当前位置:文档之家› 主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤

主成分分析法的原理应用及计算步骤
主成分分析法的原理应用及计算步骤

一、概述

在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。

为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。

主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点:↓主成分个数远远少于原有变量的个数

原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。

↓主成分能够反映原有变量的绝大部分信息

因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。

↓主成分之间应该互不相关

通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。

主成分具有命名解释性

总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。

二、基本原理

主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。

设F1表示原变量的第一个线性组合所形成的主成分指标,即

11112121...p p

F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信

息量可用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP 的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信

息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不相关的X1,X2,…,XP 的所有线性组合中方差最大的,故称F2为第二主成分,依此类推构造出的F1、F2、……、Fm 为原变量指标X1、X2……XP 第一、第二、……、第m 个主成分。

11111221221122221122...............p p

p p

m m m mp p

F a X a X a X F a X a X a X F a X a X a X =+++??=+++??

??=+++? 根据以上分析得知:

(1) Fi 与Fj 互不相关,即Cov(Fi ,Fj) = 0,并有Var(Fi)=ai’Σai ,其中Σ为X 的协方差阵

(2)F1是X1,X2,…,Xp 的一切线性组合(系数满足上述要求)中方差最大的,……,即Fm 是与F1,F2,……,Fm -1都不相关的X1,X2,…,XP 的所有线性组合中方差最大者。

F1,F2,…,Fm (m ≤p )为构造的新变量指标,即原变量指标的第一、第二、……、第m 个主成分。

由以上分析可见,主成分分析法的主要任务有两点:

(1)确定各主成分Fi (i=1,2,…,m )关于原变量Xj (j=1,2 ,…, p )的表达式,即系数ij a ( i=1,2,…,m ; j=1,2 ,…,p )。从数学上可以证明,原变量协方差矩阵的特征根是主成分的方差,所以前m 个较大特征根就代表前m 个较大的主成分方差值;原变量协方差矩阵前m 个较大的特征值i

λ(这样选取才能保证主成分的方差依次最

大)所对应的特征向量就是相应主成分Fi 表达式的系数i a ,为了加以限制,系数i a 启用的是i λ对应的单位化的特征向量,即有'ai ai = 1。 (2)计算主成分载荷,主成分载荷是反映主成分Fi 与原变量Xj 之间的相互关联程度:

(,)(,1,2,,;1,2,,)k i ki P Z x i p k m ===

三、主成分分析法的计算步骤 主成分分析的具体步骤如下: (1)计算协方差矩阵

计算样品数据的协方差矩阵:Σ=(s ij )p ?p ,其中

1

1()()1n

ij ki i kj j k s x x x x n ==---∑ i ,j=1,2,…,p

(2)求出Σ的特征值i λ及相应的正交化单位特征向量i a

Σ的前m 个较大的特征值λ1≥λ2≥…λm>0,就是前m 个主成分对应的方差,i λ对应的单位特征向量i a 就是主成分Fi 的关于原变量的系数,则原变量的第i 个主成分Fi 为:

Fi ='i a X

主成分的方差(信息)贡献率用来反映信息量的大小,i α为:

1/m

i i i i αλλ==∑

(3)选择主成分

最终要选择几个主成分,即F1,F2,……,Fm 中m 的确定是通过方差(信息)累计贡献率G(m)来确定

1

1

()/p

m

i k i k G m λλ===∑∑

当累积贡献率大于85%时,就认为能足够反映原来变量的信息了,对应的m 就是抽取的前m 个主成分。 (4)计算主成分载荷

主成分载荷是反映主成分Fi 与原变量Xj 之间的相互关联程度,原来变量Xj (j=1,2 ,…, p )在诸主成分Fi (i=1,2,…,m )上的荷载 lij ( i=1,2,…,m ; j=1,2 ,…,p )。:

(,)(1,2,,;1,2,,)i j ij l Z X i m j p ===

在SPSS 软件中主成分分析后的分析结果中,“成分矩阵”反应的就是主成分载荷矩阵。

(5)计算主成分得分

计算样品在m 个主成分上的得分:

1122...i i i pi p F a X a X a X =+++ i = 1,2,…,m

实际应用时,指标的量纲往往不同,所以在主成分计算之前应先消除量纲的影响。消除数据的量纲有很多方法,常用方法是将原始数据标准化,即做如下数据变换:

*

1,2,...,;1,2,...,ij j

ij

j

x x x i n j p s -=

==

其中:1

1n j ij i x x n ==∑,2

211()1n j ij j i s x x n ==--∑ 根据数学公式知道,①任何随机变量对其作标准化变换后,其协方差与其相关系数是一回事,即标准化后的变量协方差矩阵就是其相关系数矩阵。②另一方面,根据协方差的公式可以推得标准化后的协

方差就是原变量的相关系数,亦即,标准化后的变量的协方差矩阵就是原变量的相关系数矩阵。也就是说,在标准化前后变量的相关系数矩阵不变化。

根据以上论述,为消除量纲的影响,将变量标准化后再计算其协方差矩阵,就是直接计算原变量的相关系数矩阵,所以主成分分析的实际常用计算步骤是: ☆计算相关系数矩阵

☆求出相关系数矩阵的特征值i λ及相应的正交化单位特征向量i a ☆选择主成分 ☆计算主成分得分

总结:原指标相关系数矩阵相应的特征值λi 为主成分方差的贡献,方差的贡献率为 1/p

i i i i αλλ==∑,i α越大,说明相应的主成分反映

综合信息的能力越强,可根据λi 的大小来提取主成分。每一个主成分的组合系数(原变量在该主成分上的载荷)i a 就是相应特征值λi 所对应的单位特征向量。

主成分分析法的计算步骤

1、原始指标数据的标准化采集p 维随机向量x = (x1,X2,...,X p)T)n 个样品x i = (x i1,x i2,...,x ip)T,i=1,2,…,n,

n>p,构造样本阵,对样本阵元进行如下标准化变换:

其中,得标准化阵Z。

2、对标准化阵Z 求相关系数矩阵

其中,。

3、解样本相关矩阵R 的特征方程得p 个特征根,确定主成分

按确定m 值,使信息的利用率达85%以上,对每个λj, j=1,2,...,m, 解方程组Rb= λj b得单位特征向量。

4、将标准化后的指标变量转换为主成分

U1称为第一主成分,U2称为第二主成分,…,U p称为第p 主成分。

5 、对m 个主成分进行综合评价

对m 个主成分进行加权求和,即得最终评价值,权数为每个主成分的方差贡献率。

一、主成分分析基本原理

概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。

原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,

记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则

??

??

??

?????

???=np n n p p x x x x x x x x x X

2

1

22221

11211??

?

??

?

?+++=+++=+++=p mp m m m p p p

p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

系数l ij 的确定原则:

①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关;

②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。

新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P

的第1,第2,…,第m 主成分。

从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。

从数学上可以证明,它们分别是相关矩阵m 个较大的特征值所对应的特征向量。

二、主成分分析的计算步骤 1、计算相关系数矩阵

??

??

??

?

????

???=pp p p p p r r r r r r r r r R 2

1

22221

11211

r ij (i ,j =1,2,…,p )为原变量x i 与x j 的相关系数, r ij =r ji ,

其计算公式为

2、计算特征值与特征向量

解特征方程 ,常用雅可比法(Jacobi )求出特征值,并使其按大小顺序排列 ;

分别求出对应于特征值 的特征向量 ,要求 =1,即

其中 表示向量 的第j 个分量。

3、计算主成分贡献率及累计贡献率

贡献率:

累计贡献率:

一般取累计贡献率达85%-95%的特征值, 所对应的

第1、第2、…、第m (m ≤p )个主成分。 4、计算主成分载荷

5、各主成分得分

∑∑∑===----=

n

k n

k j kj

i ki

n

k j kj i ki

ij x x

x x

x x x x

r 1

1

2

2

1

)()

()

)((0

=-R I λ0

21≥≥≥≥p λλλ i

λ)

,,2,1(p i e i L =i

e 1

1

2

=∑=p

j ij

e

ij

e i e

)

,,2,1(1

p i p

k k

i

L =∑=λλ)

,,2,1(1

1

p i p k k

i

k k

L =∑∑==λλ

m

λ

λλ,,,21L )

,,2,1,(),(p j i e x z p l ij i j i ij L ===λ

三、主成分分析法在SPSS 中的操作 1、指标数据选取、收集与录入(表1)

2、Analyze →Data Reduction →Factor Analysis ,弹出Factor Analysis 对话框:

3、把指标数据选入Variables 框,Descriptives: Correlation

?

