当前位置:文档之家› 金属学与热处理___崔忠圻___第九单元和第十单元

金属学与热处理___崔忠圻___第九单元和第十单元

金属学与热处理___崔忠圻___第九单元和第十单元
金属学与热处理___崔忠圻___第九单元和第十单元

第九章钢的热处理原理

1.金属固态相变有哪些主要特征?哪些因素构成相变阻力?

答:金属固态相变主要特点:1、不同类型相界面,具有不同界面能和应变能2、新旧相之间存在一定位向关系与惯习面3、相变阻力大4、易于形成过渡相5、母相晶体缺陷对相变起促进作用6、原子的扩散速度对固态相变起有显著影响…..阻力:界面能和弹性应变能

2、何为奥氏体晶粒度?说明奥氏体晶粒大小对钢的性能的影响。

答:奥氏体晶粒度是指奥氏体晶粒的大小。金属的晶粒越细小晶界区所占的比例就越大,晶界数目越多(则晶粒缺陷越多,一般,位错运动到晶界处即停)在金属塑变时对位错运动的阻力越大,金属发生塑变的抗力越大,金属的强度和硬度也就越高。晶粒越细,同一体积内晶粒数越多,塑性变形时变形分散在许多晶粒内进行,变形也会均匀些,虽然多晶体变形具有不均匀性,晶体不同地方的变形程度不同,位错塞积程度不同,位错塞积越严重越容易导致材料的及早破坏,晶粒越细小的话,会使金属的变形更均匀,在材料破坏前可以进行更多的塑性变形,断裂前可以承受较大的变形,塑性韧性也越好。所以细晶粒金属不仅强度高,硬度高,而且在塑性变形过程中塑性也较好。

3..珠光体形成时钢中碳的扩散情况及片粒状珠光体的形成过程4、

试比较贝氏体转变、珠光体转变和马氏体转变的异同。

答:从以下几个方面论述:形成温度、相变过程及领先相、转变

时的共格性、转变时的点阵切变、转变时的扩散性、转变时碳原子扩散的大约距离、合金元素的分布、等温转变的完全性、转变产物的组织、转变产物的硬度几方面论述。试比较贝氏体转变与珠光体转变的异同点对比项目珠光体贝氏体形成温度高温区(A1以下)中温区(Bs 以下)转变过程形核长大形核长大领先相渗碳体铁素体转变共格性、浮凸效应无有共格、表面浮凸转变点阵切变无有转变时扩散Fe、C 均扩散Fe不扩散、均扩散转变合金分布通过扩散重新分布不扩散等温转变完全性可以不一定转变组织αFe3C αFe3C (上贝氏体)αε—Fe3C(下贝氏体)转变产物硬度低中

5.. 珠光体、贝氏体、马氏体的特征、性能特点是什么?

答:片状P 体,片层间距越小,强度越高,塑性、韧性也越好;粒状P 体,3C 颗粒越细小,Fe 分布越均匀,合金的强度越高。第二相的数量越多,对塑性的危害越大;片状与粒状相比,片状强度高,塑性、韧性差;上贝氏体为羽毛状,亚结构为位错,韧性差;下贝氏体为黑针状或竹叶状,亚结构为位错,位错密度高于上贝氏体,综合机械性能好;低碳马氏体为板条状,亚结构为位错,具有良好的综合机械性能;高碳马氏体为片状,亚结构为孪晶,强度硬度高,塑性和韧性差。

6、简述钢中板条马氏体和片状马氏体的形貌特征和亚结构板条马氏体和的形貌特征和亚结构并说明它们在性能上的差异。

答:一般认为板条马氏体为位错马氏体马氏体内部有很多位错。片状马氏体为挛晶马氏体马氏体内部亚结构为挛晶。板条马氏体的

组织特征每个单元呈窄而细长的板条板条体自奥氏体晶界向晶内相互平行排列成群其中的板条束为惯习面相同的平行板条组成。板条宽度0.1~ 0.2 微米长度小于10 微米板条间有一层奥氏体膜一个奥氏体晶粒内包含几个板条群。一个奥氏体晶粒有几个束一个束内存在位向差时也会形成几个块。板条群之间为大角度晶界板条之间为小角度晶界。板条的立体形态可以是扁条状。

片状马氏体的特征马氏体片互不平行而是呈一定的夹角排列在显微镜下观察时呈针状或竹叶状。初生者较厚较长横贯整个奥氏体晶粒第一片分割奥氏体晶粒以后的马氏体片愈来愈小。但一般不穿透晶界次生者尺寸较小。初生片与奥氏体晶界之间、片与片之间互相撞击形成显微裂纹。当WC≈1.4 2.0时除具有上述特征外片的中央有中脊在两个初生片之间常见到呈“Z”字形分布的细薄片。立体形态为双凸透镜状断面为针状或竹叶状。故又称针状马氏体

7. 试述钢中上贝氏体和下贝氏体的形貌特征和亚结构并说明它们的性能差异。

答:形貌特征:上贝氏体:在光学显微镜下观察时呈羽毛状,在扫描电镜观察为一群由奥氏体晶界内平行长大的板条状或针状铁素体,在相邻铁素体条(针)之间夹杂着断续的短杆状碳化物。下贝氏体:在光学显微镜下观察时呈竹叶状,铁素体呈片状,片与片之间以一定角度相交。(大部分呈60 度和120 度)在铁素体片内部分布碳化物。碳化物排列大部分与铁素体片的长轴约成60 度角。亚结构:上:位错缠结。下:缠结位错。性能差异:下贝氏体具有高

的强度和韧性,高的耐磨性,冲击韧性比上贝氏体好的多。

8. 什么是魏氏组织?简述魏氏组织的形成条件,对钢性能的影响及消除方法。

答:魏氏组织:工业上将具有针(片)状铁素体或渗碳体加珠光体的组织称作魏氏组织,是含碳0.6的碳钢或低合金钢在奥氏体晶粒体较粗和冷速较快的条件下,先共析出铁素体呈片状或粗大羽毛状,与原奥氏体呈一定的位向关系的组织。魏氏组织可通过细化晶粒、退火或锻造并适当控制冷却速度等方法消除。

9. 简述碳钢在回火转变和回火组织。

答:碳素钢淬火后在不同温度下回火时,组织将发生不同的变化。由于组织变化会带来物理性能的变化,而不同的组织变化,物理性能的变化也不同。

通常根据物理性能的变化把回火转变分成四种类型。

第一类回火转变:M 分解为回火M,80~250℃;低碳马氏体发生碳原子向位错附近偏聚外,马氏体中析出碳化物,使马氏体碳含量降低;高碳马氏体发生分解,马氏体中过饱和碳不断以ε 碳化物形式析出,使马氏体碳含量降低。产物:回火马氏体。

第二类回火转变:残余A 分解为回火M 或下B,200~300℃;淬火后的残余奥氏体是不稳定组织,在本阶段,残余奥氏体分解为低碳马氏体和ε 碳化物组织为回火马氏体。

