当前位置:文档之家› 航空发动机叶片的腐蚀与防护1

航空发动机叶片的腐蚀与防护1

航空发动机叶片的腐蚀与防护1
航空发动机叶片的腐蚀与防护1

航空发动机原理与构造复习题

一、选择题 1.燃气涡轮发动机的核心机包括 C 。 A.压气机、燃烧室和加力燃室B.燃烧室、涡轮和加力燃室 C.压气机、燃烧室和涡轮D.燃烧室、加力燃室和喷管 2.在0~9截面划分法中,压气机出口截面是 B 。 A.1—1截面B.3—3截面C.4—4截面D.6—6截面 3.在0~9截面划分法中,燃烧室出口截面是。 C A.1—1截面B.3—3截面C.4—4截面D.6—6截面 4.发动机正常工作时,燃气涡轮发动机的涡轮是_____B____旋转的。 A.压气机带动B.燃气推动 C.电动机带动D.燃气涡轮起动机带动 5.气流在轴流式压气机基元级工作叶轮内流动,其_____C____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 6.气流在轴流式压气机基元级整流环内流动,其____C_____。 A.相对速度增加,压力下降B.绝对速度增加,压力增加 C.相对速度降低,压力增加D.绝对速度下降,压力增加 7.气流流过轴流式压气机,其____C_____。 A.压力下降,温度增加B.压力下降,温度下降 C.压力增加,温度上升D.压力增加,温度下降 8.轴流式压气机基元级工作叶轮叶片通道和整流环叶片通道的形状是____C_____。A.工作叶轮叶片通道是扩散形的,整流环叶片通道是收敛形的 B.工作叶轮叶片通道是收敛形的,整流环叶片通道是扩散形的 C.工作叶轮叶片通道是扩散形的,整流环叶片通道是扩散形的 D.工作叶轮叶片通道是收敛形的,整流环叶片通道是收敛形的 9.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 10.轴流式压气机基元级工作叶轮和整流环的安装顺序和转动情况是_____B____。A.工作叶轮在前,不转动;整流环在后,转动 B.工作叶轮在前,转动;整流环在后,不转动 C.整流环在前,不转动;工作叶轮在后,转动 D.整流环在前,转动;工作叶轮在后,不转动 11.多级轴流式压气机由前向后,____A_____。 A.叶片长度逐渐减小,叶片数量逐渐增多 B.叶片长度逐渐减小,叶片数量逐渐减小 C.叶片长度逐渐增大,叶片数量逐渐增多 D.叶片长度逐渐增大,叶片数量逐渐减小 12.涡轮由导向器和工作叶轮等组成,它们的排列顺序和旋转情况是___A_____。A.导向器在前,不转动;工作叶轮在后,转动 B.导向器在前,转动;工作叶轮在后,不转动

航空发动机涡扇叶片及其成形工艺

航空发动机涡扇叶片及其成形工艺 涡扇发动机具有耗油率低、起飞动力大、噪音低和迎风面积大等特点。60年代中期,它只应用于客机和轰炸机,当时人们普遍认为,它很难在高速歼击机上应用。自70年代以来,带加力的高推比涡扇发动机的相继问世,使战斗机的性能提高到了一个新的水平,从而彻底改变了人们对涡扇发动机的偏见。90年代中期,又为第四代战斗机成功研制了推重比10带加力的涡扇发动机。与此同时,为满足发展巨型、远程运输机、宽机身客机的需要,国外先进的发动机厂家又研制成功了大推力、低耗油率、大流量比的涡扇发动机。时至今日,涡扇发动机已是应用数量最多、范围最广和最有发展前景的航空发动机。 风扇叶片是涡扇发动机最具代表性的重要零件,涡扇发动机的性能与它的发展密切相关。初期的风扇叶片材料为钛合金,具有实心、窄弦、带阻尼凸台结构。现今,风扇叶片在材料、结构方面已改进许多。为了增强刚性,防止振动或颤振,提高风扇叶片的气动效率,用宽弦结构代表了窄弦、带阻尼凸台结构;为了减轻重量,用夹芯或空心结构取代了实心结构;为了增大流量比,提高大推力涡扇发动机推进效率,风扇转子直径已增大到了3242mm,风扇叶尖速度已高达457m/s。而这些材料新、叶身长、叶弦宽、结构复杂的风扇叶片的成形工艺是非常复杂的。因此,风扇叶片的成形工艺始终是涡扇发动机的关键制造技术之一。 1早期风扇叶片 早期风扇叶片为大尺寸实心结构,为防止共振及颤振,它的叶身中部常带有一个阻尼凸台(又称减振凸台)。所有叶片的凸台连成一环状,既增强了刚性又改变了叶片固有频率,减小了叶根弯曲和扭转应力。阻尼凸台接合面喷涂有耐磨合金,当叶片振动时,接合面相互摩擦可起阻尼作用。阻尼凸台一般位于距叶根约整个叶片长度的50%~70%处。阻尼凸台的存在带来一系列问题,如:由于它的存在及它与叶身连接处的局部加厚,使流道面积减少约2%,使空气流量降低,造成气流压力损失,使压气机效率下降,发动机耗油率增加;增加了叶身重量,使叶片离心力负荷加大;使叶片制造工艺更加复杂。在有些风扇叶片上,为了增强抗外物撞击损伤能力,叶身上除了阻尼凸台以外,还有较厚的加强筋。 CFM56-3和CFM56-5发动机风扇转子直径约1700mm,风扇叶片长约600mm,由整体钛合金锻件经机械加工而成。风扇叶片毛坯先镦锻出叶根和阻尼凸台,经预锻成形,再精锻、切边。叶身成形可用数控铣、数控仿形磨、电解加工和抛光等工艺。随着叶片批量生产的增加,应尽量采用精锻法生产出钛合金风扇叶片的锻坯,以提高材料的利用率,减少机械加工工作量和提高风扇叶片的使用寿命。但生产这样大的风扇叶片精锻毛坯,需要使用昂贵的高精度的万吨级机械压力机或螺旋压力机,所需模具的尺寸大、精度也高。因此,精锻工序的成本很高。4钛合金宽弦无凸台空心风扇叶片5高韧性环氧复合材料风扇叶片