??

??

???????=nm n n m m z z z z z z z z z Z 2

1

22221

11211

Matrix 框组中选中Coefficients,然后点击Continue, 返回Factor Analysis 对话框,单击OK。

注意:SPSS 在调用Factor Analyze 过程进行分析时, SPSS 会自动对原始数据进行标准化处理, 所以在得到计算结果后的变量都

是指经过标准化处理后的变量, 但SPSS 并不直接给出标准化后的数据, 如需要得到标准化数据, 则需调用Descriptives 过程进行计算。

从表3 可知GDP 与工业增加值, 第三产业增加值、固定资产投

资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系, 与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强, 证明他们存在信息上的重叠。

主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。特征值在某种程度上可以被看成是表示主成分影响力度大小的指标, 如果特征值小于1, 说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大, 因此一般可以用特征值大于1作为纳入标准。通过表4( 方差分解主成分提取分析) 可知, 提取2个主成分, 即m=2, 从表5( 初始因子载荷矩阵) 可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷, 说明第一主成分基本反映了这些指标的信息; 人均GDP 和农业增加值指标在第二主成分上有较高载荷, 说明第二主成分基本反映了人均GDP 和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息, 所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到, 因为“Component Matrix”是指初始因子载荷矩阵, 每一个载荷量表示主成分与对应变量的相关系数。

用表5( 主成分载荷矩阵) 中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数。将初始因子载荷矩阵中的两列数据输入( 可用复制粘贴的方法) 到数据编辑窗口( 为变量B1、B2) , 然后利用“Transform→Compute Variable”, 在

Compute Variable对话框中输入“A1=B1/SQR(7.22)”[注: 第二主成分SQR后的括号中填1.235, 即可得到特征向量A1(见表6)。同理, 可得到特征向量A2。将得到的特征向量与标准化后的数据相乘, 然后就可以得出主成分表达式[注: 因本例只是为了说明如何在SPSS 进行主成分分析, 故在此不对提取的主成分进行命名, 有兴趣的读者可自行命名。

标准化:通过Analyze→Descriptive Statistics→Descriptives 对话框来实现: 弹出Descriptives 对话框后, 把

X1~X10选入Variables 框, 在Save standardized values as variables 前的方框打上钩, 点击“OK”, 经标准化的数据会自动填

入数据窗口中, 并以Z开头命名。

以每个主成分所对应的特征值占所提取主成分总的特征值之和的比例作为权重计算主成分综合模型, 即用第一主成分F1 中每个指标所对应的系数乘上第一主成分F1 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 然后加上第二主成分F2 中每个指标所对应的系数乘上第二主成分F2 所对应的贡献率再除以所提取两个主成分的两个贡献率之和, 即可得到综合得分模型:

根据主成分综合模型即可计算综合主成分值, 并对其按综合主成分值进行排序, 即可对各地区进行综合评价比较, 结果见表8。

具体检验还需进一步探讨与学习

PCA主成分分析计算步骤

主成分分析( Principal Component Analysis , PCA )是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题。计算主成分的目的是将高维数据投影到较低维空间。给定 n 个变量的 m 个观察值,形成一个 n*m 的数据矩阵, n 通常比较大。对于一个由多个变量描述的复杂事物,人们难以认识,那么是否可以抓住事物主要方面进行重点分析呢?如果事物的主要方面刚好体现在几个主要变量上,我们只需要将这几个变量分离出来,进行详细分析。但是,在一般情况下,并不能直接找出这样的关键变量。这时我们可以用原有变量的线性组合来表示事物的主要方面, PCA 就是这样一种分析方法。 PCA 的目标是寻找 r ( r

