当前位置:文档之家› 乙醇燃料电池的设备及其研究

乙醇燃料电池的设备及其研究

乙醇燃料电池的设备及其研究
乙醇燃料电池的设备及其研究

中国燃料乙醇产业发展现状

探究中国燃料乙醇进展之路 在近年煤化工、能源替代、环保节能的投资热潮中,燃料乙醇无疑手持“尚方宝剑”,一则国家选定四家企业,并划定各自试点销售区域;二则每吨燃料乙醇国家补贴千元之多,且行业准入门槛也在不断提高。然而,随着燃料乙醇逐步市场化,国家的支持方式将进行转变,从成本加利润,到定额补贴,再到2008年底取消补贴,中国燃料乙醇将走如何样的进展之路? 探究中国燃料乙醇进展之路 一、概述 燃料乙醇,是以玉米、小麦、薯类、甘蔗、甜菜等为原料,经发酵、蒸馏、脱水后而制得的无水乙醇。车用乙醇汽油(以下简称乙醇汽油),确实是把燃料乙醇和汽油以一定比例混配而形成的一种汽车燃料,又称汽油醇。

(一)燃料乙醇是油品的优良品质改良剂,不是“油” 乙醇具有许多优良的物理和化学特性。燃料乙醇按一定比例加入汽油中,不仅是优良的油品质量改良剂,或者讲是增氧剂,依旧汽油的高辛烷值调和组分,因此,燃料乙醇不是简单作为替代油品使用的。 (二)乙醇汽油属于国际上通行的新配方汽油,是无铅汽油的升级换代产品 汽油里加入10%的乙醇,油品的含氧量可达到3.5%,辛烷值(我国的汽油标号)可提高近3个标号,同时又降低了油品的芳烃含量,使油品的燃烧性能、动力性能和环保性能均得到了改善。尽管我国2000年才全面推广无铅汽油,2001年才在北京、上海、广州三市推广新配方汽油(添加MTBE的清洁汽油),但在国际上,无铅汽油早已被以MTBE及乙醇为添加剂的新配方汽油所代替。 二、世界燃料乙醇产业进展现状

自巴西、美国领先于上世纪70年代中期大力推行燃料乙醇政策以来,加拿大、法国、西班牙、瑞典等国纷纷效仿,均已形成了规模生产和使用,1999年,美国燃料乙醇消费量约450万吨,2006年达到550万吨,巴西则更多,2005年消费量约970万吨,占全国汽油消费量的43%,2006年超过1000万吨。 美、巴等国推行燃料乙醇给国家带来巨大的综合收益,如刺激农业、维护粮价、完善能源安全体系、减少对石油依靠、节约外汇、增加就业、增加财政收入、改善燃油品质及大气环境质量等,均为世界所共认。目前,许多农业资源国如英国、荷兰、德国、奥地利、泰国、南非等国政府均已制定规划,积极进展燃料乙醇工业。 三、中国燃料乙醇产业进展现状 (一)概况 由于燃料乙醇在中国的推广使用还处在初级时期,产销的各个环节政府行为色彩比较浓,离真正的市场化有专门大距离。为了合理的利用资源,国家对燃料乙醇的立项投产特不慎重,受到严格

浅析燃料电池研究进展及应用

浅析燃料电池研究进展及应用 摘要: 燃料电池是一种高效、环境友好的发电装置,能将外界提供的燃料和氧化剂的化学能直接转化为电能。本文介绍了原电池的工作原理、特点和分类,并详细阐述了原电池的研究进展和应用。 关键词: 燃料电池工作原理应用 随着全世界对能源的需求日益增加以及人类对环境质量的关注,采用清洁、高效的能源利用方式、积极开发新能源已经是势在必行。燃料电池是一种电化学的发电装置,等温的按电化学方式,直接将化学能转化为电能而不必经过热机过程,因而能量转化效率高,且无噪音,无污染,正在成为理想的能源利用方式。 1. 燃料电池的工作原理 燃料电池是一种能量转化装置,它是按电化学原理,即原电池工作原理,等温的把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应,其工作原理如图1所示。燃料电池主要由四部分组成,即阳极、阴极、电解质和外部电路。燃料气和氧化气分别由燃料电池的阳极(负极)和阴极(正极)通入。燃料气在阳极(负极)上放出电子,电子经外电路传导到阴极(正极)并与氧化气结合生成离子。离子在电场作用下,通过电解质迁移到阳极上,与燃料气反应,构成回路,产生电流。同时,由于本身的电化学反应以及电池的内阻,燃料电池还会产生一定的热量。电池的阴、阳两极除传导电子外,也作为氧化还原反应的催化剂。当燃料为碳氢化合物时,阳极要求有更高的催化活性。阴、阳两极通常为多孔结构,以便于反应气体的通入和产物排出。电解质起传递离子和分离燃料气与氧化气的作用。为阻挡两种气体混合导致电池内短路,电解质通常为致密结构。 图1燃料电池工作原理示意图 2燃料电池的分类 目前各国开发的燃料电池种类多,应用范围广泛,分类方法也多种多样。燃料电池有不同的分类方法,本文主要介绍按电解质种类分类中的两种燃料电池。(氢燃料电池和直接甲醇燃料电池) 3燃料电池的优点 燃料电池是一种直接将燃料的化学能转化为电能的装置。从理论上来讲,只要连续供给燃料,燃料电池便能连续发电,被誉为“绿色”发电站。燃料电池的优点: (1)发电效率高。理论上, 它的发电效率可达到85% ~90% ,但由于工作时各种极化的限制,目前燃料电池的能量转化效率约为40% ~60%。(2)环境污染小。