第三类回火转变:碳化物析出与转变,250~400℃,回火M 转变为回火T(亚稳碳化物转变为稳定碳化物)250~400℃时,碳素

钢M 中过饱和的C 几乎全部析出,将形成比ε-FeXC更稳定的碳化物。在回火过程中除ε-FeXC 外,常见的还有两种:一种其组成与Mn5C2 相近,称为χ 碳化物,用χ-Mn5C2 表示;另一种是渗碳体,称θ 碳化物,用θ-Fe3C 表示。这两种碳化物的稳定性均高于ε-FeXC;通常在MS 以下回火残余A 转变为M,然后分解为回火M,而在B 转变区回火,残余A 转变为下B。

第四类回火转变:回火T 转变为回火S(碳化物聚集长大,α 再结晶),400~700 ℃。铁素体发生回复和再结晶为等轴状、碳化物球化粗大——回火索氏体。

9、比较珠光体索氏体托氏体和回火珠光体回火索氏体回火托氏体组织性能

答:1.珠光体是奥氏体奥氏体是碳溶解在γ-Fe 中的间隙固溶体发生共析转变所形成的铁素体与渗碳体的共析体。得名自其珍珠般(pearl-like)的光泽。其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。用符号P 表示,含碳量为ωc=0.77%。在珠光体中铁素体占88渗碳体占12由于铁素体的数量大大多于渗碳体所以铁素体层片要比渗碳体厚得多.在球化退火条件下珠光体中的渗碳休也可呈粒状这样的珠光体称为粒状珠光体。

2.奥氏体是碳溶解在γ 铁中形成的一种间隙固溶体,呈面心立方结构,无磁性。奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。在合金钢中除碳之外,其他合金元素也可溶于奥氏

体中,并扩大或缩小奥氏体稳定区的温度和成分范围。例如,加入锰和镍能将奥氏体临界转变温度降至室温以下,使钢在室温下保持奥氏体组织,即所谓奥氏体钢。

3.托氏体是马氏体在回火时形成的,实际上是铁素体基体内分布着极其细小的碳化物或渗碳体球状颗粒,在光学显微镜下高倍放大也分辨不出其内部构造,只看到其总体是一片黑的复相组织。

11.何为第一类回火脆性和第二类回火脆性如何消除?

答:回火脆性:在某些温度区间回火时随回火温度的升高,钢的韧性反而下降的现象,称为回火脆性

第一类(低温)回火脆性:是指淬火钢在250-350℃回火时出现的脆性。这种回火脆性是不可逆的,只要在此温度范围内回火就会出现脆性,目前尚无有效消除办法。没有一个有效的热处理方法能消除钢中这种回火脆性,除非不在这个温度范围内回火,也没有能够有效抑制产生这种回火脆性的合金元素。

但可以采取以下措施减轻第一类回火脆性。(1)降低钢中杂质元素的含量;(2)用Al脱氧或加入Nb 、V、Ti等合金元素细化A 晶粒;(3)加入Mo、W等以减轻;(4)加入Cr、Si 调整温度范围(推向高温);(5)采用等温淬火代替淬火回火工艺。

第二类(高温)回火脆性:是指淬火钢在500-650℃范围内回火后缓冷时出现的脆性。是一种可逆性的回火脆性。

防止方法(1)提高钢材的纯度,尽量减少杂质;(2)加入适量的Mo、W 等有益的合金元素;(3)对尺寸小、形状简单的零件,采用

回火后快冷的方法

12. 试比较共析碳钢过冷奥氏体等温转变曲线与连续转变曲线的TTT 与CCT异同点。

答:首先连续冷却转变曲线与等温转变曲线临界冷却速度不同。其次连续冷却转变曲线位于等温转变曲线的右下侧,且没有C 曲线的下部分,即共析钢在连续冷却转变时,得不到贝氏体组织。这是因为共析钢贝氏体转变的孕育期很长,当过冷奥氏体连续冷却通过贝氏体转变区内尚未发生转变时就已过冷到Ms 点而发生马氏体转变,所以不出现贝氏体转变。

13、怎样获得粒状珠光体?

答:1)片状珠光体低温退火;2)在奥氏体渗碳体两相区加热,或加热转变不充分,将这样的过冷奥氏体缓冷而得到粒状珠光体;3)马氏体或贝氏体组织的高温回火。

15、有一共析钢试样,其显微组织为粒状珠光体。同通过何种热处理工序可分别得到细片状珠光体、粗片状珠光体和比原始组织明显细小的粒状珠光体?

答:通过球化退火可以得到粒状珠光体,至于其他的珠光体可以通过等温处理来得到,而其片层间距可以通过控制等温温度来得到,比如细片状珠光体等温温度可以控制在600 度粗片状的可以控制在650-700.

16、为了提高过共析钢的强韧性,希望淬火时控制马氏体使其具有较低的含碳量,并希望有部分板条马氏体。试问如何进行热处理才

能达到上述目的?

答:过共析钢是不可能得到板条马氏体的,智能得到针状或隐晶马氏体,为了控制其强韧性必须得到隐晶马氏体,不能出现大量针状马氏体。

17、如何把含碳0.8的碳钢的球化组织转变为1 细片状珠光体2 粗片状珠光体3比原来组织更细的球化组织

答:1.等温退火温度较高2.等温退火温度较低3.球化退火

18、如何将Wc0.4的退火碳钢处理成1 在大块游离铁素体和铁素体基体上分布着细球状碳化物2 铁素体基体上均匀分布着细球状碳化物。1.球化退火2.调质球化。

19、如果在800℃下按照一般的奥氏体化的时间加热,那么就会造成奥氏体晶粒粗大,再次淬火的时候,会因为奥氏体晶粒粗大,内应力过大,造成工件的开裂。一般应该先退火,再重新淬火。

第十章

1、简述退火的目的和种类。用途

答:目的:消除铸造、锻压、焊接的缺陷;为机械加工提供好的组织状态;最终热处理的预先热处理。

1)低温退火目的:消除铸、锻、焊及切削加工过程内应力。2)扩散退火目的:改善和消除在冶金过程中形成成分不均匀性3)球化退火主要对高碳工具钢、模具钢和轴承钢等进行,目的是改善碳化物分布,并使碳化物球化为细小圆形颗粒分布在马氏体基体,提高塑性和韧性,改善切削加工性能和减少最终热处理的变形和

开裂。

2、什么是正火?目的如何?有何应用?

答:将铁碳合金加热到临界点以上适当温度并保持一定的时间,然后在空气中冷却的工艺叫正火。钢的正火目的是消除网状碳化物、改善切削性能;使铸、锻件过热晶粒细化;消除内应力。/…/正火、退火工艺选用的原则是什么?含0.25%C 以下的钢,在没有其它热处理工序时,可用正火来提高强度。对渗碳钢,用正火消除锻造缺陷及提高切削加工性能。对含碳0.25~0.50%的钢,一般采用正火。对含碳0.50~0.75%的钢,一般采用完全退火。含碳0.75~1.0%的钢,用来制造弹簧时采用完全退火作预备热处理,用来制造刀具时则采用球化退火。含碳大于1.0%的钢用于制造工具,均采用球化退火作预备热处理。

3、生产中为了提高亚共析钢的强度,常用方法是提高亚共析钢中珠光体的含量,应采用什么热处理工艺?

