当前位置:文档之家› 4 温度测量

4 温度测量

温度常用测量方法及原理

温度常用测量方法及原理 (1)压力式测温系统是最早应用于生产过程温度测量方法之一,是就地显示、控制温度应用十分广泛的测量方法。带电接点的压力式测温系统常作为电路接点开关用于温度就地位式控制。 压力式测温系统适用于对铜或铜合金不起腐蚀作用场合,优点是结构简单,机械强度高,不怕振动;不需外部电源;价格低。缺点是测温范围有限制(-80~400℃);热损失大,响应时间较慢;仪表密封系统(温包,毛细管,弹簧管)损坏难以修理,必须更换;测量精度受环境温度及温包安置位置影响较大;毛细管传送距离有限制。 (2)热电阻热电阻测量精度高,可用作标准仪器,广泛用于生产过程各种介质的温度测量。优点是测量精度高;再现性好;与热电偶测量相比它不需要冷点温度补偿及补偿导线。缺点是需外接电源;热惯性大;不能使用在有机械振动场合。 铠装热电阻将温度检测元件、绝缘材料、导线三者封焊在一根金属管内,它的外径可以做得很小,具有良好的力学性能,不怕振动。同时,它具有响应快,时间常数小的优点。铠装热电阻可制成缆状形式,具有可挠性,任意弯曲,适应各种复杂结构场合中的温度测量。 (3)双金属温度计双金属温度计也是用途十分广泛的就地温度计。优点是结构简单,价格低;维护方便;比玻璃温度计坚固、耐振、耐冲击;示值连续。缺点是测量精度较低。 (4)热电偶热电偶在工业测温中占了很大比重。生产过程远距离测温大多使用热电偶。优点是体积小,安装方便;信号远传可作显示、控制用;与压力式温度计相比,响应速度快;测温范围宽;测量精度较高;再现性好;校验容易;价

低。缺点是热电势与温度之间是非线性关系;精度比电阻低;在同样条件下,热电偶接点易老化。 (5)光学高温计光学高温计结构简单、轻巧、使用方便,常用于金属冶炼、玻璃熔融、热处理等工艺过程中,实施非接触式温度测量。缺点是测量靠人眼比较,容易引入主观误差;价格较高。 (6)辐射高温计辐射高温计主要用于热电偶无法测量的超高温场合。优点是高温测量;响应速度快;非接触式测量;价格适中。缺点是非线性刻度;被测对象的辐射率、辐射通道中间介质的吸收率会对测量造成影响;结构复杂。(7)红外测温仪(便携式)特点是非接触测温;测温范围宽(600~1800℃ /900~2500℃);精度高示值的1%+1℃;性能稳定;响应时间快(0.7s);工作距离大于0.5m。

人体体温测量传感器

人体体温测量传感器

目录一·任务说明 二·总体设计方案 三·传感器的选型与测量电路 四·典型器件选择 五·系统误差的分析与处理

一、任务说明 任务用途 用于人体温度测量,要求实现非接触式测量,具备测量数据自动记录和打印功能,并对温度超限给出相应的报警和控制信号。 任务要求 1、确定测量方法,并说明其测量原理; 2、选定传感器类型,并说明理由; 说明:允许误差:±0.1℃ 各类传感器比较 热辐射 非接触测量,结构简单,量程比较宽,精确度高,可自动记录和远距离传送信号,但人为误差大,只能测量高温,连续测量需冷却。压电式

分辨率高,稳定性好,输出的频率便于数字化处理,抗噪声能力强,性能稳定,线性好,但是机械化强度很差。数字信号输出。 热电阻 热电阻具有负温度系数,其灵敏度远高于金属热电阻,体积小,热惯性小,适合快速测量,功率小,寿命长,但互换性差,测量范围窄。 光纤式 光纤体吸收性探头体积小,灵敏度高,工作可靠,精确度高,与电磁场的相互作用小,误差小,但是测量范围窄。 根据以上各类传感器的特点,我们选择光纤辐射温度传感器,因为对于我们人体的温度来看,测量范围小并不影响我们的测量,其精确度和线性度以及受周围磁场的影响小等优点,由于光纤直径细小且可绕行好,因此也可以用于狭窄或者视听不好的场所,此外还可以用多个探头,借助于扫描器进行转换,构成多点温度测量系统,我们还是觉得这类传感器比较适合测量人体温度。