中温固体氧化物直接乙醇燃料电池研究

中温固体氧化物直接乙醇燃料电池研究董笑,李永丹* (天津化学化工协同创新中心,化学工程联合国家重点实验室(天津大学),天津市应用催化科学与 工程重点实验室,天津大学,天津300072,E-mail:ydli@https://www.doczj.com/doc/f74858959.html, ) 氢气作为燃料电池最广泛使用的燃料,面临生产成本高、储运困难等应用问题;而碳氢化合物等非氢燃料能够避免这些问题,并有着更高的整体效率,因此得到了很多关注[1]。常用的镍基金属陶瓷阳极虽然活性很高,但是极易积碳失活,导致电池性能下降[2]。本文采用柠檬酸-EDTA 络合法制备了一种稳定的钙钛矿材料Sr 2Fe 1.5Mo 0.5O 6(SFM)用做固体氧化物燃料电池的阳极,并通过丝网印刷法制备了电解质支撑的SFM |La 0.8Sr 0.2Ga 0.83Mg 0.17O 3|Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3(SFM |LSGM |BSCF)单电池片[3,4]。采用氢气和乙醇作为燃料对电池片进行放电测试分别获得了750℃时219.9和293.8mW cm -2,800℃时408.7和484.7mW cm -2的输出性能(如图1)。经过数小时的恒压放电,电池性能基本稳定,且未发生积碳。电池结构有待优化以进一步提高性能,SFM 对乙醇的活化机理也有待进一步探究。 图1单电池片放电性能:1)H 2作燃料;2)C 2H 5OH 作燃料 Fig.1Performances of the single cell using 1)hydrogen and 2)ethanol as fuel. 本研究为国家自然科学基金(21076150,21120102039)资助项目。 参考文献: [1]McIntosh S,Gorte RJ.Chem.Rev.,2004,104:4845 [2]Gorte RJ,Vohs JM.Annu.Rev.Chem.Biomol.En.,2011,2:9 [3]Wang ZM,Tian Y,Li YD.J.Power Sources,2011,196:6104 [4]Li HJ,Tian Y,Wang ZM,Qie FC,Li YD.RSC Advances,2012,2:3857 Intermediate temperature solid oxide fuel cells directly utilizing ethanol as the fuel Dong Xiao,Li Yongdan* (State Key Laboratory for Chemical Engineering (Tianjin University),School of Chemical Engineering and Technology,Tianjin University,Tianjin,300072,China,E-mail:ydli@https://www.doczj.com/doc/f74858959.html,) As the most widely used fuel for fuel cells,hydrogen with its high cost,faces problems on storage and transportation which limit its industry utilization.Non-hydrogen fuels are able to avoid these problems,and have a higher overall efficiency,thus to get a lot of https://www.doczj.com/doc/f74858959.html,monly used nickel cermet anode has a high activity to hydrocarbon fuels,but suffers serious carbon deposition,leading to anode inactivation and performance degradation.Here,we adopts EDTA-citric acid complexing method to prepare a stable perovskite material Sr 2Fe 1.5Mo 0.5O 6(SFM)as the anode of solid oxide fuel cell,and a single cell with a configuration of electrolyte supported SFM|La 0.8Sr 0.2Ga 0.83Mg 0.17O 3|Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3(SFM|LSGM|BSCF)is fabricated by a screen printing https://www.doczj.com/doc/f74858959.html,ing hydrogen and ethanol as fuel,the discharge performances were 219.9and 293.8mW cm -2at 750o C,408.7and 484.7mW cm -2at 800o C,respectively.After hours of constant voltage discharge,the 1)2)

探索中国燃料乙醇发展之路(1)