答:对于亚共析钢,常用的热处理方法就是淬火之后进行回火,500 度以上回火可以得到索氏在体+铁素体组织,这是强度和塑韧性配合比较好的一种组织,这种工艺常称为调质处理。如果牺牲一下塑性,提高强度,那么回火温度可以降低。

4、淬火的目的是什么?常用的淬火方法有哪几种?说明它们的主要特点及其应用范围。

答:淬火的目的是为了获得马氏体或贝氏体组织。提高钢的机械性能。常用的淬火方法有单液淬火法、双液淬火法、等温淬火法和分

级淬火法。

单液淬火法:这种方法操作简单,容易实现机械化,自动化,如碳钢在水中淬火、合金钢在油中淬火。但其缺点是不符合理想淬火冷却速度的要求,水淬容易产生变形和裂纹,油淬容易产生硬度不足或硬度不均匀等现象。适合于小尺寸且形状简单的工件。

双液淬火法:采用先水冷再油冷的操作。充分利用了水在高温区冷速快和油在低温区冷速慢的优点,既可以保证工件得到马氏体组织,又可以降低工件在马氏体区的冷速,减少组织应力,从而防止工件变形或开裂。适合于尺寸较大、形状复杂的工件。

等温淬火法:它是将加热的工件放入温度稍高于Ms 的硝盐浴或碱浴中,保温足够长的时间使其完成B 转变。等温淬火后获得B 下组织。下贝氏体与回火马氏体相比,在碳量相近,硬度相当的情况下,前者比后者具有较高的塑性与韧性,适用于尺寸较小,形状复杂,要求变形小,具有高硬度和强韧性的工具,模具等。

分级淬火法:它是将加热的工件先放入温度稍高于Ms 的硝盐浴或碱浴中,保温2~5min,使零件内外的温度均匀后,立即取出在空气中冷却。这种方法可以减少工件内外的温差和减慢马氏体转变时的冷却速度,从而有效地减少内应力,防止产生变形和开裂。

但由于硝盐浴或碱浴的冷却能力低,只能适用于零件尺寸较小,要求变形小,尺寸精度高的工件,如模具、刀具等。

5、试述亚共析钢和过共析钢淬火加热温度的选择原则。为什么过共析钢淬火加热温度不能超过Accm 线?

答:为了防止奥氏体晶粒粗化,一般淬火温度不宜太高,只允许超出临界点30-50℃亚共析刚Ac330~50C ;过共析钢Ac130 ~50°C若加热到Accm 线以上。会带来一些不良后果:

(1)由于渗碳体全部融入奥氏体,使淬火后钢的耐磨性降低(2)Ac1~Accm 之间,存在未溶二次渗碳体,反而阻碍奥氏体晶粒长大,能够细化晶粒,从而使形成显微裂纹的倾向减小。(3)由于奥氏体中碳含量显著增高,使Ms 点降低,淬火后残余奥氏体量增多,从而降低钢的硬度。

(4)加热温度高,使钢的氧化.脱碳加剧,也使淬火和开裂倾向增大,同时也缩短炉子的使用寿命。

6、淬透性与淬硬层深度两者有何联系和区别?影响钢淬透性的因素有哪些?影响钢制零件淬硬层深度的因素有哪些?

答:淬透性是指钢在淬火时获得淬硬层的能力。不同的钢在同样的条件下淬硬层深不同,说明不同的钢淬透性不同,淬硬层较深的钢淬透性较好。淬硬性:是指钢以大于临界冷却速度冷却时,获得的马氏体组织所能达到的最高硬度。钢的淬硬性主要决定于马氏体的含碳量,即取决于淬火前奥氏体的含碳量。

影响淬透性的因素:1 化学成分C曲线距纵坐标愈远,淬火的临界冷却速度愈小,则钢的淬透性愈好。对于碳钢,钢中含碳量愈接近共析成分,C曲线愈靠右,其临界冷却速度愈小,则淬透性愈好,即亚共析钢的淬透性随含碳量增加而增大,过共析钢的淬透性随含碳量增加而减小。除Co 和Al(>2.5)以外的大多数合金元素都使C 曲

线右移,使钢的淬透性增加,因此合金钢的淬透性比碳钢好。② 奥氏体化温度温度愈高,晶粒愈粗,未溶第二相愈少,淬透性愈好。

7 什么是钢的淬透性、淬硬性?影响钢的淬透性、淬硬性及淬透层深度的因素是什么?

答:淬透性——钢在淬火时能够获得马氏体的能力。其大小是用规定条件下淬硬层深度来表示。淬硬性是在正常淬火条件下钢淬火后所能达到的最高硬度,即硬化能力影响淬透性的因素

决定因素:临界冷却速度即化学成分及奥氏体化的条件钢的淬硬性影响因素:取决于马氏体的含碳量。工件的淬透深度----取决于钢材淬透性还与冷却介质、工件尺寸等外部因素有关7、圆柱形工件40CR 钢,可以用,淬火后中温回火。

9 何谓调质处理调质处理:淬火后高温回火的热处理方法称为调质处理。高温回火是指在500-650℃之间进行回火。调质可以使钢的性能,材质得到很大程度的调整,其强度、塑性和韧性都较好,具有良好的综合机械性能。两者金相组织不一样。正火索氏体是细片状珠光体;回火索氏体是粒状渗碳体分布在铁素体基体上。回火索氏体的塑性、韧性和和冲击值比正火索氏体好。

10、减少淬火冷却中的变形和开裂:零件在淬火时由于内外温差及组织转变的不等时性使淬火后的零件残存有内应力这种应力在淬火过程的某一瞬间超过钢的屈服强度时即产生变形若超过钢的断裂强度时则产生开裂。因此零件在淬火过程中从加热到冷却应尽量减少内应力以便减少变形和开裂。

11 45 钢普通车床传动齿轮,其工艺路线为锻造---热处理---机械加工----高频淬火—回火。试问锻后应进行何种热处理,为什么?