四、测量电路可行性分析 下图为光纤辐射温度传感器的设计框图,光纤探头接受由被测物体温度决定的辐射能,并经过光纤传输到检测器,由光电器件转换成电信号,再经过电路转换、处理后显示出被测温度值,这种光纤辐射温度计与一般的辐射温度计相比,其明显的优点是测量探头可以不用水冷而测量,从而有利于克服环境的干扰,适合于在恶劣的工作条件下应用,由于光纤直径细小且可绕行好,因此也可以用于狭窄或者视听不好的场所,此外还可以用多个探头,借助于扫描器进行转换,构成多点温度测量系统。 五、总体设计方案

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

表面温度测量方法

表面温度测量方法 表面热电偶在结构上坚固得多,并且不受因安装材料或方法所引起的应变的影响。它们具有设计简单的固有特点,从而使成本较低。所有热电偶表面传感器都具有能够在与表面热电阻传感器相比高出很多的温度下正常工作以及响应更加快速的特定。但是,热电偶传感器生成的电压信号较低,可能需要进行附加放大,这在电气噪声很高的环境中是一个缺点。 与表面热电偶传感器不同,表面热电阻传感器不需要参考点、冰浴或温度补偿电路。这些传感器具有非常低的热质量,因此可提供真实的表面温度测量值以及快到50ms的响应时间。铂传感器被公认为是一种精密温度测量传感器,它可在-190℃~660℃温度范围来定义国际温标(ITS-90)。将铂温度计选择作为首要标准的主要原因是,它的电阻温度参数具有优异的稳定性和重复性。表面热电阻的信号输出大小是热电偶输出的50~200倍。这意味着温度测量常常可使用标准仪表来进行。 TOBTO拓必拓TM-1300A微型测温笔主要用于物体表面温度的精确测量。 TOBTO拓必拓TM-1300A微型测温笔特点: 1、LCD4位数字液晶显示 2、采用集成电路稳定可靠 3、使用充电锂电池,使用周期长

TOBTO拓必拓TM-1300A微型测温笔技术指标: 1、分辨率:1℃;单位:℃ 2、精度:±(2%+1℃) 3、测量范围:TP─01-20℃──300℃ 比例系数:12:1; 4、测量环境:0℃──50℃相对湿度≤80%RH; 5、保存环境:-30℃──60℃相对湿度≤75%RH; 6、电池连续使用寿命720小时。 TOBTO拓必拓TM-1300A微型测温笔使用方法: 1、按开关键开机,红外对准要测量的设备,再按“M”执行键开始 测量,仪器显示采集到的数值后测量完成。 2、手动开/关机。

(完整word版)温度监测系统设计仿真与实现

实用温度监测系统 学院:电子信息工程学院专业:通信工程1303 学生姓名:张艺 学号:13211075 任课教师:刘颖 2015年06 月10 日

目录 实验题目:失真放大电路 .............. 错误!未定义书签。 1 实验题目及要求 (2) 2 实验目的与知识背景 (2) 2.1 实验目的 (2) 2.2 知识点 (2) 3 实验过程 (4) 3.1 选取的实验电路及输入输出波形 (4) 3.2 每个电路的讨论和方案比较 (16) 3.3 分析研究实验数据............. 错误!未定义书签。 4 总结与体会 (20) 4.1 通过本次实验那些能力得到提高,那些解决的问题印象深刻, 有那些创新点。 (20) 4.2 对本课程的意见与建议......... 错误!未定义书签。 5 参考文献 (21)

目录 1.电路设计及原理分析 (3) 1.1设计任务 (4) 1.2技术指标 (4) 1.3电路原理图 (5) 1.4基本原理 (5) 2.电路模拟与仿真 (6) 2.1仿真软件 (6) 2.2创建电路模拟图 (9) 2.3元件列表 (9) 2.4仿真记录与结果分析 (10) 3.实际电路的安装调试 (15) 3.1 元件参数确定 (15) 3.2 电路板布线设计 (15) 3.3 焊接 (15) 3.4调试与测量 (15) 3.5分析结果及改进 (16) 4.总结 (176) 5.心得体会 (177) 6.参考文献 (198)

