当前位置:文档之家› 模糊控制算法在汽车中的应用综述

模糊控制算法在汽车中的应用综述

模糊控制算法在汽车中的应用综述
模糊控制算法在汽车中的应用综述

模糊控制算法在汽车中的应用综述

摘要:模糊控制应用于没有精确数学模型的对象,具有很大的优越性。随着模糊控制技术的不断发展,它

越来越广泛应用在汽车上,本文分别介绍模糊控制的原理及特点,在ABS系统、汽车巡航系统、汽车空调的使用情况,并介绍各个模糊控制系统的组成。

关键词:汽车;模糊控制;ABS系统;汽车巡航系统;汽车空调

Application of Fuzzy Control Algorithm in Motor Vehicl e

ZHANG Zhen-hua

(College of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063,China)

Abstract:Fuzzy control is applied to the object without accurate mathematical model has great superiority. With the continuous development of fuzzy control technology, it is widely used in automobile. This paper introduces the principle and characteristics of fuzzy control in ABS system, automobile cruise control system, the use of automotive air conditioning, and introduces the various components of the fuzzy control system.

Key words:The car;fuzzy control;anti-lock braking system;The car cruise system;automotive air conditioning

引言

传统的常规控制方法是基于被控对象的数学模型基础上的,然而某些情况下我们难以精确地建立起被控对象的数学模型,因而难以对被控对象进行精确地控制。为此可以采用一种基于语言规则与模糊推理的高级控制策略即模糊控制对多变量、非线性、不确定的复杂系统进行有效控制。此方法在汽车的系统控制中得到有效应用。

模糊控制理论发展初期在西方遇到了很大的阻力,西方学者认为模糊控制在应用研究中意义不大。然而,在东方尤其是日本,模糊控制却得到了迅速的发展,20世纪80年代,日本的工程师用模糊控制技术首先实现了对一家电子水净化工厂的控制,又开发了仙台地铁模糊控制系统,创造了当时世界上最先进的地铁系统,而这引起了模糊控制领域的一场巨变,使得西方又开始重视模糊控制理论[1]。

早在七十年代中期,我国就开始了智能控制的研究和应用,并且取得了许多应用成果,我国是最早把模糊理论引入气象预报、地震预测和高炉冶炼控制等方面应用的国家之一。例如,在地震发生趋势预测中对模糊信息的处理在工程设计方面发展了软件理论,并求得最佳设计方案研究出许多专家系统,特别是运用模糊数学方法描述中医经验在交通网、水管网、通信网、可靠性分析方面的实际功能运用等。

随着科学技术的不断发展和进步以及人们生活水平的提高,人们在日常的生活和劳动生产中对空气环境的要求也不断提高,特别是对空气的温度、湿度、以及洁净度的要求,使空调系统的应用越来越广泛。空调控制系统涉及面广,要实现的任务复杂,它通过空调系统为建筑物的不同区域提供满足不同使用要求的环境。

在满足用户对空气环境要求的前提下,采用先进的控制策略对空调系统进行控制,达到控制要求并且节约能源成为空调控制系统的最终目标。特别是近几年来,“绿色建筑”、“环保建筑”的提出,使得对空调控制系统的控制模式的研究显

得尤为重要。现阶段的中央空调系统的控制几乎仍采用传统的控制模式。传统的控制模式主要存在以下几方面的问题:

①传统的控制理论都是建立在以微分和积分为工具的数学模型之上的,而实际的中央空调系统难以建立精确的数学模型,即使建立了数学模型,面对不同的环境条件和不同的室内负荷,控制效果也许并不理想

②在实际工程中,被控对象是非线性、大滞后的复杂系统。数学模型的难以建立,系统工作点变化频繁等因素都是传统控制理论无法解决的

③传统的控制系统输入信息比较单一,而现代的复杂系统要以各种形式视觉的、听觉的、触觉的以及直接操作的方式,将周围的环境信息作为系统输入,并将各种信息进行融合、分析和推理,相应地采取对策或行动。对这样的控制系统就要求有自适应、自学习和自组织的功能,因而需要新一代的控制理论和技术支持。洁净空调的主要控制参数有含尘量、风速、换气次数、室内压力、温度、湿度。而受各种因素的影响,目前所采用的控制方式仍以控制为主,控制能够满足现阶段大多数场合下洁净空调的控制要求。但是对于被控对象具有非线性、大滞后等特性,或者对于更加严格的控制参数和节能的要求,采用单一的PID不能满足控制要求,在这种情况下,将模糊控制引入到了洁净空调控制系统中。

控制理论发展的特点之一是受到来自相关学科领域的影响很大。具有代表性的是神经网络七刀和模糊控制。年在伦赛卢尔工业学院召开了智能控制专题讨论会,讨论了智能控制学科的形成问题,会后成立了控制系统学会下属的智能控制技术委员会。以实例说明智能控制,提出用专家方法解决智能控制。年月在费城的德雷克塞尔大学召开了由控制系统学会和计算机学会联合举办的智能控制国际研讨会,会议总结了主要研究成果,提出智能控制结构的设想。

综上,智能控制技术发展迅速,并且越来越受到人们的关注,其应用领域也在不断扩大,它代表着控制理论的发展方向,因此,在不久的将来,将有更多的领域引入智能控制技术,智能控制现在还处于初步发展阶段,具有很大的发展潜力和研究价值。智能控制在其它领域的成功应用为智能控制技术在洁净空调温度控制系统中的应用提供了可靠的理论基础和实践经验,因此智能控制技术在洁净空调温度监控系统中的应用研究是可行的并且具有研究价值。

1、模糊控制理论概述

1.1什么叫模糊控制?

所谓模糊控制,就是对难以用已有规律描述的复杂系统,采用自然语言(如大、中、小)加以叙述,借助定性的、不精确的及模糊的条件语句来表达,模糊控制是一种基于语言的一种智能控制。

1.2为什么采用模糊控制?