答:进行正火处理,45 钢属中碳钢,正火后其硬度接近于最佳切削加工的硬度。

12、刚渗碳热处理后空冷,由表面到心部的组织。渗碳后由表及里的含碳量依次为:高、较高或中、低。空冷就是正火,空冷后表面浅层相对于渗碳层有一定脱碳现象,所以空冷后的组织依次为:渗碳体或铁素体珠光体、渗碳体珠光体、珠光体、铁素体(较少)珠光体(较多)、铁素体(较多)珠光体(较少)。淬火和(低温)回火后的组织与加热温度关,按正常淬回火温度(心部完成奥氏体化、低温回火):回火马氏体铁素体(脱碳严重时)、高碳回火马氏体残余奥氏体(少量)、高碳回火马氏体、中碳回火马氏体、低碳回火马氏体、低碳回火马氏体铁素体、铁素体回火贝氏体或珠光体(视淬火介质的冷却能力而定)。

13 设有一种490 柴油机连杆螺栓,直径12mm长77mm,材料为40Cr 钢,调质处理。要求淬火后心部硬度大于HRC45,调质处理后心部为HRC2233,试制定调质处理工艺。

答:淬火后心部硬度大于45,即完全淬透,可采有在825860℃油冷,淬火后低温回火,可得板条状M,可满足调质后心部硬度要求。

金属学及热处理习题参考答案(1-9章)

第一章金属及合金的晶体结构 一、名词解释: 1 ?晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。 2?非晶体:指原子呈不规则排列的固态物质。 3 ?晶格:一个能反映原子排列规律的空间格架。 4?晶胞:构成晶格的最基本单元。 5. 单晶体:只有一个晶粒组成的晶体。 6?多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。 7?晶界:晶粒和晶粒之间的界面。 8. 合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。 9. 组元:组成合金最基本的、独立的物质称为组元。 10. 相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。 11. 组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。 12. 固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相 、填空题: 1 .晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。 2?常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。 3?实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。 4?根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。 5?置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。 6 ?合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。 7. 同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光—泽,正的电阻温度系数。 8. 金属晶体中最主要的面缺陷是晶界和亚晶界。 9. 位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的 10. 在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、(210)> (201)、

金属学与热处理课后习题问题详解(崔忠圻版)

第十章钢的热处理工艺 10-1 何谓钢的退火?退火种类及用途如何? 答: 钢的退火:退火是将钢加热至临界点AC1以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 退火种类:根据加热温度可以分为在临界温度AC1以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。 退火用途: 1、完全退火:完全退火是将钢加热至AC3以上20-30℃,保温足够长时间,使 组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 其主要应用于亚共析钢,其目的是细化晶粒、消除应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。 2、不完全退火:不完全退火是将钢加热至AC1- AC3(亚共析钢)或AC1-ACcm (过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除应力、降低硬度的目的。对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除应力、降低硬度,改善切削加工性能。 3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。 主要用于共析钢、过共析钢和合金工具钢。其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。 4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相 线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。 5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后 缓慢冷却至室温的热处理工艺。其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留应力,使钢的组织和性能恢复到冷变形前的状态。 6、去应力退火:在冷变形金属加热到再结晶温度以下某一温度,保温一段时间 然后缓慢冷却至室温的热处理工艺。其主要目的是消除铸件、锻轧件、焊接件及机械加工工件中的残留应力(主要是第一类应力),以提高尺寸稳定性,减小工件变形和开裂的倾向。 10-2 何谓钢的正火?目的如何?有何应用? 答: 钢的正火:正火是将钢加热到AC3或Accm以上适当温度,保温适当时间进行完全奥氏体化以后,以较快速度(空冷、风冷或喷雾)冷却,得到珠光体类组织的热处理工艺。正火过程的实质是完全奥氏体化加伪共析转变。 目的:细化晶粒、均匀成分和组织、消除应力、调整硬度、消除魏氏组织、带状组织、网状碳化物等缺陷,为最终热处理提供合适的组织状态。

金属学与热处理原理哈工大考研初试经典题目呕心沥血总结

金属学与热处理原理哈工大考研初试经典题目呕心沥血总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

哈工大金属学与热处理原理初试经典试题呕心沥血总结题记:权威的答案是考研专业课成功的保证!!!希望这份资料,能够照亮每一个苦苦求学的孩子通往哈工大的漫漫征程。 分享人:刚爷闯天下 第三章 什么是成分过冷画图说明成分过冷是如何形成的(以固相中无扩散,液相中只有扩散而无对流搅拌的情况为例说明)并说明成分过冷对晶体长大方式及铸锭组织的影响。 成分过冷:实质是液相成分变化引起过冷状况发生变化。 异分结晶必然导致溶质在液、固相中的浓度变化,而固溶体的平衡结晶温度则随合金成分的不同而变化,进而引起过冷状况变化。 自己把图画上(共五个) 假设液态金属中仅扩散,即扩散不能充分进行。 ,故将溶质排到界面前由图(a)结晶的固相成分总是低于平衡成分C o 沿,由于不能充分扩散,便在界面处产生溶质浓度梯度薄层。结合图(c)(d),固溶体平衡结晶温度随溶质浓度的变化而变化。将实际温度分布(b)与平衡结晶温度分布(e)叠加,便在固液界面前一定范围的液相中出现了过冷区域。平衡结晶温度与实际结晶温度之差为过冷度,这个过冷度是由于液相中成分变化引起的,故称为成分过冷。 成分过冷对晶体长大方式的影响: 随着成分过冷的增大,固溶体晶体由平面状向胞状、树枝状的形态发展 成分过冷对铸锭组织的影响: 固溶体合金的铸锭组织也是由表层细晶区、柱状晶区、中心等轴晶区组成。当溶质含量固定时,随着G/√R的增加成分过冷区下降,铸锭组织由等轴晶向柱状晶发展;当G/√R固定时,随着浓度的增加,成分过冷区增大,铸锭组织由柱状晶向等轴晶过度,有利于等轴晶形成。 (注:液相中的温度梯度G越小,成长速度R和溶质的浓度C o越大,则有利于形成成分过冷。) 第四章 试述铁碳合金平衡组织中铁素体和渗碳体的形态、特征和数量对合金组织和性能的影响。

《金属学及热处理》_崔忠圻编_机械工业出版社_课后习题答案

第一章习题 1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向 3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c, c=2/3a。今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。 解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为 1/5a,1/2a,1/2a 化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面 解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面

间距为√3a/3 三个晶面晶面中面间距最大的晶面为(1 1 0) 7.证明理想密排六方晶胞中的轴比c/a=1.633 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示 则OD=c/2,AB=BC=CA=CD=a 因△ABC是等边三角形,所以有OC=2/3CE 由于(BC)2=(CE)2+(BE)2 则 有(CD)2=(OC)2+(1/2c)2,即 因此c/a=√8/3=1.633 8.试证明面心立方晶格的八面体间隙半径为r=0.414R 解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a 面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有

(完整版)金属学及热处理习题参考答案(1-9章)

第一章金属及合金的晶体结构 一、名词解释: 1.晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。2.非晶体:指原子呈不规则排列的固态物质。 3.晶格:一个能反映原子排列规律的空间格架。 4.晶胞:构成晶格的最基本单元。 5.单晶体:只有一个晶粒组成的晶体。 6.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。 7.晶界:晶粒和晶粒之间的界面。 8.合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。 9.组元:组成合金最基本的、独立的物质称为组元。 10.相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。 11.组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。 12.固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。 二、填空题: 1.晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。 2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。 3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。 4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。 5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。 6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。 8.金属晶体中最主要的面缺陷是晶界和亚晶界。

