主要内容讲授拟分八章。 第一章:数学预备知识; 第二章:二维傅立叶分析; 第三章:衍射理论基础; 第四章:菲涅耳衍射、夫琅和费衍射; 第五章:透镜的傅立叶变换特性与成象性质; 第六章:成象光学系统的传递函数; 第七章:部分相干光理论; 主要参考书 ①黄婉云,傅立叶光学教程,北师大出版社,1984 ②羊国光,宋菲君,高等物理光学,中国科大出版社,1991 ③J. W. Goodman, 詹达三译,傅立叶光学导论,科学出版社,1976 ④朱自强等,现代光学教程,四川大学出版社,1990 ⑤卞松玲等,傅立叶光学,兵器工业出版社, ⑥蒋秀明等,高等光学,上海交大出版社 ⑦M. 波恩,E. 沃耳夫,光学原理,科学出版社,1978 ⑧吕乃光等,傅立叶光学基本概念和习题 ⑨谢建平等,近代光学基础,中国科技大学出版社,1990 第一章:数学预备知识 为了方便后面的学习,我们复习一下有关的数学知识。 §1-1 几个常用函数

一、 矩形函数(rectangle function ) 1、一维矩形函数 表达式为:??? ????>-≤-=-2 1||0 21 || 1)(rect 000a x x a x x a x x 其函数图形为: 当x 0=0,a =1时,矩形函数为:??? ? ?? ? > ≤=2 1||021 ||1)(rect x x x [此时rect(x )=rect(-x )] 其图形为 2、二维矩形函数 表达式为:??? ? ???>->-≤-≤-=-?-2 1||,21||0 21 ||,21|| 1)()(000000b y y a x x b y y a x x b y y rect a x x rect 其函数图形为:

光学分析法导论

第2章光学分析法导论 【2-1】解释下列名词。 (1)原子光谱和分子光谱(2)发射光谱和吸收光谱 (3)闪耀光栅和闪耀波长(4)光谱通带 答:(1)原子光谱:由原子能级之间跃迁产生的光谱称为原子光谱。 分子光谱:由分子能级跃迁产生的光谱称为分子光谱。 (2)发射光谱:原来处于激发态的粒子回到低能级或基态时,往往会发射电磁辐射,这样产生的光谱为发射光谱。 吸收光谱:物质对辐射选择性吸收而得到的原子或分子光谱称为吸收光谱。 (3)闪耀光栅:当光栅刻划成锯齿形的线槽断面时,光栅的光能量便集中在预定的方向上,即某一光谱级上。从这个方向探测时,光谱的强度最大,这种现象称为闪耀,这种光栅称为闪耀光栅。 闪耀波长:在这样刻成的闪耀光栅中,起衍射作用的槽面是个光滑的平面,它与光栅的表面一夹角,称为闪耀角。最大光强度所对应的波长,称为闪耀波长。 (4)光谱通带:仪器出射狭缝所能通过的谱线宽度。 【2-2】简述棱镜和光栅的分光原理。 【2-3】简述光电倍增管工作原理。 答:光电倍增管工作原理: 1)光子透过入射窗口入射在光电阴极K上。 2)光电阴极电子受光子激发,离开表面发射到真空中。 3)光电子通过电子加速和电子光学系统聚焦入射到第一倍增极D1上,倍增极将发射出比入射电子数目更多的二次电子,入射电子经N级倍增极倍增后光电子就放大N次方倍。 4)经过倍增后的二次电子由阳极P收集起来,形成阳极光电流,在负载RL上产生信号电压。 【2-4】何谓多道型检测器?试述多道型检测器光电二极管阵列、电荷耦合器件和电荷注入器件三者在基本组成和功能方面的共同点。 【2-5】请按能量递增和波长递增的顺序,分别排列下列电磁辐射区:红外,无线电波,可见光,紫外光,X射线,微波。 答:能量递增顺序:无线电波、微波、红外线、可见光、紫外光、X射线。 波长递增顺序:X射线、紫外光、可见光、红外线、微波、无线电波。 【2-6】计算下列电磁辐射的频率和波数。

光学分析法导论思考题与练习题

思考题与练习题 1.对下列的物理量单位进行换算: (1)150pm X射线的波数(cm-1); (2)670.7nm Li线的频率(Hz); (3)3300cm-1波数的波长(μm); 答案:(1);(2);(3)3.03μm。 2.计算下列电磁辐射的频率(Hz)、波数(cm-1)及光量子的能量(用电子伏eV、尔格erg 及千卡/摩尔表示): (1)波长为589.0nm的钠D线; 答 ; 案: (2)在12.6μm的红外吸收峰。 答 。 案: 3.将波长443nm的光通过折射率为1.329的甲醇溶液时,试计算: (1)在甲醇溶液中的传播速度; (2)频率; (3)能量(J); (4)周期(s)。 答案:(1);(2);(3);(4)。 4.辐射通过空气(n=1.00027)与某玻璃(n=1.7000)界面时,其反射损失的能量大约有多 少? 答案:6.7% 5.何谓光的二象性?何谓电磁波谱?