传统的自动控制控制器的综合设计都要建立在被控对象准确的数学模型(即传递函数模型或状态空间模型)的基础上,但是在实际中,很多系统的影响因素很多,油气混合过程、缸内燃烧过程等),很难找出精确的数学模型。这种情况下,模糊控制的诞生就显得意义重大。因为模糊控制不用建立数学模型不需要预先知道过程精确的数学模型。

要研制智能化的汽车,就离不开模糊控制技术如汽车空调:人体舒适度的模糊性和空调复杂系统。

1.3工作原理

模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是模

糊数学在控制系统中的应用,是一种非线性智能控制。

模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。一般用于无法以严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好地控制。因此,利用人的智力模糊地进行系统控制的方法就是模糊控制。

图1模糊控制原理图

1.4模糊控制的特点

模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。模糊控制同常规的控制方案相比,主要特点有:

(1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。

(2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。

(3)系统的鲁棒性强,尤其适用于时变、非线性、时延系统的控制。

(4)从不同的观点出发,可以设计不同的目标函数,其语言控制规则分别是独立的,但是整个系统的设计可得到总体的协调控制。

它是处理推理系统和控制系统中不精确和不确定性问题的一种有效方法,同时也构成了智能控制的重要组成部分[2]。

2、模糊控制在汽车的应用方面

2.1ABS防抱死系统

汽车防抱制动系统(简称ABS系统)实质上是一种制动力的自动调节装置,能大大改善汽车的行驶安全性。汽车在制动过程中,车轮未抱死前,地面制动力始终等于制动器制动力,此时制动器制动力全部转化为地面制动力;车轮抱死后制动力等于地面附着力,不再随制动力的增加而增加。

模糊控制属于智能控制,在被控对象的模糊模型的基础上,运用模糊控制器近似推理手段,实现系统控制。成熟的ABS产品都是基于经验的车轮加减速度门限值的控制方法,采用串行的逻辑判断,容易发生逻辑冲突的问题。

而模糊控制将所有逻辑的执行结果在离线的情况下计算出来,形成控制表格存计算机中,在线时,不需要逐一的逻辑比较,只要将实际量模糊化后,即可找到相应的控制量。模糊控制是一种并行方式,各种控制逻辑用规则的方式加以总结可以有效地防止失效[3]。

从目前车用防抱制动系统所采用控制率的特征出发,引人了十分适宜于处理知识语言的模糊控制观点。针对作用于汽车防抱制动系统的类似于逻辑门限值控

制的开关控制以及不同模糊控制进行了对比仿真试验,结果表明模糊控制作用的效果要优于开关控制方法。作用于汽车防抱制动系统的普通模糊控制方法和自适应模糊控制方法的对比仿真试验表明,自适应模糊控制方法在修正自身参数后,可以适应更复杂的外界条件来对汽车防抱制动系统进行有效的控制[4]。

模糊控制器

图2 ABS模糊控制模型

2.2汽车巡航系统

在汽车的行驶过程中,由于外界负荷的扰动、汽车质量和传动系效率的不确定性、被控对象的强非线性等因素的影响,采用传统的PID控制方法难以保证在不同的条件下都取得令人满意的控制效果。

汽车巡航控制系统由控制机器、模糊推理机、操纵开关及一些传感器组成。

控制器会接收两个输入信号,一个事驾驶员按要求设定的目标车速,一个是实际车速的反馈信号。控制会检测两个信号之间的偏差,经过计算,产生一个送至节气门执行器的信号,根据信号调节发动机节气门的开度,使车速稳定。

模糊PID控制器可以根据操作人员长期实践积累的经验知识运用控制规则模糊化,然后运用推理对PID参数进行在线调整,以取得最佳控制效果[5]。

气被控对象

图3 汽车巡航模糊控制原理图

2.2.1利用MATLAB对不同路面的ABS系统进行仿真

在湿沥青和结冰路面以同一速度行驶时,模糊控制的ABS系统比无模糊系统的ABS系统控制的制动时间有很大减少,制动距离也缩短,车轮无抱死,汽车滑移率趋于0.1,在最佳的滑移率范围内。车速越高,ABS效果越明显。

2.3汽车空调

近年来,模糊逻辑控制的家用空调机已进人到千家万户。这种空调机综合考虑空气、水、光等自然环境因素、人的生理和心理因素.运用模糊逻辑推理设定空调机适当的工作方式,给人创造一个舒适的空气环境。汽车空调的运行工况较之家用空调更加复杂,从烈日炎炎的赤道到寒冷的阿拉斯加,到处都行驶着装有空调的汽车。工况的瞬变性和车型的不同使得运用传统数理方程来建立数学模型变得相当复杂,甚至不可能获得。而且,应用经典和现代控制理论所控制的空调一

般只能针对一种车型、一种气候类型的地区,缺乏通用性。模糊控制所具备的无需精确数学模型的特点,为汽车空调自动控制提供r理论依据和实现的可能性模糊控制器的输入量是温差(驾驶员主观设定的最舒适温度与汽车室内温度的差值)和温差的变化率,输出量为制冷量.控制目标为汽车室内温度。将3个语言变量都分为正大、正中、正小、零、负大、负中和负小7档.根据经验总结出49条控制规则。产生一个实时控制规则表。

在汽车空调模拟测试台上。用PC286作上位机,利用串行口与单片机相联,用查表及插值方式获取的温度值,基本能满足乘员舒适度的要求[6]。

空调器为典型的传质换热系统,结构和内部物理过程复杂,难以建立精确的数学模型。汽车空调由于工作条件多变,用传统的控制方法如:PID控制,难以获得较好的控制效果。对于环境干扰,鲁棒性好,能够抑制非线性因素对控制器的影响[7]。

图4全空调客车空调原理图

1、外进风;

2、出风口;

3、蒸发器风机:

4、蒸发器芯;

5、热水器芯:

6、温度门:

7、

出风口:8、车内进风

汽车空调模糊控制系统的控制执行器:压缩机、蒸发器风机、电子膨胀阀。控制目标:

压缩机能量调节机构控制其排量;

蒸发器风机控制车内的送风量;

电子膨胀阀控制压缩机吸入气体的过热度;

执行器和控制量之间有交互的影响, 增加了控制的复杂性。

2.3.1模糊语言集的组成:

T(E)={负大,负中,负小,零,正小,正中,正大}

用模糊语言变量E来描述偏差,

或用符号表示

负大NB(Negative Big)、

负中NM(Negative Medium)、

负小NS(Negative Small)、

零ZE(Zero)、

正小PS(Positive Small)、

正中PM(Positive Medium),

正大PB(Positive Big),

则:T(E)= {NB,NM,NS,ZE,PS,PM,PB}

2.3.2建立隶属函数:

各参数对相应子集的隶属函数分别由不同的函数族决定。参数的相应子集指该参数被人为地划分成的等级所构成的一组模糊集合。相应子集的多少,由控制精度决定。

例如,参数“温差”的相应子集可以是“正大,正小,负小,负大”,也可以是“正大,正中,正小,负小,负中,负大”,后者比前者模糊子集多,因而控制精度更高(在其它条件相同的情况下)。温度偏差x 的相应子集为:

正大:()()

25.0111x x u +-= (X>0) 正中:()()()2

211

-+=x x u (X>0)

正小:()()()2111-+=x x u (X>0) 正很小:()()20.5x 11

+=x u (X>0) 负很小:()()20.5x 11+=

x u (X<0) 负小:()()()2111

++=x x u (X<0) 负中:()()()2

211++=x x u (X<0) 负大:()()2

5.0111x x u +-= (X<0)

图 5汽车空调模糊控制框图

2.3.3模糊控制规则:(根据人工经验设定)

根据温差和温差变化率设定等级,推导压缩机排量、膨胀阀开度和风机转速的等级。

(1) 如果温差“正大”,温差变化率“负很小”,认为机器制冷力严重不足。运行状态设置为:压缩机排量为“最大”,膨胀阀开度为“最大”,风机转速为“最大”。

(2) 如果温差“正中”,温差变化率“正大”,认为机器制冷力不足, 运行状态设置为: 压缩机排量为“大”,膨胀阀开度为“大”,风机转速为“大”。

(3) 如果温差“正小”,温差变化率“正中”,认为机器制冷力仍不足, 运行状态设置为: 压缩机排量为“中”,膨胀阀开度为“中”,风机转速为“中”。

如果温差变化率相应子集数和温差相同,均为8 个,那么,这种类型的规则

应有64条。

表1 模糊控制规则表

EC

E NB NS ZE PS PB NB NS ZE PS PB NB NM NS NS ZE NM NM NS NE PS NS ZE ZE PM PM ZE ZE PS PB PB ZE

PS

PM

PB

PB

建立模糊控制规则的基本思想:当误差大或较大时,选择控制量以尽快消除误差为主,而当误差较小时,选择控制量要注意防止超调,以系统的稳定性为主要出发点。

以误差为负大时,误差变化为负大为例,这时误差有增大的趋势,为尽快消除已有的负大误差并抑制误差变大,所以控制量取负大,即使风门开度达到最小,减少通过加热器的风量。

2.3.4控制步骤

⑴计算出温度差x ,温差的变化率x,即为精确的控制输入。

⑵求出控制输入x 、x 对相应子集的隶属度,把精确的控制输入转换成模糊量。 例如,x=1℃,x=0.1℃/min ,则有:

x 对相应子集的隶属度为(按前述设定隶属函数):

正大:()3.0=x u

正中:()5.0=x u

正小:()1=x u

正很小:()67.0=x u

其余子集:()0=x u

⑶模糊控制规则条件部分的隶属度。

例如,对前述设定的模糊控制规则⑴⑵、控制输入组y={x=1℃,x=0.1℃/min}对其条件部分的隶属度可求得:

对规则⑴的条件部分:()0=y u ;

对规则⑵的条件部分:().10=y u ;

对规则⑶的条件部分:().80=y u 。

(4)利用模糊控制规则,推导控制输出的模糊量。由前一步骤计算的对规则条件部分的隶属度u (y ),可直接得出相应规则结论部分对相应子集的隶属度。

例如,对规则(3),已知y 对条件部分的隶属度()8.0=y u ,那么,压缩

机排量F 对“中等排量”隶属度()8.0=F u ,风机转速v ,对“中等转速”隶属度()8.0=v u ,膨胀阀开度N 对“中等转速”隶属度()8.0=N u 。考虑所有有关的结论部分,即可得到控制输出对相应子集的隶属度。如压缩机排量 F 对相应子集的隶属度为:

最大:()8.0=F u

大:()1.0=F u

中:()8.0=F u

小:()7.0=F u

最小:()1.0=F u

控制过程:

1、根据温度传感器和湿度传感器测定的温度湿度,以人体舒适感为基础,对车厢温度进行模糊修正;

2、根据设定温度和实测温度,用模糊控制原则推论控制输出;

3、根据室外温度、乘车满员率对控制输出进行热负荷模糊修正;

4、根据车门启闭情况,对控制输出进行修正。

3、总结

模糊控制技术的发展过程中,提出了多种自组织、自学习、自适应模糊控制器。它们根据被控过程的特性和系统参数的变化,自动生成或调整模糊控制器的规则和参数,达到控制目的。这类模糊控制器在实现人的控制策略基础上,又进一步将人的学习和适应能力引入控制器,使模糊控制具有更高的智能性。自校正模糊控制器、参数自调整模糊控制等控制方法也都较大地增强了对环境变化的适应能力。

模糊控制器正向着自适应、自组织、自学习方向发展,使得模糊控制参数、规则在控制过程中自动地调整、修改和完善,从而不断完善系统的控制性能,达到更好的控制效果,而与专家系统、神经网络等其他智能控制技术相融合成为其发展趋势。

参考文献

[1]彭勇刚.模糊控制工程应用若干问题研究[D].浙江大学,2008.

[2]王刚.模糊控制的研究与发展[J].数字技术与应用,2017(1):10-11.

[3]陈汉讯,徐火燃,赵奇平.模糊控制在汽车防抱制动系统中的应用[J].交通科技与经济, 2003,5(2):31-33.

[4]郭孔辉,王会义.模糊控制方法在汽车防抱制动系统中的应用[J].汽车技术,2000(3):7-10.

[5] 李睿钦,张荣标,柏受军.模糊PID在汽车空调温度控制中的应用[J].微计算机信息,2008,24(5):242-244.

[6] 方锡邦,吴乐.模糊逻辑控制在汽车上的应用[J].世界汽车,1997(7):10-13.

[7] 宁永生,邢霖.模糊控制在变风量空调控制系统中的应用研究[J].智能建筑与城市信息,2010(4):62-67.