2014年华南理工大学金属学及热处理考研真题与答案

《2014华南理工大学金属学及热处理考研复习精编》 《复习精编》是文思华工精品考研专业课系列辅导材料中的核心产品。本书严格依据学校官方最新指定参考书目,并结合考研的精华笔记、题库和内部考研资讯进行编写,是文思华工老师的倾力之作。通过本书,考生可以更好地把握复习的深度广度,核心考点的联系区分,知识体系的重点难点,解题技巧的要点运用,从而高效复习、夺取高分。 考试分析——解析考题难度、考试题型、章节考点分布以及最新试题,做出考试展望等;复习之初即可对专业课有深度把握和宏观了解。 复习提示——揭示各章节复习要点、总结各章节常见考查题型、提示各章节复习重难点与方法。 知识框架图——构建章节主要考点框架、梳理全章主体内容与结构,可达到高屋建瓴和提纲挈领的作用。 核心考点解析——去繁取精、高度浓缩初试参考书目各章节核心考点要点并进行详细展开解析、以星级多寡标注知识点重次要程度便于高效复习。 历年真题与答案解析——反复研究近年真题,洞悉考试出题难度和题型;了解常考章节与重次要章节,有效指明复习方向。 《复习精编》具有以下特点: (1)立足教材,夯实基础。以指定教材为依据,全面梳理知识,注意知识结构的重组与概括。让考生对基本概念、基本定理等学科基础知识有全面、扎实、系统的理解、把握。 (2)注重联系,强化记忆。复习指南分析各章节在考试中的地位和作用,并将各章节的知识体系框架化、网络化,帮助考生构建学科知识网络,串联零散的知识点,更好地实现对知识的存储,提取和应用。 (3)深入研究,洞悉规律。深入考研专业课考试命题思路,破解考研密码,为考生点拨答题技巧。

1、全面了解,宏观把握。 备考初期,考生需要对《复习精编》中的考前必知列出的院校介绍、师资力量、就业情况、历年报录情况等考研信息进行全面了解,合理估量自身水平,结合自身研究兴趣,科学选择适合自己的研究方向,为考研增加胜算。 2、稳扎稳打,夯实基础。 基础阶段,考生应借助《复习精编》中的考试分析初步了解考试难度、考试题型、考点分布,并通过最新年份的试题分析以及考试展望初步明确考研命题变化的趋势;通过认真研读复习指南、核心考点解析等初步形成基础知识体系,并通过做习题来进一步熟悉和巩固知识点,达到夯实基础的目的。做好充分的知识准备,过好基础关。 3、强化复习,抓住重点。 强化阶段,考生应重点利用《复习精编》中的复习指南(复习提示和知识框架图)来梳理章节框架体系,强化背诵记忆;研读各章节的核心考点解析,既要纵向把握知识点,更应横向对比知识点,做到灵活运用、高效准确。 4、查缺补漏,以防万一。 冲刺阶段,考生要通过巩固《复习精编》中的核心考点解析,并参阅备考方略,有效把握专业课历年出题方向、常考章节和重点章节,做到主次分明、有所侧重地复习,并加强应试技巧。 5、临考前夕,加深记忆。 临考前夕,应重点记忆核心考点解析中的五星级考点、浏览知识框架图,避免考试时因紧张等心理问题而出现遗忘的现象,做到胸有成竹走向考场。 考生A:考研不像高考,有老师为我们导航,为我们答疑解惑,考研是一个人的战役,有一本好的教辅做武器,胜算便多了几分。文思版复习精编对知识点的归纳讲解还是很不错的,配合着教材复习,少了几分盲目。 考生B:我是材料加工工程专业的考生,专业课基础较为薄弱,华南理工大学又是名校,虽然不是跨考,但是本科所学教材与华南理工大学考研的指定教材不一样,文思版复习精编对指定教材分析得透彻,对我是很有指导和帮助作用的。 考生C:本科院校和所学专业都不是我理想的,所以我信誓旦旦准备考研,跨考的压力很大,我又是不大善于总结归纳和分析的人,文思出品的教辅给我吃了一颗小小的定心丸,有对教材的讲解,更有对真题的详细解析,以及对出题规律的把握,相信我一定能考好!

《金属学与热处理》(第二版)课后习题答案(20200628181724)

第一章习题 1作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2] [-2 1 1]、[3 4 6]等晶向 面心立方原子半径 R=Z2a/4贝卩a=4R/V2代入上式有 R=0.146X4R/ V 2=0.414R 10?已知铁和铜在室温下的晶格常数分别为 0.286nm 和0.3607nm,求 1cm3中铁和铜的原子数。 解:室温下Fe 为体心立方晶体结构,一个晶胞中含 2个Fe 原子, Cu 为面心立方晶体结构, 一个晶胞中含有4个Cu 原子 1cm3=1021 nm3 解:面心立方八面体间隙半径 r=a/2-V 2a/4=0.146a

令1cm3中含Fe的原子数为N Fe,含Cu的原子数为N Cu,室温下一个Fe的晶胞题解为V F e, 一个Cu晶胞的体积为V皿贝S N Fe=1021/V Fe=1021/(0.286)3=3.5x1018 N cu=1021/V cu=1021/(0.3607)3=2.8X1018 11一个位错环能不能各个部分都是螺型位错或者刃型位错,试说明之。 解:不能,因为位错环上各点的位错运动方向是不一样的,而柏氏矢量的方向是确定的。 15?有一正方形位错线,其柏式矢量如图所示,试指出图中各段线的性能,并指出任性位错额外串排原子面所在的位置。 AD、BC段为刃型位错; DC、AB段为螺型位错 AD段额外半原子面垂直直面向里 BC段额外半原子面垂直直面向外 第二章习题 1?证明均匀形核时,形成临界晶粒的△ Gk与其体积V之间的关系

(1)为△ G k = V/2△ G v 证明:由均匀形核体系自由能的变化 可知,形成半径为r k的球状临界晶粒,自由度变化为W —斗咖。+忸9 (2)对(2)进行微分处理,有 4 * d(AG)川一§ 叼"J

