当前位置:文档之家› 高中数学第3课时矩阵乘法的性质与逆变换、逆矩阵新人教A版4-2.

高中数学第3课时矩阵乘法的性质与逆变换、逆矩阵新人教A版4-2.

高中数学第3课时矩阵乘法的性质与逆变换、逆矩阵新人教A版4-2.
高中数学第3课时矩阵乘法的性质与逆变换、逆矩阵新人教A版4-2.

第三讲矩阵乘法的性质·逆变换、逆矩阵一、矩阵乘法的性质

1.设A=

01

11

??

??

??

,B=

11

23

-

??

??

-??

,C=

01

10

??

??

??

由A、B、C研究矩阵是否满足,①结合律;

②交换律;③消去律。

结论:

2.由结合律研究矩阵A的乘方运算。

3.单位矩阵的性质

【应用】

1.设A=

01

11

??

??

??

,求A8

2. 【练习:P41】

二、逆变换与逆矩阵

1.逆变换:设ρ是一个线性变换,如果存在一个线性变换σ,使得

σρ=ρσ=I,(I是恒等变换)则称变换ρ可逆,其中σ是ρ的逆变换。

2.逆矩阵:设A是一个二阶矩阵,如果存在二阶矩阵B,使得BA=AB=E2,则称矩阵A可逆,其中B为A的逆矩阵。

符号、记法:1

A-,读作A的逆。

【应用】

1.试寻找R30o的逆变换。

【应用】

1.A=

31

42

??

?

??

,问A是否可逆?若可逆,求其逆矩阵1

A-。

2. A=

21

42

??

?

??

,问A是否可逆?若可逆,求其逆矩阵1

A-。

由以上两题,总结一般矩阵A =a b c d ?? ???

可逆的必要条件。

三、逆矩阵的性质

1.二阶矩阵可逆的唯一性。

2.设二阶矩阵A 、B 均可逆,则AB 也可逆,且111

()AB B A ---=

【练习:P 50】

【第三讲.作业】

1.已知非零二阶矩阵A 、B 、C ,下列结论正确的是 ( )

A.AB=BA

B.(AB)C=A(BC)

C.若AC=BC 则A=B

D. 若CA=CB 则A=B

2.下列变换不存在逆变换的是 ( )

A.沿x 轴方向,向y 轴作投影变换。

B.60o R 变换。

C.横坐标不变,纵坐标增加横坐标

的两倍的切变变换。 D.以y 轴为反射变换

3.下列矩阵不存在逆矩阵的是 ( )

A. 0110?? ???

B. 0.5001?? ???

C. 0110-?? ???

D. 1010?? ??? 4.设A,B 可逆,下列式子不正确的是 ( )

A.111()AB A B ---=

B. 111()AB B A ---=

C.11()A A --=

D. 2112()()A A --=

5.0110N -??= ???

,则N2= 6. 1011?? ???1002?? ???1101?? ???0111?? ???

7.1203?? ???2312?? ???4624-?? ?-??

= 8.设1021A ??= ???,0210B ??= ???则向量

11?? ?-??

经过先A再B的变换后的向量为

经过先B再A 的变换后的向量为

9.关于x 轴的反射变换对应矩阵的逆矩阵是

10.变换ρ将(3,2)变成(1,0),设ρ的逆变换为ρ-1,则ρ-1将(1,0)变成点

11.矩阵0111?? ???

的逆矩阵为

12.设ρ:''x y ?? ???=1101-?? ???x y ?? ???,点(-2,3)在ρ-1的作用下的点的坐标为

13.A =1101-?? ??

?1212?

????,则1A -=

14.△ABC 的顶点A(0,0),B(2,0),C(0,1)。如果将三角形先后经过1101??

???和1011?? ???

两次变换变成△A ‘B ’C ’,求△A ‘B ’C ’的面积。

15.已知A

=1212?

????,B =2001?? ???,求圆221x y +=在1()AB -变换作用下的图形。

16.已知2102A ??=

???

,试分别计算:2A ,3A ,4A ,n A

答案:1.B 2.A 3.D 4.A 5. 1001-?? ?-?? 6. 1234?? ??? 7. 2406?? ??? 8.21?? ???、23-?? ?-??

9. 1001?? ?-?? 10.(3,2) 11. 1110-?? ??? 12.(1,3)

13. 12122? - ??