探索中国燃料乙醇发展之路 在近年煤化工、能源替代、环保节能的投资热潮中,燃料乙醇无疑手持“尚方宝剑”,一则国家选定四家企业,并划定各自试点销售区域;二则每吨燃料乙醇国家补贴千元之多,且行业准入门槛也在不断提高。但是,随着燃料乙醇逐步市场化,国家的支持方式将进行转变,从成本加利润,到定额补贴,再到2008年底取消补贴,中国燃料乙醇将走怎样的发展之路???探索中国燃料乙醇发展之路????一、概述 燃料乙醇,是以玉米、小麦、薯类、甘蔗、甜菜等为原料,经发酵、蒸馏、脱水后而制得的无水乙醇。车用乙醇汽油(以下简称乙醇汽油),就是把燃料乙醇和汽油以一定比例混配而形成的一种汽车燃料,又称汽油醇。 (一)燃料乙醇是油品的优良品质改良剂,不是“油” 乙醇具有许多优良的物理和化学特性。燃料乙醇按一定比例加入汽油中,不仅是优良的油品质量改良剂,或者说是增氧剂,还是汽油的高辛烷值调和组分,因此,燃料乙醇不是简单作为替代油品使用的。? (二)乙醇汽油属于国际上通行的新配方汽油,是无铅汽油的升级换代产品? 汽油里加入10%的乙醇,油品的含氧量可达到3.5%,辛烷值(我国的汽油标号)可提高近3个标号,同时又降低了油品的芳烃含量,使油品的燃烧性能、动力性能和环保性能均得到了改善。尽管我国2000年才全面推广无铅汽油,2001年才在北京、上海、广州三市推广新配方汽油(添加MTBE的清洁汽油),但在国际上,无铅汽油早已被以MTBE及乙醇为添加剂的新配方汽油所代替。? 二、世界燃料乙醇产业发展现状 ?自巴西、美国率先于上世纪70年代中期大力推行燃料乙醇政策以来,加拿大、法国、西班牙、瑞典等国纷纷效仿,均已形成了规模生产和使用,1999年,美国燃料乙醇消费量约450万吨,2006年达到550万吨,巴西则更多,2005年消费量约970万吨,占全国汽油消费量的43%,2006年超过1000万吨。?美、巴等国推行燃料乙醇给国家带来巨大的综合收益,如刺激农业、维护粮价、完善能源安全体系、减少对石油依赖、节约外汇、增加就业、增加财政收入、改善燃油品质及大气环境质量等,均为世界所共认。目前,许多农业资源国如英国、荷兰、德国、奥地利、泰国、南非等国政府均已制定规划,积极发展燃料乙醇工业。 ?三、中国燃料乙醇产业发展现状 (一)概况 由于燃料乙醇在中国的推广使用还处在初级阶段,产销的各个环节政府行为色彩比较浓,离真正的市场化有很大距离。为了合理的利用资源,国家对燃料乙醇的立项投产非常谨慎,受到严格控制。2004年2月10日,八部委联合下发《车用乙醇汽油扩大试点方案》和《车用乙醇汽油扩大试点工作实施细则》,在我国部分地区开展车用乙醇汽油扩大试点工作。目前国内经过审批认可的已投产企业有四家:河南天冠燃料乙醇有限公司、吉林燃料乙醇股份有限责任公司、安徽丰原生物化工有限公司、黑龙江华润酒精有限公司。根据《车用乙醇汽油扩大试点工作

直接甲醇燃料电池资料

直接甲醇燃料电池研究进展 摘要: 介绍了直接甲醇燃料电池的工作原理、研究现状及最新进展, 认为直接甲醇燃料电池是目前较理想的燃料电池, 有广阔的发展前景。直接甲醇燃料电池(DMFC) 具有燃料易运输与存储、重量轻、体积小、结构简单、能量效率高等优点,以固体聚合物作为电解质的直接甲醇燃料电池是理想的车用动力电源,具有广阔的发展前景。 关键词:直接甲醇燃料电池;甲醇;渗透;膜;电催化剂 Performance study on direct methanol fuel cell Abstract: Working principle, current research situation and latest progress of direct methanol fuel cell are introduced .Fuel cell of this kind is regarded as a perfect one so far, with bright prospects to be expected. Direct methanol fuel cells (DMFC) had several advantages including ease transportation and storage of the fuel, reduced system weight, size and complexity, high energy efficiency. Polymer electrolyte membrane direct methanol fuel cells (PEMDMFC) were ideal power source for vehicles with bright prospects to be expected. . Key words: DMFC; methanol; crossover; membrane; electrocatalyst 0引言 由于汽车尾气污染越来越严重, 从而引起世界各国的关注。汽车尾气污染的根源在于汽车发动机使用的汽油。甲醇是一种易燃液体, 燃烧性良好, 辛烷值高,抗爆性能好。甲醇又是一种洁净燃料, 燃烧时无烟,燃烧速率快, 排气污染少。不管燃烧汽油还是燃烧甲醇作汽车的动力都需要使用内燃机, 因此其噪音污染及燃料燃烧不完全引起的排放物污染是不可避免的。使用电动汽车是解决汽车尾气污染的根本办法, 同时还可以减少内燃机造成的噪音污染。燃料电池有内燃机使用燃料重量轻, 补充燃料方便等优点, 无需充电, 它的最大优点在于可把燃料的化学能直接转变成电能, 其效率不受卡诺循环限制。直接甲醇燃料电池( Direct Methanol Fuel Cell,简称为DMFC) 无需将甲醇转变成氢源, 利用甲醇

燃料电池的发展现状及研究进展

应用电化学 论文作业 题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展

1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly,MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了100 多年的历程。于能源与环境已成为人

高二化学专题练习(原电池电解池)