华南理工大学材料工程金属学及热处理考研最新经验总结

华南理工大学材料工程金属学及热处理考研最新经验总结 802金属学及热处理是华工机械与汽车工程学院考研的专业科目,例如材料科学与工程、材料工程等专业,这些都是华工热门的专业。 一、业课考试大纲与参考书目 考试内容和考试要求:802金属学及热处理考试大纲 一、考试内容 1.金属的晶体结构 金属的晶体结构、实际金属的晶体结构及晶体缺陷、位错 2.纯金属的结晶 金属的结晶、铸锭结构及其影响因素 3.金属的塑性变形与再结晶 金属的塑性变形、变形对金属的组织性能的影响、回复与再结晶、金属的热加工 4.合金的相结构与二元合金相图 合金中的相结构、合金的结晶过程(包括平衡结晶与不平衡结晶)及合金相图的建立、二元合金相图的基本类型、合金性能与相图的关系 5.扩散 扩散定律、扩散机制、影响扩散的因素 6.铁碳合金 纯铁的同素异晶转变与铁碳合金中的相、铁碳相图、碳钢 7.钢的热处理 钢在加热时的组织转变、钢在冷却时的组织转变、钢的退火与正火、钢的淬火和回火、钢的淬透性、钢的表面淬火、钢的化学热处理 8.合金钢 合金元素在钢中的作用、钢的强韧化、合金钢的分类及编号、合金结构钢、轴承钢、合金工具钢、不锈钢、耐热钢、粉末冶金材料 9.铸铁 铸铁的特点与分类、铸铁的石墨化及其影响因素、灰口铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁 10.有色金属及其合金 有色金属热处理、铝及其合金、铜及其合金、镁及其合金、钛及其合金、钨及其合金 11.机械零件选材及加工路线分析 机械零件的失效、选材的基本原则、零件设计与热处理工艺性的关系、典型零件的选材及工艺分析考试题型:1、填空、2、选择题、3、判断题、4、简答题、5、问答题 参考书目: 《金属学与热处理》崔忠圻主编,机械工业出版社(任一版本);《金属材料及热处理》崔振铎、刘华山主编,中南大学出版社。 心得:其实这些书都就是自己本科学的专业教材或者相似教材。很多人就会问,每本都要考吗,那么多

第九章-金属学与热处理-热处理工艺习题

第九章热处理工艺 (一)填空题 1. 淬火钢低温回火后的组织主要是;中温回火后的组织是;高温回火后的组织是,用于要求足够高的及高的的零件。 5.淬火钢低温回火后的组织是,其目的是使钢具有高的和;中温回火后的组织是,一般用于高的结构件;高温回火后的组织是,用于要求足够高的及高的的零件。 5 根据铁碳相图,碳钢进行完全退火的正常加热温度围是它仅用于钢。 6 钢球化退火的主要目的是,它主要适于钢。 7 钢的正常淬火加热温度围,对亚共析钢为;对共析和过共析钢则为℃。 8 把两个45钢的退火态小试样分别加热到Acl~Ac3之间和 Ac3以上温度快速水冷,所得组织前者为; 后者为。 9 把加热到Accm以上温度后缓冷下来的T10钢小试样重新 加热到Acl以下温度,然后快速水冷,所得到的组织为加。 10 淬火钢进行回火的目的是;回火温度越高,钢的强度与硬度越。 12.碳钢高温回火的温度一般为,回火组织为,高温回火主要适于类零件。 13.淬火钢在(250~400)℃回火后产生的脆性通常称为或或。 14 作为淬火介质,食盐水溶液(NaCl)浓度为 15.淬火应力主要包括和两种。 16.淬火时,钢件中的应力超过钢的强度时,便会引起钢件的变形;超过钢的强度时,钢件便会发生裂纹。

17.热应力的大小主要与冷却速度造成零件截面上的有关,冷却速度,截面温差,产生的热应力愈大。 19.为便利切削加工,不同钢材宜采用不同的热处理方法。 w(C)<0.5%的碳钢宜采用, w(C)超过共析成分的碳钢宜采用,w (C)=在0.5%至共析成分之间的碳钢宜采用。 20.常见淬火缺陷有、、和等。21.感应加热是利用原理,使工件表面产生而加热的—种加热方法。 25.目前生产中用得较多的可控气氛渗碳法有和两种。 (二)判断题 1.回火索氏体和过冷奥氏体分解时形成的索氏体,两者只是形成过程不同,但组织形态和性能则是相同的。 (×) 2.硬度试验操作既简便,又迅速,不需要制备专门试样,也不会破坏零件,根据测得的度值还能估计近似的强度值,因而是热处理工人最常用的一种机械性能试验方法。 (√) 5.当把亚共析钢加热到Ac1和Ac3之间的温度时,将获得由铁素体与奥氏体构成的两组织,在平衡条件下,其中奥氏体的w(C)总是大于钢的w(C)。(√) 7.表面淬火既能改变钢表面的化学成分,也能改善其心部的组织与性能。(×) 8.淬火理想的冷却速度应该是在奥氏体等温转变曲线(即C 曲线)的“鼻部”温度时要快冷, 以避免奥氏体分解,则其余温度不必快冷,以减少淬火应力引起的变形或开裂。(×) 9.高碳钢淬火时,将获得高硬度的马氏体,但由于奥氏体向马氏体转变的终止温度在0℃以下,故淬火后钢中保留有少量残余奥氏体。(×)

重庆大学829金属学与热处理考研历年真题及答案

重庆大学考研历年真题解析 ——829金属学与热处理 主编:弘毅考研 编者:peter pan 弘毅教育出品 https://www.doczj.com/doc/f46379095.html,

【资料说明】 重庆大学《金属学与热处理》历年真题解析系2013年重大材料学院考生peter pan 所编写,适用于2014年报考重庆大学材料学院金材、材加、材控3个方向的考生使用。 编者在考研过程中搜集到了2001-2012年这连续12年的真题,在考研复习中以课本为主,以这12年的真题为辅进行复习,取得了较好的成绩。但编者在考研过程中深感只有真题没有答案解析的苦恼,很多题目在书上不能直接找到答案,需要加以总结,更有甚者有些题目已经超纲,所以编者为了同学们能少花点查资料的时间,把有限的精力放到最需要的地方,特意编写了这本专业课真题解析。 本资料是本人把一年考研复习过程中的心得体会与真题相结合编写而成,里面的很多内容摘抄于我本人的笔记本。希望通过此书,能让大家在复习中抓准重点、节省一些复习时间,从而能够从容应对考试! 因本人水平有限,作为学生,肯定在解析中有一些不到位、不完善的地方,望各位海涵。 peter pan

目录 2001年金属学与热处理专业课试题........................... 错误!未定义书签。2002年金属学与热处理专业课试题........................... 错误!未定义书签。2003年金属学与热处理专业课试题........................... 错误!未定义书签。2004年金属学与热处理专业课试题........................... 错误!未定义书签。2005年金属学与热处理专业课试题........................... 错误!未定义书签。2006年金属学与热处理专业课试题........................... 错误!未定义书签。2007年金属学与热处理专业课试题........................... 错误!未定义书签。2008年金属学与热处理专业课试题........................... 错误!未定义书签。2009年金属学与热处理专业课试题........................... 错误!未定义书签。2010年金属学与热处理专业课试题........................... 错误!未定义书签。2011年金属学与热处理专业课试题........................... 错误!未定义书签。2012年金属学与热处理专业课试题. (1) 2001年专业课试题解析..................................... 错误!未定义书签。2002年专业课试题解析..................................... 错误!未定义书签。2003年专业课试题解析..................................... 错误!未定义书签。2004年专业课试题解析..................................... 错误!未定义书签。2005年专业课试题解析..................................... 错误!未定义书签。2006年专业课试题解析..................................... 错误!未定义书签。2007年专业课试题解析..................................... 错误!未定义书签。2008年专业课试题解析..................................... 错误!未定义书签。2009年专业课试题解析..................................... 错误!未定义书签。2010年专业课试题解析..................................... 错误!未定义书签。2011年专业课试题解析..................................... 错误!未定义书签。2012年专业课试题解析..................................... 错误!未定义书签。