14.1 15.2241x y += 16. 24404A ??= ???

、381208A ??= ???、41632016A ??= ???、12202n n n

n n A -??= ???

_矩阵的Kronecker乘积的性质与应用

矩阵Kronecker乘积的性质与应用 摘要 按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢?本文将介绍矩阵的一种特殊乘积B A ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。 本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker 积进行介绍和必要的说明。之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。 矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。 关键词: 矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix Kronecker

product Abstract According to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no sense.That is not two matrices not satisfy this condition will not be able to calculate their product do?This article will describe a special matrix product B A , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product). This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof. Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords: Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations 目录

矩阵的运算及其运算规则

矩阵基本运算及应用 牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.

1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知

? 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

GPU上的矩阵乘法的设计与实现

计 算 机 系 统 应 用 https://www.doczj.com/doc/f56161605.html, 2011 年 第20卷 第 1期 178 经验交流 Experiences Exchange GPU 上的矩阵乘法的设计与实现① 梁娟娟,任开新,郭利财,刘燕君 (中国科学技术大学 计算机科学与技术学院,合肥 230027) 摘 要: 矩阵乘法是科学计算中最基本的操作,高效实现矩阵乘法可以加速许多应用。本文使用NVIDIA 的CUDA 在GPU 上实现了一个高效的矩阵乘法。测试结果表明,在Geforce GTX 260上,本文提出的矩阵乘法的速度是理论峰值的97%,跟CUBLAS 库中的矩阵乘法相当。 关键词: 矩阵乘法;GPU ;CUDA Design and Implementation of Matrix Multiplication on GPU LIANG Juan-Juan, REN Kai-Xin, GUO Li-Cai, LIU Yan-Jun (School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China) Abstract: Matrix multiplication is a basic operation in scientific computing. Efficient implementation of matrix multiplication can speed up many applications. In this paper, we implement an efficient matrix multiplication on GPU using NVIDIA’s CUDA. The experiment shows that our implementation is as fast as the implementation in CUBLAS, and the speed of our implementation can reach the peak speed’s 97%, on Geforce GTX260. Keywords: matrix multiplication; GPU; CUDA GPU 是一种高性能的众核处理器,可以用来加速许多应用。CUDA 是NVIDIA 公司为NVIDIA 的GPU 开发的一个并行计算架构和一门基于C 的编程语言。在CUDA 中程序可以直接操作数据而无需借助于图形系统的API 。现在已经有许多应用和典型算法使用CUDA 在GPU 上实现出来。 1 引言 矩阵乘法是科学计算中的最基本的操作,在许多领域中有广泛的应用。对于矩阵乘法的研究有几个方向。一个是研究矩阵乘法的计算复杂度,研究矩阵乘法的时间复杂度的下界,这方面的工作有strassen 算法[1]等。另外一个方向是根据不同的处理器体系结构,将经典的矩阵乘法高效的实现出来,这方面的结果体现在许多高效的BLAS 库。许多高效的BLAS 库都根据体系结构的特点高效的实现了矩阵乘法,比如GotoBLAS [2], ATLAS [3]等。Fatahalian [4]等人使 用着色语言设计了在GPU 上的矩阵乘法。CUBLAS 库是使用CUDA 实现的BLAS 库,里面包含了高性能的矩阵乘法。 本文剩下的部分组织如下,第2节介绍了CUDA 的编程模型,简单描述了CUDA 上编程的特点。第3节讨论了数据已经拷贝到显存上的矩阵乘法,首先根据矩阵分块的公式给出了一个朴素的矩阵乘法实现,分析朴素的矩阵乘法的资源利用情况,然后提出了一种新的高效的矩阵乘法。第4节讨论了大规模的矩阵乘法的设计和实现,着重讨论了数据在显存中的调度。第5节是实验结果。第6节是总结和展望。 2 CUDA 编程模型和矩阵乘法回顾 2.1 CUDA 编程模型 NVIDIA 的GPU 是由N 个多核处理器和一块显存构成的。每个多核处理器由M 个处理器核,1个指令部件,一个非常大的寄存器堆,一小块片上的共享内 ① 基金项目:国家自然科学基金(60833004);国家高技术研究发展计划(863)(2008AA010902) 收稿时间:2010-04-26;收到修改稿时间:2010-05-21

