当前位置:文档之家› 柯西不等式在高中教学中的应用

柯西不等式在高中教学中的应用

柯西不等式在高中教学中的应用
柯西不等式在高中教学中的应用

南京晓庄学院本科生毕业论文

柯西不等式在高中数学中的应用研究

The Application of Cauchy Inequality In senior high

mathematics

所在院(系):教师教育学院

学生姓名:刘倩

指导教师:袁俊

研究起止日期:二○一三年十一月至二○一四年五月

二○一四年五月

摘要:

柯西不等式在很多领域非常有用,尤其在不等式的证明、函数最值问题方面。灵活巧妙的运用它,可以使一些较为困难的问题迎刃而解。

柯西不等式是中学生解决一系列疑难问题的重要工具,为了让学生对柯西不等式有更好的认识、了解,本文首先给出柯西不等式的各种表现形式。其次,用了不同的方法证明了柯西不等式。最后,对柯西不等式在中学数学中的应用给出典型例题。

关键词:

柯西不等式证明中学数学应用

Abstract:

Cauchy Inequality is very useful in many areas, especially in the proof of inequalities, function the most value and other aspects. Flexible and ingenious application of it can make some of the more difficult problems to be solved.

Cauchy Inequality is an important tool for middle school students to solve a series of problems. In order to make the student to the Cauchy Inequality have a better knowledge and understanding,Now in the article, firstly, the different manifestations of Cauchy Inequality are given. Secondly, by different methods, the Cauchy Inequality is proved. Lastly, the application of Cauchy Inequality in middle school mathematics examples are given.

Key words:

Cauchy Inequality;Certificate;Middle School Mathematics; Use

目录

1前言

1.1研究背景和历史现状

1.2研究目的和意义

2柯西不等式及其证明

3柯西不等式在高中教育中所体现的教育价值

4分析柯西不等式在高考、竞赛试题中的应用特点

5本文结论与展望

6参考文献 (15)

7致谢 (1)

第一章 前言

1.1研究背景和历史现状

柯西不等式是由法国大数学家柯西在研究数学分流中的“流数”时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为正是后两位数学家彼此独立地在积分学推而广之,才将这一不等式应用到几乎完善的地步。 1.2研究方法 1.文献研究法 1.3研究目的和意义

第二章 柯西不等式及其证明

2.1 柯西不等式 2.1.1表现形式

1.n 维形式:设1a ,2a ,…,n a ;1b ,2b ,…,n b 是两组实数,则有2

22

111n n

n i i i i i i i a b a b ===??≥ ???

∑∑∑,其中

等号成立当且仅当1a :2a :…:n a =12::

:n b b b 时;

2.向量形式:向量α=()12,,,n a a a ,()12,,,n b b b β=有αβαβ≥当且仅当α与β共线

时成立。

2.1.2柯西不等式的推论及变形

推论1:设12,,

,n a a a 是实数,

则2

111

n n i i i i

a n a ==????≥ ? ?????

∑∑.当且仅当12n a a a ===时等号成立.

推论2:设12,,

,n a a a 是实数,则2

211n

n i

i i i n a a ==??

≥ ???

∑∑.当且仅当12n a a a ==

=时等号成立.

变形1:2

111n n n i i i i i i i i a a b a b ===??≥ ???

∑∑∑,即2

111

n

i n

i i n

i i i i

i a a b a b ===??

???≥∑∑∑;

变形2:22111n n n i i i i i i i a b a b ===??≥ ???∑∑∑,即2

2111

n i n

i i n i i

i

i a a b b ===??

???≥∑∑∑; 变形3:

1

1

1

n n n

i

i

i i i i i a b a b ===≥∑∑∑

.

以上三种变形是解决竞赛不等式的有力工具。 2.1.3柯西不等式的推广

引理:对于非负实数,a b 及满足1αβ+=的正实数,αβ,有a b a b αβαβ+≥+;由此不等式并利用数学归纳法可以证明下列命题.