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

基于模糊控制的智能车寻迹算法研究

基于模糊控制的智能车寻迹算法研究 摘要:与传统的自动控制相比,模糊控制不用建立在被控对象准确的数学模型的基础上。这一特点在非常适用于实际运用中影响因素很多、结构十分复杂系统。其系统有易于接受,设计简单,维护方便,而且比常规控制系统稳定性好,鲁棒性高等特点。因其与本设计实际条件相似,所以选其做智能小车的寻迹算法研究。 关键词智能小车;模糊控制;寻迹算法 ABSTRACT Compared with the traditional automatic control,fuzzy control without based on a accurate mathematical model of controlled object. This feature is suitable for the systems which have many influencing factors and a very complex structure in the practical application. There are many feature in this system:such as easy to accept, the design is simple, convenient maintenance, more stability and robustness than conventional control system,and so on. Because it is similar to the actual conditions of our design, so we choose it for the smart car tracing algorithm. KEY WORDS smart car;fuzzy control;tracing algorithm

模糊理论综述

模糊理论综述 引言 模糊理论(Fuzzy Logic)是在美国加州大学伯克利分校电气工程系的L.A.zadeh(扎德)教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容.L.A.Zadeh教授在1965年发表了著名的论文,文中首次提出表达事物模糊性的重要概念:隶属函数,从而突破了19世纪末康托尔的经典集合理论,奠定模糊理论的基础。1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机的控制,标志着模糊控制技术的诞生。随之几十年的发展,至今为止模糊理论已经非常成熟,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容。 模糊理论是以模糊集合为基础,其基本精神是接受模糊性现象存在的事实,而以处理概念模糊不确定的事物为其研究目标,并积极的将其严密的量化成计算机可以处理的讯息,不主张用繁杂的数学分析即模型来解决问题。 二、模糊理论的一般原理 由于客观世界广泛存在的非定量化的特点,如拔地而起的大树,人们可以估计它很重,但无法测准它实际重量。又如一群人,男性女性是可明确划分的,但是谁是“老年人”谁又算“中年人”;谁个子高,谁不高都只能凭一时印象去论说,而实际人们对这些事物本身的判断是带有模糊性的,也就是非定量化特征。因此事物的模糊性往往是人类推理,认识客观世界时存在的现象。虽然利用数学手段甚至精确到小数点后几位,实际仍然是近似的。特别是对某一个即将运行的系统进行分析,设计时,系统越复杂,它的精确化能力越难以提高。当复杂性和精确化需求达到一定阈值时,这二者必将出现不相容性,这就是著名的“系统不相容原理”。由于系统影响因素众多,甚至某些因素限于人们认识方法,水准,角度不同而认识不足,原希望繁荣兴旺,最后导致失败,这些都是客观存在的。这些事物的现象,正反映了我们认识它们时存在模糊性。所以一味追求精确,倒可能是模糊的,而适当模糊以达到一定的精确倒是科学的,这就是模糊理论的一般原理。 三、模糊理论的分支 它可分类为模糊数学、模糊系统,模糊信息,模糊决策,模糊逻辑与人工智能这五个分支,它们并不是完全独立的,它们之间有紧密的联系。例如,模糊控制就会用到模糊数学和模糊逻辑中的概念。从实际应用的观点来看,模糊理论的应用大部分集中在模糊系统上,尤其集中在模糊控制上。也有一些模糊专家系统应用于医疗诊断和决策支持。 模糊逻辑:模糊逻辑指模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性,大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定型知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。模糊逻辑善于表达界限不清晰的定性知识与经验。它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题。模糊逻辑是处理部分真实概念的布尔逻辑扩展。经典逻辑坚持所有事物(陈述)都可以用二元项(0或1,黑或白,是或否)来表达,而模糊逻辑用真实度替代了布尔真值。这些陈述表示实际上接近于日常人们的问题和语意陈述,因为“真实”和结果在多数时候是部分(非二元)的和/或不精确的(不准确的,不清晰的,模糊的)。真实度经常混淆于概率,但是它们在概念上是不一样的;模糊真值表示在模糊定义的集合中的成员归属关系,而不是某事件或条件的可能度(likelihood)。要展示这种区别,考虑下列情节: Bob在有两个毗邻的屋子的房子中:厨房和餐厅。在很多情况下,Bob的状态是在事物“在厨房中”的集合内是完全明确的:他要么“在厨房中”要么“不在厨房中”。但

模糊控制算法PID算法比较分析

模糊控制算法PID 算法比较分析 电气学院 控制理论与控制工程专业 徐磊 学号:10310070 一:题目 对于已知系统的传递函数为: e S S S G 5.01101)(-+= ,假设系统给定为阶跃值R=1,系统的初始值R(0)=0,试分析设计 1〉常规的PID 控制器 2〉常规的模糊控制器 3〉比较两种控制器的控制效果 当通过改变模糊控制器的比例因子时,分析系统响应有什么变化? 二:思路 对于模糊控制,采用二维输入,分别是误差e 和误差变化率?e,然后通过增益放大,输入到模糊控制器中,然后模糊控制器输出也通过增益放大。模糊控制器的输入、输出论域取值为[-6,6],隶属度均匀划分为五个区域,隶属度函数采用梯形和三角形函数。 程序框图如下:

三:程序 clear; num=1; den=[10,1]; [a1,b,c,d]=tf2ss(num,den); x=[0]; %状态变量初始 T=0.01; %采样周期 h=T; N=10000; %采样次数 td=0.5; %延时时间 Nd=50; %延时周期 R=1*ones(1,N); % 输入信号 e=0;de=0;ie=0; %误差,误差导数,积分 kp=12.5;ki=0.8;kd=0.01; for k=1:N uu(1,k)=-(kp*e+ki*de+kd*ie); %PID输出序列if k<=Nd u=0; else u=uu(1,k-Nd); end %龙格库塔法仿真 k0=a1*x+b*u; k1=a1*(x+h*k0/2)+b*u; k2=a1*(x+h*k1/2)+b*u; k3=a1*(x+h*k2)+b*u; x=x+(k0+2*k1+2*k2+k3)*h/6; y=c*x+d*u; e1=e; e=y(1,1)-R(1,k); de=(e1-e)/T; ie=ie+e*T; yy1(1,k)=y; end %设计模糊控制器 a=newfis('Simple'); a=addvar(a,'input','e',[-6,6]); a=addmf(a,'input',1,'NB','trapmf',[-6 -6 -5 -3]); a=addmf(a,'input',1,'NS','trapmf',[-5 -3 -2 0]); a=addmf(a,'input',1,'ZR','trimf',[-2 0 2]); a=addmf(a,'input',1,'PS','trapmf',[0 2 3 5]); a=addmf(a,'input',1,'PB','trapmf',[3 5 6 6]); a=addvar(a,'input','de',[-6 6]);