专题练习(原电池电解池) 一、选择题(本题包括8小题,每小题4分,共32分。每小题只有一个 ....选项符合题意)1.原电池的正极和电解池的阴极所发生的反应分别是:() A.氧化、还原B.还原、氧化C.氧化、氧化D.还原、还原 2.在盛有饱和碳酸钠溶液的烧杯中插入惰性电极,保持温度不变,通电一段时间后:()A.溶液的pH增大B.Na+和CO32-的浓度减小 C.溶液的浓度增大D.溶液的浓度不变,有晶体析出 3.用惰性电极电解下列溶液,一段时间后,再加入一定质量的另一种物质(括号内),溶液能与原来溶液完全一样的是:() A.CuCl2(CuSO4) B.NaOH(NaOH) C.NaCl(盐酸) D.CuSO4(CuO) AlCl溶液时,下图所示的电解变化曲线合理的是() 4.用石墨作电极电解 3 A.①④B.②④C.②③D.①③ 5.某学生欲完成2HCl+2Ag=2AgCl↓+H2↑反应,设计了下列四个实验,你认为可行的实验是() 6.将氢气、甲烷、乙醇等物质在氧气中燃烧时的化学能直接转化为电能的装置叫燃料电池。燃料电池的基本组成为电极、电解质、燃料和氧化剂。此种电池能量利用率可高达80%(一般柴油发电机只有40%左右),产物污染也少。下列有关燃料电池的说法错误的是 A.上述燃料电池的负极反应材料是氢气、甲烷、乙醇等物质 B.氢氧燃料电池常用于航天飞行器,原因之一是该电池的产物为水,经过处理之后可供宇航员使用 C.乙醇燃料电池的电解质常用KOH,该电池的负极反应为C2H5OH-12e-=2CO2↑+3H2O D.甲烷燃料电池的正极反应为O2+2H2O+4e-=4OH- 7.通以相等的电量,分别电解等浓度的硝酸银和硝酸亚汞(亚汞的化合价为+1)溶液,若被还原的硝酸银和硝酸亚汞的物质的量之比n(硝酸银)∶n(硝酸亚汞)=2∶1,则下列表述正确的是() A.在两个阴极上得到的银和汞的物质的量之比n(硝酸银)∶n(硝酸亚汞)=2∶1 B.在两个阳极上得到的产物的物质的量不相等 C.硝酸亚汞的分子式为HgNO3 D.硝酸亚汞的分子式为Hg2(NO3)2 8.某工厂以碳棒为阳极的材料电解熔解于熔融冰晶石(NaAlF6)中的Al2O3,每产生1molAl,同时消耗1mol阳极的材料C,则阳极收集得到的气体为() A.CO与CO2物质的量之比为 1:2 B.CO与CO2物质的量之比为 1:1 C.CO2与O2物质的量之比为 2:1 D.F2与O2 物质的量之比为 1:1

几种常见的电极反应式的书写

几种常见的“燃料电池”的电极反应式的书写 江西黎川一中朱印聪 燃料电池是原电池中一种比较特殊的电池,它与原电池形成条件有一点相悖,就是不一定两极是两根活动性不同的电极,也可以用相同的两根电极。燃料电池有很多,下面主要介绍几种常见的燃料电池,希望达到举一反三的目的。 一、氢氧燃料电池 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H2,正极通入 O2,总反应为:2H2 + O2 === 2H2O 电极反应特别要注意电解质,有下列三种情况: 1.电解质是KOH溶液(碱性电解质) 负极发生的反应为:H2 + 2e- === 2H+ ,2H+ + 2OH- === 2H2O,所以: 负极的电极反应式为:H2– 2e- + 2OH- === 2H2O; 正极是O2得到电子,即:O2 + 4e- === 2O2-,O2- 在碱性条件下不能单独存在,只能结合H2O生成OH-即:2O2- + 2H2O === 4OH-,因此, 正极的电极反应式为:O2 + H2O + 4e- === 4OH-。 2.电解质是H2SO4溶液(酸性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极是O2得到电子,即:O2 + 4e- === 2O2-,O2- 在酸性条件下不能单独存在,只能结合H+生成H2O即:O2- + 2 H+ === H2O,因此 正极的电极反应式为:O2+ 4H+ + 4e- === 2H2O(O2 + 4e- === 2O2-,2O2- + 4H+ === 2H2O) 3. 电解质是NaCl溶液(中性电解质) 负极的电极反应式为:H2 +2e- === 2H+ 正极的电极反应式为:O2 + H2O + 4e- === 4OH- 说明:1.碱性溶液反应物、生成物中均无H+ 2.酸性溶液反应物、生成物中均无OH- 3.中性溶液反应物中无H+ 和OH- 4.水溶液中不能出现O2- 二、甲醇燃料电池 甲醇燃料电池以铂为两极,用碱或酸作为电解质: 1.碱性电解质(KOH溶液为例) 总反应式:2CH4O + 3O2 +4KOH=== 2K2CO3 + 6H2O 正极的电极反应式为:3O2+12e- + 6H20===12OH- 负极的电极反应式为:CH4O -6e-+8OH- === CO32-+ 6H2O 2. 酸性电解质(H2SO4溶液为例)

