当前位置:文档之家› 射频电路设计原理与应用

射频电路设计原理与应用

射频电路设计原理与应用
射频电路设计原理与应用

【连载】射频电路设计——原理与应用

相关搜索:射频电路, 原理, 连载, 应用, 设计

随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统(GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。通常这些电路的工作频率都在1GHz以上,并且随着通信技术的发展,这种趋势会继续下去。但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。

下面的内容主要是结合我从事射频电路设计方向研究4年来的体会,讲述在射频电路设计中必须具备的基础理论知识,以及我个人在研究和工作中累积的一些实际经验。

作者介绍

ChrisHao,北京航空航天大学电子信息工程学院学士、博士生;研究方向为通信系统中的射频电路设计;负责或参与的项目包括:主动式射频识别系统设计、雷达信号模拟器射频前端电路设计、集成运算放大器芯片设计,兼容型GNSS接收机射频前端设计,等。

第1章射频电路概述

本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。

第1节频谱及其应用

第2节射频电路概述

第2章射频电路理论基础

本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负载等

第1节品质因数

第2节无源器件特性

第3章传输线

工作频率的提高意味着波长的减小,当频率提高到UHF时,相应的波长范围为10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。

第1节传输线的基本参数

第2节终端带负载的传输线分析(1)

第3节终端带负载的传输线分析(2)

第4章史密斯圆图

为了简化反射系数的计算,P.H.Smith开发了以保角映射原理为基础的图解方法。这种近似方法的优点是有可能在同一个图中简单直观的显示传输线阻抗以及反射系数。本小节将对史密斯圆图进行系统的介绍。

第1节史密斯圆图

第5章二端口网络

为了有效的减少无源、有源器件的个数,避开电路的复杂性和非线性效应,简化电路输入、输出特性关系,可以用网络模型来代替基本电路。

第1节二端口网络模型

第2节二端口网络的串联、并联与级联

第3节二端口网络的散射参量

第6章功率、增益、噪声、和非线性

增益、噪声和非线性是描述射频电路最常用的指标。在射频和微波系统中,由于反射的普遍存在和理想的短路、开路难以获得,低频电路中常用的电压和电流参数的测量变得十分困难,因此,功率的测量得到了广泛的应用。

第1节功率和增益

第2节噪声和噪声系数

第3节电路的非线性

第7章射频滤波器

滤波器是一种选择装置,它对输入信号进行加工和处理,从中选出某些特定的信号作为输出。电滤波器的任务是对输入信号进行选频加权传输。

第1节引言

第2节滤波器基本原理与分类

第3节滤波器的设计方法

第4节集成滤波器产品

第8章功率衰减器、分配器和方向耦合器

本章将分三节介绍三种在射频电路中常用的电路模块:功率衰减器、功率分配器和方向耦合器。

第1节功率衰减器

第2节功率分配器

第3节方向耦合器

第1章射频电路概述

本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。

第1节频谱及其应用

由于很多领域的应用中需要系统工作于一定的频率范围之内,因此需要对频率进行分段。近年来对于频谱的分段已经进行了几次,其中对常用的是电气和电子工程师协会(IEEE)建立的,如表1.1所示。

表中可以看出VHF/UHF波段是典型的电视设备工作频段,在这两个波段波长达到了与电子系统的实际尺寸相当的水平,因此,从这个频段开始必须在有关电子线路中考虑电流和电压信号的波的性质。这里定义频率高于它的所有频段为射频频段,工作射频频段的电路称为射频电路。

射频频段频段的主要应用领域有:

1. 卫星通信与卫星电视广播

* 双边带广播系统(DBS-Direct Broadcast System)

* C波段:4/6GHz,下行4 GHz,上行6 GHz

* Ku波段:12/15GHz,下行12GHz,上行15GHz

* 卫星间通信:36GHz

2. 微波中继通信

* 干线微波:2.1GHz,8GHz,11GHz

* 支线微波:6GHz,8GHz,11GHz,36GH

* 农村多址(一点多址):1.5GHz,2.4GHz,2.6GHz

3. 雷达、气象、测距、定位

* 雷达远程警戒:P,L,S,C

* 精确制导:X,,Ka

* 气象:1.7 GHz,0.1375GHz

* 汽车防撞、自动记费:36 GHz,60GHz

* 防盗:9.4 GHz

* 全球定位:1227.60MHz和1575.42MHz

4. 射电天文:36GHz, 94GHz, 125GHz

5. 计算机无线网:2.5 GHz, 5.8 GHz, 36GHz

第2节射频电路概述

射频电路最主要的应用领域就是无线通信,图1.1为一个典型的无线通信系统的框图,下面以这个系统为例分析射频电路在整个无线通信系统中的作用。

图1.1 典型射频系统方框图

这是一个无线通信收发机(tranceiver)的系统模型,它包含了发射机电路、接收机电路以及通信天线。这个收发机可以应用于个人通信和无线局域网络中。在这个系统中,数字处理部分主要是对数字信号进行处理,包括采样、压缩、编码等;然后通过A/D转换器转换器变成模拟形式进入模拟信号电路单元。

模拟信号电路分为两部分:发射部分和接收部分。发射部分的主要作用是:数- 模转换输出的低频模拟信

号与本地振荡器提供的高频载波经过混频器上变频成射频调制信号,射频信号经过天线辐射到空间中去。接收部分的主要作用是:空间辐射信号经过天线耦合到接收电路中去,接收到的微弱信号经过低噪声放大器被放大后与本地振荡信号经过混频器下变频为包含中频信号分量的信号。滤波器的作用就是将有用的中频信号滤出来后输入模-数转换器转换成数字信号,然后进入数字处理部分处理。

下面,将针对图1.1 方框图中的低噪声放大器(LNA)讨论一般射频电路的组成和特点。图1.2以TriQuint 公司的TGA4506-SM为例,给出了这个放大器的电路板图,注意到输入信号是通过一个经过匹配滤波网络输入放大模块。放大模块一般采用晶体管的共射极结构,其输入阻抗必须与位于低噪声放大器前面的滤波器的输出阻抗相匹配,从而保证最佳传输功率和最小反射系数,对于射频电路设计来说,这种匹配是必须的。此外,低噪声放大器的输出阻抗必须与其后端的混频器输入阻抗相匹配,同样能保证放大器输出的信号能完全、无反射的输入到混频器中去。这些匹配网络是由微带线组成,在有些时候也可能由独立的无源器件组成,但是它们在高频情况下的电特性与在低频的情况下完全不同。图上还可以看出微带线实际上是一定长度和宽度的敷铜带,与微带线连接的是片状电阻、电容和电感。

图1.2 TGA4506-SM电路版图

图1.3 用于个人通信终端的低噪声放大器电路板图

了解、分析、设计和最终制造这种射频电路,需要很多关于射频电路设计的知识和关键课题。在后面的章节中,将分别对这些知识进行介绍。

第2章射频电路理论基础

本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负

载等

第1节品质因数

无源元件一个很重要的参数就是品质因数(Quality Factor,Q值),品质因数的定义见式(1.1),它表示元件或电路在某个频率所存储的能量与所消耗的能量的比值。