C实现模糊控制算法

由于项目需要,需要模糊控制算法,之前此类知识为0,经过半个多月的研究,终于有的小进展。开始想从强大的互联网上搜点c代码来研究下,结果搜遍所有搜索引擎都搜不到,以下本人从修改的模糊控制代码,经过自己修改后可在 vc6.0,运行!输入e表示输出误差,ec表示误差变化率,经过测试具有很好的控制效果,对于非线性系统和数学模型难以建立的系统来说有更好的控制效果!现将其公开供大家学习研究! #include #include"math.h" #define PMAX 100 #define PMIN -100 #define DMAX 100 #define DMIN -100 #define FMAX 100 /*语言值的满幅值*/ int PFF[4]={0,12,24,48}; /*输入量D语言值特征点*/ int DFF[4]={0,16,32,64}; /*输出量U语言值特征点*/ int UFF[7]={0,15,30,45,60,75,90}; /*采用了调整因子的规则表,大误差时偏重误差,小误差时偏重误差变化*/ /*a0=0.3,a1=0.55,a2=0.74,a3=0.89 */ int rule[7][7]={ //误差变化率 -3,-2,-1, 0, 1, 2, 3 // 误差 {-6,-6,-6,-5,-5,-5,-4,}, // -3 {-5,-4,-4,-3,-2,-2,-1,}, // -2 {-4,-3,-2,-1, 0, 1, 2,}, // -1 {-4,-3,-1, 0, 1, 3, 4,}, // 0 {-2,-1, 0, 1, 2, 3, 4,}, // 1 { 1, 2, 2, 3, 4, 4, 5,}, // 2 { 4, 5, 5, 5, 6, 6, 6}}; // 3 /**********************************************************/ int Fuzzy(int P,int D) /*模糊运算引擎*/ { int U; /*偏差,偏差微分以及输出值的精确量*/ unsigned int PF[2],DF[2],UF[4]; /*偏差,偏差微分以及输出值的隶属度*/ int Pn,Dn,Un[4]; long temp1,temp2; /*隶属度的确定*/ /*根据PD的指定语言值获得有效隶属度*/

模糊控制算法的研究

模糊控制算法的研究 0842812128夏中宇 模糊控制概述 “模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。 在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少”、“较多”、“小一些”、“很小”等,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照人的操作规则进行控制,实现人的控制经验。 模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。 1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。 模糊控制概况 模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年,美国的L.A.Zadeh 创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。这一开拓性的工作标志着模糊控制论的诞生。 模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。 模糊控制的基本理论 所谓模糊控制,就是在控制方法上应用模糊集理论、模糊语言变量及模糊逻辑推理的知识来模拟人的模糊思维方法,用计算机实现与操作者相同的控制。该理论以模糊集合、模糊语言变量和模糊逻辑为基础,用比较简单的数学形式直接将人的判断、思维过程表达出来,从而逐渐得到了广泛应用。应用领域包括图像识别、自动机理论、语言研究、控制论以及信号处理等方面。在自动控制领域,以模糊集理论为基础发展起来的模糊控制为将人的控制经验及推理过程纳入自动控制提供了一条便捷途径。 1.知识库

关于模糊控制理论的综述

物理与电子工程学院 《人工智能》 课程设计报告 课题名称关于模糊控制理论的综述 专业自动化 班级 11级3班 学生姓名郑艳伟 学号 指导教师崔明月 成绩 2014年6月18日

关于模糊控制理论的综述 摘要:模糊控制方法是智能控制的重要组成部分,本文简要回顾了模糊控 制理论的发展,详细介绍了模糊控制理论的原理和模糊控制器的设计步骤, 分析了模糊控制理论的优缺点以及模糊控制需要完善或继续研究的内容,根 据各种模糊控制器的不同特点,对模糊控制在电力系统中的应用进行了分 类,并分析了各类模糊控制器的应用效能.最后,展望了模糊控制的发展趋 势与动态. 关键词:模糊控制;模糊控制理论;模糊控制系统;模糊控制理论的发展模糊控制是以模糊集理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法,从行为上模拟人的思维方式,对难建模的对象实施模糊推理和决策的一种控制方法.模糊控制作为智能领域中最具有实际意义的一种控制方法,已经在工业控制领域、电力系统、家用电器自动化等领域中解决了很多的问题,引起了越来越多的工程技术人员的兴趣. 模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术.1965年美国的扎德[1]创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理.1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生. 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域.从信息技术的观点来看, 模糊控制是一种基于规则的专家系统.从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器. 相对传统控制, 包括经典控制理论与现代控制理论.模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,

基于模糊控制的速度跟踪控制问题(C语言以及MATLAB仿真实现)

基于模糊控制的速度控制 ——地面智能移动车辆速度控制系统问题描述 利用模糊控制的方法解决速度跟踪问题,即已知期望速度(desire speed),控制油门(throttle output)和刹车(brake output)来跟踪该速度。已知输入:车速和发动机转速(值可观测)。欲控制刹车和油门电压(同一时刻只有一个量起作用)。 算法思想 模糊控制器是一语言控制器,使得操作人员易于使用自然语言进行人机对话。模糊控制器是一种容易控制、掌握的较理想的非线性控制器,具有较佳的适应性及强健性(Robustness)、较佳的容错性(Fault Tolerance)。利用控制法则来描述系统变量间的关系。不用数值而用语言式的模糊变量来描述系统,模糊控制器不必对被控制对象建立完整的数学模式。 Figure 1模糊控制器的结构图 模糊控制的优点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 简化系统设计的复杂性,特别适用于非线性、时变、模型不完全的系统上。 模糊控制的缺点