航空发动机期末复习习题

一、填空题(请把正确答案写在试卷有下划线的空格处) 容易题目 1.推力是发动机所有部件上气体轴向力的代数和。 2.航空涡轮发动机的五大部件为进气装置;压气机;燃烧室;涡轮和排气装置; 其中“三大核心”部件为:压气机;燃烧室和涡轮。 3.压气机的作用提高空气压力,分成轴流式、离心式和组合式三种 4.离心式压气机的组成:离心式叶轮,叶片式扩压器,压气机机匣 5.压气机增压比的定义是压气机出口压力与进口压力的比值,反映了气流在压气 机内压力提高的程度。 6.压气机由转子和静子等组成,静子包括机匣和整流器 7.压气机转子可分为鼓式、盘式和鼓盘式。 8.转子(工作)叶片的部分组成:叶身、榫头、中间叶根 8.压气机的盘式转子可分为盘式和加强盘式。 9.压气机叶片的榫头联结形式有销钉式榫头;燕尾式榫头;和枞树形榫头。 10.压气机转子叶片通过燕尾形榫头与轮盘上燕尾形榫槽连接在轮盘。 11压气机静子的固定形式燕尾形榫头;柱形榫头和焊接在中间环或者机匣上。 12压气机进口整流罩的功用是减小流动损失。 13.压气机进口整流罩做成双层的目的是通加温热空气

14.轴流式压气机转子的组成盘;鼓(轴)和叶片。 15.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘振。 16.压气机是安装放气带或者放气活门的作用是防止压气机喘振 17.采用双转子压气机的作用是防止压气机喘振。 18压气机机匣的基本结构形式:整体式、分半式、分段式。 19压气机机匣的功用:提高压气机效率;承受和传递的负载;包容能力 20整流叶片与机匣联接的三种基本方法:榫头联接;焊接;环 21.多级轴流式压气机由前向后,转子叶片的长度的变化规律是逐渐缩短。 22.轴流式压气机叶栅通道形状是扩散形。 23.轴流式压气机级是由工作叶轮和整流环组成的。 24.在轴流式压气机的工作叶轮内,气流相对速度减小,压力、密度增加。 25.在轴流式压气机的整流环内,气流绝对速度减小,压力增加。 26.叶冠的作用:①可减少径向漏气而提高涡轮效率;②可抑制振动。 27.叶身凸台的作用:阻尼减振,避免发生共振或颤震,降低叶片根部的弯曲扭 转应力(防止叶片振动)。 28.涡轮工作条件:燃气温度高,转速高,负荷高,功率大 29.涡轮的基本类型:轴流式涡轮,径向式涡轮

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度) (形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)

航空发动机涡轮叶片

摘要 摘要 本论文着重论述了涡轮叶片的故障分析。首先引见了涡轮叶片的一些根本常识;对涡轮叶片的结构特点和工作特点进行了详尽的论述,为进一步分析涡轮叶片故障做铺垫。接着对涡轮叶片的系统故障与故障形式作了阐明,涡轮叶片的故障形式主要分为裂纹故障和折断两大类,通过图表的形式来阐述观点和得出结论;然后罗列出了一些实例(某型发动机和涡轮工作叶片裂纹故障、涡轮工作叶片折断故障)对叶片的故障作了详细剖析。最后通过分析和研究,举出了一些对故障的预防措施和排除故障的方法。 关键词:涡轮叶片论述,涡轮叶片故障及其故障类型,故障现象,故障原因,排除方法

