当前位置:文档之家› 各种无线通信应用

各种无线通信应用

各种无线通信应用
各种无线通信应用

应用笔记|互联网-电子-软件

Site Map

手机电话网

我国无线电管理委员会分配给蜂窝移动通信的频率———————————————————–

中国联通DCS1800 1745-1755 1840-1850

GSM数字蜂窝移动通信系统采用900MHz频段

890MHz-915MHz移动台发、基站接收;935MHz-960MHz基站发、移动台接收

随着业务发展,可用频段向1.8GHz频段DCS1800过渡

1710MHz-1785MHz移动台发射、基站接收;1805MHz-1880MHz基站发、移动台接收

GPRS(General Packet Radio Ser ice)通用分组无线业务,是第二代移动通信向第三代过渡的技术,被成为2.5代技术

GPRS手机的计费是根据用户传输数据量而不是上网时间计算的

GPRS是对GSM网络的补充和升级,它不会取代目前GSM网络支持的电路交换数据和SMS等数据业务

CDMA技术的原理是基于扩展频谱通信技术由多个码分信道共享载频频道的多址连接方式

在移动通信、个人通信和宽带无线接入领域,码分多址是最有竞争力的多址连接技术

第三代移动通信3G

人类对通信的最高理想是具有完全个人化的、满足全球连续覆盖的、能够提供高质量的宽带综合业务的“个人通信”

应做到无论任何人whoever在任何时候whenever和任何地点wherever都能以任何方式whatever联系另外任何人whomever

目前有三种候选方案:

第一,由ARIB在日本建立的CDMA方案与欧洲ETSI的CDMA方案融合而成的宽带CDMA/UTRA TDD(或称WCDMA)

代表厂商有爱立信、诺基亚等

第二,由美国为响应ITU无线传输技术方案征集活动而专门成立的无线传输技术评估组TIATR45.5提出的CDMA2000

代表厂商有高通公司、摩托罗拉、北方电讯、朗讯和三星电子

第三,由中国电信科学技术研究所CATT提出、由CATT的TD-SCDMA与西门子公司的TD-CDMA的合并的TD-SCDMA

代表厂商为CATT和西门子

职能天线技术Amart Antenna,主要完成空间滤波和定位

能根据信号的来波方向,自适应地调整其方向图、跟踪强信号、减少或抵消干扰信号、提高信干比,

增加移动通信系统容量、提高移动通信系统频谱利用率、降低信号发射功率、提高通信的覆盖范围等

软件无线电 把硬件作为无线通信的基本平台,尽可能把无线通信功能用软件实现

WAP是移动网上互联网的一系列规范的组合,用以解决HTTP、TSLP不适合窄带、较长时延的无线环境和小屏幕显示、低存储容量、低处理能力的移动终端的操作问题,是优化的互联网设计

第三代移动通信进入实质性开发和商用阶段,与此同时,第三代以后beyond 3G的移动通信技术的研究也进入新的阶段,第四代

红外

红外线

红外线夜间望远镜

红外线温度检测器

红外线眼镜 看

红外线报警器 有人

人体的温度范围 所辐射出的电磁波主要在红外线的范围

红外通讯在实际应用中存在一些缺点:

通讯距离小于10米、具有方向限制、通讯速率低、

易受太阳光、日光等光线干扰影响通讯

必须保证传输信息的两个设备正对,且中间不能有障碍物

没有成为被广泛接受的工业标准、设备种类不多

几乎无法控制信息传输的进度

红外线器件

红外线协议

红外线接收电路 光敏二极管

发射 红外光电二级管

红外光的特性:单色性好,抗干

扰,比较适合高精度的测量

以红外线为原理的自动门探测器的一切弊病(例如红外在高温的情况下检测存在误动作等)

对射式光电开关

发射器—–被检测物体——接收器

发射器发出的光线直接进入接收器。当物体或障碍物遮挡住之间的光线时,接收机信号发生变化,光电开关就产生

了开关信号。当检测物体是不透明时,对射式光电开关是最可靠的检测模式。

红外发射管 红外接收管/头

反射式光电开关

其实是一体化的红外发射、接收器

当红外线反射型传感器接通电源后,即从模块内部的红外线反射管向前方发射38KHZ的调制红外线,一旦有物体或人体进入有效范围内时,红外线就会有一部分被反射回来,被与发射管同排安装的光敏接收管收到并转换成同频率的电信号后,由模块内部电路进行放大,解调,整形,比较处理后,在输出端给出高电平信号

应用:感应小便冲洗器 干手机等

红外反射传感器

被动式

本身不发出任何类型的辐射,器件功耗很小,隐蔽性好。有红外线变化超过设定值就报警。

发射体:

人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。

探头:

1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲泥尔滤光片,使环境的干扰受到明显的控制作用。3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。5)菲泥尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。

IrDA

IrDA(红外线数据协会)

这个协会1993年才成立,它的最大功劳,我们现在到处都用上了,笔记本电脑、手机、键盘、电视机等等,很多都配备了红外线接口,使得一直以来杂乱的红外线技术得到了统一。目前的红外线技术,传输标准已经从原先的4Mbps 提高到了16Mbps,接收角度也从以前较窄的30度扩到了120度。

(Infrared Data Association)是点对点的数据传输协议,通信距离一般在0到1米之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。其传输具备小角度(30度锥角以内),短距离,直线数据传输,保密性强,传输速率较高的特点,适于传输大容量的文件和多媒体数据。并且无需申请频率的使用权,成本低廉。IrDA已被全球范围内的众多厂商采用,目前主流的软硬件平台均提供对它的支持。

IrDA的不足在于它是一种视距传输,2个相互通信的设备之间必须对准,中间不能被其他物体阻隔,因而只适用于2台(非多台)设备之间的连接

RFID

短距离

低频射频卡主要有125kHz和134.2kHz两种,中频射频卡频率主要为13.56MHz,高频 射频卡主要为433MHz、915MHz、2.45GHz、5.8GHz等。

短程的无线射频(Radio Frequency Identification:RFID) 与传统的条型码、磁卡及IC卡相比,射频卡具有非接触、阅读速度快、无磨损、不受环境影响、寿命长、便于使用的特点和具有防冲突功能,能同时处理多张卡片。在国外,射频识别技术已被广泛应用于工业自动化、商业自动化、交通运输控制管理等众多领域。

最基本的RFID系统由三部分组成:

1. 标签(Tag,即射频卡):由耦合元件及芯片组成,标签含有内置天线,用于和射频天线间进行通信。

2. 阅读器Reader:读取(在读写卡中还可以写入)标签信息的设备。

3. 天线:在标签和读取器间传递射频信号。

阅读器通过发射天线发送一定频率的射频信号,当射频卡进入发射天线工作区域时产生感应电流,射频卡获得能量被激活;射频卡将自身编码等信息通过卡内置发送 天线发送出去;系统接收天线接收到从射频卡发送来的载波信号,经天线调节器传送到阅读器,阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处 理;主系统

根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。

1. 按供电方式分为有源卡和无源卡。有源是指卡内有电池提供电源,其作用距离较远,但寿命有限、体积较大、成本高,且不适合在恶劣环境下工作;无源卡内无电 池,它利用波束供电技术将接收到的射频能量转化为直流电源为卡内电路供电,其作用距离相对有源卡短,但寿命长且对工作环境要求不高。

2. 按载波频率分为低频射频卡、中频射频卡和高频射频卡。低频射频卡主要有125kHz和134.2kHz两种,中频射频卡频率主要为1

3.56MHz,高频 射频卡主要为433MHz、915MHz、2.45GHz、5.8GHz等。低频系统主要用于短距离、低成本的应用中,如多数的门禁控制、校园卡、动物监 管、货物跟踪等。中频系统用于门禁控制和需传送大量数据的应用系统;高频系统应用于需要较长的读写距离和高读写速度的场合,其天线波束方向较窄且价格较 高,在火车监控、高速公路收费等系统中应用。

3. 按调制方式的不同可分为主动式和被动式。主动式射频卡用自身的射频能量主动地发送数据给读写器;被动式射频卡使用调制散射方式发射数据,它必须利用读写器 的载波来调制自己的信号,该类技术适合用在门禁或交通应用中,因为读写器可以确保只激活一定范围之内的射频卡。在有障碍物的情况下,用调制散射方式,读写 器的能量必须来去穿过障碍物两次。而主动方式的射频卡发射的信号仅穿过障碍物一次,因此主动方式工作的射频卡主要用于有障碍物的应用中,距离更远(可达 30米)。

4. 按作用距离可分为密耦合卡(作用距离小于1厘米)、近耦合卡(作用距离小于15厘米)、疏耦合卡(作用距离约1米)和远距离卡(作用距离从1米到10米,甚至更远)。

5. 按芯片分为只读卡、读写卡和CPU卡。

zigbee

低成本低功耗低速率

短距离

Zigbee一词源自蜜蜂群在发现花粉位置时,通过跳ZigZag形舞蹈来告知同伴,达到交换信息的目的。借此称呼一种专注于低功耗、低成本、低复杂度、低速率的近程无线网络通信技术

zigbee收发器,比如mc1321

ZigBee联盟成立于2001年8月,2002年下半年,英国Invensys公司、日本三菱、美国摩托罗拉以及荷兰飞利浦等四大公司加盟ZigBee,这一事件成为ZigBee技术的里程碑。目前联盟的成员涵盖了IT领域以及其它行业的150多家企业。从2004年底标准确立,到2005年底,相关芯片及终端设备总共卖出了1500亿美元。观察家们预计,到2008

年,ZigBee的节点数量将从目前不到1百万个骤增至1亿个。

Zigbee是一种短距离、低功耗的无线通信技术名称。这一名称来源与蜜蜂的八字舞。其特点是近距离、低复杂度、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。

Zigbee自身的技术优势:

①低功耗。在低耗电待机模式下,2 节5 号干电池可支持1个节点工作6~24个月,甚至更长。这是Zigbee的突出优势。相比较,蓝牙能工作数周、WiFi可工作数小时。

②低成本。通过大幅简化协议(不到蓝牙的1/10) ,降低了对通信控制器的要求,按预测分析,以8051的8位微控制器测算,全功能的主节点需要32KB代码,子功能节点少至4KB代码,而且Zigbee免协议专利费。每块芯片的价格大约为2 美元。

③ 低速率。Zigbee工作在20~250 kbps的较低速率,分别提供250 kbps(2.4GHz)、40kbps (915 MHz)和20kbps(868 MHz) 的原始数据吞吐率,满足低速率传输数据的应用需求。

④近距离。传输范围一般介于10~100 m 之间,在增加RF 发射功率后,亦可增加到1~3 km。这指的是相邻节点间的距离。如果通过路由和节点间通信的接力,传输距离将可以更远。

⑤短时延。Zigbee 的响应速度较快,一般从睡眠转入工作状态只需15 ms ,节点连接进入网络只需30 ms ,进一步节省了电能。相比较,蓝牙需要3~10 s、WiFi 需要3 s。

⑥高容量。Zigbee 可采用星状、片状和网状网络结构,由一个主节点管理若干子节点,最多一个主节点可管理254 个子节点;同时主节点还可由上一层网络节点管理,最多可组成65000 个节点的大网。