1.电路设计及原理分析 1.1设计任务 通过Proteus软件仿真精密双限温度报警仪设计,在老师点拨我们自学的基础上了解了运放的作用,用了比较器,震荡电路等知识,根据找到的电路图进行仿真,调试电路,明白了温度报警的意义。 通过比较器产生“数字模拟信号”,使得在信号产生的时候,震荡电路工作产生震荡信号驱动扬声器报警。 1.2技术指标 a.当温度在设定范围内时报警电路不工作; b.当温度低于下限值或高于上限值时,声光报警; c.上下限低于报警led用不同颜色; d.上下限可调; e.控温精度度 1℃ f.监测范围0.5℃

简单多点温度测量系统课程设计

课程设计报告(2010 —2011 年度第2学期) 题目:基于DS18B20的多点温度测量系统 院系: 姓名: 学号: 专业: 指导老师: 2011年5 月22 日

目录 1设计要求…………………………………………………………………………2设计的作用、目的………………………………………………………………3设计的具体实现…………………………………………………………………. 3.1系统概述……………………………………………………………………. 3.2单元电路设计与分析……………………………………………………… 3.3电路的安装与调试…………………………………………………………4心得体会及建议………………………………………………………………… 4.1心得体会…………………………………………………………………… 4.2建议…………………………………………………………………………5附录………………………………………………………………………………6参考文献…………………………………………………………………………

基于DS12B20的多点温度测量系统设计报告 1设计要求 运用DS12B20温度测量芯片实现一个多点温度测量系统,要求如下: (1).测量点为两点。 (2).测量的温度为-40~+40°C (3).温度测量的精度为±0.5°C (4).测量系统的响应时间要小于1S。 (5).温度数据的传输方式采用串行数据传送的方式。 2 设计的作用、目的 通过本设计可以进一步了解熟悉单片机的控制原理以及外设与单片机的数据通信方法,尤其是串行通信方法以及单片机与外设间的接口问题。 本设计旨在提高学生的实际应用系统开发能力,增长学生动手实践经验,激起学生学以致用的兴趣。 3设计的具体实现 3.1系统概述 本系统分为温度采集模块、核心处理模块、控制模块和显示模块。温度采集模块由DS18B20温度测量芯片构成,它负责测量温度后将温度量转化为数字信号,传输到数据处理模块;核心处理模块由AT89S52单片机组成,它负责与温度采集模块进行数据通信、对数据进行操作处理已经对各种外设的响应与控制;控制模块由几个按键组成,实现对测量点的选择以及电路复位的操作;显示模块由一块四位的八段译码显示管和驱动芯片组成,它的作用是显示测量的温度值。 系统模块组成图:

温度和风速测量方法总结

第一章风速测量1.1风速测量 风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。 1.2 风杯风速计 风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。 图1.1 风杯风速计 1.3 叶轮风速仪 风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。 法国KIKO叶轮风速仪工作原理如图1.2所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。 图1.2 KIMO原理 1.4 热线风速计 一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。

金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。热线风速计用于0至5m/s的精确测量,使用温度约为±70℃。 当在湍流中使用热线风速计时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式风速计。因此,风速仪测量过程应尽量在通道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面应不得有遮挡(棱角,重悬,物等)。 图1.3 热线风速计 1.4.1 恒流式热线风速计 通过热线的电流保持不变,温度变化时,热线电阻改变,因而两端电压变化,由此测量流速。利用风速探头进行测量。风速探头为一敏感部件。当有一恒定电流通过其加热线圈时,探头内的温度升高并于静止空气中达到一定值。此时,其内测量元件热电偶产生相应的热电势,并被传送到测量指示系统,此热电势与电路中产生的基准反电势相互抵消,使输出信号为零,风速仪指针也能相应指于零点或显示零值。若风速探头端部的热敏感部件暴露于外部空气流中时,由于进行热交换,此时将引起热电偶热电势变化,并与基准反电势比较后产生微弱差值信号,此信号被测量仪表系统放大并推动电表指针 变化从而指示当前风速或经过单片机处理后通过显示屏显示当前风速数值。 1.4.2 恒温式热线风速计 风速仪热线的温度保持不变,给风速敏感元件电流可调,在不同风速下使处于不同热平衡状态的风速敏感元件的工作温度基本维持不便,即阻值基本恒定,该敏感元件所消耗的功率为风速的函数。 恒温风速仪则是利用反馈电路使风速敏感元件的温度和电阻保持恒定。当风速变化时热敏感元件温度发生变化,电阻也随之变化,从而造成热敏感元件两端电压发生变化,此时反馈电路发挥作用,使流过热敏感元件的电流发生相应的变化,而使系统恢复平衡。

