当前位置:文档之家› 初中数学二次函数中一类与动点相关的最值问题的解法探究

初中数学二次函数中一类与动点相关的最值问题的解法探究

初中数学二次函数中一类与动点相关的最值问题的解法探究
初中数学二次函数中一类与动点相关的最值问题的解法探究

初中数学二次函数中一类与动点相关的最值问题的解法探究

山东省莱芜市实验中学 张明 271100

二次函数中的动点问题是学生普遍感觉难于解决的一类问题,如何根据题目提供的信息,依据动点的变化特征,抓住解决问题的关键,从而化难为易,巧妙解决。下面将结合二次函数中常见的一类与动点相关的最值问题的解题思路,剖析问题解决的关键。希望能引起大家的思考,真正起到触类旁通,事半功倍的效果。

例1、如图:已知抛物线265y x x =-+与x 轴交于A 、B 两点,(A 在B 的左边),与y 轴交于点C ,若M 是抛物线在x 轴下方图像上一动点,过点M 作MN ∥y 轴交直线BC 于N ,求线段MN 的最大值。

分析:因为MN ∥y 轴,所以线段MN 的长可表示为M 、N 两点的纵坐标的差。令M 点的横坐标为x ,则纵坐标可表示为265x x -+,又易求B 、C 两点的坐标,进一步求出直线BC 的解析式.,从而用x 表示N 的纵坐标,把MN 的长表示为一个关于x 的二次函数求出该函数的最大值即可。

解:在265y x x =-+中,令0y =,解得121,5x x ==,所以(1,0)(5,0)A B 令0x =得5y =,所以(0,5)C .

设BC 的解析式为y kx b =+把BC 两点的坐标代入得 解得

5y x =-+ 设点M 5)x +,则N 点的坐标为(.5)x x -+

因为点是抛物线在轴下方图像上一动点,所以1﹤x ﹤5,由题意得:

222525(5)(65)5()24

MN x x x x x x =-+--+=-+=--+ 所以当x =52时,MN 的最大值为254

。 评注:本题是一道求线段长度最值的问题,关键是将线段长度表示成二次函数,建立二次函数模型来解决,除线段长度的最值外,此类问题中还常求三角形面积的最值。如:

例2、如图,在直角坐标系中,抛物线223y x x =--+与x 轴交于A 、C ,(A 在C 的右边),与y 轴交于点B ,若D (0,1),连接CD ,如果点P 是第二象限内抛物线上的动点,是否存在一点P 使PCD ?的面积最大?若存在,求出PCD ?面积的最大值。若不存在,请说明理由。

分析:同例1,设P 点的横坐标为t ,过点P 作y 轴的平行线交CD 于N ,即可用t 的表达式表示PN 的长度,从而进一步表示出PCD ?的表达式,建立二次函数模型解决。

解:由题意易求出(1,0)(3,0)(0,3)A C B -

设直线CD 的解析式为1y kx =+因为310x -+=所以13

k = 因此直线CD 的解析式为113

y x =+ 设P 为第二象限抛物线上一点,过P 作PM x ⊥轴于M ,交CD 于N ,

设2(,23)P t t t --+,则1(,1)3

N t t + 所以2217(23)(1)233

PN t t t t t =--+-+=--+ 所以PCD PCN PDN S S S ???=-

=

1122

PN CM PN OM ?+? = 12

PN OC ? = 2173(2)23

t t ?--+ =237322

t t --+ 当76t =-时,PCD S ?最大值=12124 评注:本题是一道与动点相关的三角形面积的最值问题,关键是写出表示线段PN 的表达式,从而进一步将PCD ?的面积表示成与PN 的长度有关的表达式,由得到的二次函数解析式,顺利将最值问题得以解决。

仿练:1、如图:抛物线2y ax bx c =++的顶点坐标为(1,4)-,且与x 轴交于A 、B 两点,与y 轴交于点C ,A 点坐标为(3,0)-,若D 为抛物线在第二象限上的一点,作DE x ⊥轴于点E ,交线段AC 于点F ,求线段DF 长度的最大值,并求此时D 的坐标。

2、已知如图,二次函数21234

y x x =-+与x 轴交于B 、C 两点(B 在C 的左边),与y 轴交于点A ,若P 是位于抛物线上A 、C 两点之间的一个动点,问当P 运动到什么位置时,PAC ?的面积最大?并求此时P 点的坐标和PAC ?的最大面积。