PCA主成分分析原理及应用

主元分析(PCA)理论分析及应用 什么是PCA? PCA是Principal component analysis的缩写,中文翻译为主元分析/主成分分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的用武之地。被誉为应用线形代数最价值的结果之一。 在以下的章节中,不仅有对PCA的比较直观的解释,同时也配有较为深入的分析。首先将从一个简单的例子开始说明PCA应用的场合以及想法的由来,进行一个比较直观的解释;然后加入数学的严格推导,引入线形代数,进行问题的求解。随后将揭示PCA与SVD(Singular Value Decomposition)之间的联系以及如何将之应用于真实世界。最后将分析PCA理论模型的假设条件以及针对这些条件可能进行的改进。 一个简单的模型 在实验科学中我常遇到的情况是,使用大量的变量代表可能变化的因素,例如光谱、电压、速度等等。但是由于实验环境和观测手段的限制,实验数据往往变得极其的复杂、混乱和冗余的。如何对数据进行分析,取得隐藏在数据背后的变量关系,是一个很困难的问题。在神经科学、气象学、海洋学等等学科实验中,假设的变量个数可能非常之多,但是真正的影响因素以及它们之间的关系可能又是非常之简单的。 下面的模型取自一个物理学中的实验。它看上去比较简单,但足以说明问题。如图表 1所示。这是一个理想弹簧运动规律的测定实验。假设球是连接在一个无质量无摩擦的弹簧之上,从平衡位置沿轴拉开一定的距离然后释放。

主成分分析原理及详解

第14章主成分分析 1 概述 1.1 基本概念 1.1.1 定义 主成分分析是根据原始变量之间的相互关系,寻找一组由原变量组成、而彼此不相关的综合变量,从而浓缩原始数据信息、简化数据结构、压缩数据规模的一种统计方法。 1.1.2 举例 为什么叫主成分,下面通过一个例子来说明。 假定有N 个儿童的两个指标x1与x2,如身高和体重。x1与x2有显著的相关性。当N较大时,N观测量在平面上形成椭圆形的散点分布图,每一个坐标点即为个体x1与x2的取值,如果把通过该椭圆形的长轴取作新坐标轴的横轴Z1,在此轴的原点取一条垂直于Z1的直线定为新坐标轴的Z2,于是这N个点在新坐标轴上的坐标位置发生了改变;同时这N个点的性质也发生了改变,他们之间的关系不再是相关的。很明显,在新坐标上Z1与N个点分布的长轴一致,反映了N个观测量个体间离差的大部分信息,若Z1反映了原始数据信息的80%,则Z2只反映总信息的20%。这样新指标Z1称为原指标的第 358

一主成分,Z2称为原指标的第二主成分。所以如果要研究N个对象的变异,可以只考虑Z1这一个指标代替原来的两个指标(x1与x2),这种做法符合PCA提出的基本要求,即减少指标的个数,又不损失或少损失原来指标提供的信息。 1.1.3 函数公式 通过数学的方法可以求出Z1和Z2与x1与x2之间的关系。 Z1=l11x1+ l12x2 Z2=l21x1+ l22x2 即新指标Z1和Z2是原指标x1与x2的线性函数。在统计学上称为第一主成分和第二主成分。 若原变量有3个,且彼此相关,则N个对象在3维空间成椭圆球分布,见图14-1。 通过旋转和改变原点(坐标0点),就可以得到第一主成分、第二主成分和第三主成分。如果第二主成分和第三主成分与第一主成高度相关,或者说第二主成分和第三主成分相对于第一主成分来说变异很小,即N个对象在新坐标的三维空间分布成一长杆状时,则只需用一个综合指标便能反映原始数据中3个变量的基本特征。 359

主成分分析法的原理应用及计算步骤..

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可 用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP 的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不

主成分分析的计算步骤

主成分分析的计算步骤 样本观测数据矩阵为: ??????? ??=np n n p p x x x x x x x x x X 21 2222111211 第一步:对原始数据进行标准化处理 )var(*j j ij ij x x x x -= ),,2,1;,,2,1(p j n i == 其中 ∑==n i ij j x n x 1 1 21 )(11)var(j n i ij j x x n x --=∑= ),,2,1(p j = 第二步:计算样本相关系数矩阵 ?????? ????????=pp p p p p r r r r r r r r r R 212222111211 为方便,假定原始数据标准化后仍用X 表示,则经标准化处理后的数据的相关系数为: tj n t ti ij x x n r ∑=-=1 11 ),,2,1,(p j i = 第三步:用雅克比方法求相关系数矩阵R 的特征值(p λλλ 21,)和相应的特征向量()p i a a a a ip i i i 2,1,,,21==。 第四步:选择重要的主成分,并写出主成分表达式 主成分分析可以得到p 个主成分,但是,由于各个主成分的方差是递减的,包含的信息量也是递减的,所以实际分析时,一般不是选取p 个主成分,而是根据各个主成分累计贡献率的大小选取前k 个主成分,这里贡献率就是指某个主成分的方差占全部方差的比重,