对于任何非负实数12,,

,n a a a 满足121n ααα+++=的正实数12,,,n ααα,有

12112212n n n n a a a a a a αααααα+++≥+++当且仅当12n a a a ==

=时等号成立。利用上

述引理中的不等式可以证明

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

高中数学教学论文 柯西不等式的证明与应用

柯西不等式的证明及其应用 摘要:柯西不等式是一个非常重要的不等式,本文用六种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 Summar y: Cauchy's inequality is a very important inequality, this article use six different methods to prove the Cauchy inequality, and gives some Cauchy inequality in inequality, solving the most value, solving equations, trigonometry and geometry problems in the areas of application, the last used it proved that point to the straight line distance formula, better explains the Cauchy inequality. Keywords :Cauchy inequality, proof application 不等式是数学的重要组成部分,它遍及数学的每一个分支。本文主要介绍著名不等式——柯西不等式的证明方法及其在初等数学解体中 的应用。柯西不等式是一个非常重要的不等式,本文用几种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用。

(完整word版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc ≥ =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

柯西不等式的应用技巧修订稿

柯西不等式的应用技巧 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设12 12,,,R n n a a a b b b ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 当且仅当1212n n a a a b b b ===或120n b b b ====时等号成立. 其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中 作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代 换等,方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中 每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因 此,构造两组数:1212,,n n a a a b b b 和,便是应用柯西不等式的一个主要技巧. 例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值. 例2 设 ,,R x y z ∈ ,求证:22 -≤≤. 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到 时,常常需要变形,拆项就是一个变形技巧. 例3 设a 、b 、c 为正数且各不相等, 求证:c b a a c c b b a ++>+++++9222 . 有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子 的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的. 例6 a 、b 为非负数,a +b =1,+∈R x x 21, 求证:212121))((x x ax bx bx ax ≥++

高中数学:柯西不等式的几种用法

高中数学:柯西不等式的几种用法 1、熟记模型,直接应用 ()+21212 11,2111i n n a R i n a a a n a a a ∈=?? ++++++≥ ???例 ,求证 2、灵活变通,巧妙应用 22x y R x y x y ∈≤+≤例2、已知 ,,且3+26, 求证: 12 22223,3,,,2365,2. a b c d a b c d R a b c d a + ++=?∈ ?+++=?≤≤例、,且满足:求证:1 35,2 x ≤≤<例4、设求证: 3、以n 为目标,在“1”上下功夫 22212 12 n n i a a a a a a a R n ++++++∈≤例5、 +441,,18 a b R a b a b ∈+=≥例6、若 求证:+ ()12122 22221212,1111.n n n n a a a a a a n a a a a a a n ++++??????++++++≥ ? ? ???????例7、已知 ,,都是正数,且=1, 求证: 4、以分式的各项分母为目标,配对约分为桥梁。 ()22212a b c a b c R a b c a b c b a c + ∈++≥+++++例8、若、、,证明: ()()()333 111132 a b c abc a b c b a c c a b =≥+++例9设、、为正实数,且满足, 证明:++(IMO32届赛题) 5、 去伪存真,再寻对策

11111223421231 n n n n n n ∈≥->-+例10、 设N 且 2 求证:1-+-++ 6、综合中寻机应用,技高一筹 ,,,0,1, 131313131 a b c d abcd a b c d b c d a >≥+++≥++++例11、已知求证: (){}()() 1212222111,, ,2,,,1,1,1.2015n n n n n i i i i i i i a a a n a a n a εεεε===≥∈-??????+≤+ ? ? ??????? ∑∑∑例12、已知是实数,证明:可以选取使得:年全国联赛二试