1题图 2题图

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y =ax 2 +b x+c (a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2-6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=a x2 +bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2 -bx+c(a ≠0)的图象过点(-1,0),则 c b a + = c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c与二次函数y=ax 2+bx+c(a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y =a x2+b x+c (a≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2 +bx+c=-2的根为——————————— —。 17、抛物线y=(k +1)x 2+k 2-9开口向下,且经过原点,则k=————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x =1,且经过点(2,﹣ ). (1)求此二次函数的解析式. (2)设该图象与x轴交于B、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

初三数学二次函数单元测试题及答案

远航教育初三寒假第一次诊断试题 (测试时间:120分钟,满分:150分) 姓名: 成绩: 一、选择题(每题5分,共50分) 1. sin30°值为( ) A.1/3 B.1/2 C.1 D. 0 2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在() A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 4. 抛物线的对称轴是() A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是() A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的 横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是() A. 4+m B. m C. 2m-8 D. 8-2m 8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()

9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线 x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线 上的点,且-1

二次函数压轴题专题及答案

2016年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M 的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m 的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长. (3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有:

, 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标. 考点:二次函数综合题.. 专题:压轴题;转化思想. 分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

人教版初中数学二次函数-教案-习题总汇-含答案

一、教学目标 1. 使学生会用描点法画出二次函数k h x a y +-=2 )(的图像; 2. 使学生知道抛物线k h x a y +-=2 )(的对称轴与顶点坐标; 3.通过本节的学习,继续培养学生的观察、分析、归纳、总结的能力; 4.通过本节的教学,继续向学生进行数形结合的数学思想方法的教育,同时向学生渗透事物间互相联系、以及运动、变化的辩证唯物主义思想; 5.通过本节课的研究,充分理解并认识到二次函数图像可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求。 二、教学重点 会画形如k h x a y +-=2 )(的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。 三、教学难点:确定形如 k h x a y +-=2 )(的二次函数的顶点坐标和对称轴。 4.解决办法: 四、教具准备 三角板或投影片 1.教师出示投影片,复习2 2 2 )(,,h x a y k ax y ax y -=+==。 2.请学生动手画1)1(2 1 2-+- =x y 的图像,正好复习图像的画法,完成表格。 3.小结k h x a y +-=2 )(的性质??? ?? ??平移顶点坐标对称轴开口方向 4.练习 五、教学过程 提问:1.前几节课,我们都学习了形如什么样的二次函数的图像? 答:形如2 2 2 )(,h x a y k ax y ax y -=+==和。(板书) 2.这节课我们将来学习一种更复杂的二次函数的图像及其相关问题,你能先猜测一下我们将学习形如什么样的二次函数的问题吗?

由学生参考上面给出的三个类型,较容易得到:讨论形如k h x a y +-=2 )(的二次函数的有关问题.(板书) 一、复习引入 首先,我们先来复习一下前面学习的一些有关知识.(出示幻灯) 请你在同一直角坐标系内,画出函数222)1(2 1 ,121,21+-=--=-=x y x y x y 的图像,并指出它们的开口方向,对称轴及顶点坐标. 这里之所以加上画函数2)1(2 1 +- =x y 的图像, 是为了使最后通过图像的观察能更全面一些,也更直观一些,可以同时给出图像先沿y 轴,再沿x 轴移动的方式,也可以给出图像 先沿x 轴再沿y 轴移动的方式,使这部分知识能更全面,知识与知识之间的联系能更清晰、 更具体. 画这三个函数图像,可由学生在同一表中列值,但是要根据各自的不同特点取自变量x 的值,以便于学生进行观察.教师可事先准备好表格和画有直角坐标系的小黑板,由一名同 学上黑板完成,其他同学在练习本上完成,待同学们基本做完之后加以总结,然后再找三名 同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中. 然后提问:你能否在这个直角坐标系中,再画出函数1)1(2 1 2-+- =x y 的图像? 由于前面几节课我们已经画了不少二次函数的图像,学生对画图已经有了一定的经验, 同时可在画这个图时,把这些经验形成规律,便于学生以后应用. (l )关于列表:主要是合理选值与简化运算的把握,是教学要点.在选值时,首先要考虑的是函数图像的对称性,因此首先要确定中心值,然后再左,右取相同间隔的值;其次,选值时尽量选取整数,便于计算和描点. 在选取x 的值之后,计算y 的值时,考虑到对称性,只需计算中心值一侧的值,另一侧由对称性可直接填入,但一定要保证运算正确. (2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以逐步提高速度.) (3)关于连线:特别要注意顶点附近的大致走向。最后画的抛物线应平滑,对称,并符合抛物线的特点. 由学生在上面的练习中所列的表中填上这个函数及其对应值,然后画出它的图像,同样 找一名同学板演. 学生画完,教师总结完之后,让学生观察黑板上画出的四条抛物线,提问: (1)你能否指出抛物线1)1(2 1 2-+- =x y 的开口方向,对称轴,顶点坐标? 将在上面练习中三条抛物线的性质填入所列的有中,如下表:

初中数学二次函数基础测试题附答案

初中数学二次函数基础测试题附答案 一、选择题 1.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( ) A .①③④ B .①②3④ C .①②③ D .②③④ 【答案】C 【解析】 【分析】 根据二次函数的图象与性质即可求出答案. 【详解】 解:①由图象可知:a <0,c >0, 由对称轴可知:2b a ->0, ∴b >0, ∴abc <0,故①正确; ②由对称轴可知:2b a -=1, ∴b =﹣2a , ∵抛物线过点(3,0), ∴0=9a+3b+c , ∴9a ﹣6a+c =0, ∴3a+c =0,故②正确; ③当x =1时,y 取最大值,y 的最大值为a+b+c , 当x 取全体实数时,ax 2+bx+c≤a+b+c , 即ax 2+bx≤a+b ,故③正确; ④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1): ∴y 1=y 2,故④错误; 故选:C . 【点睛】 本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.

2.如图,抛物线2 119 y x = -与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( ) A .2 B . 32 2 C . 52 D .3 【答案】A 【解析】 【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=1 2 BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可. 【详解】 ∵2 119 y x = -, ∴当0y =时,2 1019 x =-, 解得:=3x ±, ∴A 点与B 点坐标分别为:(3-,0),(3,0), 即:AO=BO=3, ∴O 点为AB 的中点, 又∵圆心C 坐标为(0,4), ∴OC=4, ∴BC 长度2205OB C +=, ∵O 点为AB 的中点,E 点为AD 的中点, ∴OE 为△ABD 的中位线, 即:OE= 1 2 BD , ∵D 点是圆上的动点,

2020年初三数学二次函数经典练习全集

1.一跳水运动员从米高台上跳下,他的高度h(单位:米)与所用的时间t(单位:秒)的关系为h=-5(t-2)(t+1),你能帮助该运动员计算一下他跳起来后多长时间达到最大高度?最大高度是多 少米? 2.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2 )与长x 之间的函数关系式,并指出自变量的取值范围. 3.已知二次函数y=ax 2 +bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式. 4.求经过A(0,-1)、B(-1,2),C(1,-2)三点且对称轴平行于y 轴的抛物线的解析式. 5.已知二次函数为x =4时有最小值-3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式. 6. 已知抛物线经过点(-1,1)和点(2,1)且与x 轴相切. (1)求二次函数的解析式; (2)当x 在什么范围时,y 随x 的增大而增大; (3)当x 在什么范围时,y 随x 的增大而减小. 7.已知122 12 ++-=x x y (1)把它配方成y =a(x-h)2 +k 形式; (2)写出它的开口方向、顶点M 的坐标、对称轴方程和最值; (3)求出图象与y 轴、x 轴的交点坐标; (4)作出函数图象; (5)x 取什么值时y >0,y <0; (6)设图象交x 轴于A ,B 两点,求△AMB 面积. 8.在长20cm ,宽15cm 的矩形木板的四角上各锯掉一个边长为xcm 的正方形,写出余下木 板的面积y(cm 2 )与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围. 9.已知二次函数y=4x 2 +5x +1,求当y=0时的x 的值. 10.已知二次函数y=x 2 -kx-15,当x=5时,y=0,求k . 12.已知二次函数y=ax 2+bx +c 中,当x=0时,y=2;当x=1时,y=1;当x=2时,y=-4,试求a 、b 、c 的值. 13.有一个半径为R 的圆的内接等腰梯形,其下底是圆的直径. (1)写出周长y 与腰长x 的函数关系及自变量x 的范围; (2)腰长为何值时周长最大,最大值是多少? 14.二次函数的图象经过()()()4,2,4,0,0,4--C B A 三点: ① 求这个函数的解析式 ② 求函数图顶点的坐标 ③ 求抛物线与坐标轴的交点围成的三角形的面积。 15.如图,抛物线y=x 2 +bx+c 与x 轴的负半轴相交于A 、B 两点,与y 轴的正半轴相交于C 点,与双曲线y= x 6 的一个交点是(1,m),且OA=OC.求抛物线的解析式. 16.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以l 厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以l 厘米,秒的速度移动.如果P 、Q 同时出发,用t(秒)表示移动的时间(0≤t≤6),那么 (1)设△POQ 的面积为y ,求y 关于t 的函数解析式; (2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ,试判断点C 是否落在直线AB 上,并说明理由; (3)当t 为何值时,△POQ 与△AOB 相似. 17、水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.