实际也就是某个特征值占全部特征值合计的比重。即 贡献率=∑=p i i i 1λ λ 贡献率越大,说明该主成分所包含的原始变量的信息越强。主成分个数k 的选取,主要根据主成分的累积贡献率来决定,即一般要求累计贡献率达到85%以上,这样才能保证综合变量能包括原始变量的绝大多数信息。 另外,在实际应用中,选择了重要的主成分后,还要注意主成分实际含义解释。主成分分析中一个很关键的问题是如何给主成分赋予新的意义,给出合理的解释。一般而言,这个解释是根据主成分表达式的系数结合定性分析来进行的。主成分是原来变量的线性组合,在这个线性组合中个变量的系数有大有小,有正有负,有的大小相当,因而不能简单地认为这个主成分是某个原变量的属性的作用,线性组合中各变量系数的绝对值大者表明该主成分主要综合了绝对值大的变量,有几个变量系数大小相当时,应认为这一主成分是这几个变量的总和,这几个变量综合在一起应赋予怎样的实际意义,这要结合具体实际问题和专业,给出恰当的解释,进而才能达到深刻分析的目的。 第五步:计算主成分得分 根据标准化的原始数据,按照各个样品,分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。具体形式可如下。 ?????? ? ??nk n n k k F F F F F F F F F 212222111211 第六步:依据主成分得分的数据,则可以进行进一步的统计分析 其中,常见的应用有主成份回归,变量子集合的选择,综合评价等。

主成分分析原理

主成分分析原理 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ?? ? ? ? ? ? ??=np n n p p x x x x x x x x x X 2 1 22221 11211 ()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1, 21=???? ?? ? ??= 主成分分析就是将 p 个观测变量综合成为p 个新的变量(综合变量),即 ?? ???? ?+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

主成分分析计算方法和步骤

主成分分析计算方法和步骤: 在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。而主成分分析法可以很好地解决这一问题。 主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。 主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。 结合数据进行分析 本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。 表5-6 相关系数矩阵 本科院校 数招生人数教育经费投入 相关性师生比0.279 0.329 0.252 重点高校数0.345 0.204 0.310 教工人数0.963 0.954 0.896 本科院校数 1.000 0.938 0.881 招生人数0.938 1.000 0.893 教育经费投 0.881 0.893 1.000 入

主成分分析法PCA的原理

主成分分析法原理简介 1.什么是主成分分析法 主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。 在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 2.主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 对同一个体进行多项观察时必定涉及多个随机变量X1,X2,…,X p,它们之间都存在着相关性,一时难以综合。这时就需要借助主成分分析来概括诸多信息的主要方面。我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。

主成分分析法的步骤和原理 (1)

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。设随机向量X 的均值为μ,协方差矩阵为Σ。对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X p Z 2=μ21X 1+μ22X 2+…μ2p X p …… …… …… Z p =μp1X 1+μp2X 2+…μpp X p 主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。R 为实对称矩阵 (即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为: 2211)()() ()(j kj n k i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。解特征方程0=-R E λ,求出特征值λi (i=1,2,…,p )。 因为R 是正定矩阵,所以其特征值λi 都为正数,将其按大小顺序排列,即λ1≥λ2≥…≥λi ≥0。特征值是各主成分的方差,它的大小反映了各个主成分的影响力。主成分Z i 的贡献率W i =∑=p j j j 1λλ,累计贡献率为

spss进行主成分分析的步骤图文)

主成分分析の操作过程 原始数据如下(部分) 调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析の各个原始变量放入变量框,如下图所示: 单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选の,保持默认即可),如下图所示,然後点击Continue按钮,回到主对话框: 其他の次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子の方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到の主要结果如下面几张表。 ①KMO和Bartlett球形检验结果: KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验の显着性P值为0.000<0.05,亦说明数据适合做因子分析。 ②公因子方差表,其展示了变量の共同度,Extraction下面各个共同度の值都大於0.5,说明提取の主成分对於原始变量の解释程度比较高。本表在主成分分析中用处不大,此处列出来仅供参考。 ③总方差分解表如下表。由下表可以看出,提取了特征值大於1の两个主成分,两个主成分の方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。 ④因子截荷矩阵如下: 根据数理统计の相关知识,主成分分析の变换矩阵亦即主成分载荷矩阵U与因子载荷矩阵A以及特征值λの数学关系如下面这个公式: 故可以由这二者通过计算变量来求得主成分载荷矩阵U。 新建一个SPSS数据文件,将因子载荷矩阵中の各个载荷值复制进去,如下图所示: 计算变量(Transform-Compute Variables)の公式分别如下二张图所示: 计算变量得到の两个特征向量U1和U2如下图所示(U1和U2合起来就是主成分载荷矩阵): 所以可以得到两个主成分Y1和Y2の表达式如下:

主成分分析原理

第七章主成分分析 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1,21=?????? ? ??= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即 ???????+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

主成分分析操作步骤

主成分分析操作步骤 1)先在spss中录入原始数据。 2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话框,将要分析的变量都放入【变量】窗口中。

3)设计分析的统计量 点击【描述】:选中“Statistics”中的“原始分析结果”和“相关性矩阵”中的“系数”。(选中原始分析结果,SPSS自动把原始数据标准差标准化,但不显示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。 点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的第一个选项即可。

点击【旋转】:选取第一个选项“无”。(当因子分析的抽取方法选择主成分法时,且不进行因子旋转,则其结果即为主成分分析) 点击【得分】:选中“保存为变量”,方法中选“回归”;再选中“显示因子得分系数矩阵”。 点击【选项】:选择“按列表排除个案”。

4)结果解读 5)A. 相关系数矩阵:是6个变量两两之间的相关系数大小的方阵。通过相关系 数可以看到各个变量之间的相关,进而了解各个变量之间的关系。 相關性矩陣 食品衣着燃料住房交通和通讯娱乐教育文化相關食品 1.000 .692 .319 .760 .738 .556 衣着.692 1.000 -.081 .663 .902 .389 燃料.319 -.081 1.000 -.089 -.061 .267 住房.760 .663 -.089 1.000 .831 .387 交通和通讯.738 .902 -.061 .831 1.000 .326 娱乐教育文化.556 .389 .267 .387 .326 1.000 B. 共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和 通讯最多,而娱乐教育文化损失率最大。 Communalities 起始擷取 食品 1.000 .878 衣着 1.000 .825 燃料 1.000 .841 住房 1.000 .810 交通和通讯 1.000 .919 娱乐教育文化 1.000 .584 擷取方法:主體元件分析。 C. 总方差的解释:系统默认方差大于1的为主成分。如果小于1,说明这个主 因素的影响力度还不如一个基本的变量。所以只取前两个,且第一主成分的方差 为3.568,第二主成分的方差为1.288,前两个主成分累加占到总方差的80.939%。 說明的變異數總計 元件 起始特徵值擷取平方和載入 總計變異的% 累加% 總計變異的% 累加% 1 3.568 59.474 59.474 3.568 59.474 59.474 2 1.288 21.466 80.939 1.288 21.466 80.939 3 .600 10.001 90.941 4 .358 5.97 5 96.916 5 .142 2.372 99.288 6 .043 .712 100.000 擷取方法:主體元件分析。

用SPSS进行详细的主成分分析步骤

怎样用SPSS进行主成分分析 怎样用SPSS进行主成分分析 一、基本概念与原理 主成分分析(principal component analysis) 将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。又称主分量分析。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。 (1)主成分分析的原理及基本思想。 原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。 基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来