柯西不等式的证明及其应用

柯西不等式的证明及其应用 赵增林 (青海民族大学,数学学院,青海,西宁,810007) 摘要:柯西不等式是一个非常重要的不等式,本文用五种不同的方法证明了柯西不等式,并 给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 柯西不等式 定理:如果1212,,,;,,,n n a a a b b b …………为两组实数,则 2222222 11221212()()()n n n n a b a b a b a a a b b b +++≤++++++……………… (*) 当且仅当12211331110n n a b a b a b a b a b a b -=-==-=……时等号成立。 若120,0,,0n b b b ≠≠≠……,则不等式的等号成立的条件是 12 12n n a a a b b b ===……。 我们称不等式(*)为柯西不等式。 柯西不等式的证明: 一)两个实数的柯西不等式的证明: 对于实数1212,,,a a b b ,恒有22222 11221212()()()a b a b a a b b +≤++,当且仅当 12210a b a b -=时等号成立。如果120,0b b ≠≠则等式成立的条件是12 12 a a b b =。 证明:对于任意实数1212,,,a a b b ,恒有 2222 22121211221221()()()()a a b b a b a b a b a b ++=++-,而21221()0a b a b -≥, 故2222211221212()()()a b a b a a b b +≤++。 当且仅当12210a b a b -=时等号成立。 不等式的几何意义如图1所示,在直角坐标系中有 异于原点O 的两点12(,)P a a ,12(,)Q b b ,由距离公式 得:|OP |=,|OQ |=

柯西不等式各种形式的证明及其应用培训资料

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角 度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:()()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==??==???= ?=?????当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 2 22 111n n n k k k k k k k a b a b ===??≥ ??? ∑∑∑

柯西不等式及排序不等式及其应用经典例题透析

经典例题透析类型一:利用柯西不等式求最值1.求函数 的最大值.思路点拨:利用不等式解决最值问题,通常设法在不 等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为ac+bd的形式就能利用柯西不等式求其最大值.也可以利用导数求解。 解析:法一:∵且, ∴函数的定义域为,且, 当且仅当时,等号成立, 即时函数取最大值,最大值为法二:∵且, ∴函数的定义域为 由, 得 即,解得∴时函数取最大值,最大值 为. 总结升华:当函数解析式中含有根号时常利用柯西不等式求解.不等式中的等号能否取得是求最值问题的关键. 举一反三: 【变式1】(2011,24)已知函数f(x)=|x-2|-|x-5|。 (I)证明:-3≤f(x)≤3; (II)求不等式f(x)≥x2-8x+15的解集。 【答案】 (Ⅰ) 当时,. 所以.…………5分

(Ⅱ)由(Ⅰ)可知, 当时,的解集为空集; 当时,的解集为; 当时,的解集为. 综上,不等式的解集为.……10分 【变式2】已知,,求的最值. 【答案】法一: 由柯西不等式 于 是的最大值为,最小值为. 法二: 由柯西不等式 于是的最大值为,最小值为. 【变式3】设2x+3y+5z=29,求函数的最大值. 【答案】 根据柯西不等式 , 故。 当且仅当2x+1=3y+4=5z+6,即时等号成立, 此时,评注:根据所求最值的目标函数的形式对已知条件进行配凑. 类型二:利用柯西不等式证明不等式

利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。如常数的巧拆、结构的巧变、巧设数组等。 (1)巧拆常数:2.设、、为正数且各不相等,求证: 思路点拨:∵、、均为正,∴为证结论正确只需证: 而,又,故可利用柯西不等式证明之。 证明: 又、、各不相等,故等号不能成立 ∴。 (2)重新安排某些项的次序:3.、为非负数,+=1,,求证: 思路点拨:不等号左边为两个二项式积, ,直接利用柯西不等式,得不到结论,但当把第二个小括号的两项前后调换一下位置,就能证明结论了。 证明:∵+=1 ∴ 即(3)改变结构:4、若>>,求证: 思路点拨:初见并不能使用柯西不等式,改造结构后便可使用柯西不等式了。 ,,∴,∴所证结论改为证