基于51单片机的温度测量系统仿真

基于51单片机的温度测量系统仿真专题实验内容与设计要求 主要设计条件 1、Proteus或者其它软件 2、实验室现有软硬件设施 2、相关参考文献 报告书格式

1.专题实验设计报告书封面。 2.专题设计任务书。 3. 报告书目录。 4.正文 5.总结。 6.参考文献。 7.附录。 8.专题设计评分表。 正文部分包括(概述、总体设计、硬件电路设计及调试等) 进度安排 第一天:布置课题任务,课题内容介绍。 第二天~第五天:仔细了解分析实验任务,明确实验要求,收集实验专题设计资料。阅读相关资料,设计方案确定,相关元器件选型;进行电路和软件设计,编写实验报告。

一.温度测量系统的重要性 在现今科技高速发展的时代,各行各业对控制和测量的要求越来越高,其中,温度测量和控制在很多行业中都有比较重要的应用,尤其在工业上,如炼钢时对温度高低的控制。要控制好温度,测量是前提,测量的精度影响着后续工序的进行,因此温度测量的方法和选取就显得相当重要了。 二.设计目的与意义 随着电子技术的高速发展,对电子方面人才的要求越来越高,不仅要求其具备相关的专业理论知识,还要求其具有较强的设计、制作等实践动手能力。此次专题实验无疑是对从事测控专业的人的一次很好的锻炼和考验,是培养测控技术的人才的一次良好的机会,为其提供了一个理论知识与实践相结合的平台。通过本次专题实验,引导学生结合所学的测控电路理论知识,思考设计方案,以小组合作方式,分工完成各个部分,从而掌握相关的测量显示电路的设计和调试技术,一方面提高了学生的实践动手和协作能力,另一方面培养了学生综合运用所学理论知识进行工程设计的能力。 通过此次专题实验,可以培养学生的工程设计能力,包括动手能力、独立思考设计能力、解决实际设计过程中遇到的问题以及团队协作能力等,为今后的专业学习和工程实践打下坚实的基础。 三.实验方案 3.1系统方案 3.1.1方案一 该方案为ICL7107 A/D转换&译码方案。 常见A/D转换器的转换方式有非积分式和积分式两类,如逐次逼近比较式A/D转换、斜坡电压式A/D转换等属于非积分式,其特点是转换速度快,但抗干扰能力差。电压反馈型 V-F变换、双积分式A/D转换则属于积分式,其特点是抗干扰能力强、测量精度高,但转换速度低,在转换速度要求不太高的情况下,获得广泛应用。 工作方框图如图1所示:

温度测量方法

材料物理专业杨洁学号:0743011033 温度测量方法材料物理专业一班杨洁学号:0743011033 我们大家都知道温度是表征物体冷热程度的物理量. 而测量温度的标尺是温度计,其按照测量方式可以分为接触式和非接触式两种. 通常来说的接触式测量仪表比较简单,可靠,测量精度高,但是因为测温元件与被测介质需要进行充分的热交换,所以其需要一定的时间才能达到热平衡, 所以,存在测温延迟现象,同时受耐高温和耐低温材料的限制,不能应用于这些极端的温度测量.非接触式仪表测温仪是通过热辐射的原理来测量温度的,测温元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体发射率,测量距离,烟尘和水汽等外界因素的影响,其测量误差较大. 下面就简单介绍几种温度计: 1,气体温度计:利用一定质量的气体作为工作物质的温度计.用气体温度计来体现理想气体温标为标准温标. 用气体温度计所测得的温度和热力学温度相吻合.气体温度计是在容器里装有氢或氮气(多用氢气或氦气作测温物质,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广) ,它们的性质可外推到理想气体.这种温度计有两种类型:定容气体温度计和定压气体温度计.定容气体温度计是气体的体积保持不变,压强随温度改变.定压气体温度计是气体的压强保持不变,体积随温度改变. 2,电阻温度计:根据导体电阻随温度而变化的规律来测量温度的温度计. 最常用的电阻温度计都采用金属丝绕制成的感温元件, 主要有铂电阻温度计和铜电阻温度计,在低温下还有碳,锗和铑铁电阻温度计.精密的铂电阻温度计是目前最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计.我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计.分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的.金属温度计主要有用铂,金,铜,镍等纯金属的及铑铁,磷青铜合金的;半导体温度计主要用碳,锗等.电阻温度计使用方便可靠,已广泛应用.它的测量范围为-260℃至600℃左右. 3,温差电偶温度计:利用温差电偶来测量温度的温度计.将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生.因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计.若在温差电偶的回路里再接入一种或几种不同金属的导线, 所接入的导线与接触点的温度都是均匀的,对原电动势并无影响,通过测量温差电动势来求被测的温度,这样就构成了温差电偶温度计.这种温度计测温范围很大.例如,铜和康铜构成的温差电偶的测温范围在200~400℃之间;铁和康铜则被使用在200~1000℃之间;由铂和铂铑合金(铑10%)构成的温差电偶测温可达千摄氏度以上;铱和铱铑(铑50%)可用在2300℃;若用钨和钼(钼25%)则可高达2600℃. 4,高温温度计:是指专门用来测量500℃以上的温度的温度计,有光测温度计,比色温度计和辐射温度计.高温温度计的原理和构造都比较复杂,这里不再讨论.其测量范围为500℃至3000℃以上,不适用于测量低温. 2010-3-25 1 材料物理专业杨洁学号:0743011033 5,指针式温度计:是形如仪表盘的温度计,也称寒暑表,用来测室温,是用金属的热胀冷缩原理制成的.它是以双金属片做为感温元件,用来控制指针. 双金属片通常是用铜片和铁片铆在一起,且铜片在左,铁片在右.由于铜的热胀冷缩效果要比铁明显的多,因此当温度升高时,铜片牵拉铁片向右弯曲,指针在双金属片的带动下就向右偏转(指向高温) ;反之,温度变低,指针在双金属片的带动下就向左偏转(指向低温) . 6,玻璃管温度计:玻璃管液体温度计是应用最广泛的一种温度计,其结构简单,使用方便,准确度高,价格低廉.按用途分类,可分为工业,标准和实验室用三种.标准玻璃温度计是成套供应的,可以作为检定其他温度计用,准确度可达0.05 ~ 0.1 摄氏度;工业用玻璃温度计为了避免使用是被碰碎,在玻璃管外通常由金属保护套管,仅露出标尺部分,供操作人员读数.实验室用的玻璃管温度计的形式和标准的相仿,准确度也较高. 7,压力式温度计:新一代液体压力式温度计以及由此开发的系列化测温仪表,克服了原仪表性能单一,可靠性差以及温包积大的缺点,并将测温元件体积缩小到原

基于单片机的多点温度测量系统毕业设计论文

理工科类大学毕业设计论文 南开大学 本科生毕业设计 中文题目:基于单片机的多点温度测量系统设计 英文题目:Design of based on the microprocessor multipoint temperature measurement system 学号:**** 姓名:**** 年级:**** 专业:电子信息科学与技术 系别:电子科学系 指导教师:**** 完成日期:****

摘要 通过运用DS18B20数字温度传感器的测温原理和特性,利用它独特的单线总线接口方式,与AT89C51单片机相结合实现多点测温。并给出了测温系统中对DS18B20操作的C51编程实例。实现了系统接口简单、精度高、抗干扰能力强、工作稳定等特点。 本文介绍基于AT89C51单片机、C语言和DS18B20传感器的多点温度测量系统设计及其在Proteus平台下的仿真。利用51单片机的并行口,同步快速读取8支DS18B20温度,实现了在多点温度测量系统中对多个传感器的快速精确识别和处理,并给出了具体的编程实例和仿真结果。 关键词:单片机;DS18B20数字温度传感器;Proteus仿真;C51编程