2017年燃料乙醇产业现状及发展趋势分析报告

(此文档为word格式,可任意修改编辑!) 2017年1月

正文目录 1 燃料乙醇——清洁、环保的新型替代能源 (4) 1.1 车用乙醇汽油的组分配比 (4) 1.2 燃料乙醇的代际演变 (5) 2 全球燃料乙醇产业发展情况 (6) 2.1 美国燃料乙醇产业 (8) 2.2 巴西燃料乙醇产业 (9) 3 我国燃料乙醇产业概况 (10) 3.1 我国燃料乙醇行业成长空间巨大 (11) 3.2 我国主要定点生产企业及产能分布 (12) 3.3 燃料乙醇价格与油价绑定,油价低迷期将过行业回暖 (13) 3.4 补贴标准及相关政策 (15) 3.5 行业盈利情况 (17) 4 中粮生化:油价回升、成本下探解放盈利空间 (19) 4.1 玉米价格下跌成本收缩 (22) 4.2 油价上升拉高盈利天花板 (22) 4.3 成本及油价对利润增长的影响 (23) 5 风险提示 (23)

图表目录 图表1:燃料乙醇及乙醇汽油配比示意图 (4) 图表2:各代际燃料乙醇优缺点对比 (6) 图表3:几种燃料作物的乙醇产量、产率对比 (6) 图表4:燃料乙醇主要生产国产量变化 (7) 图表5:2015年世界各国燃料乙醇产量占比(单位:百万加仑) (7) 图表6:美国燃料乙醇产量逐年增长 (8) 图表7:巴西燃料乙醇市场较成熟 (9) 图表8:我国燃料乙醇产量逐年提升 (10) 图表9:乙醇汽油推广率仍待提高 (11) 图表10:燃料乙醇定点企业及产能 (12) 图表11:汽油品质比率表 (14) 图表12:油价自2014年开始萎靡,12月开始显著上涨 (15) 图表13:一代粮食乙醇补贴标准逐年下降(中粮生化数据) (16) 图表14:燃料乙醇相关政策 (17) 图表15:玉米价格快速下跌 (18) 图表16:木薯价格变化趋势 (19) 图表17:2015年各分项业务占比 (20) 图表18:乙醇业务占比逐年增长 (20) 图表19:公司燃料乙醇产销量逐年递增 (21) 图表20:2015年公司燃料乙醇销售市场分布情况 (21) 图表21:利润率受燃料乙醇售价影响较大 (23) 图表22:原料价格及油价对利润影响的分析表格 (23)

燃料电池的发展现状及研究进展

应用电化学 论文作业题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展 1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池 ( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly, MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次 电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了 100 多年的历程。于能源与环境已成为人类社会赖以生存的重点问题。近20 年以来,燃料电池这种高效、洁净的能量 转化装置得到了各国政府、开发商及研究机构的普遍重视。燃料电池在交通运输、便携式电源、分散电站、航空及水下潜器等民用与军用领域展现出广阔的应用前景。目前,燃料电池汽车、电站及便携式电源等均处于示范阶段,在商

直接碳固体氧化物燃料电池的反应机理及其催化剂应用探讨

直接碳固体氧化物燃料电池的反应机理及其催化剂应用探讨 固体氧化物燃料电池(SOFC)作为一种氧浓差电池,是通过传递氧离子将燃料的化学能直接转换为电能的全固态新型发电装置。得益于高反应活性的氧离子,SOFC具有能量转换率高、燃料适用范围广等优势。 直接碳固体氧化物燃料电池(DC-SOFC)是直接使用固体碳为燃料的SOFC,既具有固体碳能量密度高、来源丰富广泛、成本低廉等优点,也结合SOFC全固态结构、燃料适用范围广、无须任何高温液态介质等优势。本论文围绕DC-SOFC的阳极反应机理和应用不同碳源燃料的电池性能而展开,致力于为DC-SOFC的实际应用提供技术支持和理论依据。 首先,对DC-SOFC阳极反应动力学方面进行初步研究,为DC-SOFC的可行性和自维持性提供反应动力学方面的理论依据。在此基础上,探索碳燃料气化反应催化剂种类、担载量、担载方式等因素对电池性能和稳定性的影响。 发现了一种适用于DC-SOFC的天然担载催化剂的高性能生物质碳燃料,设计了以废弃塑料为燃料的SOFC系统,并得到理想的输出性能,拓展了SOFC的燃料适用范围,对SOFC的实际应用有指导作用。对DC-SOFC阳极反应动力学进行了初步研究。 通过浸渍-提拉法制备管状YSZ电解质支撑的SOFC,其电池结构为 Ag-GDC/YSZ/Ag-GDC。通过设计尾气检测系统对正在运行中的DC-SOFC产生的尾气流速和成分进行在线检测。 研究结果表明,CO在阳极上发生电化学反应被消耗,CO2在碳燃料上发生Boudouard反应产生CO;电池的工作电流越大,CO的消耗速率和产生速率也越大。CO的消耗速率可以通过设定恒定的放电电流来控制为定值,然而CO的产生速率却因碳的不断消耗而逐渐减小。 当CO的产生速率减小到小于CO的消耗速率时,电池停止工作。对800?C时DC-SOFC阳极室内碳燃料到阳极间1 cm范围内的CO和CO2的互扩散速率进行了初步估算,发现在运行电流为1 A cm-2的电流密度下工作时,CO和CO2的扩散速率足以维持DC-SOFC连续运行,或者说,由于气体扩散速率对电池性能的阻碍作用可忽略不计。 针对DC-SOFC的应用,成功开发了一种用作DC-SOFC燃料的担载Fe催化剂的活性炭制备技术,称为湿法造粒技术。这种技术具有成本低廉、环境友好、能耗低、简单快速等显著优点。 具体是通过在碳和氧化铁粉末中添加适量的聚乙烯醇缩丁醛乙醇溶液作为粘结剂,经过混合、干燥,得到催化剂分布均匀的活性炭燃料。采用压片法制备扣式YSZ电解质支撑DC-SOFC,对比了分别以湿法造粒工艺和离子浸渍工艺制备的Fe担载活性炭为燃料的DC-SOFCs的性能和放电稳定性。 结果表明,湿法造粒法制备的Fe担载活性炭对应的DC-SOFC性能可与传统离子浸渍法制备的Fe担载活性炭相媲美,且电池的放电时间和燃料利用率优于后者。从而表明湿法造粒技术是一种有利于大规模工业生产催化剂负载碳燃料的技术,对DC-SOFC的广泛应用有重要的推动作用。 为进一步拓展DC-SOFC的材料使用范围、降低成本、提高DC-SOFC的输出性能和燃料利用率,我们探索了以不同Ca担载量的活性炭为燃料的DC-SOFCs的电化学性能,并研究了Ca担载量对电池燃料利用率的影响。结果表明,5 wt.%Ca担载量的活性炭对应的DC-SOFC的输出性能、放电寿命和燃料利用率远优于相同担