ABSTRACT ABSTRACT This paper emphatically discusses the failure analysis of turbine blade.First introduced some basic knowledge of turbine blades;The structure characteristics and working characteristics of turbine blade were described in she wants,for the further analysis of turbine blade failure Then the failure and failure mode of turbine blades;Turbine blade failure form mainly divided into two major categories of crack fault and broken,Through the graph form to illustrate ideas and draw conclusions ;Then lists some examples(WJ5 swine and turbine engine blade crack fault,turbine blade folding section)has made the detailed analysis of the blade.Through the analysis and research,finally give the preventive measures for faults and troubleshooting methods. Key words: The turbine blades is discussed,turbine blade fault and failure type,The fault phenomenon,fault caus,Elimination method

腐蚀与防护

《腐蚀与防护》课程教学大纲 一、课程性质 本课程是应用化学的专业选修课,有助于学生拓展知识面,更好的开展科研、生产专业学习。通过介绍工业生产过程中产生的各种腐蚀过程及其原理,各种防腐蚀技术,腐蚀试验方法等,使学生熟悉企业不同生产过程中所产生的各种腐蚀,充分了解如何对其进行有效的防护。 二、教学目的 本课程是化学工程专业一门应用性较强的专业课程。主要目的是使学生了解材料发生各种腐蚀的基本规律及作用机理,掌握材料腐蚀的评价方法。控制原理及防腐技术,并能够结合材料的成分与结构特征,分析耐腐蚀材料的设计及其热处理原理。 三、教材教参 教参 1. 王增品,姜安玺,腐蚀与防护工程高等教育出版社,1991 2. 美国腐蚀工程师协会编,腐蚀与防护技术基础,冶金工业出版社,1987 3. 化学工业部化工机械研究院主编,腐蚀与防护手册,化学工业出版社,1991 4. 尤里克,腐蚀与腐蚀控制,石油工业出版社,1996 5. 张远声,腐蚀破坏事故,100例,化学工业出版社,2001 6. 王保成,材料腐蚀与防护(21世纪全国高等院校材料类创新型应用人才培养规划教材),北京大学出版社,2012 四、教学方式 本课程以课堂讲授为主、自学和讨论为辅的方式组织教学,适当使用多媒体课件进行教学,增大课堂容量,在有限的学时内取得最佳的教学效果。 五.教学内容及时数 根据化学本科专业人才培养方案,本课程共1.5学分,总的教学时数为27学时,具体如下: 第一章腐蚀与防护概论(2学时) 基本内容:腐蚀的定义、分类,影响腐蚀的因素及腐蚀的普遍性与严重性。腐蚀防护的意义,腐蚀与防护工作概况,防腐蚀方法。防腐蚀设备的使用与保养;防腐蚀工作中劳动保

航 空 发 动 机 叶 片 涂 层

航空发动机叶片涂层技术 一.涡轮叶片是先进航空发动机核心关键之一 航空发动机被称为现代工业“皇冠上的明珠”,航空发动机是飞机的“心脏”,价值一般占到整架飞机的20%-25%。目前,能独立研制、生产航空发动机的国家只有美、英、法、俄、中5个。但是,无论“昆仑”、“秦岭”发动机、还是“太行”系列,我国航空发动机的水平距离这一领域的“珠穆朗玛”依然存在不小的差距。美、俄、英、法四个顶级“玩家”能够自主研发先进航空发动机。西方四国由于对未来战场与市场的担忧,在航空发动机核心技术上一直对中国实施禁运和封锁。技术难关有很多。本人认为涡轮叶片是先进航空发动机的核心技术之一。 随着航空航天工业的发展,对发动机的性能要求越来越高,要使发动机具有高的推重比和大的推动力,所采用的主要措施是提高涡轮进口温度。国外在20世纪90年代,要求涡轮前燃气进口温度达1850-1950K。美国在IHPTET计划中要求:在海平面标准大气条件下,航空燃气涡轮机的的涡轮进口温度高达2366K。涡轮进口温度的提高要求发动机零件必须具有更高的抗热冲击、耐高温腐蚀、抗热交变和复杂应力的能力。对于舰载机,由于在海洋高盐雾环境下长期服役,要求发动机的叶片的耐腐蚀性更高;常在沙漠上飞行的飞机,发动机的叶片要具有更好的耐磨蚀。 众所周知:镍基和钴基高温合金具有优异的高温力学和腐蚀性