6.请按照能量递增和波长递增的顺序,分别排列下列电磁辐射区:红外线,无线电波,可 见光,紫外光,X射线,微波。 7.光谱法的仪器通常由哪几部分组成?它们的作用是什么? 自测题 1.电磁辐射的二象性是指: A.电磁辐射是由电矢量和磁矢量组成; B.电磁辐射具有波动性和电磁性; C.电磁辐射具有微粒性和光电效应; D.电磁辐射具有波动性和电磁性。 2.光量子的能量与电磁辐射的哪一个物理量成正比? A.紫外;B.波长; C.波数;D.周期。 3.可见区、紫外区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为 A.紫外区和无线电波区; B.可见光区和无线电波区; C.紫外区和红外区; D.波数越大。 4.有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的 A.能量越大;B.频率越高; C.波长越长; D.波数越大。 5.波长为0.0100nm的电磁辐射的能量是多少eV?(已知)

《分析化学》下册华中师大等校编第二章光学分析法导论作业答案

第二章光学分析法导论作业答案 1、解释下列名词 (1)原子光谱和分子光谱P10 原子光谱:由原子产生的光谱称为原子光谱。 分子光谱:由分子产生的光谱称为分子光谱。 (2)发射光谱和吸收光谱P13和P14 发射光谱:基态原子获得一定的能量处于激发态,当激发态原子返回基态或较低能级时发射出的特征谱线,即为发射光谱。 吸收光谱:当光辐射通过基态原子或分子时,原子或分子选择性地吸收一定频率的光辐射,跃迁到高能态所产生的特征光谱。(3)分子荧光、磷光和化学发光P15 分子荧光:基态分子吸收一定波长的光跃迁至单重激发态,当其由单重激发态回到基态时产生的二次辐射即为分子荧光。 分子磷光:基态分子吸收一定波长的光跃迁至单重激发态,然后过渡到三重激发态,当其由三重激发态回到基态时产生的光辐射即为分子磷光。 化学发光:化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。 (4)分子振动光谱和分子转动光谱P14 分子振动光谱:分子在振动能级间跃迁产生的光谱,也叫红外吸收光谱。

分子转动光谱:分子在转动能级间跃迁产生的光谱,也叫远红外吸收光谱和微波。 2、计算(1)670.7nm 锂线的频率;(2)3300cm -1谱线的波长;(3)钠588.99nm 共振线的激发电位。 3、电子能级间的能量差一般为1-20eV ,计算在1eV ,5eV 时相应的波长(nm )。 107eV .21099.588101.6021099792.21063.6c h E J 1038.31099.5881099792.21063.6c h E )3(3030nm cm 10030.3330011)2(s 10470.4107.6701099792.2)1(7-19-1034197-103441147-10=??????==?=????===?===?=??==-----λλσλλυc 解:248.1nm 10602.151********.21063.6E c h 1241nm 10 602.11101099792.21063.6E c h 197 1034197 1034=??????===??????==----λλ解:

光信息科学与技术导论

光信息科学与技术导论 曾经的无知少年,如今的有志青年,曾经的我怀着一颗“十年寒窗苦读,一心只为功名”的心,曾经梦想着“春风得意马蹄疾,一日看尽长安花”的美好场景,也许10年对我们这群孩子来说很不平凡,因为从此我们摆脱了高考的压力,飞出了父母的羽翼,开始了我们的大学生活,都来到了北京信息科技大学光信息科学与技术专业。 (一)专业认识、发展、应用与就业前景 光信息科学与技术是理学/工学(与学校分科方向有关)学科的一类,其培养目标是具有扎实的数学、物理、电子和计算机的基础知识,系统地掌握光学信息处理技术、现代电子学技术和计算机应用技术的基本技能,能在光通信、光学信息处理、以及相关的电子信息科学、计算机科学等信息技术领域、特别是光机电算一体化产业从事科学研究、产品设计和开发、生产技术或管理的面向二十一世纪的高级专门人才。知识技能要求:掌握数学、物理等方面的基本理论和基本知识;掌握光信息科学的基本知识和基本实验技能;了解相近专业的一般原理和知识;熟悉国家信息产业政策及国内外有关知识产权的法律法规;了解光信息科学与技术的理论前沿、应用前景和最新发展动态,以及信息产业发展状况;掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。 中国的光学与光电子材料研究已进入应用和产业化的发展阶段。其中主要有以下几个方面:在半导体光电子材料[3]方面:在中国,用于集成电路(IC)和太阳能电池单晶硅(Si)年产量约为400吨。用于光电子器件的GaAs单晶、用于LED和LD的InP单晶和用于红、绿色LED的GaP芯片材料已实用化。用于蓝光LD和蓝、绿光LED和GaN、SiC等宽禁带半导体材料正在研发中。在激光晶体材料方面:华北光电技术研究所研制的Nd:YAG晶坯性能指标达到国际先进水平。华博技术有限公司的YAG激光棒年批量生产能力为3000根。中国已成为矾酸钇(YVO4)晶体的生产出口大国。中国科学院福建物质结构研究所研制成大尺寸YVO4单晶,并加工成偏振晶体器件。北京烁光特晶体科技有限公司已建成年产200公斤YVO4 单晶生产线。上海光机所研制的掺钛蓝宝石激光晶体也已经出口美国、日本、俄罗斯等国家。中国研制的Nd:YAG和Nd:YVO4激光晶体,其主要技术指标达到国际先进水平,出口产品数量约占国际市场1/3。在非线性光学晶体方面:中国研制的偏硼酸钡(BBO)、三硼酸锂(LBO)等优质的非线性光学材料,系国际首创,用于激光光源在可见光区的频率转换。用于激光倍频、光参量振荡、电光调Q和声光、电光器件的铌酸锂(LN)单晶中国的年生产能力约为10 吨。在光纤光缆方面,光电子材料发展的重点为:高功率、可调谐、LD泵浦和新波长激光晶体等;超高亮度(LED)、半导体激光器(LD)用GaAs,Gap,GaN基外延材料等;STN,TFT显示器用液晶材料等;用于密集波分复系统的G.655非零色散位移光纤及大尺寸光纤预制棒等。 在元器件发展应用尤为典型包括:光学仪器,光电检测仪器,光学遥感、遥测仪器,机器人视觉,光学检测和测量、夜视和侦察,微光夜视仪,红外夜视仪,高分辨率的成像卫星,侦察相机,高灵敏探测器平面阵列(FRA),快速三维模型测量;计量学(定位,位置,线度,准直);机器视觉(特征,方位和缺陷);光学传感器(成分,温度,PH值探测等)。(1)光

信息光学导论第三章

线性系统概论 ◆引言 在信息光学系统中光学装置被看成收集、传递或变换信息的系统。一个光学系统的理想成像,就是将无空间的物体信息传递、变换物空间,在像面上形成不变的物体的像。这样的理想光学系统显然是一线性系统。虽然实际光学成像系统由于不可避免的存在相差,总会产生失真,是非线性的,但在把研究的问题看成线性的而不会引起明显误差,或只在某个小范围满足现行性质时,就可以将其当作现行未提来处理。所以线性系统理论与傅立叶分析方法一样,是研究信息光学中成像系统和信息处理系统的重要理论基础。本章主要介绍线性系统特别是空间不变线性系统的定义、特点和分析方法。 3.1线性系统的基本概念 ◆系统及其分类 所谓系统,是指一组相互关联的事物构成的总体。这样的系统可分为物理系统和非物理系统。这里仅讨论物理系统。 如图所示一个物理系统,它是这样的装置,当对其作用一个激励时,他就产生一个响应。 从数学上着眼,很多现象都可抽象为使函数)(x f 通过一定的变换,形成)(x g 函数的运算过程.这种实现函数变换的运算过程称为系统.这种意义下的系统,既可以是特定功能的 元器件组合,例如电子线路、光学透镜组等,也可以是与实际元件无关的物理现象,如光学系统,通讯系统,管理系统和指挥系统等。 系统论的引入,使得我们在研究一个光学系统时,所关心的是系统对于给定的激励产生什么样的响应,而不去考虑系统内部的具体结构和具体工作原理。线性系统理论是从总体上研究系统输入输出之间的对应关系和他们的共同特性。 ◆线性系统的定义及其算符表示 假设一个激励)(1x f 作用于某系统产生的响应为)(1x g ,而激励)(2x f 作用于某系统产生的响应为)(2x g ,用符号表示为 )()(),()(2211x g x f x g x f →→ 如果系统满足可加性 )()()()(2121x g x g x f x f +=+ 和奇次性(均匀性) )()(),()(22221111x g c x f c x g c x f c →→ 则这样的系统为线性系统。21,c c 为任意常数。 可加性表明,有几个激励函数相加产生的总响应是各个激励单独作用时产生的响应函数之和;奇次性(均匀性)表明,系统有保持比例因子不变的特性。可加性和奇次性是线性系统两个独立性质。只有同时满足这两个性质的系统才是线性系统,两者缺一不可。 描述输入输出之间的数学方程是把一个激励转换为系统的一个响应,这种转换可用一个

相关主题
文本预览
相关文档 最新文档