柯西不等式的应用技巧

柯西不等式的应用技巧及练习 柯西不等式的一般形式是:设1212,,,R n n a a a b b b ∈L L ,则 当且仅当1212n n a a a b b b ===L 或120n b b b ====L 时等号成立. 其结构对称,形式优美,应用极为广泛,特别在证明不等式和求函数的最值中作用极大.应用时往往需要适当的变形:添、拆、分解、组合、配凑、变量代换等,方法灵活,技巧性强. 一、巧配数组 观察柯西不等式,可以发现其特点是:不等式左边是两个因式的积,其中每一个因式都是项的平方和,右边是左边中对立的两项乘积之和的平方,因此,构造两组数:1212,,n n a a a b b b L L 和,便是应用柯西不等式的一个主要技巧. 例1 已知,,225x y z x y z ∈-+=R,,且求222(5)(1)(3)x y z ++-++的最小值. 例2 设,,R x y z ∈ ,求证:≤≤ 二、巧拆常数 运用柯西不等式的关键是找出相应的两组数,当这两组数不太容易找到时,常常需要变形,拆项就是一个变形技巧. 例3 设a 、b 、c 为正数且各不相等, 求证:c b a a c c b b a ++>+++++9222 . 有些问题本身不具备运用柯西不等式的条件,但是只要我们改变一下式子的形式结构,认清其内在的结构特征,就可达到运用柯西不等式的目的. 例6 a 、b 为非负数,a +b =1,+∈R x x 21, 求证:212121))((x x ax bx bx ax ≥++ 例7 设,1 21+>>>>n n a a a a K 求证:

练习题 1. (2009年浙江省高考自选模块数学试题)已知实数z y x ,,满足,12=++z y x 设.2222z y x t ++= (1) 求t 的最小值; (2) 当21 =t 时,求z 的取值范围 2 (2010年浙江省第二次五校联考)已知,,a b c R +∈,1a b c ++=。 (1) 求()222149a b c +++的最小值; (2) 2≥ 3 (2010年杭二中高三年级第三次月考)已知正数,,a b c 满足:1=++ca bc ab ,求 的最大值. 4 (浙江省镇海中学高考模拟试题) 已知,,x y z 是正数,且12 1,x y += 求221 2 2x x y y +++的最小值; 5 (金华十校2009年高考模拟考试)若+∈R c b a ,, , 求证:1222≥+++++b a c a c b c b a 6 (2010年宁波市高三模拟测试卷)已知,,a b c 为正实数,且3a b c ++=. 证明:222 2()()()4 ()3a c b a c b a c a b c ---++≥-,并求等号成立时,,a b c 的值. 7 (浙江省镇海中学高考模拟试题) 若0,,1,x y z <<且1xy yz zx ++= ≥ 8(2010年金华十校高考模拟考试) 设正数x ,y ,z 满足1543=++z y x 求x z z y y x +++++1 1 1 值.