离散化 Pid 模糊控制算法

论文标题: 设计PID ,离散化,模糊化控制器 PID 控制器设计 一 PID 控制的基本原理和常用形式及数学模型 具有比例-积分-微分控制规律的控制器,称PID 控制器。这种组合具有三种基本规律各自的特点,其运动方程为: dt t de dt t e t e t m K K K K K d p t i p p )()()()(0 ++=? 相应的传递函数为: ???? ??++=S S s K K K d i p c 1)(D S S S K K K d i p 12++? = 二 数字控制器的连续化设计步骤 假想的连续控制系统的框图

1 设计假想的连续控制器D(s) 由于人们对连续系统的设计方法比较熟悉,对由上图的假想连续控制系统进行设计,如利用连续系统的频率的特性法,根轨迹法等设计出假想的连续控制器D(S)。 2 选择采样周期T 香农采样定理给出了从采样信号到恢复连续信号的最低采样频率。在计算机控制系统中,完成信号恢复功能一般有零阶保持器H(s)来实现。零阶保持器的传递函数为 3将D(S)离散化为D(Z) 将连续控制器D(S)离散化为数字控制器D(Z)的方法很多,如双线性变换法,后向差分法,前向差分法,冲击响应不变法,零极点匹配法,零阶保持法。 双线性变换法 然后D(S)就可以转化离散的D(Z) 三Matlab仿真实验 直接试探法求PID 根据这个框图,求出该传递函数的P=0.35 I=0 D=0

根据 ???? ??++=S S s K K K d i p c 1)(D D (Z )=0.35 T=0.01 数字连续话PID 控制器设计MA TLAB 仿真框图 实验结果 没有经过调节的结果为

模糊控制的应用

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师黄静 日期 2011 年 9 月 20 日

在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现 场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对 那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易 导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控 制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。(5)模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱, 尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值 ,输出变量为电机的电压变化量u。图2为电机调试之间的差值e及其变化率e c 输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 000r/s时,电机能很快稳定运行于2 000r/s;当设定转速下降到1 000r/s时,转速又很快下降到1 000r/s稳定运行。 图1

模糊控制综述

模糊控制研究及发展现状综述

模糊控制研究及发展现状综述 摘要:模糊控制是智能控制的重要组成部分。本文主要介绍了模糊控制理论的研究及发展的现状等 ,详细介绍了模糊控制理论的原理、模糊控制的数学基础, 其发展现状中介绍了模糊 PID 控制、自适应模糊控制、神经模糊控制、遗传算法优化的模糊控制、专家模糊控制等 , 还介绍了一些模糊控制的软硬件产品, 对模糊控制系统的稳定性作了简单介绍, 最后对模糊控制的发展作了展望。 关键词:模糊控制;模糊控制器

引言 模糊控制是近代控制理论中的一种基于语言规则与模糊推理的高级控制策略和新颖技术,它是智能控制的一个重要分支,发展迅速,应用广泛,实效显著,引人关注。随着科学技术的进步,现代工业过程日趋复杂,过程的严重非线性、不确定性、多变量、时滞、未建模动态和有界干扰,使得控制对象的精确数学模型难以建立,单一应用传统的控制理论和方法难以满足复杂控制系统的设计要求。而模糊控制则无需知道被控对象的精确数学模型,且模糊算法能够有效地利用专家所提供的模糊信息知识,处理那些定义不完善或难以精确建模的复杂过程。因此,模糊控制成为了近年来国内外控制界关注的热点研究领域。 模糊控制作为智能领域中最具有实际意义的一种控制方法 ,已经在工业控制领域、家用电器自动化领域和其他很多行业中解决了传统控制方法无法或者是难以解决的问题, 取得了令人瞩目的成效, 引起了越来越多的控制理论的研究人员和相关领域的广大工程技术人员的极大兴趣。 一:模糊控制简介 模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。 1965 年美国的扎德创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理。 1974 年英国的 Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生。 模糊控制主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型 , 是智能控制的一个重要研究领域。从信息技术的观点来看 , 模糊控制是一种基于规则的专家系统。从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器。 相对传统控制, 包括经典控制理论与现代控制理论。模糊控制能避开对象的数学模型 (如状态方程或传递函数等), 它力图对人们关于某个控制问题的成功与失败和经验进行加工 , 总结出知识 , 从中提炼出控制规则 , 用一系列多维模糊条件语句构造系统的模糊语言变量模型 , 应用 C RI 等各类模糊推理方法,可以得到适合控制要求的控制量, 可以说模糊控制是一种语言变量的控制. 模糊控制具有以下特点:

非线性系统模糊控制算法研究

非线性系统模糊控制算法研究 摘要:随着社会科技的进步,系统自动化越来越强,而要强化系统的自动化,就需要对系统控制进行深入的研究。系统控制是我国目前科学研究的一个重要方向,通过基本结构的建立和仿真实验,控制分析的深度会有明显的增加。在系统控制当中,非线性系统的模糊控制是一项重要的内容,通过对此中控制的算法进行分析和研究,可以提供非线性系统模糊控制的有效性。该文就非线性系统控制算法进行研究,旨在分析此系统算法的应用优势,从而强化其在实践中的应用水平。 关键词:非线性系统模糊控制算法研究 中图分类号:TP273.4 文献标识码:A 文章编号:1672-3791(2017)04(c)-0196-02 在控制研究中,比较典型的基于受控对象精确模型的控制是古典控制和状态空间模型控制。在实际研究中发现,除去受控对象比较精确的控制外,还存在比较复杂的控制,这种控制的受控对象不明确,所以数学模型的建立相对困难。为了对这种控制进行有效的利用,采用模糊控制算法进行数学模型的建立是主要的方法。因此,积极的对非线性系统模糊控制算法进行研究意义重大。