初中数学二次函数综合应用

学 科 中考数学 课题名称 二次函数综合应用 教学目标 二次函数属于中考压轴题,知识点不仅多,考点灵活多变,而且难度较高,这就要求学生在复习二次函数时,须得把相关性质及相关解题技巧掌握扎实,理解透彻。本专题通过梳理二次函数的知识点(拓展知识点),并结合近几年上海市中考数学最后2道题二次函数的考点,把握中考二次函数命题方向,提高学生利用二次函数和结合相似等综合知识点解决问题的能力。 教学重难点 重点:二次函数解析式的确定,二次函数与x 轴交点问题,二次函数最值问题,二次函数图像上点的 存在问题,二次函数与相似等其它知识点的结合。 难点:二次函数与相似等其它知识点的结合。 知识精解 二次函数性质及相关扩展 1、一般式:y=ax 2+bx+c(a≠0), 函数图像是抛物线; 2、开口方向:(1)a>0, 开口向上, (2)a<0, 开口向下; 3、顶点坐标:(-b/2a, (4ac-b 2)/4a ), 对称轴:x= -b/2a 4、 顶点式:y=a(x+h)2+k(a≠0) h= -b/2a, k=(4ac-b 2)/4a 5、平移问题: ①将一般式化为顶点式; ②遵循原则:“左+ 右-,上+ 下-”(左右是指沿x 轴平移,上下是指沿y 轴平移) 例:将y=x 2+4x+3先向右平移2个单位,再向上平移1个单位,得到的新抛物线解析式是多少? 6、交点式:y=a(x-x 1)(x-x 2)(a≠0) ①一元二次方程根与系数的关系:x 1+x 2= -b/a, x 1.x 2=c/a ②求根公式:x =2 42b b ac a -±-,其中△=b 2-4ac 叫做根的判别式。 当△>0时,抛物线与x 轴有两个交点; 当△=0时,抛物线与x 轴有一个交点; 当△<0时,抛物线与x 轴没有交点。 ③运用抛物线的对称性: 若已知抛物线上两点12(,)(,)、x y x y , 则对称轴方程可以表示为:12 2 x x x += 7、增减性: ①a>0时,在对称轴的左侧,y 随x 的增大而减小; 在对称轴的右侧,y 随x 的增大而增大。 ②a<0时,在对称轴的左侧,y 随x 的增大而增大;

初中数学 第26章《二次函数》测试题(B卷)及答案

第26章二次函数检测题 一.选择题(每小题4分,共40分) 1、抛物线y=x 2 -2x+1的对称轴是 ( ) (A)直线x=1 (B)直线x=-1 (C)直线x=2 (D)直线x=-2 2、(2008年武汉市)下列命题: ①若0a b c ++=,则240b ac -≥; ②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ). A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④. 3、对于2)3(22 +-=x y 的图象下列叙述正确的是 ( ) A 、顶点坐标为(-3,2) B 、对称轴为y=3 C 、当3≥x 时y 随x 增大而增大 D 、当3≥x 时y 随x 增大而减小 4、(2008年湖北省仙桃市潜江市江汉油田)如图,抛物线)0(2 >++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 A. 0 B. -1 C. 1 D. 2 5、函数y =ax 2 (a ≠0)的图象经过点(a ,8),则a 的值为 ( ) A.±2 B.-2 C.2 D.3 6、自由落体公式h = 2 1 gt 2 (g 为常量),h 与t 之间的关系是 ( ) A.正比例函数 B.一次函数 C.二次函数 D.以上答案都不对 7、下列结论正确的是 ( ) –1 3 3 1