Abstract With using the measuring principle and characteristics of the numerical temperature sensor of DS18B20,making use of special characteristics of single line as the total line, and combine together with AT89C51 to realize several points temperature measuring. Also this paper gives the example of the C51 program which is used to operate to the DS18B20. Make system have characteristics of simple, high accuracy, strong anti- interference ability, stable work etc. This design introduced AT89C51 monolithic integrated circuit temperature control system design from the hardware and the software two aspects. A multipoint temperature measurement system based on DS18B20 and AT89C51 microcontroller is designed and simulated by Proteus in this paper, including software and hardware design of this system. The system has such advantages as novel circuit design, quick measurement speed, high measurement accuracy, and good practicality. Key words: SCM;DS18B20;Proteus simulation;C51 program

基于单片机的无线温度检测器设计_任务书

毕业设计(论文)任务书 电子信息与电气工程系(院)2013届 题目基于单片机的无线温度检测器设计 学生姓名 ***** 学号 200902020005 专业自动化年级班 2009级2班 指导教师 ****** 职称讲师 填写日期:2013 年1月18日

设计(论文)依据 本课题研究的主要内容是针对检测领域的现状,以及组建无线检测系统的实际需要,提出了一种基于射频通信技术的解决方案,研究和开发一种新型无线检测系统来实现传感器的温度数据采集和无线数据传输,从而达到检测的目的。 现阶段,无线测温仪在国内外许多研究领域得到了广泛的应用。 柯兆盛,郭树旭,刘宝琦,凌子松,李英博利用nRF401芯片做的无线传输远程测温系统,在测量端使用24位高精度的模数转换器实现温度参数的模数转换,精度可达到0.5℃。将数字温度参数以无线的方式发射出去,在接收端应用远程可视化编程系统接收采集数据,并实时完成温度信号处理。系统对温度信号的采集及时准确,无线技术使温度信号传输方便,远端可视化控制系统使温度参数采集、过程监控更加直观。 高廓,田小建,田宁君利用nRF24E1做的多点无线温湿度测量系统,介绍了基于单片无线收发芯片nRF24E1的短距离无线多点温湿度测量系统的设计思想 和实现过程。系统以嵌入51单片机内核的单片射频收发芯片nRF24E1为核心,采用数字式温度传感器DSl8B20及模拟式湿度传感器HMl500,应用传感技术、无线收发技术及计算机技术,实现多点温度、湿度数据的采集和短距离无线传输。 国内目前研究的热点主要集中在感知环境、智能教室等少数领域,无线传感器网络技术在环境检测上得以应用。检测技术的发展始终与最新技术的发展息息相关,使用者不断对检测的简便性及实时性提出了更高的要求。因此必须要更好地、更及时地应用最新技术,这样才能使得远程检测不断地发展,不断地满足人们的需求。从总体来讲,国内关于传感器网络的研究还处于刚刚起步的阶段,但是由于传感器网络是一种新兴技术,国内与国际水平的差距并不很大,可以预见,传感器网络技术必将随着我国相关技术的发展而逐步完善和成熟,各种功能的传感器网络在不远的将来会广泛地使用在社会的各个领域,及时开展这项对人类未来生活影响深远的前沿科技的研究,对整个国家的社会、经济、国防将有重大的战略意义。

(完整版)基于stm32的温度测量系统

基于STM32的温度测量系统 梁栋 (德州学院物理与电子信息学院,山东德州253023) 摘要:温度是日常生活和农业生产中的一个重要参数,传统的温度计有反应缓慢,测量精度不高的和读数不方便等缺点,此外,通常需要人工去观测温度,比较繁琐,因而采用电子技术的温度测量就显得很有意义了。 面对电子信息技术的进步,生成了各种形式的温度测量系统。本文设计了一个基于以STM32为核心的温度测量与无线传送的系统,温度信息采集使用数字化温度传感器DS18B20,无线传输使用ATK-HC05蓝牙模块的智能测温系统。 关键词 STM32; DS18B20; TFTLCD;智能测温系统 1 绪论 在现代社会的生产生活中,人们对于产品的精度要求越来越高,而温度是人们在生产生活中十分关注的参数,因此,对温度的测量以及监控就显得十分重要。在某些行业中对温度的要求较高,由于工作环境温度的偏差进而引发事故。如化工业中做酶的发酵,必须时刻了解所发酵酶的温度才可以得到所需酶;文物的保护同样也离不开温度的采集,不仅在考古文物的出土时间上,还是在档案馆和纪念馆中,温度的控制也是藏品保存关键,所以温度的检测对其也是具有重要意义的;另外大型机房的温度的采集,超出此范围会影响服务器或系统的正常工作等等。传统方式监控温度往往很耗费人力,而且实时性差。本文就设计了一个基于STM32的温度测量系统,在测量温度的同时能实现无线传输与控制。 STM32RBT6具有较低的价格、较高的测量精度、便捷的操作,同时在编程方面STM32也具有和其他单片机的优势之处,如51要求从基层编程,而STM32所有的初始化和一些驱动的程序都是以模板的形式提供给开发者,在此开发者只需要了些其他的模块功能和工作方式和少量的语法知识便可以进行编程,此优势不但节约了时间,也为STM32的发展做出了强有力的铺垫,而且STM32目前是刚刚被作为主流开发的单片机,所以其前景是无可估量的,这次毕业设计也是看好了其优越的发展趋势来选择的。 无线传输采用蓝牙技术,将采集的温度传输至终端,以此实现远程监控。利用“蓝牙”技术,能够在10米的半径范围内实现单点对多点的无线数据传输,其数据传输带宽可达1Mbps。综合考虑,在设计硬件时选择的软件是Altium Designer,该软件集成了电路仿真、原理图设计、信号完整性设计、分析等诸多功能,使用起来很方便。通过原理图的绘制,

