当前位置:文档之家› 高考物理习题难度型

高考物理习题难度型

高考物理习题难度型
高考物理习题难度型

1.如图4所示,重20N 的物体放在粗糙水平面上,用F =8N 的力斜向下推物体.F 与水平

面成30°角,物体与水平面间的动摩擦因数μ=0.5,则( )

图4

A .物体对地面的压力为24N

B .物体所受的摩擦力为12N

C .物体所受的合力为5N

D .物体所受的合力为零 解析:

A 、对物体进行受力分析:重力、推力F 、地面的支持力N 和摩擦力f ,由竖直方向力平衡,

有:N=G+Fsin30°=20N+8×0.5N=24N ,则物体对地面的压力为24N .故A 正确.

B 、物体的最大静摩擦力为f m ≥μN=0.5×24N=12N .F 的水平方向分力大小为F'=Fcos30°=4

√3N <f m ,所以物体没能被推动,保持静止状态,物体所受的摩擦力为f=Fcos30°=4√3

N .故B 错误.

C 、

D 由上分析可知,物体处于静止状态,合力为零.故C 错误.D 正确

故选AD

2.如右图所示,倾角为30°,重为80 N 的斜面体静止在水平面上.一

根弹性轻杆一端垂直固定在斜面体上,杆的另一端固定一个重为2 N

的小球,小球处于静止状态时,下列说法正确的是( )

A .斜面有向左运动的趋势

B .地面对斜面的支持力为80 N

C .球对弹性轻杆的作用力为2 N ,方向竖直向下

D .弹性轻杆对小球的作用力为2 N ,方向垂直斜面向上

解析:把小球、杆和斜面作为整体受力分析可知,仅受重力和地面的支持力,且二力平衡,

故A 错误;由整体平衡可得地面对斜面的支持力大小为82N ,B 错误;对小球受力分析知,

只受竖直向下的重力和杆给的竖直向上的弹力(杆对小球的力不一定沿杆),故C 对,D 错.

故选C

点评:在判断受力分析时,不能主观臆断,一定要根据相关规律分析,本题中小球的受力分

析很容易出错为D

3.如图所示,用一根长为l 的细绳一端固定在O 点,

另一端悬挂质量为m 的小球A ,为使细绳与竖直方向

夹角为30°且绷紧,小球A 处于静止,对小球施加

的最小的力是 ( )

A. 3mg

B.

32mg C. 12mg D. 33

mg

解析:

试题分析:如图所示,球受到重力G、细绳拉力T及另一拉力F,将T与F合成,该合力与

重力平衡。从图中我们可以发现当F与T垂直时,F最小且等于mg,则C正确

4. 用与竖直方向成θ角(θ<45°)的倾斜

轻绳a和水平轻绳b共同固定一小球,这时绳b的拉力

为F1,现保持小在原位置不动,使绳b在原竖直平面

内逆时针转过θ角固定,绳b的拉力变为F2,再转过θ

角时固定,绳b的拉力变为F3,如图所示,则下列可

能正确的是 ( )

A.F1=F3>F2

B. F1

C. F1=F3

D. F1=F2

解析:对小球受力分析,受到重力和两个拉力,三力平衡,合力为零;其中重力大小和方向都恒定,第二个力方向不变、大小变,第三个力大小和方向都可以变,运用合成法,通过作图分析.

对小球受力分析,受到重力和两个拉力,三力平衡,如图

通过几何关系可知,力F 2 垂直与细线,故F 1 =F 3 >F 2 ;

故选A.

点评:本题是三力平衡的动态分析问题,关键是运用合成法作图,结合几何关系得到各个力的关系.

5.(2011广陵区校级学业考试)人站在自动扶梯的水平踏板上,

随扶梯斜向上匀速运动,如图所示,以下说法正确的

是 ( )

A. 人受到重力和支持力的作用

B. 人受到重力、支持力和摩擦力的作用

C. 人受到的合外力不为零

D. 人受到的合外力方向与速度方向相同 解析:人站在自动扶梯上,随扶梯斜向上匀速运动,人处于平衡状态,则人受到竖直向下的

重力作用和竖直向上的支持力作用,人不受摩擦力作用,所以重力和支持力是一对平衡力,

合力为零,故A 正确,BCD 错误.

故选:A .

6. 如图所示,表面粗糙的固定斜面顶端有一滑轮,两物

块P 、Q 用轻绳连接跨过滑轮(不计滑轮的质量和摩

擦).P 悬于空中,Q 放在斜面上,均处于静止状态,当

用水平向左的恒力推Q 时,P 、Q 仍静止不动,则( )

A. Q 受到的摩擦力一定变小

B. Q 受到的摩擦力一定变大

C. 轻绳上拉力一定变小

D. 轻绳上拉力一定不变 解析:D 。P 和Q 都没有动,对P 进行分析,可知P 是静止的,假设绳的拉力为T,则T-Mpg=ma,

而a=0,可知T=Mg,因此,选D 项.

7. 如图所示,A 是一质量为M 的盒子,B 的质量为M/2,A 、B 用细绳相连,跨过光滑的定滑

轮,A 置于倾角θ=30°的斜面上,B 悬于斜面之外而处于静止状态.现在向A 中缓慢加入沙

子,整个系统始终保持静止,则在加入沙子的过程中下列说法错误的是()

A. 绳子拉力逐渐减小

B. A 对斜面的压力逐渐增大

C. A 所受的摩擦力逐渐增大

D. A 所受的合力不变

解析:A 、绳子拉力等于B 的重力,保持不变.故A 错误.

B 、A 对斜面的压力等于A 及沙子的总重力沿垂直于斜面的分力,随着沙子质量的增加,A 对斜面的压力逐渐增大.故B 正确.

C 、未加沙子时,A 所受的重力沿斜面向下的分力为 Mg/2,等于绳子的拉力,A 没有运动趋势,不受静摩擦力.当向A 中缓慢加入沙子时,A 有向下运动趋势,由平衡条件分析可知:A 所受的摩擦力等于沙子的重力沿斜面向下的分力,随着沙子质量的增加,A 所受的摩擦力逐渐增大.故C 正确.

D 、整个系统始终保持静止,A 所受的合力为零,不变.故D 正确.

故选BCD

8.(2011年江苏金陵中学期中测试)一间新房即将建成时要封顶,考虑到下雨时落至屋顶的

雨滴能尽快地流离房顶,要设计好房顶的坡度,设雨滴沿房顶下淌时做无初速度无摩擦的运

动,且屋顶的底边长是固定的,那么图所示四种情况中符合要求的是( )

解析:选C.本题考查了牛顿第二定律和运动学的结合问题.设底边长为L ,坡度夹角为θ,

可以求出房顶到屋檐的距离为L

2cos θ,可由牛顿第二定律得出下淌的加速度为g sin θ,由

运动学公式可以得出L 2cos θ=12g sin θ·t 2,故t =L g sin θcos θ=2L g sin2θ

,因此当2θ=90°即θ=45°时,雨滴下淌的时间最短.