A.y =ax 2 是二次函数 B.二次函数自变量的取值范围是所有实数 C.二次方程是二次函数的特例 D.二次函数的取值范围是非零实数 8、下列函数关系中,可以看作二次函数c bx ax y ++=2 (0≠a )模型的是 ( ) A 、在一定的距离内汽车的行驶速度与行驶时间的关系 B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系 C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力) D.圆的周长与圆的半径之间的关系 9、对于任意实数m ,下列函数一定是二次函数的是 ( ) A .22)1(x m y -= B .2 2)1(x m y += C .2 2)1(x m y += D .2 2)1(x m y -= 10、二次函数y=x 2 图象向右平移3个单位,得到新图象的函数表达式是 ( ) A.y=x 2+3 B.y=x 2 -3 C.y=(x+3)2 D.y=(x-3)2 第Ⅱ卷(非选择题,共80分) 二、填空题(每小题4分,共40分) 11、某工厂第一年的利润是20万元,第三年的利润是y 万元,与平均年增长率x 之间的函数关系式是________。 12、已知二次函数的图像关于直线y=3对称,最大值是0,在y 轴上的截距是-1,这个二次函数解析式为_________。 13、某学校去年对实验器材投资为2万元,预计今明两年的投资总额为y 万元,年平均增长率为 x 。则y 与x 的函数解析式______。 14、m 取___时,函数)1()(2 2+++-=m mx x m m y 是以x 为自变量的二次函数. 15、(2006·浙江)如图1所示,二次函数y=ax 2 +bx+c 的图象开口向上,图象经过点(-1,2)和(1,0)且与y 轴交于负半轴. 第(1)问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0,其中正确的结论的序号是___ 第(2)问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确的结论的序号是____. 16、杭州体博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施,若不计维修

人教版初中数学二次函数解析

人教版初中数学二次函数解析 一、选择题 1.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2 【答案】B 【解析】 【分析】 画出图象,利用图象可得m 的取值范围 【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0, ∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2. 由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意. ①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2. 由y =0得x 2﹣4x +2=0.解得12120.622 3.42 x x ==- ≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意. ∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】 答案图1(m =1时) 答案图2( m =时) ②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12 .

九年级数学二次函数测试题及答案

二次函数 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线 =x D. 直线 2. 二次函数c bx ax y ++=2的图象如右图,则点) ,(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数 c bx ax y ++=2,且0+-c b a , 则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是 532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 已知反比例函数x k y = 的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( ) x 6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( )

D 7.抛物线3 2 2+ - =x x y的对称轴是直线() A. 2- = x B. 2 = x C. 1- = x D. 1 = x 8.二次函数2 )1 (2+ - =x y的最小值是() A. 2- B. 2 C. 1- D. 1 9.二次函数c bx ax y+ + =2的图象如图所示,若 c b a M+ + =2 4c b a N+ - =,b a P- =4,则 () A. 0 > M,0 > N,0 > P B. 0 < M,0 > N,0 > P C. 0 > M,0 < N,0 > P D. 0 < M,0 > N,0 < P 二、填空题: 10.将二次函数3 2 2+ - =x x y配方成 k h x y+ - =2) (的形式,则y=______________________. 11.已知抛物线c bx ax y+ + =2与x轴有两个交点,那么一元二次方程0 2= + +c bx ax的根的情况是______________________. 12.已知抛物线c x ax y+ + =2与x轴交点的横坐标为1 -,则c a+=_________. 13.请你写出函数2)1 (+ =x y与1 2+ =x y具有的一个共同性质:_______________. 14.有一个二次函数的图象,三位同学分别说出它的一些特点: 甲:对称轴是直线4 = x; 乙:与x轴两个交点的横坐标都是整数; 丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3. 请你写出满足上述全部特点的一个二次函数解析式:

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

初中数学二次函数课件及练习题

第二课时 一、教学目标 1. 使学生会用描点法画出二次函数k h x a y +-=2 )(的图像; 2. 使学生知道抛物线k h x a y +-=2 )(的对称轴与顶点坐标; 3.通过本节的学习,继续培养学生的观察、分析、归纳、总结的能力; 4.通过本节的教学,继续向学生进行数形结合的数学思想方法的教育,同时向学生渗透事物间互相联系、以及运动、变化的辩证唯物主义思想; 5.通过本节课的研究,充分理解并认识到二次函数图像可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求。 二、教学重点 会画形如k h x a y +-=2 )(的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。 三、教学难点:确定形如 k h x a y +-=2 )(的二次函数的顶点坐标和对称轴。 4.解决办法: 四、教具准备 三角板或投影片 1.教师出示投影片,复习2 2 2 )(,,h x a y k ax y ax y -=+==。 2.请学生动手画1)1(2 1 2-+- =x y 的图像,正好复习图像的画法,完成表格。 3.小结k h x a y +-=2 )(的性质??? ?? ??平移顶点坐标对称轴开口方向 4.练习 五、教学过程 提问:1.前几节课,我们都学习了形如什么样的二次函数的图像? 答:形如2 2 2 )(,h x a y k ax y ax y -=+==和。(板书) 2.这节课我们将来学习一种更复杂的二次函数的图像及其相关问题,你能先猜测一下