第四章-铁碳合金(金属学与热处理崔忠圻课后答案)备课讲稿

第四章-铁碳合金(金属学与热处理崔忠圻 课后答案)

金属学与热处理第二版(崔忠圻)答案 第四章铁碳合金 4-1 分析Wc=0.2%,Wc=0.6%,Wc=1.2%,的铁碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图说明各阶段的组织,并分别计算室温下的相组成物及组织组成物的含量。 答: Wc=0.2%的转变过程及相组成物和组织组成物含量计算 转变过程: 1)液态合金冷却至液相线处,从液态合金中按匀晶转变析出δ铁素体,L?δ,组织

为液相+δ铁素体 2)液态合金冷却至包晶温点(1495℃),液相合金和δ铁素体发生包晶转变,形成奥氏体γ,L+δ?γ,由于Wc=0.2%高于包晶点0.17%,因此组织为奥氏体加部分液相。 3)继续冷却,部分液相发生匀晶转变析出奥氏体γ,直至消耗完所有液相,全部转变为奥氏体组织。 4)当合金冷却至与铁素体先共析线相交时,从奥氏体中析出先共析铁素体α,组织为奥氏体+先共析铁素体 5)当合金冷却至共析温度时,奥氏体碳含量沿铁素体先共析线变化至共析点碳含 +珠光体 6)继续冷却,先共析铁素体和珠光体中的铁素体都将析出三次渗碳体,但数量很少,可忽略不计。所以室温下的组织为:先共析铁素体+珠光体。 组织含量计算: 组织含量计算:Wα(先)=(0.77-0.2)/(0.77-0.0218)×100%≈76.2%,Wp=1- Wα(先)≈23.8% 相含量计算:Wα=(6.69-0.2)/(6.69-0.0218)×100%≈97.3%, W Fe3C= 1- Wα≈2.7% Wc=0.6%的转变过程及相组成物和组织组成物含量计算: 转变过程: 1)液态合金冷却至液相线处,从液态合金处按匀晶转变析出奥氏体,L?γ,组织为液相+奥氏体。 2)继续冷却,直至消耗完所有液相,全部转变为奥氏体组织。 3)当合金冷却至与铁素体先共析线相交时,从奥氏体中析出先共析铁素体α,组织为奥氏体+先共析铁素体 4)当合金冷却至共析温度(727℃)时,奥氏体碳含量沿铁素体先共析线变化至共析点,发生共析转变γ?α+Fe3C,此时组织为先共析铁素体+珠光体 5)珠光体中的铁素体都将析出三次渗碳体,但数量很少,可忽略不计。所以室温下的组织为:先共析二次渗碳体+珠光体 组织含量计算: 组织含量计算:Wα(先))=(0.77-0.6)/(0.77-0.0218)×100%≈22.7%,Wp=1- Wα(先)≈77.3% 相含量计算:Wα=(6.69-0.6)/(6.69-0.0218)×100%≈91.3%, W Fe3C= 1- Wα≈8.7%

金属学与热处理课后习题答案第二章

第二章纯金属的结晶 2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2 b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何? 答: 2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。为什么形成立方体晶核的△Gk比球形晶核要大。 答:

2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么? 答: 金属结晶时需过冷的原因: 如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使G s<Gl,也就是在过冷的情况下才可自发地发生结晶。把Tm-Tn的差值称为液态金属的过冷度 影响过冷度的因素: 金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。 固态金属熔化时是否会出现过热及原因: 会。原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<G s,固态金属才会发生自发地熔化。 2-4 试比较均匀形核和非均匀形核的异同点。 答: 相同点: 1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。

2、具有相同的临界形核半径。 3、所需形核功都等于所增加表面能的1/3。 不同点: 1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变 化而变化。 2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。 3、两者对形核率的影响因素不同。非均匀形核的形核率除了受过冷度和温度的 影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。 2-5 说明晶体生长形状与温度梯度的关系。 答: 液相中的温度梯度分为: 正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。负温度梯度:指液相中的温度随至固液界面距离的增加而降低的温度分布情况。固液界面的微观结构分为: 光滑界面:从原子尺度看,界面是光滑的,液固两相被截然分开。在金相显微镜下,由曲折的若干小平面组成。 粗糙界面:从原子尺度看,界面高低不平,并存在着几个原子间距厚度的过渡层,在过渡层中,液固两相原子相互交错分布。在金相显微镜下,这类界 面是平直的。 晶体生长形状与温度梯度关系: 1、在正温度梯度下:结晶潜热只能通过已结晶的固相和型壁散失。 光滑界面的晶体,其显微界面-晶体学小平面与熔点等温面成一定角度,这种情况有利于形成规则几何形状的晶体,固液界面通常呈锯齿状。 粗糙界面的晶体,其显微界面平行于熔点等温面,与散热方向垂直,所以晶体长大只能随着液体冷却而均匀一致地向液相推移,呈平面长大方式,固液界面始终保持近似地平面。 2、在负温度梯度下: 具有光滑界面的晶体:如果杰克逊因子不太大,晶体则可能呈树枝状生长;当杰克逊因子很大时,即时在较大的负温度梯度下,仍可能形成规则几何形状的晶体。具有粗糙界面的晶体呈树枝状生长。 树枝晶生长过程:固液界面前沿过冷度较大,如果界面的某一局部生长较快偶有突出,此时则更加有利于此突出尖端向液体中的生长。在尖端的前方,结晶潜热散失要比横向容易,因而此尖端向前生长的速度要比横向长大的速度大,很块就长成一个细长的晶体,称为主干。这些主干即为一次晶轴或一次晶枝。在主干形成的同时,主干与周围过冷液体的界面也是不稳的的,主干上同样会出现很多凸出尖端,它们会长大成为新的枝晶,称为称为二次晶轴或二次晶枝。二次晶枝发展到一定程度,又会在它上面长出三次晶枝,如此不断地枝上生枝的方式称为树枝状生长,所形成的具有树枝状骨架的晶体称为树枝晶,简称枝晶。 2-6 简述三晶区形成的原因及每个晶区的特点。 答: 三晶区的形成原因及各晶区特点: 一、表层细晶区