下面以RL并联回路为例,计算电路的品质因数。假设有激励电压为

则电感中的电流为

电感中储存的能量以及最大值分别为

电路中每个周期消耗的能量为

将式(1.5)和式(1.6)代入式(1.1)中,可以得到回路的品质因数为

有了品质因数的概念,可以更方便的分析无源元件在高频情况下的特性。

第2节无源器件特性

1.高频电阻

低频电子学中最普通的电路元件就是电阻,它的作用是通过将一些电能装化成热能来达到电压降低的目的。电阻的高频等效电路如图所示,其中两个电感L模拟电阻两端的引线的寄生电感,同时还必须根据实际引线的结构考虑电容效应;用电容C模拟电荷分离效应。

电阻等效电路表示法

根据电阻的等效电路图,可以方便的计算出整个电阻的阻抗:

下图描绘了电阻的阻抗绝对值与频率的关系,正像看到的那样,低频时电阻的阻抗是R,然而当频率升高并超过一定值时,寄生电容的影响成为主要的,它引起电阻阻抗的下降。当频率继续升高时,由于引线电感的影响,总的阻抗上升,引线电感在很高的频率下代表一个开路线或无限大阻抗。

一个典型的1K?电阻阻抗绝对值与频率的关系

2.高频电容

片状电容在射频电路中的应用十分广泛,它可以用于滤波器调频、匹配网络、晶体管的偏置等很多电路中,因此很有必要了解它们的高频特性。电容的高频等效电路如图所示,其中L为引线的寄生电感;描述引线导体损耗用一个串联的等效电阻R1;描述介质损耗用一个并联的电阻R2。

电容等效电路表示法

同样可以得到一个典型的电容器的阻抗绝对值与频率的关系。如下图所示,由于存在介质损耗和有限长的引线,电容显示出与电阻同样的谐振特性。

一个典型的1pF电容阻抗绝对值与频率的关系

3.高频电感

电感的应用相对于电阻和电容来说较少,它主要用于晶体管的偏置网络或滤波器中。电感通常由导线在圆导体柱上绕制而成,因此电感除了考虑本身的感性特征,还需要考虑导线的电阻以及相邻线圈之间的分布电容。电感的等效电路模型如下图所示,寄生旁路电容C和串联电阻R分别由分布电容和电阻带来的综合效应。

高频电感的等效电路

与电阻和电容相同,电感的高频特性同样与理想电感的预期特性不同,如下图所示:首先,当频率接近谐振点时,高频电感的阻抗迅速提高;第二,当频率继续提高时,寄生电容C的影响成为主要的,线圈阻抗逐渐降低。

电感阻抗绝对值与频率的关系

总之,在高频电路中,导线连同基本的电阻、电容和电感这些基本的无源器件的性能明显与理想元件特征不同。读者可以发现低频时恒定的电阻值,到高频时显示出具有谐振点的二阶系统相应;在高频时,电容中的电介质产生了损耗,造成电容起呈现的阻抗特征只有低频时才与频率成反比;在低频时电感的阻抗响应随频率的增加而线形增加,达到谐振点前开始偏离理想特征,最终变为电容性。这些无源元件在高频的特性都可以通过前面提到的品质因数描述,对于电容和电感来说,为了调谐的目的,通常希望的到尽可能高的品质因数。

第3章传输线

工作频率的提高意味着波长的减小,当频率提高到UHF时,相应的波长范围为10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。

第1节传输线的基本参数

工作频率的提高意味着波长的减小,由表1.1可以看出,当频率提高到UHF时,相应的波长范围为

10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。

一根信号线与地(线或者地面)就构成了传输线,电磁波将沿信号线传播,并被严格的限制在信号线之间。具体的传输线种类很多,常用的有同轴线或同轴电缆、微带线和共面波导等,下图给出了这几种传输线的示意图。

常用的传输线

正如前面讲的,在射频电路设计工程师感兴趣的尺寸上,电压和电流不再是空间不变量。因此不能通过基尔霍夫电压和电流定律对宏观的传输线传输特性进行分析。但是,可以对传输线进行分割,当传输线被分割成较小的线段时,它既可以用分布参量来描述,在微观尺度上又遵循基尔霍夫定律。每个被分割的单元可以用下图所示的等效电路来描述。

传输线分割单元的等效电路

由前面的内容可知,上面提到的R,L,C和G元件都是与频率相关的参量,很明显,这些参量的值与工作频率和应用的传输线类型有关。这种表示方法有如下的优点:

?提供了一个清楚的、直观的物理图象

?有助于标准化两端网络表示法

?可用基尔霍夫电压和电流定律分析

?提供从微观向宏观形势扩展的建立过程

经过计算,可以分析出前面提到的三种常用的传输线参量,如表2所示。

无损传输线分割单元的等效电路

了解了传输线的基本模型和模型参量,下面就可以分析描述传输线特性物理量——特性阻抗了。先从最简单的情况入手,假设传输线是无损耗的,即R=G=0,其等效电路如上图所示,首先对这个电路的电压电流特性进行分析。

由基尔霍夫定律以及电容和电感的特性得到:

因此

但是,更值得关心的是传输线在正弦信号激励下的稳态响应,加入正弦激励后,电路的方程为:

因此

解这个方程,最终得到的电压和电流仍然是波动形式的:

式中V(z)所含两项分别为入射波和反射波,A和B分别为z=0时入射波和反射波的幅度之值。参量β,它可以由下式来描述:

这个参量被称为波的相位常数(Phase Constant),单位为rad/m,它表示在一定频率下,行波相位沿传输线的变化情况,所以与波速有关。

在没有反射的情况下,传输线任意一点的电压与电流的比值定义为传输线的特性阻抗Z0:

特性阻抗可以理解为无限长传输线的输入阻抗。对于有损传输线,同样可以得到它的特性阻抗为:

通过表2中的传输线参量和上式便可计算出常用的三种传输线的特性阻抗,从而了解它们的传播特性。

第2节终端带负载的传输线分析(1)

前面分析了无线长传输线中电压与电流的关系,但是射频电路可以看作为有限传输线段与各种分立的有源和无元器件的集合,所以,必须了解一个负载阻抗与一个长度为l的有限长度的传输线段相连的结构,如图1所示。在这个电路中,将研究一个沿+z 方向传播的输入电压波如何与负载阻抗相互作用。

图1 带终端负载的传输线模型

上图中,负载位于z=0处,传输线长度为l。传输线上任意一点的电压都可以由下式给出,其中式子的第二项表示从终端负载阻抗反射到z<0区域的值。这里引入反射系数Γ0,它表示反射与入射电压波之比:

根据这个定义结果,电压波和电流波可以用反射系数表示为:

两式相除,则可以得到沿z轴任意一点的阻抗Z(z)作为空间函数的表达式。定义

z=-l处的总输入阻抗为Zin,在负载

z=0处输入阻抗为负载阻抗,则:

进一步,可以得到反射系数

由上面两个表达式可以看出,对于开路线(ZL=∞),反射系数为1,也就是说返回的反射波与入射波具有相同的极性;而对于短路线(ZL=0),返回的反射波与入射波具有相反的幅度,因此Γ0=-1。在负载阻抗与传输线的特性阻抗相等(ZL=Z0)时,不产生反射。如果没有反射,则说明入射电压波完全被负载吸收了,这种情况可以看作在z=0处附加了第二根具有相同特性阻抗且无限长的传输线。

在距离负载d处,输入阻抗由下式给出:

进一步可以得到输入阻抗与负载阻抗、传输线特性阻抗以及d之间的关系如下式所示:

下面将分析输出端负载为几种特殊情况下的电路输入阻抗:

(1)终端短路传输线

对于终端短路传输线,相当于终端负载阻抗ZL=0,则可得到:

图2表示了终端短路线的输入阻抗随线长的变化。可以看出输入阻抗随着与负载的距离增加而呈周期性变化。在d=0的位置,输入阻抗等于负载阻抗,其值为零;随着距离的增加,线路的阻抗变为纯虚数,而且数值随着距离的增加而增加,此时输入阻抗的绝对值为正数,表示电路呈现电感特性;当d达到1/4波长时,阻抗等于无穷大,这就代表开路线情况;进一步增加距离,出现负的纯虚阻抗,它可以等效为电容特性;当距离

达到一半波长时,阻抗变为零,并开始一个新的周期。

图2终端短路传输线输入阻抗特性

(2)终端开路传输线

对于终端开路传输线,可以得到:

同样,图3画出了在终端开路的情况下输入阻抗随线长的变化情况。

图3终端开路传输线输入阻抗特性

可以看出终端开路传输线同样是周期性的呈现出电容特性和电感特性。根据这个特点,可以很方便的用终端开路传输线来实现容性和感性阻抗,也就是说,可以用一个终端开路的传输现来代替电容或电感,这在射频

电路设计中应用十分广泛。

(3)1/4波长传输线

通过前面对终端开路传输线和终端短路传输线的分析,读者会发现1/4波长传输线对实阻抗有变换作用:长度为1/4波长的终端开路传输线输入阻抗为0;而长度为1/4波长的终端短路传输线输入阻抗为无穷。

可以的到长度为1/4波长的传输线的输入阻抗与负载阻抗的关系为:

根据上式就可以制成的1/4波长阻抗变换器,它可以通过改变传输线的特性阻抗,使一个实数负载阻抗与一个所希望的实数输入阻抗匹配,传输线的特性阻抗等于负载和输入阻抗的几何平均值。

式中ZL和Zin都是已知阻抗,而Z0是由式(1.30)决定的。阻抗匹配的思想在实际的射频电路设计中很重要,后面将专门介绍。在很多应用中,例如在容易制造的窄带匹配电路中,1/4波长变换器扮演着重要的角色。

第3节终端带负载的传输线分析(2)

上面介绍了传输线和它的终端负载,对于完整的射频系统,还必须有一个与传输线相连的信号源,这就增加了复杂性,因为这种电路结构不仅涉及到传输线和负载之间的阻抗匹配,而且还必须考虑到信号源的输出阻抗与传输线之间的阻抗匹配问题。图1表示了一个一般的传输线电路图。它包含了由信号源电压VG和源阻抗ZG 组成的电压源。

图1 包含源和负载的一般传输线电路

传输线始端的输入电压可以写成:

从源向长度d=l的传输线方向看的输入反射系数为:

从线向信号源方向看时,可以定义信号源的反射系数:

下面对图1中电路的功率传播进行分析,传输线始端的总功率应为:

其中:

(1) 而电路的输入阻抗、源阻抗分别由式(1)和式(2)表示

将式(2)和式(3)代入式(1)中,整理后得到:

将式(4)代入到式Pin,最终得到输入功率的表达式为:

下面着重分析员和线路匹配的最佳条件。将式(5)用集总参量表示成:

现假定源阻抗是一个固定的复数值ZG=RG+jXG,另外,还必须找一个加强Zin的条件,在此条件下,输入到传输线的功率最大。将Pin处理为两个独立变量Rin和Xin的函数,则输入到传输线的功率最大的条件是:

可以很容易得到,最佳功率传输需要的传输线和源阻抗共轭复数匹配:

对于输出阻抗和负载阻抗的匹配,可以用同样的办法解决,同样可以得到最大功率传输的条件为:

式中Zout表示从负载向传输线看去的阻抗。

传输线理论是射频电路设计中最基础的内容,也是高频电路与低频电路的显著区别。本小节详细描述和给出了传输线理论的基本概念:导出了一般传输线的特性阻抗的概念;并分析了带有终端负载的传输线模型以及包含源和负载的一般传输线电路;最终得到的一般传输线电路的输出功率,这个输出功率的表达式可以用来判断各种带负载/源端的电路的匹配或者失配条件。

第4章史密斯圆图

为了简化反射系数的计算,P.H.Smith开发了以保角映射原理为基础的图解方法。这种近似方法的优点是有可能在同一个图中简单直观的显示传输线阻抗以及反射系数。本小节将对史密斯圆图进行系统的介绍。

第1节史密斯圆图

前面一章中,已经导出了描述有载传输线输入阻抗的基本公式。发现这些公式包括传输线特性阻抗、负载阻抗和通过正切函数的宗量引入的线长度和工作频率。为了简化反射系数的计算,P.H.Smith开发了以保角映射原理为基础的图解方法。这种近似方法的优点是有可能在同一个图中简单直观的显示传输线阻抗以及反射

系数。本小节将对史密斯圆图进行系统的介绍。

由上一章内容,反射系数Γ0能用下面的式(1.43)的复数形式表达出来:

(4-1)

式中。

图4.1表示了一个反射系数平面,图中几个点分别表示:

RFID原理和应用课程复习提纲

RFID原理和应用课程复习提纲 第一章 1、什么是RFID? 无线射频识别作为一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。常用的有低频(125k~134.2K)、高频(13.56Mhz)、超高频,微波等技术。 2、RFID技术特点 1快速扫描2体积小型化、形状多样化3抗污染能力和耐久性4可重复使用5穿透性和无屏障阅读6数据的记忆容量大7安全性 3、RFID系统的组成:RFID系统主要由阅读器、电子标签、RFID 中间件和应用系统软件4部分构成。 4、阅读器的构成以及各部分的功能组成:射频接口、逻辑控制单元和天线 天线:天线是一种能将接受到的电磁波转换为电流信号,或将电流信号转换为电磁波发射出去的装置。 射频接口模块:1产生高频发射能量,激活电子标签并为其提供能量2对发射信号进行调制,将数据传输给电子标签 3接受并调制来自电子标签的射频信号 逻辑控制模块:1与应用系统软件进行通信,并执行从应用系统软件发送来的指令2控制阅读器与电子标签的通信过程3信号的编码