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵乘法题目

十个利用矩阵乘法解决的经典题目 By Matrix67 好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。 不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什么它又满足结合律呢?仔细想想你会发现这也是废话。假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。 经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时 O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。 经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。 由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。 经典题目3 POJ3233 (感谢rmq) 题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。 这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有: A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3) 应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

苏教版数学高二选修4-2矩阵与变换学案第09课时 逆矩阵的概念

第09课时 逆矩阵的概念 一、要点讲解 1.二阶逆矩阵的概念: 2.逆矩阵的求法: 二、知识梳理 1.对于二阶矩阵,若有______________________,则称A 是可逆的,B 称为A 的逆矩阵. 2.在六种变换中,__________变换一定不存在逆矩阵. 3.一般地,对于二阶可逆矩阵(0)a b A ad bc d c =-≠?????? ,它的逆矩阵为1A -=________________. 4.若二阶矩阵A 、B 均可逆,则AB 也可逆,且(AB )-1=____________. 5.已知A 、B 、C 为二阶矩阵,且AB = AC ,若矩阵A 存在逆矩阵,则___________. 三、例题讲解 例1. 对于下列给出的变换矩阵A ,是否存在变换矩阵B ,使得连续进行两次变换(先T A 后 T B )的结果与恒等变换的结果相同? (1)以x 为反射轴的反射变换; (2)绕原点逆时针旋转60o作旋转变换; (3)横坐标不变,沿y 轴方向将纵坐标拉伸为原来的2倍作伸压变换; (4)沿y 轴方向,向x 轴作投影变换; (5)纵坐标y 不变,横坐标依纵坐标的比例增加,且满足(x ,y )→(x + 2y ,y ). 例2. 用几何变换的观点判断下列矩阵是否存在逆矩阵,若存在,请求出逆矩阵;若不存在, 请说明理由. (1)0110??????=A ; (2)11210??????????=B ; (3)0110??-????=C ; (4)1010?????? =D ; 例3. 求矩阵3221??? ???=A 的逆矩阵. 四、巩固练习 1. 已知矩阵122301,,231210??????? ?????--??????===B C A ,求满足AXB = C 的矩阵X .

并行计算-实验二-矩阵乘法的OpenMP实现及性能分析

深圳大学 实验报告 课程名称:并行计算 实验名称:矩阵乘法的OpenMP实现及性能分析姓名: 学号: 班级: 实验日期:2011年10月21日、11月4日

一. 实验目的 1) 用OpenMP 实现最基本的数值算法“矩阵乘法” 2) 掌握for 编译制导语句 3) 对并行程序进行简单的性能 二. 实验环境 1) 硬件环境:32核CPU 、32G 存计算机; 2) 软件环境:Linux 、Win2003、GCC 、MPICH 、VS2008; 4) Windows 登录方式:通过远程桌面连接192.168.150.197,用户名和初始密码都是自己的学号。 三. 实验容 1. 用OpenMP 编写两个n 阶的方阵a 和b 的相乘程序,结果存放在方阵c 中,其中乘法用for 编译制导语句实现并行化操作,并调节for 编译制导中schedule 的参数,使得执行时间最短,写出代码。 方阵a 和b 的初始值如下: ????????? ? ??????????-++++=12,...,2,1,..2,...,5,4,31,...,4,3,2,...,3,2,1n n n n n n n a ???????? ? ???????????= 1,...,1,1,1..1,...,1,1,11,...,1,1,11,..., 1,1,1b 输入: 方阵的阶n 、并行域的线程数 输出: c 中所有元素之和、程序的执行时间 提示: a,b,c 的元素定义为int 型,c 中所有元素之各定义为long long 型。 Windows 计时: 用中的clock_t clock( void )函数得到当前程序执行的时间 Linux 计时: #include