(完整word版)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知 a 、 b 、 c 、d 为实数,求证 (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ① 提出定理 1:若 a 、 b 、 c 、 d 为实数,则 (a 2 b 2 )( c 2 d 2 ) (ac bd )2 . 证法一:(比较法) (a 2 b 2 )(c 2 d 2 ) ( ac bd ) 2 = .= ( ad bc) 2 0 证法二:(综合法) (a 2 b 2 )( c 2 d 2 ) a 2c 2 a 2 d 2 b 2c 2 b 2d 2 ( ac bd ) 2 ( ad bc) 2 ( ac bd) 2 . (要点:展开→配方) ur (a,b) , r ur a 2 b 2 r c 2 d 2 . 证法三:(向量法)设向量 m n (c,d ) ,则 | m | , | n | ur r ur r ur r ur r ur r ur r ∴.. ∵ m ? n ac bd ,且 mgn | m |g| n |gcos m,n ,则 | mgn | | m |g| n | . 证法四:(函数法)设 f ( x) ( a 2 b 2 ) x 2 2( ac bd ) x c 2 d 2 ,则 f ( x) ( ax c)2 (bx d )2 ≥ 0 恒成立 . ∴ [ 2(ac bd)] 2 4(a 2 b 2 )( c 2 d 2 ) ≤ 0,即 .. ③二维形式的柯西不等式的一些变式: a 2 b 2 g c 2 d 2 | ac bd | 或 a 2 b 2 g c 2 d 2 | ac | | bd | 或 a 2 b 2 g c 2 d 2 ac bd . 2:设 ur ur ur ur | | ur ur ④ 提出定理 , 是两个向量,则 | g || | . 即柯西不等式的向量形式(由向量法提出 ) ur ur ur , → 讨论:上面时候等号成立?( 是零向量,或者 共线) ⑤ 练习:已知 a 、 b 、 c 、d 为实数,求证 a 2 b 2 c 2 d 2 (a c)2 (b d) 2 . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理 3:设 x , y , x , y R ,则 2 2 2 2 2 2 . 1 12 2 x 1 y 1 x 2 y 2 ( x 1 x 2 ) ( y 1 y 2 ) 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若 x 1 , y 1 , x 2 , y 2 , x 3 , y 3 R ,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结: 二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程 : (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ; x 12 y 1 2 x 2 2 y 2 2 ( x 1 x 2 ) 2 ( y 1 y 2 )2 3. 如何利用二维柯西不等式求函数 y x 1 2 x 的最大值 ? 要点:利用变式 | ac bd | a 2 b 2 g c 2 d 2 . 二、讲授新课: 1. 教学最大(小)值: ① 出示例 1:求函数 y 3 x 1 10 2x 的最大值? 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式: y 3x 1 10 2x → 推广: y a bx c d e fx,( a,b,c,d ,e, f R ) ② 练习:已知 3x 2 y 1,求 x 2 y 2 的最小值 . 解答要点:(凑配法) x 2 y 2 1 ( x 2 y 2 )(3 2 22 ) 1 (3 x 2 y) 2 1 . 13 13 13 2. 教学不等式的证明: ① 出示例 2:若 x, y R , x y 2 ,求证: 1 1 2 . x y 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点: 1 1 1 ( x y)( 1 1 ) 1 [( x )2 ( y )2 ][( 1 ) 2 (1)2 ] x y 2 x y 2 x y

柯西不等式的应用及推广

浅谈柯西不等式的应用及推广 【摘要】剖析柯西不等式的证明、推广以及它们在证明不等式、求函数最值、解方程等方 面的一些应用,进而对其在中学数学教学中的一些问题进行讨论。 【关键词】柯西(Cauchy )不等式;函数最值;三角函数证明;不等式教学 【Abstract 】Cauchy-inequality analyzed by proving and extending,applied by proving an inequation and finding asolution to an equation or the maximum value & minimum value of function.Then Cauchy-inequality's some questions appeared in math-teaching of middle school will be discussed. 【Key words 】Cauchy-inequality,the maximum & minimum value,inequation-teaching,func of triangle's proving 引言 中学教材和教辅读物中有不少地方都有一些高等数学知识的皱型和影子。在中学数学教学中,不等式的教学一直是一个难点,学生在学习不等式、应用不等式解题中困难重重。而柯西不等式是著名的不等式之一,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题具有重要的应用。基于此,本文拟以柯西不等式为例,从证明方法到应用技巧方面进行总结和归纳,并谈谈它在中学数学中的一些应用.。 1 柯西不等式的证明[1][2] 对柯西不等式本身的证明涉及有关不等式的一些基本方法和技巧。因此,熟练掌握此不等式的证明对提高我们解决一些不等式问题和证明其它不等式有很大帮助。本文所说的柯西不等式是指 ()n i n i i n i i n i i i b a b a , ..., 2,11 2 1 2 2 1====∑ ∑ ∑≤?? ? ?? 当且仅当 n n b a b a b a = == ...2 21 1时,等号成立。 1.1 构造二次函数证明 当021====n a a a 或021===n b b b 时,不等式显然成立 令∑ == n i i a A 1 2 ∑ == n i i i b a B 1 ∑ == n i i b C 1 2 , 当n a a a ,,,21 中至少有一个不为零时,可知A>0 构造二次函数()C Bx Ax x f ++=2 2 2,展开得:

高中数学-公式-柯西不等式

第一课时 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+ ∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. } ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈ ? 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+ 3. 如何利用二维柯西不等式求函数y = 要点:利用变式222||ac bd c d ++. 二、讲授新课: % 1. 教学最大(小)值: ① 出示例1:求函数y = 分析:如何变形 → 构造柯西不等式的形式 → 板演 → 变式:y = → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式 (注意对比 → 构造)

柯西不等式各种形式的证明及其应用之欧阳光明创编

柯西不等式各种形式的证明及其应 用 欧阳光明(2021.03.07) 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到 的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 等号成立条件:()d c b a bc ad //== 扩展:()()()22222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: 三角形式 三角形式的证明: 向量形式 2 22 111n n n k k k k k k k a b a b ===??≥ ??? ∑∑∑

向量形式的证明: 一般形式 一般形式的证明: 证明: 推广形式(卡尔松不等式): 卡尔松不等式表述为:在m*n 矩阵中,各行元素之和的几何平均数不小于各列元素 之积的几何平均之和。 或者: 或者 推广形式的证明: 推广形式证法一: 或者 推广形式证法二: 事实上涉及平均值不等式都可以用均值不等式来证, 这个不等式并不难,可以简单证明如下: 付:柯西(Cauchy )不等式相关证明方法: 等号当且仅当021====n a a a 或i i ka b =时成立(k 为常数, n i 2,1=)现将它的证明介绍如下: 证明1:构造二次函数 ()()()2222211)(n n b x a b x a b x a x f ++++++= =()()()22222121122122n n n n n n a a a x a b a b a b x b b b +++++++++++ ()0f x ∴≥恒成立 即()()()2222211221212n n n n n n a b a b a b a a a b b b +++≤++++++

高中数学-公式-柯西不等式

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+. ∵m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d ≥. 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+ 3. 如何利用二维柯西不等式求函数y =? 要点:利用变式2 22||ac bd c d ++. 二、讲授新课: 1. 教学最大(小)值: ① 出示例1:求函数y = 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式:y = 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点:2222111111()()] 22x y x y x y +=++=++≥…

专题三 柯西不等式的应用

专题三 不等式的证明 (柯西不等式) 1.下列不等式的证明明过程: ①若a ,b ∈R ,则 ②若x ,y ∈R ,则 ; ③若x ∈R ,则 ; ④若a ,b ∈R ,ab <0,则. 其中正确的序号是 . 2.设a ,b ∈R + ,a+b=1,则+的最小值为( ) A.2+ B.2 C.3 D. 3.已知a >b >0,c <d <0,则与 的大小关系为 . 4.已知a ,b ,c ∈R ,且a+b+c=0,abc >0,则++的值( ) A.小于0 B.大于0 C.可能是0 D.正负不能确定 5.若不等式(﹣1)n a <2+ 对任意n ∈N * 恒成立,则实数a 的取值范围是( ) A.[﹣2,) B.(﹣2,) C.[﹣3,) D.(﹣3,) 6.设a ,b ,c ∈(﹣∞,0),则对于a+,b+,c+,下列正确的是 ①都不大于﹣2 ②都不小于﹣2 ③至少有一个不小于﹣2 ④至少有一个不大于﹣2. 7.定义在R 上的函数f (x )=mx 2 +2x+n 的值域是[0,+∞),又对满足前面要求的任意实数m ,n 都有不等式 恒成立,则实数a 的最大值为( ) A.2013 B.1 C. D. 8.已知a 、b 、c 是△ABC 的三边长,A=,B=,则( ) A.A >B B.A <B C.A≥B D.A≤B 9.设正实数x y z 、、满足0432 2 =-+-z y xy x ,则当 取得最小值时,2x y z +-的最大值为( )