9. (2011年江苏、锡、常、镇四市联考)如图所示,质量均为m 的A 、

B 两个小球,用长为2L 的轻质杆相连接,在竖直平面内,绕固定轴

O 沿顺时针方向自由转动(转动轴在杆的中点),不计一切摩擦,某

时刻A 、B 球恰好在如图所示的位置,A 、B 球的线速度大小均为v ,

下列说法正确的是( )

A .运动过程中

B 球机械能守恒

B .运动过程中B 球速度大小不变

C .B 球在运动到最高点之前,单位时间内机械能的变化量保持

不变

D .B 球在运动到最高点之前,单位时间内机械能的变化量不断

改变

解析:选BD.以A 、B 球为系统,两球在运动过程中,只有重力做功(轻杆对两球做功的

和为零),两球的机械能守恒.以过O 点的水平面为重力势能的参考平面时,系统的总机械

能为E =2×12

mv 2=mv 2.假设A 球下降h ,则B 球上升h ,此时两球的速度大小是v ′,由机械能守恒定律知mv 2=12

mv ′2×2+mgh -mgh ,得到v ′=v ,故运动过程中B 球速度大小不变.当单独分析B 球时,B 球在运动到最高点之前,动能保持不变,重力势能在不断增加.由几何

知识可得单位时间内机械能的变化量是不断改变的,B 、D 正确.

10.如图所示,放置在水平地面上的支架质量为M ,支架顶端用细线拴

着的摆球质量为m ,现将摆球拉至水平位置,而后释放,摆球运动过程

中,支架始终不动,以下说法正确的是( )

A .在释放前的瞬间,支架对地面的压力为(m +M )g

B .在释放前的瞬间,支架对地面的压力为Mg

C .摆球到达最低点时,支架对地面的压力为(m +M )g

D .摆球到达最低点时,支架对地面的压力为(3m +M )g

解析:选BD.在释放前的瞬间绳拉力为零

对M :F N1=Mg ;

当摆球运动到最低点时,由机械能守恒得mgR =mv 22 ①

由牛顿第二定律得:F T -mg =mv 2R

② 由①②得绳对小球的拉力F T =3mg

对支架M 由受力平衡,地面支持力F N =Mg +3mg

由牛顿第三定律知,支架对地面的压力F N2=3mg +Mg ,故选项B 、D 正确.

11.(2011年江苏启东中学质检)如图所示,A 、B 两球质量相等,A 球

用不能伸长的轻绳系于O 点,B 球用轻弹簧系于O ′点,O 与O ′点在

同一水平面上,分别将A 、B 球拉到与悬点等高处,使绳和轻弹簧均

处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球

达到各自悬点的正下方时,两球仍处在同一水平面上,则( )

A .两球到达各自悬点的正下方时,两球动能相等

B .两球到达各自悬点的正下方时,A 球动能较大

C .两球到达各自悬点的正下方时,B 球动能较大

D .两球到达各自悬点的正下方时,A 球受到向上的拉力较大

解析:选BD.整个过程中两球减少的重力势能相等,A 球减少的重力势能完全转化为A

球的动能,B 球减少的重力势能转化为B 球的动能和弹簧的弹性势能,所以A 球的动能大于

B 球的动能,所以B 正确;在O 点正下方位置根据牛顿第二定律,小球所受拉力与重力的合

力提供向心力,则A 球受到的拉力较大,所以D 正确.

12.如图所示是用来粉刷墙壁的涂料滚的示意图.使用时,用撑竿推着涂

料滚沿墙壁上下滚动,把涂料均匀地粉刷到墙壁上.撑竿的重量和墙壁

的摩擦均不计,而且撑竿足够长.粉刷工人站在离墙壁某一距离处缓缓

上推涂料滚,使撑竿与墙壁间的夹角越来越小.该过程中撑竿对涂料滚

的推力为F 1,墙壁对涂料滚的支持力为F 2,下列说法正确的是( )

A .F 1、F 2均减小

B .F 1、F 2均增大

C .F

1减小,F 2增大 D .F 1增大,F 2减小

解析:选A.在缓缓上推过程中涂料滚受力如图所示.由平

衡条件可得:F 1sin θ-F 2=0,

F 1cos θ-

G =0 解得F 1=G

cos θ

,F 2=G tan θ 由于θ减小,所以F 1减小,F 2减小,故正确答案为A.

13、“神舟三号”顺利发射升空后,在离地面340km 的圆轨道

上运行了108圈。运行中需要多次进行“轨道维持”。所谓“轨道维持”就是通过控制飞船

上发动机的点火时间和推力的大小方向,使飞船能保持在预定轨道上稳定运行。如果不进行

轨道维持,由于飞船受轨道上稀薄空气的摩擦阻力,轨道高度会逐渐降低,在这种情况下飞

船的动能、重力势能和机械能变化情况将会是

A. 动能、重力势能和机械能都逐渐减小

B. 重力势能逐渐减小,动能逐渐增大,机械能不变

C. 重力势能逐渐增大,动能逐渐减小,机械能不变

D. 重力势能逐渐减小,动能逐渐增大,机械能逐渐减小

解析:由于阻力很小,轨道高度的变化很慢,卫星运行的每一圈仍可认为是匀速圆周运

动。由于摩擦阻力做负功,根据功能关系,卫星的机械能减小;由于重力做正功,卫星的重

力势能减小;由可知,卫星动能将增大。这也说明该过程中重力做的功大于

克服阻力做的功,外力做的总功为正。故选D

14、同步卫星是指相对于地面不动的人造地球卫星

A .它可以在地面上任一点的正上方,且离地心的距离可按需要选择不同值

B .它可以在地面上任一点的正上方,但离地心的距离是一定的

C .它只能在赤道的正上方,但离地心的距离可按需要选择不同值

D .它只能在赤道的正上方,且离地心的距离是一定的

解析:首先它应该在赤道正上方.假设不在,其同步的情况就是绕着地球球心外一点做匀速圆

周运动.地球对其引力不在它的轨道平面上,所以将引力可以分解为向心力与垂直与轨道平

面的力,该力将把卫星拉到赤道上空,除非有卫星自身动力抵抗.所以一定在赤道上空.

离地心距离一定是因为它的周期一定,等同于地球自转周期.