与解码4对阅读器和标签之间传输的数据进行加密和解密5执行防碰撞算法6对阅读器和标签的身份进行验证 5、电子标签分类、组成及各组成部分功能 根据工作原理的不同,电子标签分为利用物理效应进行工作的数据载体和以电子电路为理论基础的数据载体 6、RFID中间件的主要功能 1阅读器协调控制2数据过滤与处理3数据路由与集成4进程管理 7、RFID系统能量耦合方式和数据传输原理 根据射频识别系统作用距离的远近情况,标签天线与读写器天线之间的耦合可以分为密耦合系统、遥耦合系统和远距离系统三类。数据传输原理P10 8、RFID系统的工作原理 阅读器通过天线向周围空间发送一定频率的射频信号;标签一旦进入阅读器天线的作用区域将产生感应电流,获得能量被激活;激活标签将自身信息编码后经天线发送出去;阅读器接收该信息,经过解码后必要时送至后台网络;后台网络中主机鉴定标签身份的合法性,只对合法标签进行相关处理,通过向前端发送指令信号控制阅读器对标签的读写操作; 9、RFID系统的性能指标

RF射频电路设计

RF电路的PCB设计技巧 如今PCB的技术主要按电子产品的特性及要求而改变,在近年来电子产品日趋多功能、精巧并符合环保条例。故此,PCB的精密度日高,其软硬板结合应用也将增加。 PCB是信息产业的基础,从计算机、便携式电子设备等,几乎所有的电子电器产品中都有电路板的存在。随着通信技术的发展,手持无线射频电路技术运用越来越广,这些设备(如手机、无线PDA等)的一个最大特点是:第一、几乎囊括了便携式的所有子系统;第二、小型化,而小型化意味着元器件的密度很大,这使得元器件(包括SMD、SMC、裸片等)的相互干扰十分突出。因此,要设计一个完美的射频电路与音频电路的PCB,以防止并抑制电磁干扰从而提高电磁兼容性就成为一个非常重要的课题。 因为同一电路,不同的PCB设计结构,其性能指标会相差很大。尤其是当今手持式产品的音频功能在持续增加,必须给予音频电路PCB布局更加关注.据此本文对手持式产品RF电路与音频电路的PCB的巧妙设计(即包括元件布局、元件布置、布线与接地等技巧)作分析说明。 1、元件布局 先述布局总原则:元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;由实践所知,元器件间最少要有 0.5mm的间距才能满足元器件的熔锡要求,若PCB板的空间允许,元器件的间距应尽可能宽。对于双面板一般应设计一面为SMD及SMC元件,另一面则为分立元件。 1.1 把PCB划分成数字区和模拟区 任何PCB设计的第一步当然是选择每个元件的PCB摆放位。我们把这一步称为“布板考虑“。仔细的元件布局可以减少信号互连、地线分割、噪音耦合以及占用电路板的面积。 电磁兼容性要求每个电路模块PCB设计时尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此,元器件的布局还直接影响到电路本身的干扰及抗干扰能力,这也直接关系到所设计电路的性能。

RFID原理及应用复习(附答案)

RFID原理及应用复习 一、判断 1.RFID是Radio Frequency Identification 的缩写,即无线射频识别。(yes) 2.物联网的感知层主要包括:二维码标签、读写器、 RFD标签、摄像头、GPS传感器、 M-M终端。(no) 3.,125kHz,433MHz都是RFID系统典型的工作频率(yes)4.在物联网节点之间做通信的时候,通信频率越高,意味着传输距离越远。( no ) 5.物联网标准体系可以根据物联网技术体系的框架进行划分,即分为感知延伸层标准、网络层标准、应用层标准和共性支撑标准。(yes) 6.在物联网中,系统可以自动的、实时的对物体进行识别、追踪和监控,但不可以触发相应的事件。( no ) 7.物联网共性支撑技术是不属于网络某个特定的层面,而是与网络的每层都有关系,主要包括:网络架构、标识解析、网络管理、安全、QoS等。(yes) 8.物联网中间件平台:用于支撑泛在应用的其他平台,例如封装

和抽象网络和业务能力,向应用提供统一开放的接口等。(yes)9.RFID拥有耐环境性,穿透性,形状容易小型化和多样化等特性(yes) 10.物联网信息开放平台:将各种信息和数据进行统一汇聚、整合、分类和交换,并在安全范围内开放给各种应用服务。(yes) 二、不定项选择题 1. 物联网的基本架构不包括(CD)。 A、感知层 B、传输层 C、数据层 D、会话层 2.物联网节点之间的无线通信,一般不会受到下列因素的影响。( D ) A、节点能量 B、障碍物 C、天气 D、时间 3.下列哪项不是物联网的组成系统(B)。 A、 EPC编码体系 B、EPC解码体系 C、射频识别技术 D、EPC 信息网络系统 4. 利用RFID 、传感器、二维码等随时随地获取物体的信息,指的是(B)。

射频电路PCB的设计技巧

射频电路PCB的设计技巧 摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路PCB设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法。多次在射频电路的PCB设计中采用这些技巧,在后期PCB的硬件调试中得到证实,对减少射频电路中的干扰有很不错的效果,是较优的方案。 关键词:射频电路;PCB;布局;布线 由于射频(RF)电路为分布参数电路,在电路的实际工作中容易产生趋肤效应和耦合效应,所以在实际的PCB设计中,会发现电路中的干扰辐射难以控制,如:数字电路和模拟电路之间相互干扰、供电电源的噪声干扰、地线不合理带来的干扰等问题。正因为如此,如何在PCB的设计过程中,权衡利弊寻求一个合适的折中点,尽可能地减少这些干扰,甚至能够避免部分电路的干涉,是射频电路PCB设计成败的关键。文中从PCB的LAYOUT角度,提供了一些处理的技巧,对提高射频电路的抗干扰能力有较大的用处。 1 RF布局 这里讨论的主要是多层板的元器件位置布局。元器件位置布局的关键是固定位于RF路径上的元器件,通过调整其方向,使RF路径的长度最小,并使输入远离输出,尽可能远地分离高功率电路和低功率电路,敏感的模拟信号远离高速数字信号和RF信号。 在布局中常采用以下一些技巧。 1.1 一字形布局 RF主信号的元器件尽可能采用一字形布局,如图1所示。但是由于PCB板和腔体空间的限制,很多时候不能布成一字形,这时候可采用L形,最好不要采用U字形布局(如图2所示),有时候实在避免不了的情况下,尽可能拉大输入和输出之间的距离,至少1.5 cm 以上。