测量温度的方法

测量温度的方法简介 温度就是表征物体冷热程度的物理量,就是国际单位制中七个基本物理量之一,它与人类生活、工农业生产与科学研究有着密切关系。随着科学技术水平的不断提高,温度测量技术也得到了不断的发展。 1、温度测量方法分类 温度测量方法有很多,也有多种分类,由于测量原理的多样性,很难找到一种完全理想的分类方法。 图1 给出一种从测量原理上进行分类的方法,基本包含了目前温度测量的基本原理, 几乎所有的温度测量技术都就是在这些原理的基础上发展起来的。 2、接触式测温方法原理及特点 接触式测温方法包括膨胀式测温、电量式测温与接触式光电、热色测温等几大类。接触

测温法在测量时需要与被测物体或介质充分接触, 一般测量的就是被测对象与传感器的平衡温度,在测量时会对被测温度有一定干扰。 2、1膨胀式测温方法 膨胀式测温就是一种比较传统的温度测量方法,它主要利用物质的热胀冷缩原理即根据物体体积或几何形变与温度的关系进行温度测量。膨胀式温度计包括玻璃液体温度计、双金属膨胀式温度计与压力式温度计等。膨胀式温度计结构简单,价格低廉,可直接读数,使用方便,并且由于就是非电量测量方式,适用于防爆场合。但准确度比较低,不易实现自动化,而且容易 损坏。 2、2 电量式测温方法 电量式测温方法主要利用材料的电势、电阻或其它电性能与温度的单值关系进行温度测量,包括热电偶温度测量、热电阻与热敏电阻温度测量、集成芯片温度测量等。热电偶的原理就是两种不同材料的金属焊接在一起,当参考端与测量端有温差时,就会产生热电势, 根据该热电势与温度的单值关系就可以测量温度。热电偶具有结构简单,响应快,适宜远距离测量与自动控制的特点, 应用比较广泛。

测量温度的方法

测量温度的方法简介 温度是表征物体冷热程度的物理量,是国际单位制中七个基本物理量之一,它与人类生活、工农业生产和科学研究有着密切关系。随着科学技术水平的不断提高,温度测量技术也得到了不断的发展。 1、温度测量方法分类 温度测量方法有很多,也有多种分类,由于测量原理的多样性,很难找到一种完全理想的分类方法。 图1 给出一种从测量原理上进行分类的方法,基本包含了目前温度测量的基本原理, 几乎所有的温度测量技术都是在这些原理的基础上发展起来的。 2、接触式测温方法原理及特点 接触式测温方法包括膨胀式测温、电量式测温和接触式光电、热色测温等几大类。接触