15、当人造卫星进入轨道做匀速圆周运动后,下列叙述正确的是( )

A.在任何轨道上运动时,地球球心都在卫星的轨道平面内

B.卫星运动速度一定不超过7.9 km /s

C.卫星内的物体仍受重力作用,并可用弹簧秤直接测出所受重力的大小

D.卫星运行时的向心加速度等于卫星轨道所在处的重力加速度

解析:因为是万有引力提供向心力,所以卫星的圆心必定是地心,即地球球心都在卫星的轨

道平面内.卫星的最大绕行速度为第一宇宙速度7.9 km /s.卫星内的物体都处于完全失

重状态,所以不能用弹簧秤测出物体的重力.

答案:ABD

16、据观测,某行星外围有一模糊不清的环,为了判断该环是连续物还是卫星群,又测出

了环中各层的线速度v 的大小与该层至行星中心的距离R ,以下判断中正确的是

A. 若v 与R 成正比,则环是连续物

B. 若v 与R 成反比,则环是连续物

C. 若v 2与R 成反比,则环是卫星群

D. 若v 2与R 成正比,则环是卫星群

答案:AC

17、(2011春抚顺期末)在圆轨道上运动的质量为m 的人造地球卫星,它到地面的距离

等于地球半径R ,地面上的重力加速度为g ,则 A. 卫星运动的速度为Rg 2

B. 卫星运动的周期为g

R 24 C. 卫星运动的加速度为2

1g D. 卫星的动能为4

1mRg 解析:

18.一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称

体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示宇宙

飞船所在处的地球引力加速度,F N 表示人对秤的压力,下面说法中正确的是

( ) A .g ′=0 B .g ′=R 2

r

2g C .F N =0 D .F N =m R r

g

解析:(1)忽略地球的自转,万有引力等于重力:

在地球表面处:mg=GMm/R 2

则GM=gR 2,

宇宙飞船:m ′g'=GMm ′/r 2 g'=gR 2/r 2,故A 错误,B 正确;

(2)宇宙飞船绕地心做匀速圆周运动,

飞船舱内物体处于完全失重状态,即人只受万有引力(重力)作用,

所以人对秤的压力F N =0,故C 正确,D 错误;

故选BC

19. 2008年9月25日至28日,我国成功实施了“神舟”七号载人航天飞行并实现了航

天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道

变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断正

确的是 ( )

A .飞船变轨前后的机械能相等

B .飞船在圆轨道上时航天员出舱前后都处于失重状态

C .飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度

D .飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度

答案BC

解析:本题考查万有引力定律及天体运动知识.飞船变轨时通过点火由椭圆轨道变为圆轨道,

速度突然变大,机械能增大,故A 错误;飞船变轨之前在椭圆轨道远地点时,飞船距地心高度

和在圆轨道上运行时距地心高度相同,所以万有引力大小相同,故加速度也相同,所以D 错误;

飞船在圆轨道运行时万有引力完全充当向心力,故处于完全失重状态,所以B 正确;由于飞船

的飞行周期为90分钟,比地球同步卫星的周期24小时要短,故角速度要大于地球同步卫星的,

所以C 正确."

20、如图,质量为M 的物体内有光滑圆形轨道,现有一质量为m 的小滑块沿该圆形轨道在竖

直面内作圆周运动。A 、C 点为圆周的最高点和最低点,B 、D 点是与圆心O 同一

水平线上的点。小滑块运动时,物体M 在地面上静止不动,则物体M 对地面的

压力F 和地面对M 的摩擦力有关说法正确的是( )

A .小滑块在A 点时,F >Mg ,M 与地面无摩擦

B .小滑块在B 点时,F =Mg ,摩擦力方向向右

C .小滑块在C 点时,F =(M +m )g ,M 与地面无摩擦

D .小滑块在D 点时,F =(M +m )g ,摩擦力方向向左

解析:A 、小滑块在A 点时,滑块对M 的作用力在竖直方向上,系统在水平方向不受力的作用,所以没有摩擦力的作用,所以A 错误.

B 、小滑块在B 点时,需要的向心力向右,所以M 对滑块有向右的支持力的作用,对M 受力分析可知,地面要对物体有向右的摩擦力的作用,在竖直方向上,由于没有加速度,物体受力平衡,所以物体M 对地面的压力N=Mg ,所以B 正确.

C 、小滑块在C 点时,滑块的向心力向上,所以C 对物体M 的压力要大于

C 的重力,故M 受到的滑块的压力大于mg ,那么M 对地面的压力就要大于(M+m )g ,所以C 正确.

D 、小滑块在D 点和B 的受力的类似,由B 的分析可知,D 错误.

故选BC

21.如图所示,木板B 托着木块A 一起在竖直平面内做匀速圆周运动,从

水平位置a 到最低点b 的过程中( )

A .

B 对A 的支持力越来越大 B .B 对A 的支持力越来越小

a b A B

C.B对A的摩擦力越来越大 D.B对A的摩擦力越来越小

解析:A在运动的过程中受重力、支持力、静摩擦力,三个力的合力提供向心力.合力沿水平方向的分力等于A所受的摩擦力,合力沿竖直方向的分力等于重力和支持力的合力,合力的大小不变,由a到b的运动过程中,合力沿水平方向的分力减小,所以摩擦力减小.合力沿竖直方向的分力逐渐增大,所以支持力逐渐减小.故B、C正确,A、D错误。故选BC

22.如图所示,水平转盘上的A、B、C三处有三块可视为质点的由同一种材料做成的正立方体物块;B、C处物块的质量相等且为m,A处物块的质量为2m;点A、B与

轴O的距离相等且为r,点C到轴O的距离为2r,转盘以某一角速度匀速转

动时,A、B、C处的物块都没有发生滑动现象,下列说法中正确的是( )

A.C处物块的向心加速度最大

B.A处物块受到的静摩擦力最小

C.当转速增大时,最先滑动起来的是C处的物块

D.当转速继续增大时,最后滑动起来的是A处的物块

解析:A、根据a=rω2知,三物块的角速度相等,C物块的半径最大,则向心加速度最大.故A正确.

B、因为B物块的质量最小,半径最小,根据f=mrω2,知B物块受到的静摩擦力最小.故B 正确.

C、根据μmg=mrω2,解得ω=√(μg/r),知C物块的半径最大,临界角速度最小,知C 物块最先滑动起来.故C、D错误.

故选AB.