矩阵乘法的性质优秀教学设计

矩阵乘法的性质 【教学目标】 一、知识与技能:理解矩阵乘法不满足交换吕和消去律,会验证矩阵乘法满足结合律 二、过程与方法:比较演算法 三、情感态度和价值观:体会类比推理中结论全真的含义 【教学重难点】 结合律验证 【教学过程】 一、复习二阶矩阵的乘法运算规律与实数乘法性质 实数乘法运算性质:交换律ab=ba 结合律 (ab)c=a(bc) 消去律:ab=ac ,a ≠0则b=c 零律:0a=a0=0 1律:1a=a1=a 分配律 a(b+c)=ab+ac 问题:对于矩阵乘法,这些结论是否还成立? 二、矩阵的简单性质 1.由上节知识知:消去律未必成立,即AB=AC ,A ≠0,则未必有B=C 2.交换律呢? 例1.(1)已知P=??????1001k ,Q=?? ????1002k ,求PQ 及QP ,说明二者的几何意义及是否相等 (2)A=??????2001,B=?? ????-3241,求AB .BA ,说明二者是否相等 解:(1)PQ=??????120 0k k ,QP=??????1200k k ,二者相等, PQ :(x ,y)倍横坐标变为原来的2:k T Q (k 2x 2,y)倍纵坐标变为原来的1k (k 2x ,k 1y) QP : ??????????????????y k x k k T y k x k T y x Q P 12211::倍横坐标变为原来的倍纵坐标变为原来的 (2)AB=??????-6441,BA=?? ????-6281,AB ≠BA

说明:对于矩阵乘法,交换律未必成立 3.结合律是否成立? A=??????1111d c b a ,B=??????2222d c b a ,C=??????3333d c b a , 则AB=?? ????++++2121212121212121d d b c c d a c d b b a c b a a , BC=??????++++32323 23232323232d d b c c d a c d b b a c b a a (AB)C=??????++++2121212121212 121d d b c c d a c d b b a c b a a ?? ????3333d c b a =??????++++++++++++3213213213213 21321321321321321321321321321321321d d d d b c b c d b a c c d d c b c a c d a a c d d b d b a b c b b a a c d b c b a a c b a a a A(BC)=??????1111d c b a ?? ????++++3232323232323232d d b c c d a c d b b a c b a a =??????++++++++++++3213213213213 21321321321321321321321321321321321d d d d b c b c d b a c c d d c b c a c d a a c d d b d b a b c b b a a c d b c b a a c b a a a 说明:矩阵乘法满足结合律 4.自己验证:矩阵乘法满足结合律,即:A(B+C)=AB+AC 5.零律是否满足,证明你的结论,即AO=OA=O 是否成立?(成立) 6.一律是否满足?证明你的结论,即EA=AE=A 是否成立?(成立) 三、备用练习与例题 1.计算(1)????????????-??????011010210110 (2)32301?? ????- (解答(1)??????-1101 (2)?? ????-8901) 2.求使式子成立的a .b .c .d ,?? ????=????????????34120032d c b a (解答:a=1,b=4,c=1,d=1) 3.a .b 为实数,矩阵A=?? ????b a 10将直线L :2x+y-7=0变为自身,求a ,b (解答a=1/2,b=1) 四、习题: [补充习题] 1.对于三个非零二阶矩阵。下列式子中正确的序号是____________

strassen矩阵相乘算法C++代码

Strassen 矩阵相乘算法代码 #include #include #include #include usingnamespace std; template class Strassen_class { public: void ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize);//朴素算法实现void FillMatrix(T** MatrixA, T** MatrixB, int length);//A,B矩阵赋值 void PrintMatrix(T **MatrixA, int MatrixSize);//打印矩阵 void Strassen(int N, T **MatrixA, T **MatrixB, T **MatrixC);//Strassen算法实现 }; template void Strassen_class::ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) {

推荐高中数学2-4逆变换与逆矩阵2-4-1逆矩阵的概念教学案苏教版选修4_2

2.4.1 逆矩阵的概念 1.逆矩阵的定义 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵,记为A -1 . 2.逆矩阵的性质 (1)若二阶矩阵A 、B 均可逆,则AB 也可逆,且(AB )-1 =B -1A -1 . (2)已知A 、B 、C 为二阶矩阵且AB =AC ,若A 存在逆矩阵,则B =C . 3.逆矩阵的求法 (1)公式法:对于二阶矩阵A =???? ??ab cd ,若ad -bc ≠0,则A 必可逆,且A -1 = ????????d ad -bc -b ad -bc -c ad -bc a ad -bc . (2)待定系数法. (3)逆变换法. [对应学生用书P30] [例1] 求矩阵A =?? ?? 3 22 1的逆矩阵. [思路点拨] 设出逆矩阵,利用待定系数法求解或直接利用公式法求解. [精解详析] 法一:待定系数法:设A -1 =??????xy zw , 则??????3 22 1??????xy zw =???? ??1 00 1. 即????3x +2z 3y +2w 2x +z 2y +w =??? ?1 00 1, 故? ?? ?? 3x +2z =1,2x +z =0,? ?? ?? 3y +2w =0, 2y +w =1, 解得x =-1,z =2,y =2,w =-3,