国外燃料乙醇发展状况

国外燃料乙醇发展状况 2008-09-27 09:01:46 作者:蒲公英来源:中国生物能源网浏览次数:30 网友评论 0 条 国外燃料乙醇发展状况 随着能源需求的日益增长和石油供应紧张矛盾加剧,以及全球环境压力的不断加大,燃料乙醇以其清洁、环保和可再生性得到世界各国的普遍关注。尤其是近年原油价格高位运行,不仅美欧发达 ... 随着能源需求的日益增长和石油供应紧张矛盾加剧,以及全球环境压力的不断加大,燃料乙醇以其清洁、环保和可再生性得到世界各国的普遍关注。尤其是近年原油价格高位运行,不仅美欧发达国家采取一系列政策措施鼎立支持燃料乙醇发展,一些发展中国家也纷纷提出燃料乙醇的发展目标。目前,一些具有农业资源优势的国家,如英国、荷兰、德国、奥地利、印度、菲律宾、南非等国政府都制定了规划,积极发展燃料乙醇工业并推广应用于运输业。世界燃料乙醇产业正进入快速发展的新时期,但全球粮食价格的持续上涨引发燃料乙醇和粮食安全问题的广泛争议,燃料乙醇的环保性也受到质疑。中国燃料乙醇发展还处于起步阶段,关注和重视世界燃料乙醇产业新的发展动态,研究各国发展燃料乙醇的政策及其影响和作用,有利于我们积极应对世界燃料乙醇发展的影响,制定符合我国实际的燃料乙醇长期发展战略和政策措施。 高油价时期,各国政府推动燃料乙醇快速发展近年来,高油价促使美国、欧盟和亚洲等国的生物燃料政策发生重大变化,大幅提高生物燃料的发展目标,同时加大政策支持力度,推动燃料乙醇产能不断扩大,产量迅速增长。2006年世界燃料乙醇产量达到380亿升,相当于全球汽油消费量的2.5%。与2000年194亿升的产量相比,2006年增长了95.9%。预计2007年世界燃料乙醇产量可达440亿升,同比增长15.8%,世界燃料乙醇的产量主要集中在美国和巴西,2006年两国产量分别达到183.8亿升和160亿升,占世界总产量的90.5%。

非铂、低铂燃料电池催化剂的研究进展

非铂、低铂燃料电池催化剂的研究进展低温燃料电池是直接以化学反应方式将燃料的化学能转换为电能的能量转换装置,是一种绿色的能源技术,对解决目前我们所面临的能源危机和环境污染问题具有重要意义,美国《时代周刊》将燃料电池列为 21 世纪的高科技之首;在我国的科技发展规划中,燃料电池技术也被列为重要的发展方向之一。 催化剂是燃料电池中关键材料之一,催化剂的成本占到燃料电池成本的1/3。铂被证明是用于低温燃料电池的最佳催化剂活性组分,但使用铂做为燃料电池催化剂也存在如下严重问题:(1)铂资源匮乏;(2)价格昂贵;(3)抗毒能力差。目前通过合金来改善催化剂的研究有碳负载的铂钌合金催化剂PtRu/C,以及添加有其他促进成分的 Pt/C 和 PtRu/C 催化剂等。为了有效降低燃料电池的成本,主要采用集中两个方面研究来降低铂载量:(1)开发非铂电催化剂;(2)开发研制低铂电催化剂。本文就此对近年来的研究现状进行综述。 1 非铂催化剂 非铂催化剂在酸性直接醇类燃料电池中的研究非铂催化剂的研究,主要采用钯基或钌基掺杂其他金属制备催化剂,近年来,研究人员用了多种方法制备了各种活性组分高度分散的钯基催化剂,在催化燃料电池的阴极氧还原反应(ORR)中显示了可与铂基催化剂相媲美的效果。同时,作为直接甲酸燃料电池(DFAFC)和直接乙醇燃料电池(DAFC)的阳极催化剂,也显示了诱人的应用前景。以下从影响催化剂性能的几个因素对近年来的相关工作进行讨论。