能,广泛用于制造航空发动机和各类燃气轮机的涡轮叶片(blade and vane)。就材质来看:各国的高温合金型号虽各不相同,但就相近成分的高温合金来说,其性能相近(生产工艺方法不同有也造成性能有大的差异)。好的高温合金的使用温度也只有1073K左右,为达到前面所说的要求温度,采用的方法有二:一是制成空心的叶片。空心叶片自20世纪60年代中期出现以来,经历了对流冷却、冲击冷却、气膜冷却以及综合冷却的发展历程,使进气口温度高出叶片材料约300—500℃,内腔的走向复杂化和细致化。这一步的改进仍难满足需要,且英国发展计划将取消冷却。二是涂层,常进行多材质多层次涂层。 PVT公司研究表明:军用直升机上的发动机叶片采用涂层,在沙漠上飞行,寿命可提高3倍左右,不仅大大降低了制造发动机叶片的成本,同时也使飞机的维护时间延长了两倍。 二.涡轮叶片的涂层 高温合金的生产方法或晶形结构对产品的性能是有很大影响的,如图1所示,GE公司20年前开始采用单晶高温合金制作战机用发 Fig.1 Comparative preperties of polycrystal,columnar and single-crystal superallys

《材料腐蚀与防护》习题与思考题

《材料腐蚀与防护》习题与思考题 第一章绪论 1.何谓腐蚀?为何提出几种不同的腐蚀定义? 2.表示均匀腐蚀速度的方法有哪些?它们之间有何联系? 3.镁在海水中的腐蚀速度为 1.45g/m2.d, 问每年腐蚀多厚?若铅以这个速度腐蚀,其?深(mm/a)多大? 4.已知铁在介质中的腐蚀电流密度为0.1mA/cm2,求其腐蚀速度?失和?深。问铁在此介质中是否耐蚀? 第二章电化学腐蚀热力学 1.如何根据热力学数据判断金属腐蚀的倾向?如何使用电极电势判断金属腐蚀的倾向?2.何谓电势-pH图?举例说明它在腐蚀研究中的用途及其局限性。 3.何谓腐蚀电池?有哪些类型?举例说明可能引起的腐蚀种类。 4.金属化学腐蚀与电化学腐蚀的基本区别是什么? 5.a)计算Zn在0.3mol/LZnSO4溶液中的电解电势(相对于SHE)。 b) 将你的答案换成相对于SCE的电势值。 6.当银浸在pH=9的充空气的KCN溶液中,CN-的活度为1.0和Ag(CN)2-的活度为0.001时,银是否会发生析氢腐蚀? 7.Zn浸在CuCl2溶液中将发生什么反应?当Zn2+/Cu2+的活度比是多少时此反应将停止? 第三章电化学腐蚀反应动力学 1.从腐蚀电池出发,分析影响电化学腐蚀速度的主要因素。 2.在活化极化控制下决定腐蚀速度的主要因素是什么? 3.浓差极化控制下决定腐蚀速度的主要因素是什么? 4.混合电位理论的基本假说是什么?它在哪方面补充、取代或发展了经典微电池腐蚀理论? 5.何谓腐蚀极化图?举例说明其应用。 6.试用腐蚀极化图说明电化学腐蚀的几种控制因素以及控制程度的计算方法。 7.何谓腐蚀电势?试用混合电位理论说明氧化剂对腐蚀电位和腐蚀速度的影响。 8.铁电极在pH=4.0的电解液中以0.001A/cm2的电流密度阴极化到电势-0.916V(相对1mol/L甘汞电极)时的氢过电势是多少? 9.Cu2+离子从0.2mol/LCuSO4溶液中沉积到Cu电极上的电势为-0.180V(相对1mol/L甘汞电极),计算该电极的极化值。该电极发生的是阴极极化还是阳极极化? 10.碳钢在pH=2的除去空气的溶液中,腐蚀电势为-0.64V(相对饱和Cu-CuSO4电极)。 对于同样的钢的氢过电势(单位为V)遵循下列关系:Γ=0.7+0.1lgι,式中ι单位为A/cm2。 假定所有的钢表面近似的作为阴极,计算腐蚀速度(以mm/a为单位)。 第四章析氢腐蚀与吸氧腐蚀 1.在稀酸中工业锌为什么比纯锌腐蚀速度快?酸中若含有Pb2+离子为什么会降低锌的腐蚀速度? 2.说明影响析氢腐蚀的主要因素及防止方法,并解释其理由。

金属腐蚀与防护课后答案

《金属腐蚀理论及腐蚀控制》 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3( 25℃)中有: Vˉ=△Wˉ/st =(18.7153-18.6739)/45×2×(20×40+20×3+40×30)×0.000001 =0.4694g/ m?h 又有d=m/v=18.7154/20×40×0.003=7.798g/cm2?h Vp=8.76Vˉ/d=8.76×0.4694/7.798=0.53mm/y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st =(16.1820-16.1347)/2×(30×40+30×5+40×5)×45×10-6