从而A 的逆矩阵为A -1 =?? ??-122-3. 法二:公式法:ad -bc =3×1-2×2=-1≠0, ∴A -1 =???? ??-122-3. 用待定系数法求逆矩阵时,先设出矩阵A 的逆矩阵A -1 ,再由AA -1 =E 得相等矩阵,最后利用相等矩阵的概念求出A -1 . 1.(江苏高考)已知矩阵A =?? ????-1002,B =???? ??1206,求矩阵A -1 B . 解:设矩阵A 的逆矩阵为??????ab cd ,则?? ????-1 0 0 2??????ab cd =?????? 1 00 1,即??????-a -b 2c 2d =???? ??1 00 1 故a =-1,b =0,c =0,d =12 ,从而A 的逆矩阵为A -1=???????? -1 0 0 12, 所以A -1 B =? ?? ?? ??? -1 0 0 12?????? 1 20 6=???? ??-1 -2 0 3. 2.已知矩阵M =???? 21 -3-1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标. 解:由M =????21 -3 -1,得2×(-1)-(-3)×1=1≠0, 故M -1 =????-1-1 32. 从而由????21 -3-1????x y =???? 13 5得 ????x y =????-1-1 32????13 5=????-1×13+3×5-1×13+2×5=??? ? 2-3, 故? ?? ?? x =2,y =-3,即A (2,-3)为所求.

高中数学 矩阵及逆矩阵 试题及解析

高中数学矩阵及逆矩阵试题 一.选择题(共13小题) 1.关于x、y的二元一次方程组的系数行列式D为()A.B.C.D. 2.定义=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到的函数解析式为() A.y=2sin(x﹣)B.y=2sin(x+) C.y=2cos x D.y=2sin x 3.给出一个算法=x1y2﹣x2y1,如果,那么实数a的值等于()A.0B.1C.2D.3 4.设行列式=n,则行列式等于()A.m+n B.﹣(m+n)C.n﹣m D.m﹣n 5.设=,n∈N*,则n的最小值为() A.3B.6C.9D.12 6.函数的最小正周期是() A.2πB.πC.D. 7.有矩阵A3×2,B2×3,C3×3,下列运算可行的是() A.AC B.BAC C.ABC D.AB﹣AC 8.定义运算=ad﹣bc,则函数图象的一条对称轴方程是()A.B.C.D. 9.已知矩阵A=,C=,若AC=BC,则矩阵B=()

A. B. C. D.,其中a,c为任意实数 10.已知矩阵A的逆矩阵A﹣1=,则矩阵A的特征值为() A.﹣1B.4C.﹣1,4D.﹣1,3 11.矩阵的逆矩阵是() A.B.C.D.12.矩阵A=的逆矩阵为() A.B. C.D. 13.设A为n阶可逆矩阵,A*是A的伴随矩阵,则|A*|=()A.|A|B.C.|A|*D.|A|n﹣1二.填空题(共22小题) 14.若=0,则x=. 15.若θ∈R,则方程=0的解为. 16.增广矩阵()的二元一次方程组的解(x,y)=. 17.已知矩阵A=,矩阵B=,计算:AB=. 18.N=,则N2=. 19.若行列式=1,则x=. 20.二阶行列式的运算结果为.