⑦高安全。Zigbee 提供了三级安全模式,包括无安全设定、使用接入控制清单(ACL) 防止非法获取数据以及采用高级加密标准(AES 128) 的对称密码,以灵活确定其安全属性。

⑧免执照频段。采用直接序列扩频在工业科学医疗( ISM) 频段,2. 4 GHz (全球) 、915 MHz(美国) 和868 MHz(欧洲) 。

Zigbee 的应用前景

Zigbee 并不是用来与蓝牙或者其他已经存在的标准竞争,它的目标定位于现存的系统还不能满足其需求的特定的市场,它有着广阔的应用前景。Zigbee 联盟预言在未来的四到五年,每个家庭将拥有50 个Zigbee 器件,最后将达到每个家庭150 个。据估计,到2007 年,Zigbee 市场价值将达到数亿美元。其应用领域主要包括:◆家庭和楼宇网络:空调系统的温度控制、照明的自动控制、窗帘的自动控制、煤气计量控制、家用电器的远程控制等;

◆工业控制:各种监控器、传感器的自动化控制;

◆商业:智慧型标签等;

◆公共场所:烟雾探测器等;

◆农业控制:收集各种土壤信息和气候信息;

◆医疗:老人与行动不便者的紧急呼叫器和医疗传感器等。

ZigBee技术概况

何为Zigbee

Zigbee的基础是IEEE 802.15.4,这是IEEE无线个人区域网(Personal Area Network,PAN)工作组的一项标准,被称作IEEE 802.15.4(Zigbee)技术标准。

Zigbee不仅只是802.15.4的名字。IEEE仅处理低级MAC层和物理层协议,因此Zigbee联盟对其网络层协议和API 进行了标准化。完全协议用于一次可直接连接到一个设备的基本节点的4K字节或者作为Hub或路由器的协调器的32K 字节。每个协调器可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。Zigbee 联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其它节点获得。

Zigbee联盟成立于2001年8月。2002年下半年,英国Invensys公司、日本三菱电气公司、美国摩托罗拉公司以及荷兰飞利浦半导体公司四大巨头共同宣布,它们将加盟“Zigbee 联盟”,以研发名为“Zigbee”的下一代无线通信标准,这一事件成为该项技术发展过程中的里程碑。

到目前为止,除了Invensys、 三菱电子、摩托罗拉和飞利浦等国际知名的大公司外,该联盟大约已有150家成员企业,并在迅速发展壮大。其中涵盖了半导体生产商、IP服务提供商、消费类电子厂商及OEM商等,例如Honeywell、Eaton和Invensys Metering Systems等工业控制和家用自动化公司,甚至还有像Mattel之类的玩具公司。所有这些公司都参加了负责开发Zigbee物理和媒体控制层技术标准的IEEE 802.15.4工作组。

超越蓝牙的简单实用

1999年,蓝牙热潮席卷全球,然而发展数年,一直受芯片价格高、厂商支持力度不够、传输距离限制及抗干扰能力差等问题的困扰。低功耗、低成本的无线网络要求令Zigbee应运而生,大幅简化蓝牙的复杂规格,专注于低传输应用。不过相关规格已与现有的蓝牙脱钩。于是有媒体甚至预言:Zigbee和UWB (Ultra-WideBand超宽频道)切入市场可能使蓝牙尚未普及即成历史。这种论调显然言过其实,因为Zigbee不支持语音,但Zigbee的低价格、低功耗和可靠支持成为其闪亮登场的亮点,使得它超越蓝牙的简单实用成为事实。

Zigbee技术的主要特点包括以下几个部分:

* 数据传输速率低:只有10k字节/秒到250k字节/秒,专注于低传输应用;

* 功耗低: 在低耗电待机模式下,两节普通5号干电池可使用6个月到2年,免去了充电或者频繁更换电池的麻烦。这也是Zigbee的支持者所一直引以为豪的独特优势;

* 成本低:因为Zigbee数据传输速率低,协议简单,所以大大降低了成本。且Zigbee 协议免收专利费。

* 网络容量大: 每个Zigbee网络最多可支持255个设备,也就是说,每个Zigbee设备可以与另外254台设备相连接;

* 时延短:通常时延都在15毫秒至30毫秒之间;

* 安全: Zigbee提供了数据完整性检查和鉴权功能,加密算法采用AES-128,同时可以灵活确定其安全属性; * 有效范围小: 有效覆盖范围10~75米之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境;

* 工作频段灵活: 使用的频段分别为2.4GHz、868MHz(欧洲)及915MHz(美国),均为免执照频段。

随着研究的进一步深入,传感器将变得更小,而且功能会越来越多。最终,他们可能会微缩到尘埃大小。届时,数以千计的微小传感器或者称为“智能尘埃”将被释放到大气中来检测任何东西。

广阔应用,一切无线

Zigbee主要应用在短距离范围之内并且数据传输速率不高的各种电子设备之间。其典型的传输数据类型有周期性数据(如传感器数据)、间歇性数据(如照明控制)和重复性低反应时间数据(如鼠标)。

根据Zigbee联盟目前的设想,Zigbee的目标市场主要有PC外设(鼠标、键盘、游戏操控杆)、消费类电子设备(TV、VCR、CD、VCD、DVD等设备上的遥控装置)、家庭内智能控制(照明、煤气计量控制及报警等)、玩具(电子宠物)、医护(监视器和传感器)、工控(监视器、传感器和自动控制设备)等非常广阔的领域。

政府的计划给了Zigbee更多的空间,显示了对其无比的信心。据报道,美国能源部已经决定雇佣Honeywell International Inc.公司,希望通过使用Zigbee传感器能够在钢铁、铝以及其他六个行业中将这些能源的成本降低

15%。通过安装在Alcoa,Dow Chemical,以及ExxonMobil等公司管道系统中传感器,实时追踪监测产品生产过程中的气体使用情况。

Honeywell公司的自动控制部门的副总裁、技术总监Dan Sheflin表示:“能够实时获取这些数据是一件非常重要的事情。”利用这种无线技术及时采取措施来减少泄漏或者消除浪费,每年可节约的能量超过华盛顿州去年一年所使用的天然气产生的能量总和。

至此,Zigbee的应用前景已经远远超过了本文初始的有限描述。Zigbee联盟中的先行者英国Invensys、日本三菱电气、美国摩托罗拉以及荷兰飞利浦半导体公司以及三星、Millennial Net和Ember公司的总裁面对2007年35亿美元的预计营业收入恐怕已经难忍笑意。

 更重要的是,预测未来6到7年内,家庭用户将占有Zigbee2/3的市场。在可以预期的将来,Zigbee无线传感将切实改变你我的生活。

Zigbee协议套件

完整的Zigbee协议套件由高层应用规范、应用会聚层、网络层、数据链路层和物理层组成。网络层以上协议由Zigbee联盟制定,IEEE负责物理层和链路层标准。

应用会聚层将主要负责把不同的应用映射到Zigbee网络上,具体而言包括:

* 安全与鉴权;

* 多个业务数据流的会聚;

* 设备发现;

* 业务发现。

网络层将主要考虑采用基于ad hoc技术的网络协议,应包含以下功能:

* 通用的网络层功能:拓扑结构的搭建和维护,命名和关联业务,包含了寻址、路由和安全;

* 同IEEE802.15.4标准一样,非常省电;

* 有自组织、自维护功能,以最大程度减少消费者的开支和维护成本。

IEEE802系列标准把数据链路层分成LLC(Logical Link Control,逻辑链路控制)和MAC(Media Access Control,媒介接入控制)两个子层。LLC子层在IEEE802.6标准中定义,为802标准系列共用;而MAC子层协议则依赖于各自的物理层。IEEE802.15.4的MAC层能支持多种LLC标准,通过SSCS(Service-Specific Convergence Sublayer,业务相关的会聚子层)协议承载IEEE802.2类型一的LLC标准,同时也允许其他LLC标准直接使用IEEE802.15.4 的MAC层的服务。

LLC子层的主要功能包括:

* 传输可靠性保障和控制;

* 数据包的分段与重组;

* 数据包的顺序传输。

IEEE802.15.4的MAC协议包括以下功能:

* 设备间无线链路的建立、维护和结束;

* 确认模式的帧传送与接收;

* 信道接入控制;

* 帧校验;

* 预留时隙管理;

* 广播信息管理。

IEEE802.15.4定义了两个物理层标准,分别是2.4GHz物理层和868/915MHz物理层。两个物理层都基于DSSS(Direct Sequence Spread Spectrum,直接序列扩频),使用相同的物理层数据包格式,区别在于工作频率、调制技术、扩频码片长度和传输速率。2.4GHz波段为全球统一的无需申请的ISM频段,有助于Zigbee设备的推广和生产成本的降低。2.4GHz的物理层通过采用高阶调制技术能够提供250kb/s的传输速率,有助于获得更高的吞吐量、更小的通信时延和更短的工作周期,从而更加省电。868MHz是欧洲的ISM频段,

915MHz是美国的ISM频段,这两个频段的引入避免了2.4GHz附近各种无线通信设备的相互干扰。868MHz的传输速率为20kb/s,916MHz是40kb/s。由于这两个频段上无线信号传播损耗较小,因此可以降低对接收机灵敏度的要求,获得较远的有效通信距离,从而可以用较少的设备覆盖给定的区域。

相对于常见的无线通信标准,Zigbee协议套件紧凑而简单,其具体实现的要求很低,以下是Zigbee协议套件的需求估计:

* 8位处理器,如80c51;

* 全协议套件软件需要32kbytes的ROM;

* 最小协议套件软件大约4kbytes的ROM;

* 网络主节点需要更多的RAM,以容纳网络内所有节点的设备信息、数据包转发表、设备关联表、与安全有关的密钥存储等。

Zigbee 的应用实例

Zigbee 技术将主要嵌入在消费性电子设备、家庭和建筑物自动化设备、工业控制装置、电脑外设、医用传感

器、玩具和游戏机等设备中,支持小范围的基于无线通信的控制和自动化等领域中。

通常,符合如下条件之一的应用,就可以考虑采用 Zigbee 技术做无线传输:

1.设备成本很低,传输的数据量很小;

2. 设备体积很小,不便放置较大的充电电池或者电源模块;

3. 没有充足的电力支持,只能使用一次性电池;

4. 频繁地更换电池或者反复地充电无法做到或者很困难;

5. 需要较大范围的通信覆盖,网络中的设备非常多,但仅仅用于监测或控制。

Zigbee 联盟预测的主要应用领域包括工业控制、消费性电子设备、汽车自动化、农业自动化和医用设备控制等。

在工业领域,利用传感器和 Zigbee 网络,使得数据的自动采集、分析和处理变得更加容易,可以作为决策辅助系统的重要组成部分。例如危险化学成分的检测,火警的早期检测和预报,高速旋转机器的检测和维护。这些应用不需要很高的数据吞吐量和连续的状态更新,重点在低功耗,从而最大程度地延长电池的寿命,减少 Zigbee 网络的维护成本。