23.(2013中山市校级模拟)如图所示,用长为L的细绳拴着质量为m的小球在竖直平面内

做圆周运动,则( )

A.小球在最高点时所受向心力一定为重力

B.小球在最高点时绳子的拉力不可能为零

C.若小球刚好能在竖直面内做圆周运动,则其在最高点速率是gL

D.小球在圆周最低点时拉力可能等于重力

解析:C

24.如图所示的圆锥摆运动,以下说法正确的是()

A. 在绳长固定时,当转速增为原来的4倍时,绳子的张力增加为原来的4倍

B. 在绳长固定时,当转速增为原来的2倍时,绳子的张力增加为原来的4倍

C. 当角速度一定时,绳子越短越易断

D. 当角速度一定时,绳子越长越易断

解析:小球在水平面内做匀速圆周运动,对小球受力分析,

如图

25.如图1所示,表演“飞车走壁”的杂技演员骑着摩托车飞驶在圆台形筒壁内,圆台筒固定不动,其轴线沿竖直方向.演员驾驶摩托车先后在M和N两处紧贴着内壁分别在图中虚线所示的水平面内做匀速圆周运动,如果此时不计车轮与

墙壁的摩擦力,则 ( )

A.M处的线速度一定大于N处的线速度

B.M处的角速度一定大于N处的角速度

C.M处的运动周期一定等于N处的运动周期

D.M处对筒壁的压力一定大于N处对筒壁的压力

解析:A、小球M和N紧贴着内壁分别在水平面内做匀速圆

周运动.由于M和N的质量相同,小球M和N在两处的合力相同,即它们做圆周运动时的向心力是相同的.

由向心力的计算公式F=mv2/r,由于球M运动的半径大于N球的半径,F和m相同时,半径大的线速度大,故A正确.

B、又由公式F=m*ω^2*r,由于球M运动的半径大于N球的半径,F和m相同时,半径大的角速度小,故B正确.

C、由周期公式T=2π/ω,所以球M的运动周期大于球N的运动周期,故C错误.

D、球M对筒壁的压力等于球N对筒壁的压力,故D错误.

故选AB.

26.图7,游乐场中,从高处A到水面B处有两条长度相等的光滑轨道,甲、乙两小孩沿着不同轨道同时从A处自由滑向B处,下列说法正确的有

A .甲的切向加速度始终比乙大

B .甲、乙在同一高度的速度大小相等

C .甲、乙在同一时刻总能到达同一高度

D .甲比乙先到达B 处

解析:答案:B D

A 在曲线上任取一点,作切线,设切线与水平方向成的锐角为θ,则切向力为:mgsin θ=ma t ,可以看出来甲的切向加速度一直减小,乙一直增大在

B 点 就有甲的切向加速度小于乙,当然这样地方还有很多A 错

B 当甲乙下降相同的高度h 时,由动能定理得: 22

1mv mgh =即:gh v 2=B 对 C D 答案判定画切向速度函数图象如下

图一 图二 图三

图四

分析过程:经分析甲乙开始一段时间 切向加速度甲比乙大,切向速度存在上面3种可能,排查只有图一才合理,假设 图二成立,从0到末时刻有s 甲>s 乙、末时刻速度大小相同,表示下降同一高度,然后用水平线去截甲乙轨迹如图四有s 甲

27.如图8,物体P 静止于固定的斜面上,P 的上表面水平,现把物体Q 轻轻地叠放在P 上,则

A.P 向下滑动

B.P 静止不动

C.P 所受的合外力增大

D.P 与斜面间的静摩擦力增大

解析:答案:B D

设斜面的倾角为θ,加上Q ,相当于增加了P 的质量,受力分析列

平衡方程得f=mgsin θ<μmgcos θ

N=mgcos θ,当m 增加时,不等式两边都增加,不等式成立仍然平衡,

选BD

28.图9是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫块,

楔块与弹簧盒、垫块间均有摩擦,在车厢相互撞击时弹簧压缩过程中 A .缓冲器的机械能守恒

B. 摩擦力做功消耗机械能

C. 垫块的动能全部转化成内能 D .弹簧的弹性势能全部转化为动能

解析:选B 。

楔块与弹簧盒、垫块间均有摩擦,在弹簧压缩时候,摩擦力做负功,缓冲器的

机械能会转化为内能,所以A 错B 对,在弹簧压缩的过程中,垫块的动能转化成内能和弹簧的弹性势能,C 错。弹簧压缩应该是弹性势能变大。如果后面过程弹簧的弹性势能又会转化为内能和动能,装置应该会反复运动几次,D 错。

29.如图13所示,飞行器P 绕某星球做匀速圆周运动,星球相对飞

行器的角度为θ,下列说法正确的是

A .轨道半径越大,周期越长

B. 轨道半径越大,速度越长

C. 若测得周期和张角,可得到星球的平均密度 D .若测得周期和轨道半径,可得到星球的平均密度

解析:AC

30、如图所示,某同学用硬塑料管和一个质量为m 的铁质螺丝帽研究匀速圆周运动,将螺丝

帽套在塑料管上,手握塑料管使其保持竖直并在水平方向做半径为r 的匀速圆周运动,则只要运动角速度合适,螺丝帽恰好不下滑,假设螺丝帽与塑料管间的动摩擦因数为μ,认为最大静摩擦力近似等于滑动摩擦力.则在该同学手转塑料管使螺丝帽恰好

不下滑时,下述分析正确的是( )

A .螺丝帽受的重力与最大静摩擦力平衡

③ ② ① ④ F 1 F 2 弹簧盒

图9 θ 图13 P

B.螺丝帽受到杆的弹力方向水平向外,背离圆心

C.此时手转动塑料管的角速度ω=mg μr

D.若杆的转动加快,螺丝帽有可能相对杆发生运动

解析:螺丝帽在运动中受四个力:竖直方向有重力、塑料管对螺母的摩擦力,水平方向有物体圆周运动的惯性离心力、塑料管对螺母的弹力.

因为匀速圆周运动是一种平衡状态.所以:竖直方向上,重力=塑料管对螺母的摩擦力、水平方向上,物体圆周运动的惯性离心力=塑料管对螺母的弹力.

A选项,两个竖直方向上的力平衡,正确.

B选项,离心力是水平向外、背离圆心的,所以离心力的平衡力,即塑料管对螺母的弹力应该是水平向内、指向圆心.所以错误.

C选项,ω=?显示不出.分析:恰好不下滑时重力等于离心力,即mg=μF(F的大小等于管子对螺母的弹力,也就是离心力的大小).由公式F=mrω2代入,得μmrω2=mg,ω=√g/μr.是否正确,自己核对.

D选项,转得越快离心力越大,即弹力越大摩擦力越大.相对杆发生运动有两种:竖直和水平.竖直方向因为弹力平衡离心力,而离心力是惯性力(假想力),所以不管转速多快,惯性离心力和塑料管对螺母的弹力一直相等(除非管子断裂).竖直方向上,最大静摩擦力在等于重力的情况下继续变大,所以在重力不加大的情况下,重力=静摩擦力<最大静摩擦力,即不会有竖直方向上的相对运动(注意“静摩擦力”和“最大静摩擦力”的区别).综上所述,不会有相对运动,D选项错误.