=0.3391g/㎡?h d=m铝/v=16.1820/30×40×5×0.001=2.697g/cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。 (2)对不锈钢在20%HNO3( 25℃)有: 表面积S=2π×2 .0+2π×0.015×0.004=0.00179 m2 015 Vˉ=△Wˉ/st=(22.3367-22.2743)/0.00179×400=0.08715 g/ m2?h 试样体积为:V=π×1.52×0.4=2.827 cm3 d=W/V=22.3367/2.827=7.901 g/cm3 Vp=8.76Vˉ/d=8.76×0.08715/7.901=0.097mm/y 对铝有:表面积S=2π×2 .0+2π×0.02×0.005=0.00314 m2 02 Vˉ=△Wˉ/st=(16.9646-16.9151)/0.00314×20=0.7882 g/ m2?h 试样体积为:V=π×2 2×0.5=6.28 cm3 d=W/V=16.9646/6.28=2.701 g/cm3 Vp=8.76Vˉ/d=8.76×0.7882/2.701=2.56mm/y 试样在98% HNO3(85℃)时有: 对不锈钢:Vˉ=△Wˉ/st =(22.3367-22.2906)/0.00179×2=12.8771 g/ m2?h Vp=8.76Vˉ/d=8.76×12.8771/7.901=14.28mm/y 对铝:Vˉ=△Wˉ/st=(16.9646-16.9250)/0.00314×40=0.3153g/ m2?h Vp=8.76Vˉ/d=8.76×0.3153/2.701=1.02mm/y 说明:硝酸浓度温度对不锈钢和铝的腐蚀速度具有相反的影响。

航空发动机叶片材料及制造技术现状

航空发动机叶片材料及制造技术现状 在航空发动机中,涡轮叶片由于处于温度最高、应力最复杂、环境最恶劣的部位而被列为第一关键件,并被誉为“王冠上的明珠”。涡轮叶片的性能水平,特别是承温能力,成为一种型号发动机先进程度的重要标志,在一定意义上,也是一个国家航空工业水平的显著标志【007】。 航空发动机不断追求高推重比,使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求,因而国外自7O年代以来纷纷开始研制新型高温合金,先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料;单晶高温合金已经发展到了第3代。8O年代,又开始研制了陶瓷叶片材料,在叶片上开始采用防腐、隔热涂层等技术。 1 航空发动机原理简介 航空发动机主要分民用和军用两种。图1是普惠公司民用涡轮发动机主要构件;图2是军用发动机的工作原理示意图;图3是飞机涡轮发动机内的温度、气流速度和压力分布;图4是罗尔斯-罗伊斯喷气发动机内温度和材料分布;图5为航空发动机用不同材料用量的发展变化情况。 图1 普惠公司民用涡轮发动机主要构件 图2 EJ200军用飞机涡轮发动机的工作原理

图3 商用涡轮发动机内的温度、气流速度和压力分布 图4 罗尔斯-罗伊斯喷气发动机内温度和材料分布 图5 航空发动机用不同材料用量的变化情况

1变形高温合金叶片 1.1 叶片材料 变形高温合金发展有50多年的历史,国内飞机发动机叶片常用变形高温合金如表1所示。高温合金中随着铝、钛和钨、钼含量增加,材料性能持续提高,但热加工性能下降;加入昂贵的合金元素钴之后,可以改善材料的综合性能和提高高温组织的稳定性。 1.2 制造技术 生产工艺。变形高温合金叶片的生产是将热轧棒经过模锻或辊压成形的。模锻叶片主要工艺如下: (1)镦锻榫头部位; (2)换模具,模锻叶身。通常分粗锻、精锻两道工序;模锻时,一般要在模腔内壁喷涂硫化钼,减少模具与材料接触面之阻力,以利于金属变 形流动; (3)精锻件,机加工成成品; (4)成品零件消应力退火处理; (5)表面抛光处理。分电解抛光、机械抛光两种。 常见问题。模锻叶片生产中常见问题如下: (1)钢锭头部切头余量不足,中心亮条缺陷贯穿整个叶片; (2) GH4049合金模锻易出现锻造裂纹; (3)叶片电解抛光中,发生电解损伤,形成晶界腐蚀; (4) GH4220合金生产的叶片,在试车中容易发生“掉晶”现象;这是在热应力反复作用下,导致晶粒松动,直至剥落。 发展趋势。叶片是航空发动机关键零件.它的制造量占整机制造量的三分之一左右。航空发动机叶片属于薄壁易变形零件。如何控制其变形并高效、高质量地加工是目前叶片制造行业研究的重要课题之一。