1 模糊控制的数学描述 模糊控制是控制研究中的重要类别,这种控制不仅是一种实时控制,而且不依赖于受控对象的精确模型,所以说它是一种打破了传统束缚的新型计算机控制。此种控制的产生为解决更加复杂的计算机问题带来了全新的方法。从特征上来看,此种方法对于模型的要求比较低,而且在实际利用中的计算非常简便,控制性能也比较优良。该文在非线性系统中进行模糊控制算法的研究,为了使得研究简便,利用了一个非线性系统的式子: 在这个式子当中,u表示的是输入量,而y则表示输出量,整个式子代表是就是工程实际当中难于建模的一大类复杂受控对象。根据这个式子,确定合适的参考轨迹,控制公式便可以得到书写。 2 模糊控制的算法原理 模糊控制的算法原理是研究的重点内容,在实际分析的过程中主要包括了四个方面:第一是进行非线性系统的模糊模型建立,然后对其进行规范化,使其转变为参数辨识问题。比如在考虑一个SISO非线性系统的时候,将系统的输入空间和输出空间按照精度进行分别的量化,那么系统的特性便会转变为一个特定的公式,整个公式反应了系统的条件,也构成了系统的模糊模型。第二是对模型的在线递推进行修正。为了使得整个控制测算更加的精确,利用全新的信息结

模糊控制算法研究报告

《智能控制》 课程设计报告 专业:自动化 班级:学号: 学生: 时间:13年12月30日~13年1月3日 ―――――――以下指导教师填写――――― 分项成绩:出勤设计报告 总成绩: 指导教师:

设计报告要求和成绩评定 1 报告容 设计任务书(设计计划),正文,参考资料。 设计任务书(设计计划)由学生所在系安排指导教师编写,容包括设计地点、时间、安排和设计容和要求等。 正文容一般包括:(1)设计简述(设计时间、设计地点,设计方式等);(2)设计容叙述;(3)设计成品(图纸、表格或计算结果等);(4)设计小结和建议。 参考资料包括参考书和现场技术资料等。 2 书写用纸 A4复印纸;封面、设计任务书要求双面打印。 3 书写要求 正文容手工双面或单面书写,字迹清楚,每页20行左右,每行30字左右,排列整齐;页码居中写在页面下方;纸面上下左右4侧边距均为2厘米。 公式单占一行居中书写;插图要有图号和图题,图号和图题书写在插图下方;表格要有表号和表题,表号和表题在表格上方书写;物理量单位和符号、参考文献引用和书写以及图纸绘制要符合有关标准规定;有关细节可参考我院《毕业设计成品规》。 4 装订 装订顺序:封面,设计任务书,正文及参考资料,封底;左边为装订边,三钉装订,中间钉反向装订。 5 成绩评定 设计成绩一般由出勤(10分)、报告书写规性及成品质量(50分)、考核(40分)三部分成绩合成后折合为优秀(90-100分)、良好(80-89分)、中(70-79分)、及格(60-69分)或不及格(60分以下)。设计考核可采取笔试、机试或其它合适的方式;不参加考核或不交报告者成绩为零分。

模糊控制器设计的基本方法

第5章 模糊控制器设计的基本方法 5.1 模糊控制器的结构设计 结构设计:确定输入、输出变量的个数(几入几出)。 5.2 模糊控制规则设计 1. 语言变量词集 {}PB PM PS O NS NM NB ,,,,,, 2. 确立模糊集隶属函数(赋值表) 3. 建立模糊控制规则,几种基本语句形式: 若A 则B c R A B A E =?+? 若A 则B 否则C c R A B A C =?+? 若A 或B 且C 或D 则E ()()R A B E C D E =+?+????????? 4. 建立控制规则表 5.3 模糊化方法及解模糊化方法 模糊化方法 1. 将[]b a ,内精确量离散化为[]n n +-,内的模糊量 2. 将其区间精确量x 模糊化为一个单点集,即0)(,1)(==x x μμ 模糊推理及非模糊化方法 1. MIN-MAX ——重心法 11112222n 00R and R and R and and '? n n n A B C A B C A B C x y c →→→→= 三步曲: 取最小 1111'()()()()c A o B o C z x y z μμμμ=∧∧ 取最大 12''''()()()()n c c c c z z z z μμμμ=∨∨∨ 2. 最大隶属度法 例: 10.3 0.80.5 0.511234 5 C =+----- +++,选3-=*u

20.30.80.40.21101234 5 C =+ +++ + ,选 5.12 21=+=*u 5.4 论域、量化因子及比例因子选择 论域:模糊变量的取值范围 基本论域:精确量的取值范围 误差量化因子:e e x n k /= 比例因子:e y k u u /= 误差变化量化因子:c c x m k /= 5.5 模糊控制算法的流程 m j n i C u B EC A E ij j i ,,2,1;,,2,1 then then if ===== 其中 i A 、 j B 、ij C 是定义在误差、误差变化和控制量论域X 、Y 、Z 上的模糊集合,则该语句所表示的模糊关系为 j i ij j i C B A R ,??= m j n i j i C B A R z y x z y x ij j i ===== ,1 ,1)()()(),,(μμμ μ 根据模糊推理合成规则可得:R B A U )(?= Y y X x B A R U y x z y x z ∈∈=)()(),,()(μμμμ 设论域{}{}{}l m n z z z Z y y y x x x X ,,,,,,,Y ,,,,212121 ===,则X ,Y ,Z 上的模糊集合分别为一个n ,m 和l 元的模糊向量,而描述控制规则的模糊关系R 为一个m n ?行l 列矩阵。 由i x 及i y 可算出ij u ,对所有X ,Y 中元素所有组合全部计算出相应的控制量变化值,可写成矩阵()ij n m u ?,制成的表即为查询表或称为模糊控制表。 * 模糊控制器设计举例(二维模糊控制器) 1. 结构设计:二维模糊控制器,即二输入一输出。 2. 模糊控制规则:共21条语句,其中第一条规则为 t h e n o r and or if :1 PB u NM NB EC NM NB E R === 3. 对模糊变量E ,EC ,u 赋值(见教材中的表)