高考物理经典专题:时间与空间

高考物理经典专题:时间与空间 力与运动 思想方法提炼 一、对力的几点认识 1.关于力的概念.力是物体对物体的相互作用.这一定义体现了力的物质性和相互性.力是矢量. 2.力的效果 (1)力的静力学效应:力能使物体发生形变. (2)力的动力学效应: a.瞬时效应:使物体产生加速度F=ma b.时间积累效应:产生冲量I=Ft,使物体的动量发生变化Ft=△p c.空间积累效应:做功W=Fs,使物体的动能发生变化△E k=W 3.物体受力分析的基本方法 (1)确定研究对象(隔离体、整体). (2)按照次序画受力图,先主动力、后被动力,先场力、后接触力. (3)只分析性质力,不分析效果力,合力与分力不能同时分析. (4)结合物体的运动状态:是静止还是运动,是直线运动还是曲线运动.如物体做曲线运动时,在某点所受合外力的方向一定指向轨迹弧线内侧的某个方向. 二、中学物理中常见的几种力 三、力和运动的关系 1.F=0时,加速度a =0.静止或匀速直线运动 F=恒量:F与v在一条直线上——匀变速直线运动 F与v不在一条直线上——曲线运动(如平抛运动) 2.特殊力:F大小恒定,方向与v始终垂直——匀速圆周运动 F=-kx——简谐振动 四、基本理论与应用 解题常用的理论主要有:力的合成与分解、牛顿运动定律、匀变速直线运动规律、平抛运动的规律、圆周运动的规律等.力与运动的关系研究的是宏观低速下物体的运动,如各种交通运输工具、天体的运行、带电物体在电磁场中的运动等都属于其研究范畴,是中学物理的重要内容,是高考的重点和热点,在高考试题中所占的比重非常大.选择题、填空题、计算题等各种类型的试题都有,且常与电场、磁场、动量守恒、功能部分等知识相结合.

高考物理电磁综合压轴大题汇编

2016年高考押题 1.(18分)在竖直平面内,以虚线为界分布着如图所示足够大的匀强电场和匀强磁场,其中匀强电场方向竖直向下,大小为E ;匀强磁场垂直纸面向里,磁感应强度大小为B 。虚线与水平线之间的夹角为θ=45°,一带负电粒子从O 点以速度v 0水平射入匀强磁场,已知带负电粒子电荷量为q ,质量为m ,(粒子重力忽略不计)。 (1)带电粒子从O 点开始到第1次通过虚线时所用的时间; (2)带电粒子第3次通过虚线时,粒子距O 点的距离; (3)粒子从O 点开始到第4次通过虚线时,所用的时间。 1.(18分)解:如图所示: (1)根据题意可得粒子运动轨迹如图所示。 2πm T Bq = ……………………………………(2分) 因为θ=45°,根据几何关系,带电粒子从O 运动到A 为3/4圆周……(1分) 则带电粒子在磁场中运动时间为: 3π2m t Bq = ………………………………………………………………………………………(1分) (2)由qvB=m 2 v r ………………………………………………………(2分) 得带电粒子在磁场中运动半径为:0 mv r Bq = ,…………………………(1分) 带电粒子从O 运动到A 为3/4圆周,解得0 22OA mv x r Bq ==…………………(1分) 带电粒子从第2次通过虚线到第3次通过虚线运动轨迹为1 4圆周,OA AC x x =所以粒子距O 点的距离0 2222OC mv x r Bq ==………………………………(1 分) (3)粒子从A 点进入电场,受到电场力F=qE ,则在电场中从A 到B 匀减速,再从B 到A 匀加速进入磁场。在电场中加速度大小为:

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

(完整版)高中物理知识点清单(非常详细)

高中物理知识点清单 第一章 运动的描述 第一节 描述运动的基本概念 一、质点、参考系 1.质点:用来代替物体的有质量的点.它是一种理想化模型. 2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动. 二、位移和速度 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度 1.定义式:a =Δv Δt ;单位是m/s 2 . 2.物理意义:描述速度变化的快慢. 3.方向:与速度变化的方向相同. 考点一 对质点模型的理解 1.质点是一种理想化的物理模型,实际并不存在. 2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点. (2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点. 考点二 平均速度和瞬时速度 1.平均速度与瞬时速度的区别 平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度. 2.平均速度与瞬时速度的联系 (1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

最新推荐推荐高三物理力学综合测试经典好题(含答案)教学内容

高三物理力学综合测试题 一、选择题(4×10=50) 1、如图所示,一物块受到一个水平力F 作用静止于斜面上,F 的方向与斜面平行, 如果将力F 撤消,下列对物块的描述正确的是( ) A 、木块将沿面斜面下滑 B 、木块受到的摩擦力变大 C 、木块立即获得加速度 D 、木块所受的摩擦力改变方向 2、一小球以初速度v 0竖直上抛,它能到达的最大高度为H ,问下列几种情况中,哪种情况小球不. 可能达到高度H (忽略空气阻力): ( ) A .图a ,以初速v 0沿光滑斜面向上运动 B .图b ,以初速v 0沿光滑的抛物线轨道,从最低点向上运动 C .图c (H>R>H/2),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 D .图d (R>H ),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 3. 如图,在光滑水平面上,放着两块长度相同,质量分别为M1和M2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒力F1、F2,当物块和木块分离时,两木块的速度分别为v1和v2,,物体和木板间的动摩擦因数相同,下列说法 若F1=F2,M1>M2,则v1 >v2,; 若F1=F2,M1<M2,则v1 >v2,; ③若F1>F2,M1=M2,则v1 >v2,; ④若F1<F2,M1=M2,则v1 >v2,;其中正确的是( ) A .①③ B .②④ C .①② D .②③ 4.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态。若小车以1m/s2的加速度向右运动后,则(g=10m/s2)( ) A .物体A 相对小车仍然静止 B .物体A 受到的摩擦力减小 C .物体A 受到的摩擦力大小不变 D .物体A 受到的弹簧拉力增大 5.如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小 球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤gR 3 10,则有关小球能够上 升到最大高度(距离底部)的说法中正确的是: ( ) A .一定可以表示为g v 22 B .可能为3 R C .可能为R D .可能为 3 5R 6.如图示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不 漏气。活塞下挂一砂桶,砂桶装满砂子时,活塞恰好静止。现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则 ( ) A .气体压强增大,内能不变 B .外界对气体做功,气体温度不变 C .气体体积减小,压强增大,内能减小 D .外界对气体做功,气体内能增加 7.如图所示,质量M=50kg 的空箱子,放在光滑水平面上,箱子中有一个质量m=30kg 的铁块,铁块与箱子的左端ab 壁相距s=1m ,它一旦与ab 壁接触后就不会分开,铁块与箱底间的摩擦可以忽略不计。用水平向右的恒力F=10N 作用于箱子,2s 末立即撤去作用力,最后箱子与铁块的共同速度大小是( ) θ F R F