我们将学习形如什么样的二次函数的问题吗? 由学生参考上面给出的三个类型,较容易得到:讨论形如k h x a y +-=2 )(的二次函数的有关问题.(板书) 一、复习引入 首先,我们先来复习一下前面学习的一些有关知识.(出示幻灯) 请你在同一直角坐标系内,画出函数222)1(2 1 ,121,21+-=--=-=x y x y x y 的图像,并指出它们的开口方向,对称轴及顶点坐标. 这里之所以加上画函数2)1(2 1 +- =x y 的图像, 是为了使最后通过图像的观察能更全面一些,也更直观一些,可以同时给出图像先沿y 轴,再沿x 轴移动的方式,也可以给出图像 先沿x 轴再沿y 轴移动的方式,使这部分知识能更全面,知识与知识之间的联系能更清晰、 更具体. 画这三个函数图像,可由学生在同一表中列值,但是要根据各自的不同特点取自变量x 的值,以便于学生进行观察.教师可事先准备好表格和画有直角坐标系的小黑板,由一名同 学上黑板完成,其他同学在练习本上完成,待同学们基本做完之后加以总结,然后再找三名 同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中. 然后提问:你能否在这个直角坐标系中,再画出函数1)1(2 1 2-+- =x y 的图像? 由于前面几节课我们已经画了不少二次函数的图像,学生对画图已经有了一定的经验, 同时可在画这个图时,把这些经验形成规律,便于学生以后应用. (l )关于列表:主要是合理选值与简化运算的把握,是教学要点.在选值时,首先要考虑的是函数图像的对称性,因此首先要确定中心值,然后再左,右取相同间隔的值;其次,选值时尽量选取整数,便于计算和描点. 在选取x 的值之后,计算y 的值时,考虑到对称性,只需计算中心值一侧的值,另一侧由对称性可直接填入,但一定要保证运算正确. (2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以逐步提高速度.) (3)关于连线:特别要注意顶点附近的大致走向。最后画的抛物线应平滑,对称,并符合抛物线的特点. 由学生在上面的练习中所列的表中填上这个函数及其对应值,然后画出它的图像,同样 找一名同学板演. 学生画完,教师总结完之后,让学生观察黑板上画出的四条抛物线,提问: (1)你能否指出抛物线1)1(2 1 2-+- =x y 的开口方向,对称轴,顶点坐标?

初中数学二次函数综合题及答案(经典题型)

二次函数试题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2 +bx+c(a ≠0)模型的是( ) A 在一定距离,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2 ,则抛物线的解析式是( ) A y=—( x-2)2 +2 B y=—( x+2)2 +2 C y=— ( x+2)2 +2 D y=—( x-2)2 —2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2 +bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2 -bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( )A -1 B 1 C 21 8、已知一次函数y= ax+c 与二次函数y=ax 2 +bx+c (a ≠0 ),它们在同一坐标系的大致图象是图中的( ) 二填空题: 13、无论 m 为任何实数,总在抛物线y=x 2 +2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线 x =2,最小值为-2,则关于方程ax 2 +bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2 +k 2 -9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=错误!未找到引用源。x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣错误!未找到引用源。).(1)求此二次函数的解析式.(2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积 2、如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,92).(1)求抛物线的函数表达式;(2)设抛物线的对称 轴与轴交于点D ,试在对称轴上找出点P ,使△CDP 为等腰三角形,请直接写出满足条件的所有点P 的坐标. (3)若点E 是线段AB 上的一个动点(与A 、B 不重合),分别连接AC 、BC ,过点E 作EF ∥AC 交线段BC 于点F ,连接CE ,记△CEF 的面积为S ,S 是否存在最大值?若存在,求出S 的最大值及此时E 点的坐标;若不存在,请说明理由. x

相关主题
文本预览
相关文档 最新文档