射频电路的设计原理及应用

射频电路的设计原理及应用 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一 本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成 在中频内部。 射频电路方框图 一、接收电路的结构和工作原理 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点 (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 2、电路分析 (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 接收电路方框图

(2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。 图一、图二 作用:其主要作用有两个: a)、完成接收和发射切换; b)、 完成900M/1800M信号接收切换。 逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。 由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。 3)、滤波器: 结构:手机中有高频滤波器、中频滤波器。 作用:其主要作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。 4)、高放管(高频放大管、低噪声放大器): 结构:手机中高放管有两个:900M高放管、1800M高放管。都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

射频电路设计公式

射频电路设计对特性阻抗Z的经验公式做公式化处理,参见P61 波阻抗公式: E H =Z= μ/ε=377Ω? 相速公式: v=ω β = 1 εμ 电抗公式: Xc= 1 Xl=ωL 直流电阻公式: R= l σS = l πa2σ 高频电阻公式: R′=a R 高频电感公式: L=R′ω 趋肤厚度公式: δ= 1πfμσ 铜线电感实用公式: L′=R a πfμσ= 2l 2 ? 1 πδμσ= 2l μ0/πσf= 1.54 f uH 高频电容公式: C=εA d 高频电导率: G=σA = ωεA = ωC 电容引线电感经验公式: L′=Rd?a πfμ.σ= 2lμ. = 771 f nH

电容引线串联电阻公式: R′=R?a 2δ = 2l 2πaσ πfμ.σ= l a μ.f πσ =4.8 fμΩ 电容漏电阻: R=1 G = 1 2πfC?tanΔ = 33.9exp6 f MΩ TanΔ的定义: ESR=tanΔωC 空气芯螺旋管的电感公式: L= πr2μ.N2螺旋管的电容: C=ε.?2πrN?2a l N =4πε.? raN2 l 微分算符的意义: ? x= 0? ? ?z ? ?y ? 0? ?? ? ?y ? ?x 电容,电感,电导,电阻的定义: C=εw d L= d G= σw R= d σw 特性阻抗表达式:

Z=L C 若是平行板传输线: Z=μεd w 关于微带线设计的若干公式: w/h < 1时, Z= Z. 2π ε′ 8? w + w 4? 其中, Z.=376.8Ω ε′=εr+1 + εr?1 1+ 12h? 1 2 +0.041? w2 w/h>1时 Z= Z. ε′? 1.39+ w h+ 2 3ln w h+1.444 其中, ε′=εr+1 + εr?1 1+ 12h? 1 2 如何设计微带线w/h<2时: w h = 8e A e2A?2 其中, A=2πZ Z. εr+1 2 + εr?1 εr+1 0.23+ 0.11 εr w/h>2时: W =2 (B?1?ln2B?1+ εr?1 (ln B?1 +0.39? 0.61 )) 其中, B= Z.π2Zεr 反射系数的定义:

2016年《射频电路设计》实验

实验三RFID标签的设计、制作及测试一、【实验目的】 在实际的生产过程中,RFID电子标签在设计并测试完成后,都是在流水线上批量制造生产的。为了让学生体会RFID标签天线设计的理念和工艺,本实验为学生提供了一个手工蚀刻制作RFID电子标签的平台,再配合微调及测试,让学生在亲自动手的过程中,不断地尝试、提炼总结,从而使学生对RFID标签天线的设计及生产工艺,有进一步深刻的理解。 二、【实验仪器及材料】 计算机一台、HFSS软件、覆铜板、Alien Higgs芯片、热转印工具、电烙铁、标签天线实物,UHF测试系统,皮尺 三、【实验内容】 第一步(设计):从UHF标签天线产品清单中,挑选出一款天线结构,或者自己设计一款标签天线结构,进行HFSS建模画图 第二步(制作):将第一步中设计好的标签模型用腐蚀法进行实物制作 第三步(测试):利用UHF读写器测试第二步中制作的标签实物性能 四、【实验要求的知识】 下图是Alien(意联)公司的两款标签天线,型号分别为ALN-9662和ALN-9640。这两款天线均采用弯折偶极子结构。弯折偶极子是从经典的半波偶极子结构发展而来,半波偶极子的总长度为波长的一半,对于工作在UHF频段的半波偶极子,其长度为160mm,为了使天线小型化,采用弯折结构将天线尺寸缩小,可以适用于更多的场合。ALN-9662的尺寸为70mm x 17mm,ALN-9640的尺寸为94.8mm x 8.1mm,之所以有不同的尺寸是考虑到标签的使用情况和应用环境,因为天线的形状和大小必须能够满足标签顺利嵌入或贴在所指定的目标上,也需要适合印制标签的使用。例如,硬纸板盒或纸板箱、航空公司行李条、身份识别卡、图书等。 ALN-9662天线版图 ALN-9640天线版图

射频电路设计理论与应用答案

射频电路设计理论与应用答案 【篇一:《射频通信电路设计》习题及解答】 书使用的射频概念所指的频率范围是多少? 解: 本书采用的射频范围是30mhz~4ghz 1.2列举一些工作在射频范围内的电子系统,根据表1-1判断其工作 波段,并估算相应射频信号的波长。 解: 广播工作在甚高频(vhf)其波长在10~1m等 1.3从成都到上海的距离约为1700km。如果要把50hz的交流电从 成都输送到上海,请问两地交流电的相位差是多少? 解: 8??f?3?1?0.6???4km 1.4射频通信系统的主要优势是什么? 解: 1.射频的频率更高,可以利用更宽的频带和更高的信息容量 2.射频电路中电容和电感的尺寸缩小,通信设备的体积进一步减小 3.射频通信可以提供更多的可用频谱,解决频率资源紧张的问题 4.通信信道的间隙增大,减小信道的相互干扰 等等 1.5 gsm和cdma都是移动通信的标准,请写出gsm和cdma的英文全称和中文含意。(提示:可以在互联网上搜索。) 解: gsm是global system for mobile communications的缩写,意 为全球移动通信系统。 cdma英文全称是code division multiple address,意为码分多址。???4???2?k?1020k??0.28333 1.6有一个c=10pf的电容器,引脚的分布电感为l=2nh。请问当频 率f为多少时,电容器 开始呈现感抗。 解: ?wl?f??1.125ghz2 既当f=1.125ghz0阻抗,f继续增大时,电容器呈现感抗。