测温法在测量时需要与被测物体或介质充分接触, 一般测量的是被测对象和传感器的平衡温度,在测量时会对被测温度有一定干扰。

2.1膨胀式测温方法 膨胀式测温是一种比较传统的温度测量方法,它主要利用物质的热胀冷缩原理即根据物体体积或几何形变与温度的关系进行温度测量。膨胀式温度计包括玻璃液体温度计、双金属膨胀式温度计和压力式温度计等。膨胀式温度计结构简单,价格低廉,可直接读数,使用方便,并且由于是非电量测量方式,适用于防爆场合。但准确度比较低,不易实现自动化,而且容易损坏。 2.2 电量式测温方法 电量式测温方法主要利用材料的电势、电阻或其它电性能与温度的单值关系进行温度测量,包括热电偶温度测量、热电阻和热敏电阻温度测量、集成芯片温度测量等。热电偶的原理是两种不同材料的金属焊接在一起,当参考端和测量端有温差时,就会产生热电势, 根据该热电势与温度的单值关系就可以测量温度。热电偶具有结构简单,响应快,适宜远距离测量和自动控制的特点, 应用比较广泛。

基于51单片机的温度检测系统程序及仿真

//**************************************** //**用DS18B20进行测量,lcd1602显示** //**************************************** #include "reg51.h" #include "intrins.h" #define uchar unsigned char #define uint unsigned int uchar code table1 []={"ID: "}; //欢迎显示,包括空格在内<=16 uchar code table2 []={"Name: "};//欢迎显示,包括空格在内<=16 uchar code str1 []={" Temperature "}; uchar code str2 []={" "}; //************管脚定义************************ sbit lcd_rs = P3^0; //液晶数据命令选择端 sbit lcd_en = P3^1; //液晶使能 sbit DQ = P3^6; //液晶使能 //************参数定义************************ uint tvalue;//温度值 uchar tflag;//温度正负标志 uchar data disdata[5]; //************子函数定义************************

void delay(uchar z); //delay延时子程序 void init_lcd(); //LCD1602初始化函数 void write_com(uchar com); //LCD1602写指令函数 void write_data(uchar date); //LCD1602写数据函数 void lcd1602_display(uchar *q,uchar *p);//LCD1602显示函数 void welcome(); //LCD1602显示欢迎函数 void delay_DS18B20(uint i); //delay_DS18B20函数 void Init_DS18B20_display(); //DS18B20初始化显示 void Init_DS18B20(); //DS18B20初始化 uchar ReadOneByte(); //DS18B20读一字节 void WriteOneByte(uchar dat); //DS18B20写一字节 Read_Temperature(); //DS18B20读取温度值并转换 void DS18B20_display(); //DS18B20温度显示 //************主函数************************ void main() { welcome(); delay(2000); Init_DS18B20_display(); while(1) { Read_Temperature(); DS18B20_display(); } } //************delay延时子程序************************ void delay(uchar z) { uchar x,y; for(x=0;x

单位工程定位测量记录

编号:NJDY-CF1-01-01-01-01-00-01-01-01电土施表2—1

编号:NJDY-CF2-01-01-01-01-00-01-01-01电土施表2—1

编号:NJDY-CF3-01-01-01-01-00-01-01-01电土施表2—1 单位工程定位测量记录 编号:NJDY-CF4-01-01-01-01-00-01-01-01电土施表2—1

单位工程定位测量记录 编号:NJDY-CF5-01-01-01-01-00-01-01-01电土施表2—1

引测控制点坐 标 L3(A=1604.911,B=5374) L2(A=1604.911,B=5480) 引测水准点标高 ±0.000m相当于绝对标高 1315.328m 仪器型号及编 号 ZTS602、120070仪器校验日期2013.08.13 允许误差±5mm 定位测量示意图 复测结果: 复测合格 专业监理工程师: 年月日 测量技术负责人: 年月日 复测员: 年月日 施测员: 年月日 单位工程定位测量记录 编号:NJDY-05-45-00-01-00-01-01 电土施表2—1 单位工程名称循环水管道委托单位 中国能源建设集团东北电力 第一工程公司测量单位 中国能源建设集团东北电力 第一工程公司 监理单位 北京国电德胜工程项目管理 有限公司施测部位循环水管道施测日期2014.05.16

引测控制点坐 标 K12、K13 引测水准点标高 ±0.000m相当于绝对标高 1315.328m 仪器型号及编 号 ZTS602全站仪、 120070水准仪 仪器校验日期2013.08.13 允许误差±5mm 定位测量示意图 复测结果: 复测合格 专业监理工程师: 年月日 测量技术负责人: 年月日 复测员: 年月日 施测员: 年月日

相关主题
文本预览
相关文档 最新文档