金属学与热处理 崔忠圻 第九单元和第十章答案

8.15 有一共析钢试样,其显微组织为粒状珠光体。同通过何种热处理工序可分别得到细片状珠光体、粗片状珠光体和比原始组织明显细小的粒状珠光体? 答:可以通过等温处理来得到片状珠光体,温度在错误!未找到引用源。~650℃时等温处理得到粗片状珠光体,温度在650℃~550℃时等温处理得到细片状珠光体。通过球化退火可以得到粒状珠光体,它有两种方法得到:一类是使奥氏体的碳浓度分布不均匀或保留大量未溶渗碳体质点,并在错误!未找到引用源。以下较高范围内缓冷,获得珠光体;另一类是将钢加热至略低于错误!未找到引用源。温度长时间保温,得到粒状珠光体。 8.16 为了提高过共析钢的强韧性,希望淬火时控制马氏体使其具有较低的含碳量,并希望有部分板条马氏体。试问如何进行热处理才能达到上述目的? 答:在200℃以上较低温度下快速度时间加热淬火,这时过共析钢中保留了较多的未溶碳化物,降低了马氏体中的含碳量,也可以获得较多的板条状马氏体。 8.18 如何把0.4%C的退火碳钢处理成:1)在大块游离铁素体基体上分布着细球化碳化物?2)铁素体基体上均匀分布着细球状碳化物? 答:①球化退火 ②调质球化 8.19 假定将已淬火而未回火的0.8%C的碳钢件(马氏体组织)放入800℃炉内,上述组织对800℃时的奥氏体化时间有什么影响?如果随后淬火发现零件上有裂纹,试解释裂纹产生原因。

答:若在800℃的炉内,已淬火的钢件中的马氏体会进行奥氏体化,而温度越高,奥氏体的晶粒长大速度越快,最终得到的奥氏体晶粒也越粗大,如果这时在进行淬火,晶体内应力过大,会引起工件的开裂。 1) 何为钢的退火?退火的种类及用途? 答:概念:退火是将钢加热至临界点1Ac 以上或以下温度,保温以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 分类:退火种类很多,根据加热温度可分为在临界温度以上或以下退火。前者可以分为完全退火、均匀化退火、不完全退火和球化退火;后者包括再结晶退火及去应力退火。按照冷却方式,退火又可分为等温退火和连续冷却退火。 用途:细化晶粒,均匀组织,消除内应力,降低硬度和改善钢的切削加工性;消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化;消除铸件、锻件、焊接件及机械加工工件中的残留内应力,以提高尺寸稳定性,防止工件变形和开裂。 2) 何为钢的正火?目的如何?有何应用? 答:概念:正火是将钢加热到3Ac (或cm Ac )以上适当温度,保温以后在空气中冷却得到珠光体类组织的热处理工艺。 目的:正火可以作为预备热处理,为机械加工提供适宜的硬度,又能细化晶粒,消除应力,消除魏氏组织和带状组织,为最终热处理提供合适的组织;正火还可以作为最终热处理,为某些受力较小、性能要求不高的碳素钢结构零件提供合适的力学性能;正火还能消除过共析钢的网状碳化物,为球化退火做好组织准备。对于大型工件及形状复杂或截面变化剧烈的工件,用正火代替淬火和回火可以防止变形和开裂。 3) 淬火的目的是什么?淬火方法有几种?比较几种淬火方法的优缺点。 答:目的:使奥氏体化的工件获得尽量多的马氏体,然后配以不同的温度回火获得各种需要的性能。 分类及优缺点: ⑴单液淬火法 优点是操作简便。但只是用于小尺寸且形状简单的工件,对尺寸较大的工件实行单液淬火容易产生较大的变形或开裂。

《金属学与热处理》第二课后习题答案

金属学与热处理 第一章习题 1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向 3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c,c=2/3a。今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。 解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为 1/5a,1/2a,1/2a 化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面 解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面间距为√3a/3 三个晶面晶面中面间距最大的晶面为(1 1 0) 7.证明理想密排六方晶胞中的轴比c/a=1.633 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示

则OD=c/2,AB=BC=CA=CD=a 因△ABC是等边三角形,所以有OC=2/3CE 由于(BC)2=(CE)2+(BE)2 则 有(CD)2=(OC)2+(1/2c)2,即 因此c/a=√8/3=1.633 8.试证明面心立方晶格的八面体间隙半径为r=0.414R 解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a 面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有 R=0.146X4R/√2=0.414R 9.a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转化为α-Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。

金属学与热处理课后习题答案8

第八章扩散 8-1 何为扩散?固态扩散有哪些种类? 答:扩散是物质中原子(或)分子的迁移现象,是位置传输的一种方式。 根据扩散过程是否发生浓度变化可分为:自扩散、互扩散 根据扩散方向是否与浓度梯度的方向相同可分为:下坡扩散、上坡扩散 根据扩散过程是否出现新相可分为:原子扩散、反应扩散 8-2 何为上坡扩散和下坡扩散?举例说明。 答: 下坡扩散:原子或分子沿浓度降低的方向进行扩散,使浓度趋于均匀化。比如铸件的均匀化退火、工件的表面渗碳过程均属于下坡扩散。 上坡扩散:原子或分子沿浓度升高的方向进行扩散,即由低浓度向高浓度方向扩散,使浓度趋于两极分化。例如奥氏体向珠光体转变过程中,碳原子从浓度较低的奥氏体中向浓度较高的渗碳体中扩散。 8-3 扩散系数的物理意义是什么?影响因素有哪些? 答:扩散系数的物理意义:浓度梯度为1时的扩散通量。D越大,扩散速度越快。影响因素: 1、温度:扩散系数与温度呈指数关系,随温度升高,扩散系数急剧增大。 2、键能和晶体结构:键能高,扩散激活能大,扩散系数减小;不同的晶体结构 具有不同的扩散系数:例如从晶体结构来考虑,碳原子在铁素体中的扩散系数比在奥氏体中的大。 3、固溶体类型:不同类型的固溶体,扩散激活能不同,间隙原子的扩散激活能 比置换原子的小,扩散系数大。 4、晶体缺陷:晶体缺陷处,自由能较高,扩散激活能变小,扩散易于进行。 5、化学成分:当合金元素提高合金熔点,扩散系数减小;若降低合金熔点,扩 散系数增加 8-4 固态合金中要发生扩散必须满足那些条件?为什么? 答: 1、扩散需有驱动力。扩散过程都是在扩散驱动力的作用下进行的,如没有扩散 驱动力,也就不能发生扩散。 2、扩散原子要固溶。扩散原子在基体中必须由一定的固溶度,形成固溶体,才 能进行固态扩散。 3、温度要足够高。固态扩散是依靠原子热激活而进行的,温度越高,原子的热 振动越激烈,原子被激活发生迁移的可能性就越大。 4、时间要足够长。原子在晶体中每跃迁一次最多只能移动0.3-0.5nm的距离, 只有经过相当长的时间才能形成物质的宏观定向迁移。 8-5 铸造合金均匀化退火前的冷塑性变形对均匀化过程有和影响?是加速还是减缓?为什么? 答:加速。

金属学与热处理知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,

铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据 T R k ?∝1可知当过冷度T ?为零时临界晶核半径R k 为无穷大,临界形核功(2 1T G ?∝?)也为无穷大。临界晶核半径R k 与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。 三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。 基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。 相律:f = c – p + 1其中,f 为 自由度数,c 为 组元数,p 为 相数。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。 合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。 合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。 四、铁碳合金 重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算。

相关主题
文本预览
相关文档 最新文档