高中物理选修3-5经典例题

物理选修3-5动量典型例题 【例1】质量为0.1kg 的小球,以10m /s 的速度水平撞击在竖直放置的厚钢板上,而后以7m /s 的速度被反向弹回,设撞击的时间为0.01s ,并取撞击前钢球速度的方向为正方向,则钢球受到的平均作用力为( ). A .30N B .-30N C .170N D .-170N 【例2】质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短离地的速率为2v ,在碰撞过程中,地面对钢球的冲量的方向和大小为( ). A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 【例3】质量为2m 的物体A ,以一定的速度沿光滑水平面运动,与一静止的物体B 碰撞后粘为一体继续运动,它们共同的速度为碰撞前A 的速度的2/3,则物体B 的质量为( ). A .m B .2m C .3m D . 2 3 m 【例4】一个不稳定的原子核,质量为M ,处于静止状态,当它以速度0v 释 放一个质量为m 的粒子后,则原子核剩余部分的速度为( ). A .0 m v M m - B . m v M - C .0m v M m -- D .0 m v M m - + 【例5】带有光滑圆弧轨道、质量为M 的滑车静止置于光滑水平面上,如图所示.一质量为m 的小球以速度v 0水平冲上滑车,当小球上滑再返回并脱离滑车时,有①小球一定水平向左做 平抛运动 ②小球可能水平向左做平抛运动 ③小球可能做自由落体运动 ④小球一定水平向右做平抛运动 以上说法正确的是( ) A.① B .②③ C.④ D.每种说法都不对 【例6】质量为m 的物体静止在足够大的水平面上,物体与桌面的动摩擦因数为μ,有一水平恒力作用于物体上,并使之加速前进,经1t 秒后去掉此恒力,求物体运动的总时间t . 【例7】将质量为0.10kg 的小球从离地面20m 高处竖直向上抛出,抛出时 的初速度为15m /s ,当小球落地时,求: (1)小球的动量; (2)小球从抛出至落地过程中的动量增量; (3)小球从抛出至落地过程中受到的重力的冲量. 【例8】气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 高的地方,气球下方悬根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这根绳长至少为多少米?(不计人的高度)

高考物理基础知识总结

高考物理基础知识总结 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度s v= t (定义式) 2.有用推论2022t v -v =as 3.中间时刻速度 02t t/2v +v v =v= 4.末速度v t =v o +at 5.中间位置速度s/2v 6.位移02122t/s=vt=v t+at =v t 7.加速度0t v -v a=t 以v o 为正方向,a 与v o 同向(加速)a >0;反向则a <0 8.实验用推论Δs=aT 2 Δs 为相邻连续相等时间(T )内位移之差 9.主要物理量及单位:初速(v o ):m/s 加速度(a ):m/s 2 末速度(v t ):m/s 时间(t ):秒(s) 位移(s ):米(m ) 路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3) 0t v -v a=t 只是量度式,不是决定式; (4)其它相关内容:质点/位移和路程/s--t 图/v--t 图/速度与速率/。 2) 自由落体 1.初速度v o =0 2.末速度v t =gt 3.下落高度12 2h=gt (从v o 位置向下计算) 4.推论v t 2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律; (2)a=g =9.8≈10m/s 2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移012 2s=v t-gt 2.末速度v t = v o - gt (g =9.8≈10m/s 2 ) 3.有用推论v t 2 -v o 2=-2gS 4.上升最大高度H m =v o 2/2g (抛出点算起) 5.往返时间02v t=g (从抛出落回原位置的时间)

(完整版)高三物理综合大题

高三二轮复习综合大题汇编 1. (16分)如图所示,在水平方向的匀强电场中,用长为L的绝缘细线拴住一质量为m,带电荷量为q的小球,线的上端固定,开始时连线带球拉成水平,突然松开后,小球由静止开始向下摆动,当细线转过60°角时的速度恰好为零。问: (1)电场强度E的大小为多少? (2)A、B两点的电势差U AB为多少? (3)当悬线与水平方向夹角θ为多少时,小球速度最大?最大为多少? 2. (12分)如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg在斜面上,用F=50N的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g取10N/kg,sin37°=0.6,cos37°=0.8,求: (1)物块与斜面间的动摩擦因数μ; (2)若将F改为水平向右推力F',如图乙,则至少要用多大的力F'才能使物体沿斜面上升。(设最大静摩擦力等于滑动摩擦力) 3. (18分)如图(甲)所示,弯曲部分AB和CD是两个半径相等的四分之一圆弧,中间的BC段是竖直的薄壁细圆管(细圆管内径略大于小球的直径),细圆管分别与上、下圆弧轨道相切连接,BC段的长度L可作伸缩调节。下圆弧轨道与地面相切,其中D、A分别是上、下圆弧轨道的最高点与最低点,整个轨道固定在竖直平面内。一小球多次以某一速度从A点水平进入轨道而从D点水平飞出。今在A、D两点各放一个压力传感器,测试小球对轨

道A、D两点的压力,计算出压力差△F。改变BC间距离L,重复上述实验,最后绘得△F-L 的图线如图(乙)所示。(不计一切摩擦阻力,g取10m/s2) (1)某一次调节后D点离地高度为0.8m。小球从D点飞出,落地点与D点水平距离为2.4m,求小球过D点时速度大小。 (2)求小球的质量和弯曲圆弧轨道的半径大小。 4. (18分)如图所示,在光滑的水平地面上,质量为M=3.0kg的长木板A的左端,叠放着一个质量为m=1.0kg的小物块B(可视为质点),处于静止状态,小物块与木板之间的动摩擦因数μ=0.30。在木板A的左端正上方,用长为R=0.8m的不可伸长的轻绳将质量为m=1.0kg的小球C悬于固定点O点。现将小球C拉至上方使轻绳拉直且与水平方向成θ=30°角的位置由静止释放,到达O点的正下方时,小球C与B发生碰撞且无机械能损失,空气阻力不计,取g=10m/s2,求: (1)小球C与小物块B碰撞前瞬间轻绳对小球的拉力; (2)木板长度L至少为多大时,小物块才不会滑出木板。 5. (20分)如图所示,在高为h的平台上,距边缘为L处有一质量为M的静止木块(木块的尺度比L小得多),一颗质量为m的子弹以初速度v0射入木块中未穿出,木块恰好运动到平台边缘未落下,若将子弹的速度增大为原来的两倍而子弹仍未穿出,求木块的落地点距平台边缘的水平距离,设子弹打入木块的时间极短。