1.7 一个l=10nf的电容器,引脚的分布电容为c=1pf。请问当频率f 为多少时,电感器开始呈现容抗。 解: 思路同上,当频率f小于1.59 ghz时,电感器呈现感抗。 1.8 1)试证明(1.2)式。2)如果导体横截面为矩形,边长分别为a和b,请给出射频电阻rrf与直流电阻rdc的关系。 解: r??l?s ???l,s对于同一个导体是一个常量 2s??a当直流时,横截面积dc 当交流时,横截面积sac?2?a? 2rdc?a??ac?a?? 661.9已知铜的电导率为?cu ?6.45?10s/m,铝的电导率为?al?4.00?10s/m,金的电导率 6为?au?4.85?10s/m。试分别计算在100mhz和1ghz的频率下,三种材料的趋肤深度。 解: 趋肤深度?定义为: 在100mhz时: cu为2 mm al 为 2.539mm au为 2.306mm 在1ghz时: cu为0.633 mm al 为 0.803mm au为 0.729mm 1.10某个元件的引脚直径为d=0.5mm,长度为l=25mm,材料为铜。请计算其直流电阻rdc和在1000mhz频率下的射频电阻rrf。解: r?s 它的射频电阻 adllrrf?rdc????22?4???? d2???d????0?r?4??10?1?????????7zdf?l?0.123???d? 1.11个电阻的标示分别为:“203”、“102”和“220r”。请问三个电阻的阻值分别是多少?(提示:可以在互联网上查找贴片元件标示的规则)解:

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

RFID原理及应用6个实验

实验1实训与实践 1.5.1实训目的及要求 RFID已涉及人们日常生活的各个方面,并被广泛应用于工业自动化、商业自动化、交通运输管理等众多领域,如火车的交通监控系统、高速公路自动收费系统、物品管理、流水线生产自动化、门禁系统、金融交易、仓储管理、畜牧管理、车辆防盗等。 1.实训目的 观察日常生活中的RFID 技术,思考和了解其系统构成与类型。 2.实训要求 观察日常生活中的RFID技术应用,并记录他们的使用具体情况,撰写观察实践分析报告。 1.5.2实训任务

实验2 实训项目 2.3.1实训目的及要求 1.实训目的 通过实训,掌握RFID读写器的接口类型及主要参数,能准确的进行RFID读写器与控制器或计算机进行互连,掌握RFID天线的基础知识,在安装部署RFID天线时能使RFID标签的读取率最高。 2.实训要求 能正确进行RFID读写器与控制器或计算机连接,能正确进行RFID天线连接与配置,提交实训报告。 2.3.4实训任务表 上网查询列举同功能设备相关参数公司名称及报价,完成下表。

实验3 实训与实践 3.8.1实训目的及要求 1.实训目的:通过实训,比较日常生活中应用的RFID技术,掌握RFID的标准。 2.实训要求:比较日常生活中应用的技术,如校园一卡通、公交卡、门禁卡、酒类仿伪卡、物流货品卡等。 3.所需仪器设备:高频RFID读写器4套,超高频RFID读写器4套,有源标签10张,无源标签10张,抗金属标签10张。 3.8.2实训任务 实训任务如表3-7所示。 填写表3-8的实训任务分析报告表。 表3-8 实训任务分析报告表

实验4 无源RFID读写实验(写标签实验) 实验目的 掌握读卡器与网关的连接,熟悉无源标签(也称无源卡片、无源卡)的写操作。 实验设备 感知教学/开发平台SensorRF107H2.0平台内的HF读卡器1 台,ISO1443A标签1个,网关主板1块,电源1个,连接线1个。 关键介绍 注意HF读卡器与网关主板连接,HF读卡器跳线设置。 实验过程 1)通过连接线把网关主板左上角RFID 接口与HF读卡器连接起来,并为网关主板接上电源。2)短接HF读卡器J3。 3)打开网关主板电源开关,进入实验菜单选择界面,选择RFID。 4)进入实验界面。 5)选择实验操作。 6)把ISO1443A标准标签放至HF 读卡器上。 7)通过网关主板键盘输入相应32 位ID,如12345678901234567890123456789012: 8)按下键盘“OK”键,如果写入标签失败,显示如下图所示,此时注意检查,标签与读卡 器距离,读卡器设置是否正确。如果成功把ID 写入标签,则显示。 实验结论

射频电路设计技巧

实用资料——射频电路板设计技巧成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。 近几年来,由于蓝牙设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。从过去到现在,RF电路板设计如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份,甚至是梦魇。若想要一次就设计成功,必须事先仔细规划和注重细节才能奏效。 射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种「黑色艺术」(black art) 。但这只是一种以偏盖全的观点,RF电路板设计还是有许多可以遵循的法则。不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理。重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和谐波...等,本文将集中探讨与RF电路板分区设计有关的各种问题。 微过孔的种类 电路板上不同性质的电路必须分隔,但是又要在不产生电磁干扰的最佳情况下连接,这就需要用到微过孔(microvia)。通常微过孔直径为0.05mm至0.20mm,这些过孔一般分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型制程完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为组件的黏着定位孔。 采用分区技巧 在设计RF电路板时,应尽可能把高功率RF放大器(HPA)和低噪音放

射频工程师必读书籍

ADS,MWO,Ansoft还是CST、HFSS 频微波类书 希望对大家有点帮助: 1.《射频电路设计--理论与应用》『美』Reinhold Ludwig 著电子工业出版社 个人书评:射频经典著作,建议做RF的人手一本,里面内容比较全面,这本书要反复的看,每读一次都会更深一层理解. 随便提一下,关于看射频书籍看不懂的地方怎么办?我提议先看枝干或结论有个大概印象,实在弄不明白就跳过(当然可问身边同事同学或GOOGLE一下),跳过不是不管它了,而是尽量先看完自己能看懂的,看第二遍的时候再重点抓第一次没有看懂的地方,人的思维是不断升华的,知识的也是一个系统体系,有关联的,当你把每一块砖弄明白了,就自然而然推测出金字塔塔顶是怎么架设出来的。 2. 《射频通信电路设计》『中』刘长军著科学技术出版社 个人书评:有拼凑之嫌(大量引用书1和《微波晶体管放大电路分析与设计》内容),但还是有可取之处,加上作者的理解,比看外文书(或者翻译本)看起来要通俗易懂,毕竟是中国人口韵。值得一看,书上有很多归纳性的经验. 3.《高频电路设计与制作》『日』市川欲一著科学技术出版社 个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看. 4. 《LC滤波器设计与制作》『日』森荣二著科学技术出版社 个人书评:语言及其通俗易懂,完全没有深奥的理论在里面,入门者看看不错,但是设计方法感觉有点落后,完全手工计算.也感觉内容的太细致,此书一般. 5. 《振荡电路设计与应用》『日』稻叶宝著科学技术出版社 个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行. 6. 《锁相环电路设计与应用》『日』远坂俊昭著科学技术出版社 个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。好书,值得收藏! 7. 《信号完整性分析》『美』Eric Bogatin 著电子工业出版社 个人书评:前几章用物理的方法看电子,感觉不好理解,写的感觉很拗口,翻译好像也有些不到位,但后面几章写的确实好,尤其是关于传输线的,对你理解信号的传输的实际过程,能建立一个很好的模型,推荐大家看一下,此书还是不错的.(看多了RF的,换换胃口)8. 《高速数字设计》『美』Howard Johnson著电子工业出版社 个人书评:刚刚卓越买回来,还没有动“她”呢,随便翻了下目录,做高速电路和PCB Layout 的工程师一看要看下,这本书也是经典书喔! 9.《蓝牙技术原理开发与应用》『中』钱志鸿著北京航空航天大学出版社 个人书评:当时自己做蓝牙产品买的书,前2年仅有的几本,上面讲了一下蓝牙的基本理论(恰当的说翻译了蓝牙标准),软件,程序的东西占大部分内容. 10.《EMC电磁兼容设计与测试案例分析》『中』郑军奇著电子工业出版社 个人书评:实战性和很强的一本书,本人做产品经常要送去信息产业部电子研究5所做EMC 测试,认证.产品认证是产品成功的临门一脚,把这脚球踢好,老板会很赏识你的,如果你也负责产品的EMC,这本书必读。作者写有很多实例,很有代表性,对你解决EMC问题,会有引导性(指导性)的的意义。