10.设正实数z y x ,,满足04322=-+-z y xy x , ) A .0 B .1 C D .3 11.(2012?湖北)设a ,b ,c ,x ,y ,z 是正数,且a 2 +b 2 +c 2 =10,x 2 +y 2 +z 2 =40,ax+by+cz=20,则=( ) A. B. C. D. 12.用柯西不等式求函数y=的最大值为( ) A. B.3 C.4 D.5 13.若23529x y z ++=,则函数 ) 14.对任意正数x ,y 不等式(k ﹣)x+ky≥ 恒成立,则实数k 的最小值是( ) A.1 B.2 C.3 D.4 15.已知x 2+4y 2+kz 2 =36,且x+y+z 的最大值为7,则正数k 等于( ) A.1 B.4 C.8 D.9 16.设x 、y 、z 是正数,且x 2+4y 2+9z 2 =4,2x+4y+3z=6,则x+y+z 等于( ) A. B. C. D. 17.已知x ,y ,z 均为正数,且x+y+z=2,则++的最大值是( ) A.2 B.2 C.2 D. 3 18.实数a i (i=1,2,3,4,5,6)满足(a 2﹣a 1)2+(a 3﹣a 2)2+(a 4﹣a 3)2+(a 5﹣a 4)2+(a 6﹣a 5)2 =1则(a 5+a 6)﹣(a 1+a 4)的最大值为( ) A.3 B.2 C. D.1 19.设a ,b ,c ,x ,y ,z 均为正数,且a 2 +b 2 +c 2 =10,x 2 +y 2 +z 2 =40,ax +by +cz =20,则 a b c x y z ++++等于( ). A.14 B.13 C. 12 D.34

归纳柯西不等式的典型应用

归纳柯西不等式的典型应用

归纳柯西不等式的典型应用 【摘要】:柯西不等式是一个非常重要的不等式,本文用五种不同的 方法证明了柯西不等式,介绍了如何利用柯西不等式技巧性解题,在证明不等式或等式,解方程,解三角形相关问题,求函数最值等问题的应用方面给出几个典型例子。最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 【关键词】:柯西不等式 ;证明;应用 【引言】:本人通过老师在中教法课上学习柯西不等式时,老师给出 了一些有关的例题并讲解,由于柯西不等式是一个非常重要的不等式,如果巧妙利用它,在高考可以节省很多宝贵时间,而且得分率高。因此,本文介绍归纳了柯西不等式的典型应用,经过收集及整理资料,得到四类的典型题。 【正文】: 1.柯西不等式的一般形式为: 对任意的实数 n n b b b a a a ,,,,,,2121?????? ()( ) 222112 22212 222 1 )(n n n n b a b a b a b b b a a a ??????++≥+??????+++??????++

其中等号当且仅当λ=== n n b a b a b a 2211时成立,其中R ∈λ 变式:()()222112121)(n n n n y x y x y x y y y x x x ??????++≥+??????+++??????++ 2. 柯西不等式的证明: 证明柯西不等式的方法总共有6 种,下面我们将给出常用的2种证明柯西不等式的方法: 1)配方法: 作差:因为22211 1 ()()()n n n i j i i i j i a b a b ===-∑∑∑ 221 1 1 1 ()()()()n n n n i j i i j j i j i j a b a b a b =====-∑∑∑∑ 2211 11 n n n n i j i i j j i j i j a b a b a b =====-∑∑∑∑ 2222 111111 1(2)2n n n n n n i j j i i j j i i j i j i j a b a b a b a b =======+-∑∑∑∑∑∑ 2222 11 1(2)2n n i j i j j i j i i j a b a b a b a b ===-+∑∑ 211 1()02n n i j j i i j a b a b ===-≥∑∑ 所以222 1 1 1 ()()()n n n i j i i i j i a b a b ===-∑∑∑0≥,即2221 1 1 ()()()n n n i j i i i j i a b a b ===≥∑∑∑ 即222222*********()()()n n n n a b a b a b a a a b b b +++≤++++++……………… 当且仅当0(,1,2,,)i j j i a b a b i j n -==…… 即(1,2,,;1,2,,;0)j i j i j a a i n j n b b b ===≠…………时等号成立。 2)用数学归纳法证明 i )当1n =时,有2221112()a b a b =,不等式成立。

相关主题
文本预览
相关文档 最新文档