高中物理必修1知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

高考物理直线运动解题技巧及经典题型及练习题(含答案)

高考物理直线运动解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试直线运动 1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求 (1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】 (1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s = 木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s g s μ-= 解得20.4μ= 木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212 x vt at =+ 带入可得21/a m s = 木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ= (2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214 /3 a m s = 对滑块,则有加速度2 24/a m s = 滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =- =末速度18 /3 v m s =

高考物理综合测试题

2008高考物理综合测试题 二、选择题(本题包括8小题。每小题给出的四个选项中,有的只有一个选项正确,有的有多 个选项正确,全部选对的得6分,选不全的得3分,有选错或不答的得0分。) 14.下列说法中正确的是()A.一定质量的气体被压缩后,压强不—定增大 B.一定质量的气体吸热后,温度一定升高 C.一定质量的气体对外做功后,内能一定减小 D.满足能量守恒的物理过程不一定都能自发进行 15.下列说法中正确的是()A.原子核是由质子、中子和核子组成的 B.β射线就是大量的原子被激发后,从原子的内层中发射出的电子 C.由于每种原子都有自己的特征谱线,故通过光谱分析可以确定样品中包含哪些元素D.由于原子里的核外电子不停地绕核做变速运动,所以原子要向外辐射能量,这就是原子光谱的来源 16.—列简谐横波沿x轴传播,甲、乙两图分别为传播方向上相距3m的两质点的振动图像,如果该波波长大于1.5m,则此波的传播速度大小可能为() A.30m/s B.15m/s C.10m/s D.6m/s 17.OMO’N为半圆形玻璃砖的横截面,OO’为过截 面圆心且垂直于MN的直线,两条可见单色光线a、 b距OO’的距离为d,从空气中垂直MN射入玻璃砖 中,在半圆界面上发生反射和折射的实际情况如图所 示,由此可知() A.a光在玻璃砖内的频率和在空气中的相等 B.a光在玻璃砖内的传播速度比在空气中的小 C.a光的频率比b光的大 D.在玻璃砖中a光的波长比b光的大 18.如图所示,绝缘固定并用砂纸打磨后的锌板A水 平放置,其下方水平放有接地的铜板B,两板正对,且面 积均为S,两板间距离为d,当用弧光灯照射锌板上表面

(完整word版)高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离 L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在 导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于 导轨所在平面的匀强磁场.金属导轨的一端接有电动势 E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒 与金属导轨垂直、且接触良好,导体棒与金属导轨接图14 触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取 10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力 15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω, 金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电 阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且 与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动 至AC的位置时,求(计算结果保留两位有效数字): 图15 (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率. 16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l, 导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上 方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直 平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向 里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框 恰好做匀速运动.重力加速度为g. (1)求cd边刚进入磁场时导线框的速度大小. (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克 服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导 线框克服安培力所做的功. 17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求: (1)交流发电机产生的 电动势最大值;

(完整word版)高中物理总复习基础知识汇总

高中物理总复习基础知识要点 第一部分力学 一、力和物体的平衡: 1.力 ⑴力是物体对物体的作用:①成对出现,力不能离开物体而独立存在;②力能改变物体的运动状态(产生加速度)和引起形变;③力是矢量,力的大小、方向、作用点是力的三要素。 ⑵力的分类:①按力的性质分类。②按力的效果分类(可以几个力的合力)。 ⑶力的图示:①由作用点开始画,②沿力的方向画直线。③选定标度,并按大小结合标度分段。④在末端画箭头并标出力的符号。 2.重力 ⑴产生:①由于地球吸引而产生(但不等于万有引力)。②方向竖直向下。③作用点在重心。 ⑵大小:①G=mg,在地球上不同地点g不同。②重力的大小可用弹簧秤测出。 ⑶重心:①质量分布均匀的有规则形状物体的重心,在它的几何中心。②质量分布不均匀或不规则形状物体的重心,除与物体的形状有关外,还与质量的分布有关。③重心可用悬挂法测定。④物体的重心不一定在物体上。 3.弹力 ⑴产生:①物体直接接触且产生弹性形变时产生。②压力或支持力的方向垂直于支持面而指向被压或被支持的物体;③绳的拉力方向沿着绳而指向绳收缩的方向。 有接触的物体间不一定有弹力,弹力是否存在可用假设法判断,即假设弹力存在,通过分析物体的合力和运动状态判断。 ⑵胡克定律:在弹性限度内,F=KX,X-是弹簧的伸长量或缩短量。 4.摩擦力 ⑴静摩擦力:①物接触、相互挤压(即存在弹力)、有相对运动趋势且相对静止时产生。 ②方向与接触面相切,且与相对运动趋势方向相反。③除最大静摩擦力外,静摩擦力没有一定的计算式,只能根据物体的运动状态按力的平衡或F=ma方法求。 判断它的方向可采用“假设法”,即如无静摩擦力时物体发生怎样的相对运动。 ⑵滑动摩擦力:①物接触、相互挤压且在粗糙面上有相对运动时产生。②方向与接触面相切且与相对运动方向相反(不一定与物的运动方向相反)②大小f=μF N。(F N不一定等于重力)。 滑动摩擦力阻碍物体间的相对运动,但不一定阻碍物体的运动。 摩擦力既可能起动力作用,也可能起阻力作用。 5.力的合成与分解 ⑴合成与分解:①合力与分力的效果相同,可以根据需要互相替代。①力的合成和分解遵循平行四边形法则,平行四边形法则对任何矢量的合成都适用,力的合成与分解也可用正交分解法。③两固定力只能合成一个合力,一个力可分解成无数对分力,但力的分解要根据实际情况决定。 ⑵合力与分力关系:①两分力与合力F1+F2≥F≥F1-F2,但合力不一定大于某一分

高考物理经典考题300道(10)

一、计算题(解答写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。本题包含55小题,每题?分,共?分) 1.如图所示,在光滑的水平面上,有两个质量都是M 的小车A 和B ,两车间用轻质弹簧相连,它们以共同的速度向右运动,另有一质量为 0M 的粘性物体,从高处自由下落,正好落 至A 车并与之粘合在一起,在此后的过程中,弹簧获得最大弹性势能为E ,试求A 、B 车开始匀速运动的初速度 0v 的大小. 解析:物体 0M 落到车A 上并与之共同前进,设其共同速度为1v , 在水平方向动量守恒,有 100)(v M M M v += 所以 0 01v M M M v += 物体0M 与A 、B 车共同压缩弹簧,最后以共同速度前进,设共同速度为2v ,根据动量守 恒有 200)2(2v M M Mv += 所以 0222v M M M v += 当弹簧被压缩至最大而获得弹性势能为E ,根据能量守恒定律有: ()()202102202121221 Mv v M M v M M E ++=++ 解得 ()()002 0022M M M M MM E v ++= . 2.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一个质量为m 的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的瞬时冲量I ,木块便沿小车向右滑行,在与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端.试求: (1)木块返回到小车左端时小车的动能. (2)弹簧获得的最大弹性势能. 解:(1)选小车和木块为研究对象.由于m 受到冲量I 之后系统水平方向不受外力作用,系统动量守恒.则v m M I )(+=