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

(相当不错还得再看很多遍)基于CUDA的矩阵乘法和FFT性能测试

—7— 基于CUDA 的矩阵乘法和FFT 性能测试 肖 江,胡柯良,邓元勇 (中国科学院国家天文台,北京 100012) 摘 要:针对NVIDIA 公司的CUDA 技术用Geforce8800GT 在Visual Studio2008环境下进行测试,从程序运行时间比较判断CUBLAS 库、CUDA 内核程序、CUDA 驱动API 、C 循环程序与Intel MKL 库以及FFTW 库与CUFFT 库运行响应的差异。测试结果表明,在大规模矩阵乘法和快速傅里叶变换的应用方面,相对于CPU ,利用GPU 运算性能可提高25倍以上。 关键词:矩阵乘法;快速傅里叶变换;并行计算;GPU 通用计算 Ability Test for Matrix-Multiplication and FFT Based on CUDA XIAO Jiang, HU Ke-liang, DENG Yuan-yong (National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012) 【Abstract 】This paper introduces the result of a test that evaluates the effectiveness of Compute Unified Device Architecture(CUDA) using NVDIA GeForce8800GT and the compiler Visual Studio 2008. It tests the speed of NVIDIA CUBLAS, CUDA kernel, common C program, Intel MKL BLAS, CUDA driver API program, FFTW and CUFFT Library in matrix-multiplication and Fast Fourier Transform(FFT). Test result of the large scale data shows that the computing ability of GPU is 25 times better than that of CPU. 【Key words 】matrix-multiplication; Fast Fourier Transform(FFT); parallel computation; GPGPU 计 算 机 工 程 Computer Engineering 第35卷 第10期 Vol.35 No.10 2009年5月 May 2009 ·博士论文· 文章编号:1000—3428(2009)10—0007—04 文献标识码:A 中图分类号:TP312 1 概述 长期以来,人们对并行计算的需求是无止境的,如在气象、天文,资源以及时系跟踪等领域,它们对程序处理速度的要求都相当高,否则将导致结果出现偏差或失去其意义。文献[1]全面地综述了并行计算在各个方面的最新进展,包括并行计算机体系结构、并行算法、并行性能优化与评价、并行编程等。提高并行运算的速度一般采用以下3个方面的改进措施: (1)处理速度更快的新的硬件设备,如更快的超级计算机、更大的内存以及更快的I/O 设备。这是从根本上提升并行计算能力的途径。 (2)更优化的程序设计方法和函数库,如在程序中引入多线程、并行等处理方法。 (3)采用优化的软件,这也是一种简便有效且成本相对较低的方法。 采用基于CUDA(Compute Unified Device Architecture)的GPU 并行计算属于第(1)种和第(2)种方法的结合。CUDA 是一个新的基础架构,是一个软硬件协同的完整的解决方案。这种架构可以使用GPU 处理复杂的科学计算问题,特别是极大数据量的并行计算问题。它提供了硬件的直接访问接口,而不必像传统GPU 方式那样依赖图形API 接口实现GPU 的访问[2]。CUDA 在GPU 架构上将晶体管更多地投入到数据处理,减少数据缓存和流量控制对晶体管资源的消耗。图1是最近几年GPU 与CPU 每秒浮点运算能力的增长情况[3]。CUDA 采用C 语言作为编程语言,进行了适度的扩展,提供大量的高性能计算指令开发能力, 使开发者能够在GPU 强大计算能力的基础上建立起一种效率更高的密集数据计算解决 方案[4]。 图1 CPU 与GPU 的浮点运算速度[3] 本文主要通过79 MB 的数据量对NVIDIA 的GPU 核心芯片(G92)和Intel Pentium D830芯片进行矩阵乘法和快速傅里叶变换测试,通过编程评估两者在最优化函数库下的并行运算能力。 2 基于CUDA 的GPU 软硬件测试环境 2.1 CUDA 测试硬件的选择 CUDA 支持的GPU(CUDA-enabled GPU)包括NVIDIA 公司的Geforce, Quadro 和Tesla 3个产品线。其中,Geforce 和Quadro 系列显示芯片可以直接插入普通PCI-Express×16插槽中,最大理论带宽为8 GB/s [5],为了便于将CPU 与GPU 进行性 基金项目:国家“973”计划基金资助项目(2006CB806301);国家自然科学基金资助项目(10473016, 10673016);中国科学院知识创新工程基金资助项目(KJCX2-YW-T04) 作者简介:肖 江(1982-),男,博士研究生,主研方向:并行计算,嵌入式软件环境,图像处理;胡柯良,副研究员;邓元勇,研究员、博士生导师 收稿日期:2008-10-20 E-mail :xj@https://www.doczj.com/doc/f56161605.html,