在汽车上,主要是传递信息的通用传感器。由于很多传感器只能内置在飞转的车轮或者发动机中,比如轮胎压力监测系统,这就要求内置的无线通信设备使用的电池有较长的寿命(大于或等于轮胎本身的寿命),同时应该克服嘈杂的环境和金属结构对电磁波的屏蔽效应。在精确农业,或者叫精确耕种的应用中,无线电传播特性良好,但是需要成千上万的传感器构成比较复杂的控制网络。传统农业主要使用孤立的、没有通信能力的机械设备,主要依靠人力监测作物的生长状况。采用了传感器和 Zigbee 网络以后,农业将可以逐渐地转向以信息和软件为中心的生产模式,使用更多的自动化、网络化、智能化和远程控制的设备来耕种。传感器可能收集包括土壤湿度、氮浓度、pH 值、降水量、温度、空气湿度和气压等信息。这些信息和采集信息的地理位置经由 Zigbee 网络传送到中央控制设备供农民决策和参考,这样农民能够及早而且准确地发现问题,从而有助于保持并提高农作物的产量。

医学领域,将借助于各种传感器和 Zigbee 网络,准确而且实时地监测每个病人的血压、体温和心跳速度等信息,从而减少医生查房的工作负担,有助于医生做出快速的反应,特别是对重病和病危患者的监护和治疗。

消费和家用自动化市场是 Zigbee 技术最有潜力的市场。据估测,每个家庭需要 100 到 150 个 Zigbee 设备。可以联网的家用设备包括电视、录像机、 PC 外设、儿童玩具、游戏机、门禁系统、窗户和窗帘、照明设备、空调系统和其他家用电器等。家用设备引入 Zigbee 技术后,将大大改善人们居住环境和舒适度,特别适合于儿童、老年人和残疾人士使用。同时基于 Zigbee 技术的遥控器可以实现全球漫游和无缝使用,从而在一定程度上降低这些设备的生产和使用成本。

根据业务流的特征, Zigbee 的应用可以划分成边疆性业务、周期性业务和间断性业各三种。连续性业务定义为要求低时延数据传输的业务,键盘、鼠标和游戏杆属于这种类型。周期性业务是在固定的时间间隔传输数据的低速率业务,传感器、流速计和警报系统是周期性业务的代表。而间歇性业务则以不规则的时间间隔传输数据,室内照明设施的开关和家用电器遥控器属于这种类型。

Zigbee 技术弥补了低成本、低功耗和低速率无线通信市场的空缺,其成功的关键在于丰富而便捷的应用,而不是技术本身。

随着正式版本协议的即将公布,更多的注意力和研发力量将转到应用的设计和实现、互联互通测试和市场推广等方面。我们有理由相信在不远的将来,将有越来越多的内置式 Zigbee 功能的设备进入我们的生活,并将极大地改善我们的生活方式和体验。

Zigbee 技术

新兴的无线个人局域网络技术正逐渐朝商品化的阶段迈进,在IEEE 802.15的标准中,除了纳入蓝芽(IEEE

802.15.1)之外,同时也发展高速传输的UltraWideBand(IEEE 802.15.3a)与低耗电的ZigBee(IEEE

802.15.4),究竟这两种新的WPAN技术有何特色?其对无线个人局域网络市场的影响为何?本文将为您作进一步的分析。

便宜又省电的低速WPAN标准–Zigbee

Zigbee就如同PURLnet、RF-Lite、Firefly、HomeRF Lite等过去的短距离无线通讯技术一样,强调低成本、低耗电、双向传输、感应网络功能等特色,只不过Zigbee是朝着开放标准的方向发展。Zigbee一开始是由Honywell所发起,目前主要的成员包括Invensys、Mistubishi Electric、Motorola、Philips Semiconductor、Samsung等公司为推广厂商,以及数十家的IC设计制造与系统厂商。除此之外,IEEE也将Zigbee收纳为IEEE 802.15.4的标准,与Zigbee Alliance共同为此一WPAN标准催生。

规格与标准制定

ZigBee的接取方式是采直序展频(Direct Sequence Spread Spectrum)技术,可使用的频段有三个,分别是2.4GHz 的ISM频段、欧洲的868MHz频段,以及美国的915MHz频段,而不同频段可使用的信道分别是16、10、1个

ZigBee运作频段示意图 

ZigBee的传输速率介于20kbps–250kbps之间,并随着传输距离的延长而减慢,例如发射功率在1mW的ZigBee产品在10公尺的距离内可达250kbps的传输速率,但若是将传输距离拉长至20公尺,则速度只剩30kbps。不过借着提高发射功率,还是可以在100公尺的传输距离内,达到每秒250kbps的传输速率。此外,由于ZigBee具备高链接数与低耗电的特性,在感应式网络(Sensor Network)上的使用,就具有相当大的优势,例如在工厂内的作业温度量测、水电瓦斯计度的记录、保全防护的监控上,厂商就不需经常更换电池或布建供电网络,且只需极少的人力与设备,即可取得所需的信息。

ZigBee Alliance基本规格

频段:全球的2.4GHz ISM频段、欧洲的868MHz频段,以及美国的915MHz频段

链接数:支持主从式或点对点方式运作,同时最多可255个装置链接(Master×1,client nodes×254)

接取方式:直列展频技术DSSS

网络架构:星形

传输速率:20kbps~250kbps

传输距离:10公尺(依耗电量之不同,可提升至100公尺)

可使用频道数:在2.4GHz的ISM频段,可使用的信道数为16个;在915MHz的ISM频段,可使用的信道数为10个;在欧洲的868MHz频段,可使用的信道数为1个

而在标准制定的分工上,则由ZigBee Alliance与IEEE 802.15.4的任务小组来共同担任标准的制定。其中实体层、MAC层、数据链结层,以及传输过程中的资料加密机制等发展由IEEE所主导,并共同针对ZigBee Protocol Stack的发展进行研议,而未来还能依系统客户的需求,来修正其所需的应用接口。

Zigbee的应用与市场发展

Zigbee的出发点是希望能发展一种易布建的低成本无线网络,而其低耗电性可使产品的电池能维持6个月到数年的时间。在产品发展的初期,将以工业或企业市场的感应式网络为主,提供感应辨识、灯光与安全控制等功能,再逐渐将目前市场扩展至家庭中的应用。根据Zigbee Alliance的观点,一般家庭可将Zigbee应用于空调系统的温度控制器、灯光、窗帘的自动控制、老年人与行动不便者的紧急呼叫器、电视与音响的万用遥控器、无线键盘、鼠标、摇杆、烟雾侦测器、智能型卷标,以及玩具等产品。

目前在ZigBee标准制定发展上,IEEE已于去年通过有关实体层与媒体储存控制层的标准草案,因此早在2003年底,即有芯片设计厂商发表适用于868MHz频段的ZigBee芯片,预估在2004年底,可达到商品化的目标。而投入ZigBee技术研发的厂商,对于市场的发展都抱持相当乐观的看法。根据Adcon Telemetry AG观点,预估全球低速通讯应用市场,将在2005年达到5.7亿台的规模,届时不论ZigBee能取得多大的市场占有率,这都代表其可发展的空间的确具有相当大的潜力。

一、引言

长期以来,低价、低传输率、短距离、低功率的无线通讯市场一直存在着。自从Bluetooth出现以后,曾让工业控制、家用自动控制、玩具制造商等业者雀跃不已,但是Bluetooth的售价一直居高不下,严重影响了这些厂商的使用意愿。如今,这些业者都参加了IEEE802.15.4小组,负责制定ZigBee的物理层和媒体介入控制层。IEEE802.15.4规范是一种经济、高效、低数据速率(<250 kbps)、工作在2.4 GHz和868/928 MHz的无线技术,用于个人区域网和对等网状网络。它是ZigBee应用层和网络层协议的基础。ZigBee是一种新兴的近距离、低复杂度、低功耗、低数据速率、低成本的无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术提案。主要用于近距离无线连接。它依据802.15.4标准,在数千个微小的传感器之间相互协调实现通信。这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。

一般而言,随着通信距离的增大,设备的复杂度、功耗以及系统成本都在增加。相对于现有的各种无线通信技术,ZigBee技术将是最低功耗和成本的技术。同时由于ZigBee技术的低数据速率和通信范围较小的特点,也决定了ZigBee技术适合于承载数据流量较小的业务。所以ZigBee联盟预测的主要应用领域包括工业控制、消费性电子设备、汽车自动化、农业自动化和医用设备控制等。

二、IEEE 802.15.4和ZigBee介绍

IEEE无线个人区域网(PAN)工作组的IEEE 802.15.4技术标准是ZigBee技术的基础。802.15.4标准旨在为低能耗的简单设备提供有效覆盖范围在10米左右的低速连接,可广泛用于交互玩具、库存跟踪监测等消费与商业应用领域。传感器网络是其主要市场对象。

2.1 802.15.4协议架构及其技术特点

IEEE802.15.4满足国际标准组织(ISO)开放系统互连(OSI)参考模式。它定义了单一的MAC层和多样的物理层(如图1所示),表1中概括了802.15.4的一些特点:

 

 

IEEE802.15.4的MAC层能支持多种LLC标准,通过SSCS(Service-Specific Convergence Sublayer,业务相关的会聚子层)协议承载IEEE802.2类型一的LLC标准,同时允许其他LLC标准直接使用IEEE802.15.4 的MAC层服务。表2列出了IEEE802.15.4的LLC层和MAC层主要功能:

 

IEEE802.15.4定义了两个物理层标准,分别是2.4GHz物理层和868/915MHz物理层。它们都基于DSSS(Direct Sequence Spread Spectrum,直接序列扩频),使用相同的物理层数据包格式,区别在于工作频率、调制技术、扩频码片长度和传输速率。2.4GHz波段为全球统一的无需申请的ISM频段,有助于ZigBee设备的推广和生产成本的降低。2.4GHz的物理层通过采用高阶调制技术能够提供250kb/s的传输速率,有助于获得更高的吞吐量、更小的通信时延和更短的工作周期,从而更加省电。868MHz是欧洲的ISM频段,915MHz是美国的ISM频段,这两个频段的引入避免了2.4GHz附近各种无线通信设备的相互干扰。868MHz的传输速率为20kb/s,916MHz是40kb/s。这两个频段上无线信号传播损耗较小,因此可以降低对接收机灵敏度的要求,获得较远的有效通信距离,从而可以用较少的设备覆盖给定的区域。

表1中概括了802.15.4的一些特点:

 

2.2 ZigBee技术概述

ZigBee是一组基于IEEE批准通过的802.15.4无线标准研制开发的,有关组网、安全和应用软件方面的技术标准。它不仅只是802.15.4的名字。IEEE仅处理低级MAC层和物理层协议,ZigBee联盟对其网络层协议和API进行了标准化。完全协议用于一次可直接连接到一个设备的基本节点的4K字节或者作为Hub或路由器的协调器的32K字节。每个协调器可连接多达255个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。ZigBee联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络的远距离传输不会被其它节点获得。

完整的Zigbee协议套件由高层应用规范、应用会聚层、网络层、数据链路层和物理层组成。网络层以上协议由ZigBee联盟制定,IEEE802.15.4负责物理层和链路层标准。

应用会聚层将主要负责把不同的应用映射到ZigBee网络上,具体而言包括:

(1)安全与鉴权;

(2)多个业务数据流的会聚;

(3)设备发现;

(4)业务发现。

网络层将主要考虑采用基于ad hoc技术的网络协议,应包含以下功能:

(1)通用的网络层功能:拓扑结构的搭建和维护,命名和关联业务,包含了寻址、路由和安全;

(2)同IEEE802.15.4标准一样,非常省电;