7航空发动机叶片

发动机叶片 一、 发动机与飞机 1. 发动机种类 1) 涡轮喷气发动机(WP )WP5、WP6、WP7、……WP13 2) 涡轮螺桨发动机(WJ )WJ5、WJ6、WJ7 3) 涡轮风扇发动机(WS )WS9、WS10、WS11 4) 涡轮轴发动机(WZ )WZ5、WZ6、WZ8、WZ9 5) 活塞发动机(HS )HS5、HS6、HS9 2. 发动机的结构与组成 燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5) 3. 发动机工作原理及热处理过程

工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 热力过程:用p-υ或T-S 图来表示发动机的热力过程: 4. 飞机与发动机 发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。如: 1) 军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发 动机。 2) 强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS 类发动机。 3) 军民用直升机装用WZ 类发动机。 二、 叶片 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的 叶片完成对气体的

压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家正以最大的努力来提高叶片的性能,生产能力及质量满足需要。 1.叶片为什么一定要扭 在流道中,由于在不同的半径上,圆周速度是不同的,因此在不同的半径基元级中,气流的攻角相差极大,在叶尖、由于圆周速度最大,造成很大的正攻角,结果使叶型叶背产生严重的气流分离;在叶根,由于圆周速度最小,造成很大的负攻角,结果使叶型的叶盆产生严重的气流分离。因此,对于直叶片来说。除了最近中径处的一部分还能工作之外,其余部分都会产生严重的气流分离,也就是说,用直叶片工作的压气机或涡轮,其效率极其低劣的,甚至会达到根本无法运转的地步。 发动机叶片数量统计如下(以WJ6、WS11为例)表: 1.WJ6 压气机叶片数量见表1 表1 涡轮叶片数量见表2 表2

(7)航空发动机叶片-15页文档资料

发动机叶片 一、发动机与飞机 1.发动机种类 1)涡轮喷气发动机(WP)WP5、WP6、WP7、……WP13 2)涡轮螺桨发动机(WJ)WJ5、WJ6、WJ7 3)涡轮风扇发动机(WS)WS9、WS10、WS11 4)涡轮轴发动机(WZ)WZ5、WZ6、WZ8、WZ9 5)活塞发动机(HS)HS5、HS6、HS9 2.发动机的结构与组成 燃气涡轮发动机主要由压气机、燃烧室和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。(发动机的整体构造如下图1)三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多(见表1~5) 3. 工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡

轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 热力过程:用p-υ或T-S 图来表示发动机的热力过程: 4. 发动机是飞机的动力,也是飞机的心脏,不同用途的飞机配备不同种类的发动机。如: 1) 军民用运输机、轰炸机、客机、装用WJ 、WS 、WP 类发 动机。 2) 强击机、歼击机、教练机、侦察机、装用WP 、WS 、HS 类发动机。 3) 军民用直升机装用WZ 类发动机。 二、 叶片 在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,

航空发动机转子叶片装配工艺设计.docx

航空发动机转子叶片装配工艺设计1概述 大涵道比涡扇发动机普遍追求大推力、大功率等性能指标。为了驱动大风扇、提高效率,涡轮结构一般采用多级低压涡轮。[1]低压涡轮转子叶片作为其中重要零件之一,不仅加工难度大,制造成本昂贵,工作时又需要在高温高压状态下运转,承载受力大,工况复杂。[2]面对如此恶劣的条件,转子叶片表面微小的损伤都极有可能被催化放大,进而产生裂纹、掉块等故障,严重威胁发动机可靠性和稳定性。因此无论从控制投入成本、生产周期亦或保障发动机性能角度考虑,转子叶片的表面质量都需要全方位严加要求。由于结构设计特殊性,低涡转子叶片榫头安装到盘组件榫槽时,需要克服一定阻力。为避免施加装配外力造成转子叶片表面损伤,国外安装转子叶片采用专用装配工艺,而国内在该工艺研究方面一直处于瓶颈状态。[3-4]目前国内采用手动敲击叶片的装配方式,易造成叶片损伤、叶冠错齿等情况,存在安全隐患,影响装配质量。本文基于对多级低压涡轮盘片组件的结构分析,提供了一种转子叶片的新型装配工艺,操作方式简单,在一定程度上降低了装配应力,确保发动机装配质量和性能。 2结构分析 锯齿形叶冠为发动机低压涡轮转子叶片常用叶冠形状。由于相邻叶片间叶冠锯齿存在咬合,因此该型叶冠叶片在盘组件上的装分操作,需要整圈叶片沿盘组件同时轴向移动方能实现。图1低涡转子叶片装配结构示意图受机件加工误差、叶片间相互约束等因素影响,整圈叶