2021届全国新高考物理复习备考物理基础知识

2021届全国新高考物理复习备考 物理基础知识 第一章 运动的描述 第一节 描述运动的基本概念 一、质点、参考系 1.质点:用来代替物体的有质量的点.它是一种理想化模型. 2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动. 二、位移和速度 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度 1.定义式:a =Δv Δt ;单位是m/s 2.

2.物理意义:描述速度变化的快慢. 3.方向:与速度变化的方向相同. 考点一对质点模型的理解 1.质点是一种理想化的物理模型,实际并不存在. 2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点. (2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点. 考点二平均速度和瞬时速度 1.平均速度与瞬时速度的区别 平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度. 2.平均速度与瞬时速度的联系 (1)瞬时速度是运动时间Δt→0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三速度、速度变化量和加速度的关系 1.速度、速度变化量和加速度的比较

高中物理选修3-3大题知识点及经典例题

高中物理选修3-3大题知识点及经典例题 气体压强的产生与计算 1.产生的原因:由于大量分子无规则运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强。 2.决定因素 (1)宏观上:决定于气体的温度和体积。 (2)微观上:决定于分子的平均动能和分子的密集程度。 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强。 (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强。 (3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等。液体内深h处的总压强p=p0+ρgh,p0为液面上方的压强。 4.加速运动系统中封闭气体压强的求法 选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解。 考向1 液体封闭气体压强的计算 若已知大气压强为p0,在图2-2中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强。 图2-2 [解析]在甲图中,以高为h的液柱为研究对象,由二力平衡知 p甲S=-ρghS+p0S 所以p甲=p0-ρgh 在图乙中,以B液面为研究对象,由平衡方程F上=F下有: p A S+ρghS=p0S p乙=p A=p0-ρgh 在图丙中,仍以B液面为研究对象,有 p A′+ρgh sin 60°=p B′=p0 所以p丙=p A′=p0- 3 2 ρgh 在图丁中,以液面A为研究对象,由二力平衡得p丁S=(p0+ρgh1)S 所以p丁=p0+ρgh1。 [答案]甲:p0-ρgh乙:p0-ρgh丙:p0- 3 2 ρgh1丁:p0+ρgh1 考向2 活塞封闭气体压强的求解 如图2-3中两个汽缸质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边

高考物理大题专项训练

1、(安徽省铜陵市第一中学2016届高三5月教学质量检测理科综合试题)如图甲所示,光滑的水平地面上放有一质量为M、长为的木板。从时刻开始,质量为的物块以初速度从左侧滑上木板,同时在木板上施以水平向右的恒力,已知开始运动后内两物体的图线如图乙所示,物块可视为质点,,下列说法正确的是() A、木板的质量 B、物块与木板间的动摩擦因数为 C、时,木板的加速度为 D、时,木板的速度为 2、在一个倾角为37°斜面底端的正上方h=6.8m处的A点,以一定的初速度向着斜面水平抛出一个小球,恰好垂直击中斜面,不计空气阻力,g=10m/s2,求抛出时的初速度和飞行时间. 3、如图所示为交流发电机的示意图,线圈的匝数为2000,边长分别为10cm和20cm,在磁感应强度B=0.5T的匀强 磁场中绕OO′轴匀速转动,周期为T=s.求: (1)交流电压表的示数. (2)从图示位置开始,转过30°时感应电动势的瞬时值.

4、有一个阻值为R的电阻,若将它接在电压为20V的直流电源上,其消耗的功率为P;若将它接在 如图所示的理想变压器的次级线圈两端时,其消耗的功率为.已知变压器输入电压为u=220sin100 πt(V),不计电阻随温度的变化.求: (1)理想变压器次级线圈两端电压的有效值. (2)此变压器原、副线圈的匝数之比. 5、(2016·盐城高一检测)光滑水平面AB与竖直面内的圆形导轨在B点连接,导轨半径R=0.5 m,一 个质量m=2 kg的小球在A处压缩一轻质弹簧,弹簧与小球不拴接。用手挡住小球不动,此时弹簧弹 性势能E p=49 J,如图所示。放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C, g取10 m/s2。求: (1)小球脱离弹簧时的速度大小; (2)小球从B到C克服阻力做的功; (3)小球离开C点后落回水平面时的动能大小。 6、2014年7月17日,马航MH17(波音777)客机在飞经乌克兰上空时,疑遭导弹击落坠毁,机上乘客和机组人员全部罹难。若波音777客机在起飞时,双发动机推力保持不变,飞机在起飞过程中所受阻力恒为其自重的0.1,根据下表性能参数。 求:(取g=10 m/s2) 最大巡航速 900 km/h(35 000英尺巡航高度) 率 单发动机推 3×105 N 力 最大起飞重 2×105 kg 量 安全起飞速 60 m/s 度 (1)飞机以最大起飞重量及最大推力的情况下起飞过程中的加速度; (2)在第(1)问前提下飞机安全起飞过程中滑行的距离; (3)飞机以900 km/h的巡航速度,在35 000英尺巡航高度飞行,此时推力为最大推力的90%,则该发动机的功率为多少? 7、(2016·西安市高一检测)如图所示,宇航员站在某质量分布均匀的星球表面沿水平方向以初速度v0抛出一个小球,经时间t落地,落地时速度与水平地面间的夹角为α,已知该星球半径为R,万有引力常量为G,求:

高中物理力学典型例题

高中物理力学典型例题 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距 为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重 为12牛的物体。平衡时,绳中张力T=____ 分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画 力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方 法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角 为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图 中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T) 的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形 为菱形。如图1-2所示,其中力的三角形△OEG与△ADC相似,则: 得:牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、 B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相 等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块, 使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持 C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角 逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两 绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力 逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到 最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上, 且逐渐增大,物块将作加速度逐渐增大的减速运动。当物块下降速度 减为零时,物块竖直下落的距离达到最大值H。 当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。 对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H。 (1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知: h=L*tg30°= L [1] (2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=-L [2] 克服C端恒力F做的功为:W=F*h’[3]

相关主题
文本预览
相关文档 最新文档