(3)有自组织、自维护功能,以最大程度减少消费者的开支和维护成本。

相对于常见的无线通信标准,Zigbee协议套件紧凑而简单,其具体实现的要求很低,以下是Zigbee协议套件的需求估计:

(1)8位处理器,如80c51;

(2)协议套件软件需要32kbytes的ROM;

(3)最小协议套件软件大约4kbytes的ROM;

(4)网络主节点需要更多的RAM,以容纳网络内所有节点的设备信息、数据包转发表、设备关联表、与安全有关的密钥存储等。

2.3 整个协议构架

在标准制定的分工上,由ZigBee Alliance与IEEE 802.15.4的任务小组共同制定,其中实体层、MAC层、资料链结层,以及传输过程中的资料加密机制等发展由IEEE所主导,并共同针对ZigBee Protocol Stack的发展进行研讨,而未来还能依系统客户的需求,为不同应用修正其所需之应用介面(如图二所示):

2.4 IPV6 Over 802.15.4

ZigBee联盟希望建立一种可连接每个电子设备的无线网。它预言ZigBee将很快成为全球高端的无线技术,到2007年将达到30亿节点。具有几十亿个节点的网络将很快耗尽已压缩的IPv4的地址空间,但是ZigBee的路由选择不依赖于IPv6。IPv6采用128位地址长度,几乎可以不受限制地提供地址。按保守方法估算,IPv6实际可为整个地球的每平方米面积分配1000多个地址。IPv6在设计过程中,除了一劳永逸地解决了地址短缺问题以外,还考虑了在IPv4中解决不好的其他问题,如端到端IP连接、服务质量(QoS)、安全性、多播、移动性、即插即用等。因此,将IPV6和802.15.4的结合将是以后研究发展的方向,目前IETF也在积极的制定V6over15.4的Draft,其标准也不久将出台。

 三、ZigBee技术的优势及应用

3.1 ZigBee技术的主要优势及其与蓝牙和Wi-Fi的比较:

IEEE 802.15.4和ZigBee从一开始就被设计用来构建包括恒温装置,安全装置和煤气读数表等设备的无线网络。

这是由其主要技术优势决定的:

1.数据传输速率低:只有10k字节/秒到250k字节/秒,专注于低传输应用。

2.功耗低:在低耗电待机模式下,两节普通5号干电池可使用6个月到2年,免去了充电或者频繁更换电池的麻烦。这也是ZigBee的支持者所一直引以为豪的独特优势。

3.成本低:ZigBee数据传输速率低,协议简单,所以大大降低了成本。且免收专利费。

4.网络容量大:每个ZigBee网络最多可支持255个设备。

5.时延短:通常时延都在15毫秒至30毫秒之间。

6.安全:ZigBee提供了数据完整性检查和鉴权功能,采用AES-128加密算法。

7.有效范围小:有效覆盖范围10~75米之间,具体依据实际发射功率的大小和各种不同的应用模式而定,基本上能够覆盖普通的家庭或办公室环境。

8.工作频段灵活:使用频段为2.4GHz、868MHz(欧洲)及915MHz(美国),均为免执照频段。

与之相反,蓝牙技术基本上只是设计作为有线的替代品,经常是为手机和附近的耳机或PDA联网用的。它可以在不充电的情况下工作几周,但无法工作几个月,更不用说几年了;

一般情况下,蓝牙设备需要人手配置和维护网络连接;它可以用来有效地处理8个设备(一个主设备和7个从设备),如果更多的话,通讯速率则显著下降。

而802.11, 也被称作Wi-Fi也有类似的问题。虽然它是将笔记本和桌面电脑接入有线网络的很好的解决方案,但它的功耗却非常高。

3.2 可能应用及市场发展:

ZigBee的出发点是希望能发展一种易布建的低成本无线网络,同时其低耗电性将使产品的电池能维持6个月到数年的时间。在产品发展的初期,将以工业或企业市场的感应式网路为主,提供感应辨识、灯光与安全控制等功能,再逐渐将目前市场拓展至家庭中的应用。通常符合以下条件之一的应用,就可以考虑采用ZigBee技术:

1.设备成本很低,传输的数据量很小;

2.设备体积很小,不便放置较大的充电电池或者电源模块;

3.没有充足的电力支持,只能使用一次性电池;

4.频繁地更换电池或者反复地充电无法做到或者很困难;

5.需要较大范围的通信覆盖,网络中的设备非常多,但仅仅用于监测或控制。

根据ZigBee Alliance的观点,一般家庭可将ZigBee应用于以下装置:

1.空调系统的温度控制器, 灯光、窗帘的自动控制;

2.老年人与行动不便者的紧急呼叫器;

3.电视与音响的万用遥控器, 无线键盘、滑鼠、摇杆,玩具;

4.烟雾侦测器;

5.智慧型标签。

Wi-Fi

Wi-Fi联盟成立于1999年,当时的名称叫做Wireless Ethernet Compatibility Alliance (WECA)。在2002年10月,正式改名为Wi-Fi Alliance。 通俗说法: 无线路由器WIFI就是一种无线联网的技术,以前通过网线连接电脑,而现在则是通过无线电波来连网;常见的就是一个无线路由器,那么在这个无线路由器的电波覆盖的有效范围都可以采用WIFI连接方式进行联网,如果无线路由器连接了一条ADSL线路或者别的上网线路,则又被称为“热点”。 现在市面上常见的无线路由器多为54M速度,再上一个等级就是108M的速度,当然这个速度并不是你上互联网的速度,上互联网的速度主要是取决于WIFI热点的互联网线路。

使用的是2.4GHz附近的频段

Wi-Fi未来最具潜力的应用将主要在SOHO、家庭无线网络以及不便安装电缆的建筑物或场所。凭借这些优点,Wi-Fi 已成为目前最为流行的笔记本电脑技术而大受青睐。

蓝牙

短距离,10m

Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术

Bluetooth产品涉及PC、笔记本、移动电话等信息设备和A/V设备、汽车电子、家用电器和工业设备领域。尤其是个人局域网应用,包括无绳电话、PDA与计算机的互联、笔记本电脑与手机的互联以及无线RS232,RS485接口等。

但Bluetooth同时存在植入成本高、通信对象少、通信速率较低和技术不够成熟的问题,它的发展与普及尚需经过市场的磨炼,其自身的技术也有待于不断完善和提高

调制解调为什么进行调制?

1.天线要将低频信号有效辐射出去,它的尺寸就必须很大

2.如果直接发射出去,则发射机工作于同一频率范围,接收机将同时受到许多不同电台的节目,无法加以选择

2.低频天线和谐振回路的参数应该在很宽的范围内,很难做到

检波,就是将调幅信号由高频搬到低频,用非线性元器件进行频率变换,产生许多新频率,然后滤波,取出所需的原调制信号

组成:

1高频信号输入电路,调谐回路

2非线性器件,二极管三极管工作在非线性状态

3,低通滤波器,通常RC电路,取出原调试频率分量,滤除高频分量

调幅波的解调方法有包络检波、同步检波等

包络检波,主要是利用二极管的单向导电性和检波负载RC的充放电过程

ISM频段

ISM(Industrial Scientific Medical) Band,此频段( 2.4~2.4835GHz)主要是开放给工业、科学、医学三个主要机构使用,

ISM频段即工业,科学和医用频段,无需许可证,只需要遵守一定的发射功率(一般低于1W),并且不要对其它频段造成干扰即可。

最初是由美国联邦通信委员会(FCC)分配的不必许可证的无线电频段(功率不能超过1W)。在美国分为为工业

(902-928MHz),科学研究(2.42-2.4835GHz)和医疗(5.725-5.850GHz)三个频段。而在欧洲900MHz的频段则有部份用于GSM通信,用于ISM的低频段为868MHZ和433MHz。 2.4GHz为各国共同的ISM频段。因此无线局域网,蓝牙,ZigBee等无线网络,均可工作在2.4GHz频段上

对讲机所使用频率

对讲机的频率范围:

在日常对讲机的使用中,根据中国无线电管理委员会规定,对讲机频率一般做如下划分:

专业对讲机:V段136-174MHZ;U段400-470MHZ;

武警公安用:350-390MHZ;

海岸用:220MHZ;

交通信号灯监控、防空警报器:223.025-235Mhz

业余用:433MHZ;

集群用:800MHZ;

手机:900MHZ/180MHZ;

根据电磁理论,频率越低,波长越长,电波穿透建筑物的能力越弱,但绕射能力越强;频率越高,波长越短,电波穿透建筑物能力越强,但绕射能力越弱。因此,在城市因为楼房密集度高,需要电波穿透力强,所以频率越高越适合;而在旷野或海面这种空旷的地域使用对讲机,则需要绕射能力强的电波,所以选用V段(136-174MHZ)比较合适频谱汇总

波长名称

频率

名称缩写

频率或波长传播方

式目前频率分配情况注

万米波(甚长波)基低

频VLF 30K以下,其中20HZ~20k为人的听觉频率范围 音频天波,地波,以地波传播为主(10~20)kHz,主要用于无线电导航,

海上移动通信和广播 

千米波(长波)低频LF

30K~300K (200~3000)kHz,主

要用于广播,无线

电导航,海上移动通信,地对空通信 百米波(中波)中频MF

300K~3000K,其中535K~1605K常见中波广播频率主要以地波

播,夜间天波亦可传播中波广播磁场方向性强

十米波(短波)高频HF 3M~30M,短波广播几兆至一二是兆地波传播距离极近,以视距

内直线传播为主,电离层反射主要用于定点通信,航海和航空移动通信,广播,热带广播及业余无线电等短波需天线,不稳定,但距离

远,容易实现米波(超短波)

基高频VHF

30M~300M,其中FM我国

87-108,TV:VL:1-6占I 即 48.5-92;VH:6-12占III 即167-223视距内直线传播(30~1000)MHZ,主要用于电视广播,陆上移动通信,航空移动通信,海上

移动通信,定点通信,空间通信和雷

达等 分米波(超短波)特高

频UHF

300M~3000M,其中TV U段IV 13-14 为 470-566;V 25-68 为 606-958;GSM 中GSM900 发射频率

890-915,接收频率为

935-960;DCS1800发射为

1710-1785,接收为

1800-1880;PCS1900(美)发1880-1970,接收

1950-1990。而CDMA发射824-849,接收868-894

与光的传播特性基本相同 厘米波(微波)

超高频SHF

3G~30G 1GHZ-10GHZ,主要用于无线电微波接力系统,其次是定点通信和移动通信

业务;微波炉

微波已具有热效应

毫米波(微波)极高

频EHF 30G~300G 10GHZ以上,主要用于无线电中继接力通信,空间通信,雷

达,导航,无线电天文学等.亚毫米波(微波) 300G~3000G 雷达 红外线之远红外线 2.5um-1mm 具有热效应红外线之中红外线 2.5um-10um,其中人体温36oc-37oc时对应9um-10um 红外线之近红外线 0.76um-2.5um,其中

0.8um-1.8um为光纤通信

可见光 780nm-380nm 红-紫紫外线 3nm-400nm 可杀菌原子电离X射线 0.001nm-3nm 可穿过活的生物器官,拍片子r射线 

 

<0.001nm

 

 

核射电,原子核,有害

天线及其匹配

只要在金属体内有交变的电流,该金属体就要向空间辐射电磁波;反之,只要空间中有一定强度的电磁波信号,就会在该空间中的金属体上感应出交变的电流。天线与一般金属体的不同之处在于,天线强调了将金属体内交变电流最有效的转变成空间的电磁波或将空间的电磁波最有效的转变成金属体中的交变电流信号。

根据相关理论,天线采用1/4波长的长度效果最好,则433MHZ对应的长度:

波长=3.0×10^8(m/s)/频率=0.69m

天线长度=1/4波长=0.173m=17.3cm

通常我们称1/4波长的天线为鞭状天线。这种天线也是一些小型的无线收发设备用得最多的一种天线。在实际应用中由于受到体积的限制,往往天线的长度总是做成小于1/4波长的,所以要在天线上加电感,电感的加载方式有三种:1、底部加载,2、中部加载,3、顶部加载

将一条长度为半波长的导线绕成螺旋形式,其效果和一条四分之一波长的天线相差无几,这种设计称为螺旋天线。由于这种天线很少能找到与之匹配的传输电缆,所以这种天线多用在不需要传输电缆的设备中,如手提电话、手持式无线对讲机等

考虑一下参数的匹配:

频率

阻抗

极化方向

其他

增益

柱状天线

型号:Q433-40FJ

频率:433±3MHz

驻波:≤2.0

增益:2.5dBi

极化型式:Vertical

最大功率:50W

输入阻抗:50?