片需克服一定阻力才能沿盘组件移动。而鉴于转子叶片和涡轮盘的装配结构特点和可操作性,转子叶片的外力可作用位置仅限于内缘板附近位置。国内现多采用橡胶锤或其他类似工具敲砸缘板的方法施加冲击外载:操作者首先将所有叶片榫头搭接到涡轮盘榫槽上,同时确保叶片叶冠处于正常咬合状态;准备好后手持橡胶锤,敲砸若干相邻叶片的缘板,使其轴向移动一小段距离,接着再对邻近若干叶片敲击,如此逐组进行,整圈叶片得以轴向移动一定距离,重复操作,最终实现叶片装分。这种方法看似简单,但实际存在很大安全风险:人工施加冲击外载,难以控制施力大小,力过小无法实现叶片安装,力过大容易损伤叶片,且叶片内缘板结构较窄,强度不高,现场已多次出现缘板砸伤事故。 3工艺设计 3.1总体方案 转子叶片在涡轮盘组件上的装配工艺设计,主要即加载装置和支承装置两大工艺装置的设计。加载装置,主要为叶片装分提供稳定均匀载荷,受装配结构限制,仅可设置在叶片内缘板附近位置加载;支承装置,在装分过程中支承定位叶片和涡轮盘组件,具备无级调控两者相对轴向距离的功能,可适应过程中叶片和涡轮盘组件的任意轴向状态。此外,考虑到低涡的多级结构,因此该工艺设计需要具有通用适应性,加载装置和支承装置应能实现各级转子叶片的装分。 3.2工艺原理 转子叶片装分原理见图2。利用支承装置对叶片和盘组件分别进

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

航空发动机叶片增材制造

航空发动机叶片增材制造调查报告 总体来说,有这样几种可行性方向。 一、工艺方向,包括整体增材制造或者表面增材强化: 1. 整体增材制造:使用3d打印代替传统加工工艺,整体打印。目前可行的3d打印技术包括: FDM:熔融沉积(Fused Deposition Modeling) SLM:选择性激光熔融技术(Selective Laser Melting) SLS:选择性激光烧结成型法(Selective Laser Sintering) DMLS:直接金属激光烧结(Direct Metal Laser Sintering) LMD:激光金属沉积(laser metal deposition) 相比于熔模铸造,增材制造具有的优势多于劣势,因此具有较大研究价值。如何解决增材制造新工艺存在的技术弱点正是需要研究的方向。总结有如下几点: ①强度问题:目前最常用为镍基合金增材,使用何种材料可提升强度? ②精度问题:粘结剂喷射,然后是适当的烧结和表面处理是一种很有前途的合金制造工艺 [1],如何进一步提升表面精度? ③温度问题:3d打印叶片目前只是在常温叶片制造上有一些应用,针对于航空发动机涡轮的耐高温叶片(1400-1700℃)则鲜有研究。需要解决问题包括:除镍基合金外,打印粉末采用何种耐高温材料(金属、非金属、复合材料[2])?最佳的高温合金打印方法是哪一种? ④建立模型:建立增材制造叶片的收缩模型、疲劳模型、力学模型等。 2.表面增材强化:使用激光熔覆或等离子喷涂,在已有叶片表面上增加强化散热层,叶片为多层结构。(滕海灏) 二、产品方向,叶片结构智能化和新材料应用。目前叶片结构如下图所示[3],采用熔模铸造的工艺方案,其优缺点见上表。如前所述,如果采用3d打印工艺加工这种空心叶片结构将会实现多方面的优化。就产品本身而言,可以在如下方面进行研究。

材料腐蚀与防护试题

吸氧腐蚀:是指金属在酸性很弱或中性溶液里,空气里的氧气溶解于金属表面水膜中而发生的电化学腐蚀。 第一章金属与合金的高温氧化 1、金属氧化膜具有保护作用的的充分条件与必要条件充分条件:膜要致密、连续、无孔洞,晶体缺陷少;稳定性好,蒸汽压低,熔点高;膜与基体的附着能力强,不易脱落;生长内应力小;与金属基体具有相近热膨胀系数;膜的自愈能力强。必要条件:氧化时生成的金属氧化膜的体积与生成这些氧化膜所消耗的金属的体积之比必须大于1,即PBR值大于1. 2、说出几种主要的恒温氧化动力学规律,并分别说明其意义。(1)直线规律:符合这种规律的金属在氧化时,氧化膜疏松,易脱落,即不具有保护性,或者在反应期间生成气相或者液相产物离开了金属表面,或者在氧化初期氧化膜很薄时,其氧化速度直线由形成氧化物的化学反应速度决定,因此其氧化速度恒定不变,符合直线规律。(2)抛物线规律:许多金属或者合金在较高的高温氧化时,其表面可形成致密的固态氧化物膜,氧化速度与膜的厚度成反比,即其氧化动力学符合这种规律。(3)立方规律:在一定温度范围内,一些金属的氧化物膜符合这种规律。(4)对数和反对数规律:许多金属在温度低于300-400摄氏度氧化时,其反应一开始很快,但是随后就降到了氧化速度可以忽略的