射频PCB注意

PCB设计流程 元器件的布局 PCB布线注意事项 随着通信技术的发展,手持无线射频电路技术运用越来越广,如:无线寻呼机、手机、无线PDA等,其中的射频电路的性能指标直接影响整个产品的质量。这些掌上产品的一个最大特点就是小型化,而小型化意味着元器件的密度很大,这使得元器件(包括SMD、SMC、裸片等)的相互干扰十分突出。 电磁干扰信号如果处理不当,可能造成整个电路系统的无法正常工作,因此,如何防止和抑制电磁干扰,提高电磁兼容性,就成为设计射频电路PCB时的一个非常重要的课题。同一电路,不同的PCB设计结构,其性能指标会相差很大。本讨论采用Protel99SE软件进行掌上产品的射频电路PCB设计时,如果最大限度地实现电路的性能指标,以达到电磁兼容要求。 板材的选择 印刷电路板的基材包括有机类与无机类两大类。基材中最重要的性能是介电常数εr、耗散因子(或称介质损耗)tanδ、热膨胀系数CET和吸湿率。其中εr影响电路阻抗及信号传输速率。对于高频电路,介电常数公差是首要考虑的更关键因素,应选择介电常数公差小的基材。 PCB设计流程 由于Protel99SE软件的使用与Protel98等软件不同,因此,首先简要讨论采用Protel99SE 软件进行PCB设计的流程。 ①由于Protel99SE采用的是工程(PROJECT)数据库模式管理,在Windows99下是隐含的,所以应先键立1个数据库文件用于管理所设计的电路原理图与PCB版图。 ②原理图的设计。为了可以实现网络连接,在进行原理设计之间,所用到的元器件都必须在元器件库中存在,否则,应在SCHLIB中做出所需的元器件并存入库文件中。然后,只需从元器件库中调用所需的元器件,并根据所设计的电路图进行连接即可。 ③原理图设计完成后,可形成一个网络表以备进行PCB设计时使用。 ④PCB的设计。

射频电路设计的常见问题及五大经验总结

射频电路板设计由于在理论上还有很多不确定性,因此常被形容为一种“黑色艺术”,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法则。 不过,在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。当然,有许多重要的RF设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波等,在全面掌握各类设计原则前提下的仔细规划是一次性成功设计的保证。 RF电路设计的常见问题 1、数字电路模块和模拟电路模块之间的干扰 如果模拟电路(射频)和数字电路单独工作,可能各自工作良好。但是,一旦将二者放在同一块电路板上,使用同一个电源一起工作,整个系统很可能就不稳定。这主要是因为数字信号频繁地在地和正电源(>3 V)之间摆动,而且周期特别短,常常是纳秒级的。由于较大的振幅和较短的切换时间。使得这些数字信号包含大量且独立于切换频率的高频成分。在模拟部分,从无线调谐回路传到无线设备接收部分的信号一般小于lμV。因此数字信号与射频信号之间的差别会达到120 dB。显然.如果不能使数字信号与射频信号很好地分离。微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。 2、供电电源的噪声干扰 射频电路对于电源噪声相当敏感,尤其是对毛刺电压和其他高频谐波。微控制器会在每个内部时钟周期内短时间突然吸人大部分电流,这是由于现代微控制器都采用CMOS工艺制造。因此。假设一个微控制器以lMHz的内部时钟频率运行,它将以此频率从电源提取电流。如果不采取合适的电源去耦.必将引起电源线上的电压毛刺。如果这些电压毛刺到达电路RF部分的电源引脚,严重时可能导致工作失效。 3、不合理的地线 如果RF电路的地线处理不当,可能产生一些奇怪的现象。对于数字电路设计,即使没有地线层,大多数数字电路功能也表现良好。而在RF频段,即使一根很短的地线也会如电感器一样作用。粗略地计算,每毫米长度的电感量约为l nH,433 MHz时10 toni PCB线路的感抗约27Ω。如果不采用地线层,大多数地线将会较长,电路将无法具有设计的特性。 4、天线对其他模拟电路部分的辐射干扰 在PCB电路设计中,板上通常还有其他模拟电路。例如,许多电路上都有模,数转换(ADC)或数/模转换器(DAC)。射频发送器的天线发出的高频信号可能会到达ADC的模拟淙攵恕R蛭魏蔚缏废呗范伎赡苋缣煜咭谎⒊龌蚪邮誖F信号。如果ADC输入端的处理不合理,RF信号可能在ADC输入的ESD二极管内自激。从而引起ADC偏差。 一、射频电路布局原则 在设计RF布局时,必须优先满足以下几个总原则: (1)尽可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔离开来,简单地说,就是让高功率RF发射电路远离低功率RF接收电路; (2)确保PCB板上高功率区至少有一整块地,最好上面没有过孔,当然,铜箔面积越大越好; (3)电路和电源去耦同样也极为重要;

射频电路结构和工作原理

射频电路结构和工作原理 一、射频电路组成和特点: 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。 RXI-P RXQ-P RXQ-N (射频电路方框图) 1、接收电路的结构和工作原理: 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,

高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点: (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 电路分析: (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 (接收电路方框图) (2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)

由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 塑料封套螺线管 (外置天线)(内置天线) 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图) 手机天线开关(合路器、双工滤波器)由四个电子开关构成。 900M收收GSM 900M收控收控 900M发控GSM 900M发入GSM (图一)(图二) 作用:其主要作用有两个: a)、完成接收和发射切换; b)、完成900M/1800M信号接收切换。