接口型式:SMA Male

天线尺寸:Φ8×47mm

重量:5g

弹簧天线

dB dBm

dB(Decibel,分贝) 是一个纯计数单位,本意是表示两个量的比值大小,没有单位。 在工程应用中经常看到貌似不同的定义方式(仅仅是看上去不同)。对于功率,dB = 10*lg(A/B)。对于电压或电流,dB = 20*lg(A/B)。此处A,B代表参与比较的功率值或者电流、电压值。 dB的意义其实再简单不过了,就是把一个很大(后面跟一长串0的)或者很小(前面有一长串0的)的数比较简短地表示出来。

如(此处以功率为例): X = 100000 = 10^5 X(dB) = 10*lg(X) dB= 10*lg(10^5) dB= 50 dB

数值变小,读写方便

运算方便

1倍=0db

10倍=10db

100倍=20db

dBm lg值扩大一千倍,等于对应dB值加上了30

dBm是一个考征功率绝对值的值,计算公式为:10lg(功率值/1mw

对于40W的功率,按dBm单位进行折算后的值应为:

10lg(40W/1mw)=10lg(40000)=10(lg4+lg10000)=46dBm。

功率值扩大1000倍后再进行10lg运算

频谱分析仪

频谱分析仪 频域分析

meas测量窗口

span间距

时域

频域

level电平

db振幅

MKR maker?

trace跟踪 轨迹

TRIG触发

跳频

一种利用载波跳变实现频谱展宽的扩频技术。广泛应用于抗干扰的通信系统中。

其方法是把一个宽频段分成若干个频率间隔(称为频道,或频隙),由一个伪随机序列控制发射机在某一特定的驻留时间所发送信号的载波频率。

当接收机的本地振荡信号频率与接收机输入信号的频率按同一规律同步跳变,那么,经过变频以后,将得到一个固定的中频信号即把原来的频率跳变解除,这一过程称解跳或去跳。

通常所接触到的无线通信系统都是载波频率固定的通信系统,如无线对讲机,汽车移动电话等,都是在指定的频率上进行通信,所以也称作定频通信。这种定频通信系统,一旦受到干扰就将使通信质量下降,严重时甚至使通信中断。 例如:电台的广播节目,一般是一个发射频率发送一套节目,不同的节目占用不同的发射频率。有时为了让听众能很好地收听一套节目,电台同时用几个发射频率发送同一套节目。这样,如果在某个频率上受到了严重干扰,听众还可以选择最清晰的频道来收听节目,从而起到了抗干扰的效果。但是这样做的代价是需要很多额谱资源才能传送一套节目。如果在不断变换的几个载波频率上传送一套广播节目,而听众的收音机也跟随着不断地在这几个频率上调谐接收,这样,即使某个频率上受到了干扰,也能很好地收听到这套节目。这就变成了一个跳频系统。

 另外在敌我双方的通信对抗中,敌方企图发现我方的通信频率,以便于截获所传送的信息内容,或者发现我方通信机所在的方位,以便于引导炮火摧毁。定频通信系统容易暴露目标且易于被截获,这时,采用跳频通信就比较隐蔽也难以被截获。因为跳频通信是“打一枪换一个地方”的游击通信策略、使敌方不易发现通信使用的频率,一旦被敌方发现,通信的频率也已经“转移”到另外一个频率上了。当敌方摸不清“转移规律”时,就很难截获我方的通信内容。 因此,跳频通信具有抗干扰、抗截获的能力,并能作到频谱资源共享。所以在当前现代化的电子战中跳频通信已显示出巨大的优越性。另外,跳频通信也应用到民用通信中以抗衰落、抗多径、抗网间干扰和提高频谱利用率。

跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。 与定频通信相比,跳频通信比较隐蔽也难以被截获。只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。

就是锁项环技术,在很多通信设备上常用。他通过变频来达到一些通信目的,这种技术不容易受到干扰。

在发送的信息中,有一些是专用的同步码,接收的时候使用专用PLL电路,只有相位频率完全一致时,才有信号输出。

普通通信的频率是固定的,或变频慢,容易捕捉

但如果频率是无限不循环变频–这类跳频基本就捕捉不到了

种类,难度,价值,保密程度就是这么过度没有固定的分类….注意大多数不能互通,就是发的一方只能一个,其他在这个时候收.

因为目前大多数通信是靠发射短波电磁波到大气层或卫星之后反射到地面,所以,覆盖面积大,通信不受方向影响,但也容易暴露,跳频只是避免被同步捕捉,但一但实施电子干扰就没有作用了有干扰站,干扰车,干扰卫星,道理大同小异(主要有三个:一是空间场干扰,通过电磁波辐射窜入系统;二是电源干扰,它直接侵害系统;三是信号干扰通道,通过与主机相连进入系统)都是发射乱糟的电磁波让你断序丢包或通信困难

FSK

(Frequency-shift keying)- 频移键控是利用载波的频率变化来传递数字信息。它是利用基带数字信号离散取值特点去键控载波频率以传递信息的一种数字调制技术

秒杀卡王超强5000G

您的网名: *

电子邮件: * 绝不会泄露

你的网址:

评论内容:

(Ctrl+Enter快捷回复)

Spam Protection by WP-SpamFree

首页 |顶部 | | 登录

无线通信系统的基本工作原理

前言: 无线通信(Wireless communication)就是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式,近些年信息通信领域中,发展最快、应用最广的就就是无线通信技术。在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。 无线通信主要包括微波通信与卫星通信。微波就是一种无线电波,它传送的距离一般只有几十千米。但微波的频带很宽,通信容量很大。微波通信每隔几十千米要建一个微波中继站。卫星通信就是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。 一、无线通信系统的类型 按照无线通信系统中关键部分的不同特性, 有以下一些类型: 1、按照工作频段或传输手段分类, 有中波通信、短波通信、超短波通信、微波通信与卫星通信等。所谓工作频率, 主要指发射与接收的射频(RF)频率。射频实际上就就是“高频”的广义语, 它就是指适合无线电发射与传播的频率。无线通信的一个发展方向就就是开辟更高的频段。 2、按照通信方式来分类, 主要有(全)双工、半双工与单工方式。 3、按照调制方式的不同来划分, 有调幅、调频、调相以及混合调制等。 4、按照传送的消息的类型分类, 有模拟通信与数字通信, 也可

以分为话音通信、图像通信、数据通信与多媒体通信等。 各种不同类型的通信系统, 其系统组成与设备的复杂程度都有很大不同。但就是组成设备的基本电路及其原理都就是相同的, 遵从同样的规律。本书将以模拟通信为重点来研究这些基本电路, 认识其规律。这些电路与规律完全可以推广应用到其它类型的通信系统。 二、无线通信系统的基本工作原理 无线通信系统组成框图 各部分作用: 1信息源:提供需要传送的信息 2变换器:待传送的信息(图像、声音等)与电信号之间的互相转换 3发射机:把电信号转换成高频振荡信号并由天线发射出去 4传输媒质:信息的传送通道(自由空间) 5接收机:把高频振荡信号转换成原始电信号 6受信人:信息的最终接受者

现代通信原理期末考试A卷

北京城市学院信息学部考试试卷A 2011-2012学年第一学期期末 课程名称:现代通信原理 使用班级:无线网专 考试时间:150分钟 考试形式:闭卷 共3页,共五道大题 空白答题纸4页 请在答题纸上作答,答在试卷上成绩无效(如果无答题纸,此内容可以删除。但不允许试卷、答题纸都有答题,不便存档。) 一、 填空(每小题2分,共20分) 1. 数字通信系统的有效性具体可用信道的信息传送速率来衡量,传输速率越高,系 统有效性就越好。一般数字通信系统传输速率有三种定义方法即 ____________、___________________和消息传输速率。 2. 数字通信系统的可靠性指标可用差错率来衡量,常用码元差错率又称_________ 和信息差错率又称为_______________来表示。 3. 通信系统没有固定的分类方法,可从不同的角度对其分类,如按传输信号的性质 分为模拟通信系统和数字通信系统;按工作方式不同又可分为___________通 信、半双工通信和_________________通信。 4. 模拟调制是指用来自信源的模拟基带信号去控制高频载波的某个参数,使该基带 信号被“装载”到这个高频载波上。根据载波受控参数的不同,调制可分为 ____________、____________和调相三种。 5. 角度调制是将调制信号附加到载波的相角上。角度调制已调信号的频谱不是调制 信号频谱在频率轴上的线性搬移,而是使调制信号的频谱结构发生根本性的变 化。因此,角度调制也称为非线性调制,主要包括_________和_________ 两种。 6. 一个实际的数字基带传输系统,尽管进行了精心设计,要使其性能完全达到理想 要求也是十分困难的。为了克服码间串扰或减小其影响,可以对基带系统进行 实验测量和调整。用实验法测量基带传输系统常采用的方法是____________ 法,而对系统性能的调整常采用_________________器进行。 7. 数字调制是用载波信号的某些离散状态来表征所传送的数字信息,也称数字调制

无线通信基本原理

无线通信差不多原理、差不多概念 1、无线频段的划分 2、我国常用移动通信使用频段 (a)GSM900:上行:890~915MHz,下行:935~960MHz,每载波 带宽200 KHz; GSM1800:上行:1710~1720MHz,下行:1805~1815MHz,每载波带宽200 KHz; (b)CDMA2000:上行:825~835MHz,下行:870~880MHz,每载 波带宽1.23MHz; (c)PHS:1900~1920MHz,每载波带宽300KHz;

(d)集群:上行806~821MHz,下行851~866MHz,每载波带宽 25KHz; 3、波长λ、频率f的关系为 c=f*λ 式中:c为光速,数值为3×108m/s,f单位为Hz,λ单位为m。 4、波传播的几种方式 a)表面波传播:以绕射方式,沿着地球表面传播。 b)天波传播:通过高空电离层反射传播。 c)空间波传播:通过直线传播和地面反射传播。 d)散射传播:利用大气对流层和电离层的不均匀性来散射传 播。 长波一般通过表面波传播;中波、短波一般通过表面波或天波传播;微波一般通过空间波、散射波传播。 5、仙农(Shannon)定理 C=Blog2(1+S/N) 上式中C为信道容量,B为信道带宽,S/N为信噪比。