矩阵乘法的OpenMP实现及性能分析

一. 实验目的 1) 用OpenMP 实现最基本的数值算法“矩阵乘法” 2) 掌握for 编译制导语句 3) 对并行程序进行简单的性能 二. 实验环境 1) 硬件环境:32核CPU 、32G 内存计算机; 2) 软件环境:Linux 、Win2003、GCC 、MPICH 、VS2008; 4) Windows 登录方式:通过远程桌面连接192.168.150.197,用户名和初始密码都是自己的学号。 三. 实验内容 1. 用OpenMP 编写两个n 阶的方阵a 和b 的相乘程序,结果存放在方阵c 中,其中乘法用for 编译制导语句实现并行化操作,并调节for 编译制导中schedule 的参数,使得执行时间最短,写出代码。 方阵a 和b 的初始值如下: ?????????? ????????? ?-++++=12,...,2,1,..2,...,5,4,31,...,4,3,2,...,3,2,1n n n n n n n a ?? ????????????????? ?= 1,...,1,1,1..1,...,1,1,11,...,1,1,11,..., 1,1,1b 输入: 方阵的阶n 、并行域的线程数 输出: c 中所有元素之和、程序的执行时间 提示: a,b,c 的元素定义为int 型,c 中所有元素之各定义为long long 型。 Windows 计时: 用中的clock_t clock( void )函数得到当前程序执行的时间 Linux 计时: #include timeval start,end;

gettimeofday(&start,NULL); gettimeofday(&end,NULL); cout<<"execution time:"<< (https://www.doczj.com/doc/f56161605.html,_https://www.doczj.com/doc/f56161605.html,_sec)+(double)(https://www.doczj.com/doc/f56161605.html,_https://www.doczj.com/doc/f56161605.html,_usec)/ 1000000<<"seconds" < #include #include #define NN 2000 int a[NN][NN], b[NN][NN]; long long c[NN][NN]; void solve(int n, int num_thread) { int i, j, t, k, time; clock_t startTime, endTime; long long sum; omp_set_num_threads(num_thread); for(i=0;i

2.2矩阵的运算及其性质

2.2矩阵的运算及其性质 课题 2矩阵的运算及其性质 时间 教学目的 学习矩阵相关的概念 重点难点 .矩阵概念;2特殊矩阵 时间 分配 教学过程 教学方法 教学手段 0ˊ一、导言: 矩阵的运算在矩阵的理论中起着重要的作用。它虽然不是数,但用来处理实际问题时往往要进行矩阵的代数运算。 二、新授: 2.2.1矩阵的加法 .定义2.2:两个矩阵相加等于把这两个矩阵的对应元素相加。应注意,并非任何两个矩阵都可以相加,只有当两个矩阵具有相同的行数和相同的列数时才能相加。2.矩阵

的加法满足下列运算律:。两个矩阵相减等于把这两个矩阵的对应元素相减。2.2.2数与矩阵的乘法 .定义2.3:一个数与矩阵相乘等于用这个数去乘矩阵的每一个元素。2.数与矩阵的乘法满足下列运算律:例3设,求。解:讲授法板演 2.2. 3.矩阵的乘法 .定义2.4:设两个矩阵,,则矩阵与矩阵的乘积记为,规定,其中2矩阵的乘法满足下列运算律:结合律:分配律:设是数,。例2设,,求,与。解:从例题中我们可以得出下面的结论:矩阵的乘法不满足交换律。即一般地说,。两个非零矩阵的乘积可能等于零。一般说来,不能推出或。矩阵乘法中消去律不成立。即,且,不能推出 .设是一个阶方阵,定义:称为的次方幂。由于矩阵的乘法适合结合律,所以方阵的幂满足下列运算律:;, 时间 分配 教学过程 教学方法 教学手段

其中,为正整数。又因为矩阵乘法一般不满足交换律,所以对两个阶方阵与,一般说来,。设是的一个多项式,为任意方阵,则称为矩阵的多项式2.2.4矩阵的转置1.定义2.5:设则矩阵称为的转置矩阵2.矩阵的转置是一种运算,它满足下列运算律:例9设BT=B,证明T=ABAT证明:因为BT=B,所以T=[AT]T=TT=ABTAT=ABAT3.定义2.6:设为阶方阵,如果,即有则称为对称矩阵。如果,即有,,则说为反对称矩阵。2.2.5n阶方阵的行列式1.定义2.7:由阶方阵所有元素构成的行列式,称为阶方阵的行列式,记作||或。2.阶行列式的运算满足下列运算律:;;。三、练习:习题2.22~4四、小结:本节介绍了矩阵的加、减、数乘、乘法、转置、方阵行列式的运算,这些运算矩阵理论中占有重要地位,特别是乘法运算,要熟练掌握这些运算。五、作业:课后记事本节应注重矩阵乘法的练习和证明题的训练,这始终是一个难点的地方。

相关主题
文本预览
相关文档 最新文档