程度,该行为符合对数或反对数规律。 3、说出三种以上能提高钢抗高温氧化的元素镍,铝,钛 4.、纯NI在1000摄氏度氧气氛中遵循抛物线氧化规律,常数k=39X10-12cm2/s,如果这种关系不受氧化膜厚度的影响,试计算使0.1cm厚镍板全部氧化所需的时间。解:由抛物线规律可知:厚度y与时间t存在如下关系:y2=kt,t=y2/k=2.56x108s 5哈菲价法则:当基体氧化膜为P型半导体时,往基体中加入比基体原子低价的合金元素,使离子空穴浓度降低,提高电子浓度,结果导致电导率增加,而氧化速率降低,往基体中比此基体原子高价的合金元素,使离子空穴浓度提高,降低电子浓度,结果导致电导率降低,而氧化速度提高。当基体氧化膜为n型半导体时,往基体中加入比基体原子低价的合金元素,使电子浓度降低,电导率降低,而基体离子浓度增加,氧化速度增加,往基体中加入比基体原子高价的合金元素,使电子浓度增加,电导率增加,而基体离子浓度降低,氧化速度降低。以上合金元素对氧化物晶体缺陷的影响规律成为控制合金氧化的原子价规律,简称哈菲原子价法则。 第二章金属的电化学腐蚀 1、解释下列词语

航空发动机涡轮叶片论文

航空材料 ——之发动机涡轮叶片 班级:发动机1102

航空材料与热处理论文 ----飞机发动机涡轮叶片 引言 近半个多世纪以来, 航空发动机技术取得了巨大的进步, 军用发动机推重比从初期的2~ 3提高到10甚至20, 这就对材料和制造技术的发展提出了更高的要求。航空发动机涡轮叶(包括涡轮工作叶片和导向叶片)是航空发动机中承受温度载荷最剧烈和工作环境最恶劣的部件之一, 在高温下要承受很大、很复杂的应力, 因而对其材料的要求极为苛刻。自20世纪四十年代以来, 对航空发动机涡轮叶片用材料, 国内外都投入了大量的人力、物力进行研究, 研制出了不同的系列, 满足了航空发动机发展的需求。 关键词:涡轮叶片;防腐与维护;K403合金;热处理;显微组织 一、国外概况 航空发动机涡轮叶片用材料最初普遍采用变形高温合金。随着材料研制技术和加工工艺的发展,铸造高温合金逐渐成为涡轮叶片的候选材料。美国从20世纪50年代后期开始尝试使用铸造高温合金涡轮叶片, 前苏联在60年代中期应用了铸造涡轮叶片, 英国于70年代初采用了铸造涡轮叶片。而航空发动机不断追求高推重比, 使得变形高温合金和铸造高温合金难以满足其越来越高的温度及性能要求, 因而国外自70年代以来纷纷开始研制新型高温合金, 先后研制了定向凝固高温合金、单晶高温合金等具有优异高温性能的新材料; 单晶高温合金已经发展到了第3代。80年代, 又开始研制了陶瓷叶片材料, 在叶片上开始采用防腐、隔热涂层等技术。 二、中国概况 中国高温合金的研制始于1956年。1957年成功研制出第1种涡轮叶片材料GH4033, 但是, 由于当时生产水平较低, 工艺未完善, 航空发动机制造用材料基本上是从前苏联进口的。直至60年代初, 由于中苏关系恶化, 无法从前苏联进口材料, 发动机的生产面临材料短缺。在此情况下, 中国相关部门联合开展技术攻关, 解决了GH4033、GH4037、GH4049等材料的生产质量和工艺问题, 开始书写了研制中国发动机涡轮叶片用变形高温合金的新篇章。在变形高温合金成功研制的基础上, 中国又相继研制了K403、K405、K417、K418 和K423 等一系列等轴晶铸造高温合金, 满足了国内航空发动机生产以铸造代锻造, 使导向叶片和涡轮叶片铸造化的要求, 并在70 年代应用于航空发动机制造。70年代末, 中国开始了定向凝固柱晶高温合金、单晶高温合金、金属间化合物基高温合金等新材料的研制工作, 先后研制成功了DZ4、DZ22、DZ125等定向凝固柱晶高温合金,

相关主题
文本预览
相关文档 最新文档