扩频通信即据此原理。 6、TDD、FDD、TDMA、FDMA、CDMA的区不 a)TDD(时分双工) 收发信共用一射频频带,上、下行链路使用不同的时隙来进行通信。 b)FDD(频分双工) 收发信使用一个不同的射频频率来进行通信。 c)TDMA(时分多址) 传送给不同终端用户的信息通过同一载波的不同时隙来区分。 d)FDMA(频分多址) 传送给不同终端用户的信息通过不同载波来区分。 CDMA(码分多址) 传送给不同终端用户的信息通过不同码调制来区分。 7、大尺度路径损耗和小尺度路径损耗 大尺度路径损耗:无线信号经长距离上的场强变化,又叫慢衰落。自由空间损耗即属于典型的大尺度路径损耗。

无线通信原理与应用课后题答案

射频信道带宽峰值数 据速率 典型的数 据速率 研究组 织 最大并发 用户 调制类型 2G IS-95 1.25MHz 1.228 Mcps 2.4Kbps, 4.8Kbps 电信工 业协会 64 正交扩频 BPSK GSM 200KHz 270.833 Kbps9.6Kbps 欧洲电 信运营 者和制 造厂家 组成的 标准委 员会 8 GMSKBT =0.3 IS-136 &PDC 30KHz [25KHz 用于 PDC] 48.6 Kbps11.2Kbps 美国电 子工业 协会和 通信工 业协会 (EIA 和 TIA) 3 PDC 20帧内支 持6个用 户 DQPSK π /4DQPSK 2.5G IS-95B 1.25MHz 64 Kbps64Kbps 64 正交扩频 BPSK HSCSD 200KHz 57.6 Kbps9.6Kbps GSM 的运营 商 单用户GMSK

2.5G GPRS 200KHz 171.2 Kbps 115 Kbps GSM 的运营 商 多用户 π /4DQPSK EDGE 200KHz 384 Kbps 144 Kbp GSM, IS-136 的运营 商 单用户GSMK, 8-PSK 3G CDMA 2000 1.25MHz 307 Kbps 2Mbps 国际电 信联盟 ITU 是 2GCDMA 用户数的 2倍 多载波技 术 W-CDMA 5MHz 2.048 Mbps 8Mbps 国际电 信联盟 ITU 100~350 直接序列 扩频 TD- SCDMA 1.6MHz 384 Kbps 超过 384Kbps 国际电 信联盟 ITU 一个高速 用户或者 几个低速 用户 直接序列 扩频 习题2.5 1.IS-136是2G通信标准,其每30KHz支持3个用户时隙,能在一定程度上 满足用户的需求,但随着技术的发展,人们对通信的要求也越来越高,传统的2G已不能满足人们的需要,就需要我们来寻求更方便快捷的通信方式。 2.GSM平台上发展起来的第三代移动通信标准W-CDMA能够保证对GSM, IS-136,PDC TDMA技术以及多种2.5G TDMA技术的后向兼容,它保留了网络结构和比特级的GSM数据封装,通过新的CDMA空中接口标准提供了更强的网络能力和带宽。

现代通信原理与技术第三版课后思考题答案

第一章 1.1 以无线广播和电视为例,说明图 1-1 模型中的信息源,受信者及信道包含的具体内容是什么 在无线电广播中,信息源包括的具体内容为从声音转换而成的原始电信号,收信者中包括的具体内容就是从复原的原始电信号转换乘的声音;在电视系统中,信息源的具体内容为从影像转换而成的电信号。收信者中包括的具体内容就是从复原的原始电信号转换成的影像;二者信道中包括的具体内容分别是载有声音和影像的无线电波 1.2 何谓数字信号,何谓模拟信号,两者的根本区别是什么 数字信号指电信号的参量仅可能取有限个值;模拟信号指电信号的参量可以取连续值。他们的区别在于电信号参量的取值是连续的还是离散可数的。 1.3 何谓数字通信,数字通信有哪些优缺点 传输数字信号的通信系统统称为数字通信系统; 优缺点: 1.抗干扰能力强;2.传输差错可以控制;3.便于加密处理,信息传输的安全性和保密性越来越重要,数字通信的加密处理比模拟通信容易的多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密,解密处理;4.便于存储、处理和交换;数字通信的信号形式和计算机所用的信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储,处理和交换,可使通信网的管理,维护实现自动化,智能化;5. 设备便于集成化、微机化。数字通信采用时分多路复用,不需要体积较大的滤波器。设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小,功耗低;6. 便于构成综合数字网和综合业务数字网。采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。另外,电话业务和各种非话务业务都可以实现数字化,构成综合业务数字网;缺点:占用信道频带较宽。一路模拟电话的频带为 4KHZ 带宽,一路数字电话约占64KHZ。 1.4 数字通信系统的一般模型中的各组成部分的主要功能是什么 数字通行系统的模型见图1-4 所示。其中信源编码与译码功能是提高信息传输的有效性和进行模数转换;信道编码和译码功能是增强数字信号的抗干扰

无线通信基础知识

序 无线通信之所以成为既富挑战性又能引起研究人员兴趣的课题,主要原因有两个,这两个原因对于有线通信而言基本没有什么影响。首先是衰落(fading)现象;其次是无线用户是在空中进行通信,因此彼此间存在严重的干扰(interference),下面分别做一简要介绍。 1)衰落 首先介绍一些无线衰落信道的特性,与其他通信信道相比,移动信道是最为复杂的一种。电波传播的主要方式是空间波,即直射波、折射波、散射波以及它们的合成波。再加之移动台本身的运动,使得移动台与基站之间的无线信道多变并且难以控制。信号通过无线信道时,会遭受各种衰落的影响,一般来说接收信号的功率可以表达为: P(d)=|d|-n S(d)R(d) 其中d表示移动台与基站的距离向量,|d|表示移动台与基站的距离。根据上式,无线信道对信号的影响可以分为三种: (1) 大尺度衰落:电波在自由空间内的传播损耗|d|-n,其中n一般为3~4,与频率无关; (2) 阴影衰落:S(d)表示,由于传播环境的地形起伏、建筑物和其他障碍物对地波的阻塞或遮蔽而引发的衰落,被称作中等尺度衰落; (3) 小尺度衰落:R(d)表示,它是由发射机和接收机之间的多条信号路径的相长干扰和相消干扰造成的,当空间尺度与载波波长相当时,会出现小尺度衰落,因此小尺度衰落与频率有关。 大尺度衰落与诸如基站规划之类的问题关系更为密切,小尺度衰落是本文的

重点。 2)干扰 干扰可以是与同一台接收机通信的发射机之间的干扰(如蜂窝系统的上行链路),也可以是不同发射机——接收机对之间的干扰(例如不同小区中用户之间的干扰)。

无线信道的多径衰落 无线移动信道的主要特征就是多径传播,即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机,参见图1。由于电波通过各个路径的距离不同,因而各条路径中发射波的到达时间、相位都不相同。不同相位的多个信号在接收端叠加,如果同相叠加则会使信号幅度增强,而反相叠加则会削弱信号幅度。这样,接收信号的幅度将会发生急剧变化,就会产生衰落。 图1 例如发射端发送一个窄脉冲信号,则在接收端可以收到多个窄脉冲,每一个窄脉冲的衰落和时延以及窄脉冲的个数都是不同的。对应一个发送脉冲信号,图2给出接收端所接收到的信号情况。这样就造成了信道的时间弥散性(time dispersion ),其中τmax被定义为最大时延扩展。 在传输过程中,由于时延扩展, 接收信号中的一个符号的波形会扩 展到其他符号当中,造成符号间干 扰( Inter Symbol interference, ISI )。为了避免产生ISI,应该令图2 符号宽度要远远大于无线信道的最大时延扩展,或者符号速率要小于最大时延扩展的倒数。由于移动环境十分复杂,不同地理位置,不同时间所测量到的时延扩

无线通信技术基础知识

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介

质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。 无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。

无线通信原理通俗解读

无线通信原理通俗解读 刚出校门的两个小伙子到了偶部门,皈依了偶门下。嘿嘿,偶也算带了两徒弟。 徒弟A很好学,刚来就满脸天真地问了偶一个很简单的问题:“师傅,手机之间是怎样通信的啊?” #¥%%%……##%T##@@@@@&&&@ MY GOD!这我要能解释清楚我为啥不去高通、爱立信混啊!想想也罢,咱虽然不懂大道理,皮毛还是懂一点的,就跟徒弟来个通俗版的解释,算引徒弟入门吧。 我:“徒弟,你说这手机是咋实现通信的啊?” 徒弟:“这个。。。。@@%%¥#” 我:“小样,没吃过猪肉总见过猪跑吧。你家以前有过韶峰电视机吧,傻傻地竖着两根天线,它的电视信号哪里来的呢?” 徒弟:“哦,我明白了,我家就住在县城里,县城最高的山上竖了一个高高的发射塔,电视信号就从那里来的。敢情这手机就是缩水版的电视,基站就是那山寨版的电视发射塔啊” PIA!PIA!PIA!徒弟脑门上挨了偶三戒尺 偶怒道:“啥叫山寨版,偶们的基站比那鸟电视发射台可牛B多了,给你三戒尺!不过你能领悟到两者的共同点,也算孺子可教” 徒弟:“咱单位可真会浪费钱啊,俺们县城就一个电视发射塔,××联通居然有500个基站。师傅,这是为了拉动内需么?” PIA!PIA!PIA!又是三戒尺 偶:“脑子咋这么不开窍呢,光知道相同的地方,这两者有啥不同呢。比如说你的手机不光收到××***给你发的垃圾短信,你也给别人发垃圾短信,比如~师傅我。而电视的话,你只有收西西TV信号的份,可甭想给人家发什么” 徒弟顿悟“电视是单向的,只有收没有发;而手机是双向的,既有收又有发。” “那为什么××TV一个发射塔就够了,而偶们要500个基站呢”偶启发道 “这个~~~~俺还是不知道”徒弟很尴尬 “你不是最爱看抗ri谍战片么,谈谈那里面的电台” “恩,这个我了解。谍战片里也有手机嘛@%%恩,那个叫电台。发报人抱着一个保险箱大小的终端,那玩意功率大啊,信号能从中国传到日本,也不用电池的。没看见敌特抓我们的地下党都是采取分片停电么,停了电要是信号没了,就去那里抓人嘛,可这个与多少个基站有啥关系”徒弟有点疑惑 “呵呵,终端个头越大发射功率就越大啊,电磁波传送距离也就越远啊。电台时代在日本拉根天线就能收到中国的信号,你看~~保险箱就是强大啊!可是咱不是地下党啊,咱出门要打电话不能抱一个保险箱啊,那玩意那么沉,中国移动还不得改名叫‘中国移不动’。后来大哥大不就应运而生么,那玩意~~砖头似的,酷毙了,既能打电话又能拿来拍人后脑勺,