催化剂的组成直接影响其性能。Colmenares 等合成用 Se修饰的 Ru/C 催化剂 (RuSey/C) 应用于直接甲醇燃料电池(DMFC)阴极催化,结果表明在~ V 电压下,Se 的加入促进了氧还原并减少了生成 H2O2的趋势;少量甲醇的存在对于 RuSey/C 催化氧还原影响较小,说明这类催化剂具有较好的抗甲醇性能。Jose' 等合成了两种非铂催化剂 Pd-Co-Au/C 和Pd-Ti/C,在质子交换膜燃料电池氧还原中的活性与现在常用的 Pt 催化剂活性相当。Shao 等制备了 Pd-Fe/C 系列催化剂用于氧还原反应,结果表明 Pd3Fe/C 氧还原活性比商业催化剂Pt/C (ETEK)好。Wang 等采用有机溶胶法合成了PdFeIr/C 催化剂,研究表明 Fe 和 Ir 的添加,大大增加了催化剂的分散性,从而提高了催化剂的活性,该催化剂表现出较高的氧还原能力和较好的耐甲醇性能。Mayanna 等合成了不同组成的 Ni-Pd合金膜催化剂,并研究了在硫酸环境中的甲醇电氧化性能,发现与纯 Ni 相比其阳极峰电流明显增大,合金化以后其表面积增加了近 300 倍。 制备方法与合成条件对催化剂性能的影响显着。Shen 等利用微波交替加热法制备了 Pd/MWCNT 电催化剂,发现在碱性溶液中显示了良好的甲醇催化氧化性能,与 Pt/C 相比,氧化电位负移了 100 mV 左右。同时他们还研究了多种氧化物对Pd/C 催化氧化多种醇类(甲醇、乙醇、乙二醇等)的促进作用,发现在碱性溶液中 Pd-NiO/C 对乙醇的氧化与 Pt/C 相比负移了300 mV 左右。他们用类似方法合成了 AuPd-WC/C 复合催化剂,并研究了在碱性条件下对乙醇氧化的电催化行为。发现与相同催化剂载量的 Pt/C 催化剂相比,乙醇氧化的起始电位负移了 100 mV 左右,峰电流密度增加了 3 倍左右,而且还显示了良好的稳定性。徐常威等用水热法分解蔗糖制备出表层

燃料电池原理及习题解答

燃料电池原理及习题解答 在中学阶段,掌握燃料电池的工作原理和电极反应式的书写是十分重要的。所有的燃料电池的工作原理都是一样的,其电极反应式的书写也同样是有规律可循的。书写燃料电池电极反应式一般分为三步:第一步,先写出燃料电池的总反应方程式;第二步,再写出燃料电池的正极反应式;第三步,在电子守恒的基础上用燃料电池的总反应式减去正极反应式即得到负极反应式。下面对书写燃料电池电极反应式“三步法”具体作一下解释。 1、燃料电池总反应方程式的书写 因为燃料电池发生电化学反应的最终产物与燃料燃烧的产物相同,可根据燃料燃烧反应写出燃料电池的总反应方程式,但要注意燃料的种类。若是氢氧燃料电池,其电池总反应方程式不随电解质的状态和电解质溶液的酸碱性变化而变化,即2H+O=2HO。若燃料是含碳元222素的可燃物,其电池总反应方程式就与电解质的状态和电解质溶液的酸碱性有关,如甲烷燃2-离子和 COO=CO+2H;在碱性电解质中生成和HO,即CH+2O料电池在酸性电解质中生成CO32242222-- O。,即CH+2OH+2O=CO+3HHO222432、燃料电池正极反应式的书写 因为燃料电池正极反应物一律是氧气,正极都是氧化剂氧气得到电子的还原反应,所以 O可先写出正极反应式,正极反应的本质都是O得电子生成22-2-2-离子,故正极反应式的基础都是 离子的存在形式与燃料电池的电解质的状态和电解质溶液的酸碱性。正极产生OO+4e-=2O2有着密切的关系。这是非常重要的一步。现将与电解质有关的五种情况归纳如下。⑴电解质为酸性电解质溶液(如稀硫酸)2-2-2-+离子优先,O离子结合的微粒有H离子和HOO在酸性环境中,离子不能单独存在,可供O2-++。=2HO结合H离子生成H。这样,在酸性电解质溶液中,正极反应式为O+4H+4eO222⑵电解质为中性或碱性电解质溶液(如氯化钠溶液或氢氧化钠溶液) 故在中性O生成OH离子只能结合在中性或碱性环境中,O离子也不能单独存在,OH2--或-2-2-离子, 碱性电解质溶液中,正极反应式为O+2H=4OH。O +4e22 NaCO熔融盐混和物)和⑶电解质为熔融的碳酸盐(如LiCO3322-2-2-离子,则其正CO离子可结合离子也不能单独存在,在熔融的碳酸盐环境中,O OCO生成322-- +4eO极反应式为+2CO。=2CO322⑷电解质为固体电解质(如固体氧化锆—氧化钇) 该固体电解质在高温下可允许离子在其间通过,故其正极反应式应为=2O+O4e。22--,在不2-2-- O 同电解质环境中,其正极反应式4eO综上所述,燃料电池正极反应式本质都是=2O+2的书写形式有所不同。因此在书写正极反应式时,要特别注意所给电解质的状态和电解质溶液的酸碱性。 3、燃料电池负极反应式的书写燃料电池负极反应物种类比较繁多,可为氢气、水煤气、甲烷、丁烷、甲醇、乙醇等可 燃性物质。不同的可燃物有不同的书写方式,要想先写出负极反应式相当困难。一般燃料电 池的负极反应式都是采用间接方法书写,即按上述要求先正确写出燃料电池的总反应式和正极反应式,然后在电子守恒的基础上用总反应式减去正极反应式即得负极反应式。 下面主要介绍几种常见的燃料电池。 一、氢氧燃料电池 氢氧燃料电池一般是以惰性金属铂(Pt)或石墨做电极材料,负极通入H,正极通入 O,22总反应为:2H + O === 2HO222电极反应特别要注意电解质,有下列三种情况:

生物质燃料乙醇的发展现状及趋势

生物质燃料乙醇的发展现状及趋势 摘要:燃料乙醇作为生物质能源的一种,以其可再生、清洁环保等方面的特性,成为化石能源的重要替代品。本文简要论述了燃料乙醇的生产技术,以及国外重 要燃料乙醇生产国的发展现状,进而说明我国发展燃料乙醇的重要性及发展趋势。 关键词:生物质;燃料乙醇;现状;趋势 Abstract:as a kind of biomass energy,fuel ethanol has become an important substitute for fossil energy because of its characteristics of renewable,clean and environmental protection.In this paper,the production technology of fuel ethanol and the development status of fuel ethanol producing countries abroad are briefly discussed,and the importance and development trend of fuel ethanol in China are illustrated. Key words:biomass;fuel ethanol;status;trends 随着石油储量不断下降,石油开采成本不断加大,环境破坏日益加剧,人们 逐渐将目光转向为核能、风能及生物质能等替代能源。燃料乙醇是目前世界各国 生产最多的生物质液体燃料,也是我国目前投入最大、研究最成熟的清洁替代能源。 一、燃料乙醇生产技术现状 第1代燃料乙醇 第1代燃料乙醇主要是以粮食或饲料为原料的生产工艺,其原理是利用原料 中的糖类物质发酵生产燃料乙醇。具有工艺成熟、淀粉转化率高等特点,但存在 的原料成本高、原料有限等问题,根据我国的相关政策规定,到2020年,以粮 食作为原料生产燃料乙醇产量被限制在150万千L以下,而以薯类和甜高粱等非 粮原料生产燃料乙醇也仅是过渡工艺,未来以农作物秸秆为代表的各类纤维类生 物质生产燃料乙醇技术,被认为是未来解决燃料乙醇的根本出路[1]。 第2代燃料乙醇 第2代燃料乙醇是指以麦秆、草等农林废弃物为原料,采用生物纤维素转化 为生物燃料的模式,与第1代燃料乙醇技术相比,第2代在环保、可持续发展方 面表现的更为出色,尤其是纤维素乙醇的原料来源相当广泛,包括秸秆、枯草等 农业废弃物均可入料,解决了第1代生产过程中耗费更多能源和使用更多化学物 质的问题[2]。目前,纤维素乙醇被世界公认为燃料乙醇产业发展方向。 二、主要燃料乙醇生产国的发展现状 截至2015年,全球生物液体燃料消费量约1亿吨,其中燃料乙醇全球产量约8000万吨,我国燃料乙醇产量约为210万吨[3],是世界上第三大生物燃料乙醇 生产国和应用国,仅次于美国和巴西。2015年世界主要燃料乙醇生产国产量见表 1 美国主要以玉米为原料,目前是世界上燃料乙醇发展最成功的国家。美国燃料乙醇生产 量约占世界产量的33%[4]。根据美国能源部的计划,到2025年可再生物质生产的生物燃料 将代替从中东进口的石油的75%,到2030年将用生物燃料代替现在汽油使用量的30%。美国政府鼓励燃料乙醇进一步发展,并计划将燃料乙醇的添加量从10%提高到15%[5]。 巴西是以甘蔗为原料的独特优势,利用气候条件好,甘蔗种植面积广,甘蔗原料来源稳 定且供应充足等条件,成本优势明显。目前,巴西燃料乙醇已进入大规模商业化阶段。由于 燃料乙醇技术进步和效率提升,燃料乙醇在没有补贴的情况下也已具备了竞争力[6]。 近年来,欧盟、日本等经济强国也十分重视燃料乙醇的使用,并且发展十分迅速。日本 计划到2020年可再生燃料要替代3%的汽油消费量的,到2030年将石油的对外依存度降低

相关主题
文本预览
相关文档 最新文档