主成分分析在STATA中的实现以及理论介绍

第十二章 主成分分析 主成分分分析也称作主分量分析,是霍特林(Hotelling)在1933年首先提出。主成分分析是利用降维的思想,在损失较少信息的前提下把多个指标转化为较少的综合指标。转化生成的综合指标即称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分互不相关。Stata 对主成分分析的主要内容包括:主成分估计、主成分分析的恰当性(包括负偏协方差矩阵和负偏相关系数矩阵、KMO(Kaiser-Meyer-Olkin)抽样充分性、复相关系数、共同度等指标测度)、主成分的旋转、预测、各种检验、碎石图、得分图、载荷图等。 p j n i b a y ij j i ij ,,2,1,,2,1,' ==+=ε 主成分的模型表达式为: p p j i i i i diag v v v v i p V V C λλλλλλλ≥≥≥=∧='' ==∧=∑ 2121),,,,(0 1 其中,a 称为得分,b 称为载荷。主成分分析主要的分析方法是对相关系数矩阵(或协方差矩阵)进行特征值分析。 Stata 中可以通过负偏相关系数矩阵、负相关系数平方和KMO 值对主成分分析的恰当性进行分析。负偏相关系数矩阵即变量之间两两偏相关系数的负数。非对角线元素则为负的偏相关系数。如果变量之间存在较强的共性,则偏相关系数比较低。因此,如果矩阵中偏相关系数较高的个数比较多,说明某一些变量与另外一些变量的相关性比较低,主成分模型可能不适用。这时,主成分分析不能得到很好的数据约化效果。 Kaiser-Meyer-Olkin 抽样充分性测度也是用于测量变量之间相关关系的强弱的重要指标,是通过比较两个变量的相关系数与偏相关系数得到的。KMO 介于0于1之间。KMO 越高,表明变量的共性越强。如果偏相关系数相对于相关系数比较高,则KMO 比较低,主成分分析不能起到很好的数据约化效果。根据Kaiser (1974),一般的判断标准如下:0.00-0.49,不能接受(unacceptable );0.50-0.59,非常差(miserable );0.60-0.69,勉强接受(mediocre );0.70-0.79,可以接受(middling );0.80-0.89,比较好(meritorious );0.90-1.00,非常好(marvelous )。 SMC 即一个变量与其他所有变量的复相关系数的平方,也就是复回归方程的可决系数。SMC 比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。 成分载荷、KMO 、SMC 等指标都可以通过extat 命令进行分析。 多元方差分析是方差分析在多元中的扩展,即模型含有多个响应变量。本章介绍多元(协)方差分析以及霍特林(Hotelling)均值向量T 检验。 12.1 主成分估计 Stata 可以通过变量进行主成分分析,也可以直接通过相关系数矩阵或协方差矩阵进行。 (1)sysuse auto,clear pca trunk weight length headroom pca trunk weight length headroom, comp(2) covariance

一、主成分分析基本原理

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n个样本,每个样本共有p个变量,构成一个n×p阶的数据矩阵, 记原变量指标为x 1,x 2 ,…,x p ,设它们降维处理后的综合指标,即新变量 为 z 1,z 2 ,z 3 ,…,z m (m≤p),则 系数l ij 的确定原则: ①z i 与z j (i≠j;i,j=1,2,…,m)相互无关; ②z 1是x 1 ,x 2 ,…,x P 的一切线性组合中方差最大者,z 2 是与z 1 不相关的x 1 ,x 2 ,…, x P 的所有线性组合中方差最大者; z m 是与z 1 ,z 2 ,……,z m-1 都不相关的x 1 , x 2, (x) P ,的所有线性组合中方差最大者。 新变量指标z 1 ,z 2 ,…,z m 分别称为原变量指标x 1 ,x 2 ,…,x P 的第1,第2,…, 第m主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1, 2 ,…, p)在诸主成分z i (i=1,2,…,m)上的荷载 l ij ( i=1,2,…,m; j=1,2 ,…,p)。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? = np n n p p x x x x x x x x x X Λ M M M Λ Λ 2 1 2 22 21 1 12 11 ? ? ? ? ? ? ? + + + = + + + = + + + = p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z Λ Λ Λ 2 2 1 1 2 2 22 1 21 2 1 2 12 1 11 1 .. ..........

主成分分析计算方法和步骤

在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。而主成分分析法可以很好地解决这一问题。 主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。 主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。 结合数据进行分析 本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。 表5-6 相关系数矩阵 本科院校 数招生人数教育经费投入 相关性师生比 重点高校数 教工人数 本科院校数 招生人数 教育经费投 入

师生比重点高校数教工人数 相关性师生比 重点高校数 教工人数 本科院校数 招生人数 教育经费投 入(元) 表5-7给出的是各主成分的方差贡献率和累计贡献率,我们选取主成分的标准有两个:第一,特征根大于1,因为,如果特征根小于1,说明该主成分的解释力度太弱,还比不上直接引入一个原始变量的平均解释力度大;第二,方差贡献率大于85%,如果这两个标准不能同时符合要求,则往往是因为选择的指标不合理或者样本容量太小,应继续调整。表5-7还显示,只有前2个特征根大于1,因此SPSS只提取了前两个主成分,而这两个主成分的方差贡献率达到了%,因此选取前两个主成分已经能够很好地描述我国高等教育地区现状。

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

相关主题
文本预览
相关文档 最新文档