无线通信原理与应用复习题.docx

一、选择题 1?用光缆作为传输的通信方式是_A ____ A有限通信B明显通信C微波通信D无线通信 2.下列选项屮_A—不属于传输设备 A电话机B光缆C微波接收机D同轴电缆 3?网状网拓扑结构中如果网络节点数为6,则连接网络的链路数为_D ________ A10 B 5 C6 D15 4.目前我国的电信网络是_C_级网络结构 A7 B5 C 3 D2 5.国际电信联盟规定话音信号牌的抽样频率为_D_ A3400HZ B5000HZ C6800HZ D8000HZ 6?下列_C_号码不属于我国常用的特殊号码业务。 A110 B122 C911 D114 7.PCM30/32路系统采用的是_B _____ 多路复用技术。 A频分多路复用技术B时分多路复用技术C波分多路复用技术D码分多路复用技术8?我国7号信令网采用的是_C_级网络结构。 A7 B5 C3 D2 9.下列哪两种数字数据编码方式会积累直流分量(多选)_A,C_ A单极性不归零码B双极性不归零C单极性归零码D双极性归零码 10.下列哪种数据交流形式不属于分组交换_A_ A电路交换B ATM交换CIP交换D MPLS交换 11?传统微波频段,频率范围为_D _____ A30~300HZ B30K~300KHZ C300K~3000KHZ D300M~300GHZ 12.下列哪种传输方式不属于无线电波的多径传输方式_B _____ A地波B宁宙射线C对流层反射波D B由空间波 13.关于微波通信补偿技术屮,下列哪项不属于常用的分集接收技术_D_ A频率分集B空间分集C混合分集D时间分集 14.卫星通信的工作频段屮,C频段的工作频段为6/4GHZ,下列哪项关于C频段的表述是正 确的___ C ___ A工作频段为4~6GHZ B工作频段为1.5GHZ C上行频率为6GHZ,下行频率为4GHZ D上彳丁频率为4GHZ,下彳丁频率为6GHZ 15.为保证同步卫星的可通信区域,地球站天线的仰角应为_B ______ AO B5 C大于0 D大于5 正在建设的我国第二代北斗系统是由_A_颗卫星组成 A35 B5 C3 D30 17.ADSL技术采用的是—A_复用技术 A频分复用技术B时分复用技术C波分复用技术D码分复用技术 18.下列哪种xDSL技术是上、下行速率对称的_C— A VDSL B ADSL C SDSL D RADSL 19.ADSL信道传输速率是_C ____ A上行最高1.6Mbits/s,下彳丁最高13Mbits/s B上彳丁最高2.3Mbits/s,下彳丁最高2.3Mbits/s C上行最高IMbits/s,下行最高12Mbits/s D上行最高2Mbits/s,下行最高2Mbits/s

无线通信原理实验报告—李晓-52112113

现代无线通信原理实验 李晓21班13号52112113 实验一Okumura-Hata无线传播模型仿真实验 实验内容 使用Matlab编程计算Okumura-Hata传播路径损耗,绘制Okumura-Hata传播模型损耗---频率曲线图。 实验条件 频率范围:300 ~1500MHz,基站天线高度为30m,移动台天线高度为1.5m。传播距离分别为d=2km和5 km,以频率为变量,通信距离为参变量编程绘出城市准平滑地形、郊区、农村环境下的Okumura-Hata传播模型损耗-频率曲线图。实验要求 在一个图中显示6条曲线; 所有曲线均为蓝色线,d=2km用实线,d=5km用虚线;城区用“o”、郊区用“* ”及乡村用“□”标注曲线上的点; 在曲线图的空白处对曲线进行标注; 图要有横纵坐标标示,横坐标为频率(Mhz),纵坐标为损耗中值(dB) 图形的题头为学生本人姓名和学号。 实验仿真图

200 400600 8001000120014001600 90100 110 120 130 140 150 160 频率(MHz) 损耗中值(d B ) 姓名:李晓 班级:二十一班 学号:52112113 城市: d1=2km 城市: d2=5km 郊区: d1=2km 郊区: d2=5km 乡村: d1=2km 乡村: d2=5km 实验图反映了随着频率,距离以及地点的变化而变化的损耗中值。 实验分析 由图看出 ①路径损耗都随传输距离的增大而增大; ②城市的路径损耗最大,郊区次之,乡村最小,说明障碍物越多对信号传输损耗的就越强; ③随 频 率 的 增 大,路径损耗越强。 附录 Okumura-Hata 传播模型路径损耗计算公式 式中 fc — 工作频率(MHz ) ()() ()69.5526.16log 13.82log 44.9 6.55log log p c te re te cell terrain L dB f h h h d C C α=+--+-++

通信原理思考题答案

第一章绪论 1.1以无线广播和电视为例,说明图1-1模型中的信息源,受信者及信道包含的具体内容是什么 在无线电广播中,信息源包括的具体内容为从声音转换而成的原始电信号,收信者中包括的具体内容就是从复原的原始电信号转换乘的声音;在电视系统中,信息源的具体内容为从影像转换而成的电信号。收信者中包括的具体内容就是从复原的原始电信号转换成的影像;二者信道中包括的具体内容分别是载有声音和影像的无线电波 1.2何谓数字信号,何谓模拟信号,两者的根本区别是什么 数字信号指电信号的参量仅可能取有限个值;模拟信号指电信号的参量可以取连续值。他们的区别在于电信号参量的取值是连续的还是离散可数的 1.3何谓数字通信,数字通信有哪些优缺点 传输数字信号的通信系统统称为数字通信系统;优缺点: 1.抗干扰能力强; 2.传输差错可以控制; 3.便于加密处理,信息传输的安全性和保密性越来越重要,数字通信的加密处理比模拟通信容易的多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密,解密处理; 4.便于存储、处理和交换;数字通信的信号形式和计算机所用的信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储,处理和交换,可使通信网的管理,维护实现自动化,智能化; 5.设备便于集成化、微机化。数字通信采用时分多路复用,不需要体积较大的滤波器。设备中大部分电路是数字电路,可用大规模和超大规模集成电路实现,因此体积小,功耗低; 6.便于构成综合数字网和综合业务数字网。采用数字传输方式,可以通过程控数字交换设备进行数字交换,以实现传输和交换的综合。另外,电话业务和各种非话务业务都可以实现数字化,构成综合业务数字网;缺点:占用信道频带较宽。一路模拟电话的频带为4KHZ带宽,一路数字电话约占64KHZ。 1.4数字通信系统的一般模型中的各组成部分的主要功能是什么 数字通行系统的模型见图1-4所示。其中信源编码与译码功能是提高信息传输的有效性和进行模数转换;信道编码和译码功能是增强数字信号的抗干扰能力;加密与解密的功能是保证传输信息的安全;数字调制和解调功能是把数字基带信号搬移到高频处以便在信道中传输;同步的功能是在首发双方时间上保持一致,保证数字通信系统的有序,准确和可靠的工作。1-5按调制方式,通信系统分类? 根据传输中的信道是否经过调制,可将通信系统分为基带传输系统和带通传输系统。 1-6 按传输信号的特征,通信系统如何分类? 按信号特征信道中传输的信号可分为模拟信号和数字信号,相应的系统分别为模拟通信系统和数字通信系统。 1-7按传输信号的复用方式,通信系统如何分类? 频分复用,时分复用,码分复用。 1-8单工,半双工及全双工通信方式是按什么标准分类的?解释他们的工作方式并举例说明他们是按照消息传递的方向与时间关系分类。单工通信是指消息只能单向传输的工作方式,通信双方只有一个进行发送,另一个只能接受,如广播,遥测,无线寻呼等。半双工通信指通信双方都能进行收发信息,但是不能同时进行收发的工作方式,如使用统一载频的普通对讲机。全双工通信是指通信双方能同时进行收发消息的工作方式,如电话等。 1-9通信系统的主要性能指标是什么? 分为并行传输和串行传输。并行传输是将代表信息的数字信号码元以组成的方式在两条或两条以上的并行信道上同时传输,其优势是传输速度快,无需附加设备就能实现收发双方字符同步,缺点是成本高,常用于短距离传输。串行传输是将代表信息的数字码元以串行方式一

无线模块通讯原理及硬件概要

3.1无线通信模块工作原理及硬件设计(此工作方式正测试没有完成) 无线通信模块的发射与接收主要采用nRF401作为主工作核心, nRF401是工作在433MHz ISM频段的单片无线收发芯片。nRF401最大传输速率为20kbps,可以和各种单片机和微控制器连接,控制简单方便。配合简单的通信协议,就可以使用nRF401实现无线数据传输。采用点对多点半双工通信机制,设计一个简单有效的通信协议,实现对所采集到的数据进行有效传送。最简单的多机通信方式就是使用串行通信,所以使用单片机串行口配合nRF401芯片,就可以实现简单有效的点对多点通信。其工作原理图如图3-3-1所示 图3-3-1 无线通信原理图 常用的点对多点通信方式有星状和链状两种。 如图.3-3-2系统由一台中央监控设备CMS (Central Monitoring System)和多台远程终端设备MRTU(Multiple Remote Termial Unit)构成点对多点多任务无线通信系统。在中央监控设备CMS 与远程终端RTU(Remote Termial Unit)之间用多台中转设备Tran作为中转站,以便起到暂存数据和延伸距离的作用。中转站之间,以单向通信方式进行传递数据。 如图 3-3--3系统由一台中央监控设备CMS和多台远程终端设备MRTU构成点对多点多任务无线通信系统。在中央监控设备CMS 与每一台远程终端RTU(Remote Termial Unit)都以双向通信方式进行传递数据。特别适用于数据量大,对时间要求较高的场合。 所以采用星状点对多点通信方式,以一台主机为中心,多台分机各自独立的方法,即使其中一台分机不能正常工作,也不会影响其它分机,不像链状点对多

无线通信专业(专业基础知识和专业技术知识)

一、无线通信专业 (一)无线通信专业基础知识 1.无线通信原理: (1)无线收发信设备知识; (2)无线信道的特性; (3)调制技术; (4)编码技术; (5)天线基本原理及相关参数; (6)跳频技术。 2.无线通信系统基础知识: (1)无线通信传输系统的组成及工作原理; (2)无线通信系统的制式、性能及分布状况、系统联网常识; (3)无线接口信令; (4)各种传输方式; (5)无线通信系统工作原理; (6)无线通信系统网络结构。 3.无线通信业务知识: (1)移动交换机的组成及电路结构; (2)移动交换机的工作原理; (3)移动交换机的维护常识;

(4)相关仪器、仪表的使用和基本知识。 4.各种传输方式、工作原理、网络结构。 5.其他知识: 本专业维护规程。 (二)无线通信专业技术知识 无线通信专业分为无线传输系统、微波传输系统、卫星通信传输系统、无线接入四个职业功能,每个职业功能还分为不同的工作内容。每个工作内容为一个考试模块,考生只需选择某一考试模块参加考试。 一、无线传输系统 ●工作内容:长波、中波、短波、超短波 ●专业能力要求:1.掌握测试仪表、工具的使用方法。 2.能够对分析测试结果,提出改进质量的技术措施。 3.掌握设备的软硬件构成及所使用的软件语言。 4.掌握各种电源设备的工作原理和性能。 5.熟练掌握主要测试仪表的原理和使用方法。 6.具备主持制定大中型工程计划并组织实施的能力。