模糊控制大作业讲解

基于模糊控制的PID 温度控制器的设计 1、引言 常规PID 控制由于具有原理结构简单、鲁棒性好,可靠性高,容易实现的特点,成为迄今为止应用最广泛的控制算法,并且取得了良好的效果。然而在温度控制系统中,由于被控对象具有非线性、时变、大滞后等特点,且受环境温度等外界诸多因素影响较大,导致难以建立精确的数学模型,难以确定最佳的控制器参数。此时,传统的PID 控制对进一步提高控制对象的质量和精度遇到了极大的困难,难以获得良好的效果。为了克服常规PID 调节器的不足,提高其性能,人们进行了进一步的研究。 模糊控制是智能控制理论的一个分支,近十年来正以它全新的控制方式在控制界受到了极大的重视并得到了迅速发展。与传统的PID 控制方式相比,它具有特别适合于那些难以建立精确数学模型、非线性和大滞后的过程等特点。但是经过深入研究,也会发现基本模糊控制存在着其控制品质粗糙和精度不高等弊病。 因此,本文提出一种将模糊控制和PID 控制相结合起来,通过模糊控制实现PID 参数自适应的方法来控制系统温度。这种Fuzzy- PID 策略,模糊控制的采用不是代替PID 控制,而是对传统控制方式的改进和扩展,它既保持了常规PID 控制系统结构简单、使用方便、鲁棒性强、控制精度高的优点,又采用模糊推理的方法实现了PID 参数P K 、I K 、D K 的在线自整定,兼具了模糊控制灵活性、适应性强的特点,相比单纯的任一种控制效果都要好[6-10]。 2、模糊控制基本理论 模糊控制是利用模糊数学的基本思想和理论的控制方法。在传统的控制领域 里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强

PID模糊控制器发展现状综述

模糊PID控制器的发展现状综述 1模糊PID控制器研究背景 1.1PID控制器 传统的PID控制器虽然以其结构简单、工作稳定、适应性好、精度高等优点成为过程控制中应用最广泛最基本的一种控制器。PID调节规律一般都能得到比较令人满意的控制效果,尤其是对于线性定常系统的控制是非常有效的,但是它的调节品质取决于PID控制器各个参数的确定。随着工业生产过程的日趋复杂化,系统不可避免地存在非线性、滞后和时变现象,其中有的参数未知或缓慢变化,有的带有延时和随机干扰,有的无法获得较精确的数学模型或模型非常粗糙,如果使用常规的PID控制器,PID参数的整定变得十分困难甚至无法整定,因此并不能得到理想的控制效果。为此,近年来各种改进的PID控制器如自校正、自适应PID[1][2][3]及智能控制器[4]迅速发展起来,但仍存在一定的局限性。 1.2模糊控制器 随着技术的发展,模糊控制理论和模糊技术成为最广泛最有前景的应用分支之一。模糊控制器是一种专家控制系统,它的优点是不需要知道被控对象的数学模型而能够利用专家已有的经验对系统进行建模。与传统的PID控制方式相比,它适合解决一些难以建立精确数学模型、非线性、大滞后和时变的复杂过程的问题,因此得到了很好的发展,尤其是在工业控制、电力系统等领域中解决了许多实际性的问题,引起了越来越多的工程技术人员的兴趣。但是经过深入研究,会发现基本模糊控制存在着其控制品质粗糙和精度低等弊病。而且用的最多的二维输入的模糊控制器是PI或PD型控制器,会出现过渡过程品质不好或不能消除稳态误差的问题。 因此,在许多情况下,将模糊控制和PID控制两者结合起来,扬长避短,既具有模糊控制灵活、适应性强、快速性好的优点,又具有PID控制精度高的特点。把规则的条件、操作用模糊集表示,并把这些模糊控制规则及有关信息作为知识存入计算机知识库中,然后计算机根据控制系统的实际响应情况,运用模糊推理,自动实现对PID参数的最佳整定,实现模糊PID控制。

模糊控制的基本原理

模糊控制的基本原理 模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是 模糊数学在控制系统中的应用,是一种非线性智能控制。 模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。一般用于无法以 严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好 地控制。因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。模 糊控制的基本原理如图所示: 模糊控制系统原理框图 它的核心部分为模糊控制器。模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E;一般选误差信号E作为模糊控制器的一个输入量,把E的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量); 再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为: 式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u 进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。这样循环下去,就实现了被控对象的模糊控制。 模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。模糊控制同常规的控制方案相比,主要特点有: (1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。 (2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。 (3)系统的鲁棒性强,尤其适用于时变、非线性、时延系统的控制。 (4)从不同的观点出发,可以设计不同的目标函数,其语言控制规则分别是独立的,但是整个系统的设计可得到总体的协调控制。 它是处理推理系统和控制系统中不精确和不确定性问题的一种有效方法,同时也构成了智能控制的重要组成部分。 模糊控制器的组成框图主要分为三部分:精确量的模糊化,规则库模糊推理,

二阶系统模糊控制算法研究

机电工程学院 课程设计报告 课程 题目二阶系统模糊控制算法的研究 专业电气工程及其自动化 姓名 指导教师 学期 2015-2016

二阶系统的模糊控制算法的研究 学生 指导老师: 摘要:模糊控制是以模糊数学为基础发展的,为一些无法建立数学模型或者数学模型相当粗糙的系统提供的一种非线性的控制方法。对于这些系统,模糊控制可以得到比较满意的控制效果,并且能够解决一些无法通过传统方法解决的问题。本文利用 MATLAB模糊控制工具箱设计的模糊控制器来控制一个二阶系统,由给定的控制器的输入和输出变量,输入和输出变量的隶属函数,分析了输入和输出变量之间的关系,设计了模糊控制规则库,并通过 SIMULINK仿真将模糊控制方法与经典的PID控制方法进行对比,分析仿真结果,探讨模糊控制器的隶属函数,控制规则,以及量化因子和比例因子在模糊控制中所起到的作用。 关键字:模糊控制;MATLAB;SIMULINK;PID

Research of fuzzy control algorithm of second order systems Undergraduate: Supervisor: Abstract:Fuzzy control, which is based on the fuzzy mathematics, is a new way of nonlinearity control system in which the mathematical model is unable established or the mathematical model is very rough. For these systems, fuzzy control offers users a satisfied control result, and settles down some problems which cannot be solved by traditional methods. This paper aims to introduce how to use a fuzzy controller which is based on the MATLAB fuzzy control toolbox to control a second-order system. In order to fulfill this target, the author firstly defines the input variables, output variables and their membership functions. Then, the author analyzes the relationship between the input variables and output variables, and designs the fuzzy control rule bank. Finally, the author makes a difference between the methods of the classic PID control and the fuzzy control by SIMULINK. Membership function of fuzzy controller, control rules, and the function of quantizes and scale factor in the fuzzy control process are also discussed in this paper. Key words: MATLAB; Fuzzy control; PID;SIMULINK simulation

相关主题
文本预览
相关文档 最新文档