7.完成设备的大修、更新、改造,组织新设备的安装、测试开通。 ●相关知识:1.电波传播特性。 2.针对大功率发射机设备的风冷、水冷循环系统原理。 3.无线通信原理。 4.无线通信系统基础知识。 5.无线通信业务知识。 二、微波传输系统 ●工作内容:微波终端、微波中继 ●专业能力要求:1.微波通信传输系统的结构。 2.监控系统的原理和组成。 3.掌握测试仪表、工具的使用方法。 4.能够对分析测试结果,提出改进质量的技术措施。 5.掌握设备的软硬件构成及所使用的软件语言。 6.掌握各种电源设备的工作原理和性能。 7.熟练掌握主要测试仪表的原理和使用方法。 ●相关知识:1.无线通信原理。 2.无线通信系统基础知识。 3.无线通信业务知识。 三、卫星通信传输系统

无线通信基本原理、基本概念(1).doc

无线通信基本原理、基本概念 1、无线频段的划分 2、我国常用移动通信使用频段 (a ) GSM900:上行:890?915MHz ,下行:935?960MHz ,每载波带宽 200 KHz ; GSM1800:上行:1710?1720MHz ,下行:1805?1815MHz ,每载波带宽 200 KHz ; (b ) CDMA2000 :上行:825?835MHz ,下行:870?880MHz ,每载波带宽 1.23MHz ; (C )PHS : 1900?1920MHz ,每载波带宽 300KHz ; (d )集群:上行806?821MHz ,下行851?866MHz ,每载波带宽25KHz ; 3、波长入、频率f 的关系为 c=f* 入 式中:C 为光速,数值为3X 108 m/s ,f 单位为Hz ,入单位为m 。 4、波传播的几种方式 表面波传播:以绕射方式,沿着地球表面传播。 天波传播:通过高 空电离层反射传播。 空间波传播:通过直线传播和地面反射传播。 散射传播:利用大气对流层和电离层的不均匀性来散射传播。 长波一般通过表面波传播;中波、短波一般通过表面波或天波传播;微波 一般通过空间波、散射波传播。 5、仙农(Shannon )定理 C=Blog 2(1+S/N ) 上式中C 为信道容量,B 为信道带宽,S/N 为信噪比。 扩频通信即据此原理。 6、TDD 、FDD 、TDMA 、FDMA 、CDMA 的区别 a ) b )

a ) TDD (时分双工) 收发信共用一射频频带,上、下行链路使用不同的时隙来进行通信。 b ) FDD (频分双工) 收发信使用一个不同的射频频率来进行通信。 C )TDMA (时分多址) 传送给不同终端用户的信息通过同一载波的不同时隙来区分。 d ) FDMA (频分多址) 传送给不同终端用户的信息通过不同载波来区分。 CDMA (码分多址) 传送给不同终端用户的信息通过不同码调制来区分。 7、大尺度路径损耗和小尺度路径损耗 大尺度路径损耗:无线信号经长距离上的场强变化,又叫慢衰落。自由空 间损耗即属于典型的大尺度路径损耗。 小尺度路径损耗:无线信号经过短时间或短距离传播后其幅度快速衰落, 又叫快衰落。多经传播是引起小尺度传播的主要原因。 8、平衰落和选择性衰落 平衰落:发射信号的频谱特性在接收机内仍能保持不变的衰落。 选择性衰落:发射信号的频谱特性在接收机内发生了畸变的衰落。 9、极化 波的极化是指电场的取向随时间变化的方式。 电场矢量的两个正交分量具有不同振幅和相位关系时,可能形成三种不同 的极化:线极化、园极化和椭圆极化。 i L 厂 选择性衰落 ------- ? ----- ? f r ---- \ 功率谱密度 功率谱密度 平衰落 f fO 发信频谱图 fO 收信频谱图 功率谱密度 发信频谱图 fO 收信频谱图

红外无线通信装置(非常详细的原理)

西南科技大学 自动化专业方向设计报告 设计名称:红外光通信装置 姓名:杨 * * 学号: 2 0 1 0 5 7 8 9 班级:自动 1 0 0 4 班 指导教师:武丽 起止日期: 2013年10月15日--11月9日 西南科技大学信息工程学院制

方向设计任务书 学生班级:自动1004 学生姓名:杨* * 学号:20105789 设计名称:红外光通信装置 起止日期:2013年10月15日---11月9日指导教师:武丽 方向设计学生日志

红外光通信装置 摘要:基于2013年电子设计大赛红外光通信装置题目的要求,设计了具有实际运用价值的红 外光无线扩音装置。该装置由音频放大滤波电路,SPWM音频信号比较调制器,红外载波信号发生器,红外接收器,功率放大电路,LC低通滤波等模块构成。由模拟电路搭建的红外光通信信道传送经过处理的连续的音频信号,并由后级电路还原传送出来的音频信号,让喇叭发出原始音频信号。该系统能够完整的将频率范围为300Hz-8KHz的音频信号通过红外光传送4m以 外并接收还原。 关键词:红外光通信;音频传送;SPWM载波 Design of Infrared Communication Device Abstract:The infrared communication device is based on the National Undergraduate Electronic Design Contest of 2013 , but it has more practical application value . This appliance contains an amplifier , SPWM modulator audio signal comparator , an infrared carrier signal generator , IR receiver , Power amplifier circuit , LC low-pass filter . The analog circuit structures of the infrared light transmitted through the communication channel continuous audio signal processed by the post-stage circuit to restore the audio signal sent out , so that the original audio signal horn . The system can be a complete frequency range of 300Hz-8KHz audio signals transmitted by infrared light and receive reduction up to 4m , temperature detection and transmission display . Keyword: Infrared light transmission ; Audio transmission ; SPWM 0 引言 现在市面上使用较为广泛的无线技术有红外光无线以及无线电技术。无线电技术是通过无线电波传播声音或其他信号的技术,无线电波是在自由空间(包括空气和真空)传播的射频频段的电磁波,频率为300MHz-300GHz的电磁波称为微波,也称为“超高频电磁波”。其特点是:只能进行可视范围内的通信;大气对微波信号的吸收与散射影响较大;主要用于几公里范围内,不适合铺设有线传输介质的情况,而且只能用于点到点的通信,速率也不高,一般为几百Kbps。红外是一种无线通讯方式,可以进行无线数据的传输。自1974年发明以来,得到很普遍的应用,如红外线鼠标,红外线打印机,红外线键盘等等。

移动通信基础知识培训(全)

移动通信基础知识培训会议记录 一移动通信常用的专业术语 基站:即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。都是以主设备加基站天线的形式呈现,最直观的就是我们现实中看到的铁塔,抱杆,桅杆型的基站。 直放站:是在无线通信传输过程中起到信号增强的一种无线电发射中转设备。直放站的基本功能就是一个射频信号功率增强器。实际上基站在其覆盖范围内并不是100%的覆盖到每个角落,难免会由于某些原因而在有些地方出现信号弱,更甚者出现盲区的现象,这时候就需要直放站进行覆盖,达到消除弱信号或者盲区的目的。因此直放站就是通过各种方式将基站信号接入并进行放大,进而改善信号不良区域。 天线(Antenna)——天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。简单的理解,天线就是负责信号中转的无源器件。 室内分布系统:室内分布系统是将基站信号引入室内,解决室内盲区覆盖;它可以有效解决信号延伸和覆盖,改善室内通信质量;它将基站信号科学地分配到室内的各个房间、通道,而又不产生相互干扰。它是基站和微蜂窝的补充和延伸,有不能被基站和直放站所代替的优势,是大都市中移动通信不可缺少的组成

部分。 盲区:在移动通信中,盲区表示信号覆盖不到的地区,在这样的地区移动信号非常微弱,甚至是没有。由于建筑物的隔墙、楼层等障碍对电磁波产生阻挡、衰减和屏蔽作用,使得大型建筑物的底层、地下商场、停车场、地铁隧道等环境下,移动通信信号弱,手机无法正常使用,形成了移动通信的盲区。 通话质量:顾名思义,就是手机通话时的语言质量即清晰程度。在移动通信中通话质量是一个很重要的网络参数,按照语言的清晰程度将通话质量分为0到7不同的8个级别,0最好,客户通话时的感知最好;7最差,通话时的感知最好,客户。一般正常的通话质量应该为0-3。 信号场强:是指信号信号的强弱。在移动通信中信号的强弱用具体的电平值表示,通过测试手机可以测得,一般-40~-90dBm为可正常通话的强度范围,也可直观的从普通手机的信号显示格数看出。 手机发射功率:手机发射功率是指,手机在寻呼基站时的功率。手机发射功率越高,说明上行越弱,客户感知为拨打电话上线慢。 切换:就是指当移动台(用户手机)在通话过程中从一个基站覆盖区移动到另一个基站覆盖区,或者由于外界干扰而造成通话质量下降时,必须改变原有的话音信道而转接到一条新的空闲话音信道上去,以继续保持通话的过程。 掉话:是指用户手机在使用过程中由于出现异常而自动挂断的现象。 单通:是指用户双方正在通话时,由于异常出现只有一方可以听见另一方的

无线通信系统的基本工作原理

前言: 无线通信(Wireless communication)是利用电磁波信号可以在自由空间中传播的特性进行信息交换的一种通信方式,近些年信息通信领域中,发展最快、应用最广的就是无线通信技术。在移动中实现的无线通信又通称为移动通信,人们把二者合称为无线移动通信。 无线通信主要包括微波通信和卫星通信。微波是一种无线电波,它传送的距离一般只有几十千米。但微波的频带很宽,通信容量很大。微波通信每隔几十千米要建一个微波中继站。卫星通信是利用通信卫星作为中继站在地面上两个或多个地球站之间或移动体之间建立微波通信联系。 一、无线通信系统的类型 二、按照无线通信系统中关键部分的不同特性, 有以下一些类型: 三、 1、按照工作频段或传输手段分类, 有中波通信、短波通信、超短波通信、微波通信和卫星通信等。所谓工作频率, 主要指发射与接收的射频(RF)频率。射频实际上就是“高频”的广义语, 它是指适合无线电发射和传播的频率。无线通信的一个发展方向就是开辟更高的频段。 四、2、按照通信方式来分类, 主要有(全)双工、半双工

和单工方式。 五、 3、按照调制方式的不同来划分, 有调幅、调频、调相以及混合调制等。 六、 4、按照传送的消息的类型分类, 有模拟通信和数字通信, 也可以分为话音通信、图像通信、数据通信和多媒体通信等。 七、各种不同类型的通信系统, 其系统组成和设备的复杂程度都有很大不同。但是组成设备的基本电路及其原理都是相同的, 遵从同样的规律。本书将以模拟通信为重点来研究这些基本电路, 认识其规律。这些电路和规律完全可以推广应用到其它类型的通信系统。 八、无线通信系统的基本工作原理 无线通信系统组成框图 各部分作用: 1信息源:提供需要传送的信息

无线通信技术基础知识

无线通信技术 1、传输介质 传输介质就是连接通信设备,为通信设备之间提供信息传输的物理通道;就是信息传输的实际载体。有线通信与无线通信中的信号传输,都就是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即就是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。 无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。

2、1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机与发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2、2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,就是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,就是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值与传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展就是对信道色散效应的描述; (4)多普勒扩展:就是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,就是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2、3无线信道模型 无线信道模型一般可分为室内传播模型与室外传播模型,后者又可以分为宏蜂窝模型与微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点就是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般就是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

相关主题
文本预览
相关文档 最新文档