手机射频接收功能电路分析

一、接收电路的基本组成 移动通信设备常采用超外差变频接收机。这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输入信号电平较高而且稳定。放大器的总增益一般需在120dB以上。这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的。另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,这也是难以做到的。超外差接收机则没有这种问题,它将接收到的射频信号转换成固定的中频,其主要增益来自于稳定的中频放大器。 手机接收机有三种基本的框架结构:一种是超外差一次变频接收机,一种是超外差二次变频接收机,第三种是直接变频线性接收机。 超外差变频接收机的核心电路就是混频器,可以根据手机接收机电路中混频器的数量来确定该接收机的电路结构。 1.超外差一次变频接收机 接收机射频电路中只有一个混频电路的称作超外差一次变频接收机。超外差一次变频接收机的原理方框图如图4-1所示。它包括天线电路(ANT)、低噪声放大器(LNA)、混频器(Mixer)、中频放大器(IF Amplifier)和解调电路(Demodula tor)等。摩托罗拉手机接收电路基本上都采用以上电路。 超外差一次变频接收机工作过程是:天线感应到的无线蜂窝信号(GSM900频段935,--960MHz或DCSl800频段1805---1880MHz)不断变频,经天线电路和射频滤波器进入接收电路。接收到的信号首先由低噪声放大器进行放大,放大后的信号再经射频滤波器后,被送到混频器。在混频器中,射频信号与接收VCO信号进行混频,得到接收中频信号。中频信号经中频放大后,在中频处理模块内进行RXI/Q解调,解调所用的参考信号来自接收中频VCO。该信号首先在中频处理电路中被分频,然后与接收中频信号进行混频,得到67.707kHz的RXI/Q信号。2.超外差二次变频接收机 若接收机射频电路中有两个混频电路,则该机是超外差二次变频接收机。超外差二次变频接收机的方框图:如图4-2所示。 与一次变频接收机相比,二次变频接收机多了一个混频器和一个VCO,这个V CO在一些电路中被叫作IFVCO或VHFVCO。诺基亚手机、爱立信手机、三星、松下和西门子等手机的接收电路大多数属于这种电路结构。 在图4—1和图4-2中,解调电路部分也有VCO,应注意的是,该处的VCO 信号是用于解调,作参考信号而且该VCO信号通常来自两种方式:一是来自基准频率信号13MHz,另一种是来自专门的中频VCO。 超外差二次变频接收机工作过程是:天线感应到的无线蜂窝信号(GSM900频段935~960MHz或DCSl800频段1805—1880MHz)经天线电路和射频滤波器进入接收电路。接收到的信号首先由低噪声放大器进行放大放大后的信号再经射频滤波后被送到第一混频器。在第一混频器中,射频信号接收VCO信号进行混频,得到接收第一中频信号。第一中频信号与接收第二本机振荡信号混频,得到接收第二中频。接收第二本机振荡来自VHFVCO电路。接收第二中频信号经二中频放大后,在中频处理模块内进行RXI/Q解调,解调所用的参考信号来自接收中频VCO。该信号首先在中频处理电路中被分频,然后与接收中频信号进行混频,得到67. 707kHz的RXI/Q信号。 3.直接变频线性接收机

手机各电路原理_射频电路_内容详细,不看后悔

本次培训内容:
手机各级电路原理及故障检修
1,基带电路
发话电路、受话电路、蜂鸣电路、耳机电路、 背光电路、马达电路、按键电路、充电电路、开 关机电路、摄像电路、蓝牙电路、FM电路、显示 电路、SIM卡电路、TF卡电路
2,射频电路
接收电路、发射电路

一、手机通用的接收与发射流程
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

手机通用的接收与发射流程
1、信号接收流程: 天线接收——天线匹配电路——双工器——滤波(声 表面滤波器SAWfilter)——放大(低噪声放大器 LNA)——RX_VCO混频(混频器Mixer)——放大 (可编程增益放大器PGA)——滤波——IQ解调(IQ 调制器)——(进入基带部分)GMSK解调——信道均 衡——解密——去交织——语音解码——滤波—— DAC——放大——话音输出。

手机通用的接收与发射流程
2、信号发射流程: 话音采集——放大——ADC——滤波——语音编
码——交织——加密——信道均衡——GMSK调制—— (进入射频部分)IQ调制(IQ调制器)——滤波—— 鉴相鉴频(鉴相鉴频器)——滤波——TX_VCO混频 (混频器Mixer)——功率放大(PA)——双工器—— 天线匹配电路——天线发射。

手机通用的接收与发射流程
3、射频电路原理框图:

二、射频电路的主要元件及工作原理
天线:ANT 声表面滤波器:SAWfilter 低噪声放大器:LNA 功放:PA

射频电路的设计与调试

一:WiFi产品的一般射频电路设计(General RF Design In WiFi Product) 2011-01-20 18:18:41 写在前面的话: 这篇文章是我结合多年的工作经验和实践编写而成的,具有一定的实用性,希望能够对大家的设计工作起到一定的帮助作用。 I. 前言 这是一篇针对性很强的技术文章。在这篇文章中,我只是分析研究了Wi-Fi产品的一般射频电路设计,而且主要分析的是Atheros 和Ralink的解决方案,对于其他厂商的解决方案并没有进行研究。 这是一篇针对性很不强的技术文章。在这篇文章中,我研究,讨论了Wi-Fi产品中的射频电路设计,包括各个组成部分,如无线收发器,功率放大器,低噪声放大器,如果把这里的某一部分深入展开讨论,都可以写成一本很厚的书。 这篇文章具有一般性。虽然说这篇文章主要分析了Atheros和Ralink的方案,但是这两家厂商的解决方案很具有代表性,而且具有很高的市场占有率,因此,大部分Wi-Fi 产品也必然是具有一致或者类似的架构。经常浏览相关网站的人一定知道,在中国市场热卖的无线路由器,无线AP很多都是这两家的解决方案。 这篇文章具有一定的实用性。这篇文章的编写是基于我们公司的二十余种参考设计电路,充分吸收了参考设计的精华,并提取其一般性,同时,本文也重在分析实际的电路结构和选择器件时应该注意的问题,并没有进行深入的理论研究,所以,本文具有一定的实用性。 这篇文章是我在自己的业余时间编写的(也可以说我用这种方式消磨时间),如果这篇文章能够为大家的工作带来一点帮助,那将是我最高兴的事。我平时喜欢关注一些业界的新技术新产品,但是内容太多,没有办法写在文章中,感兴趣的同事可以访问我的博客:https://www.doczj.com/doc/fd4570009.html,。 由于时间有限,编写者水平更加有限,错误之处在所难免,欢迎大家批评指正。 第1章. 射频设计框图 做技术的,讲解某个设计的原理时,都会从讲解框图开始,本人也不例外,先给大家展示一下Wi-Fi产品的一般射频设计框图。

最新射频电路设计原理与应用

射频电路设计原理与 应用

【连载】射频电路设计——原理与应用 相关搜索:射频电路, 原理, 连载, 应用, 设计 随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统(GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。通常这些电路的工作频率都在1GHz以上,并且随着通信技术的发展,这种趋势会继续下去。但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。 下面的内容主要是结合我从事射频电路设计方向研究4年来的体会,讲述在射频电路设计中必须具备的基础理论知识,以及我个人在研究和工作中累积的一些实际经验。 作者介绍 ChrisHao,北京航空航天大学电子信息工程学院学士、博士生;研究方向为通信系统中的射频电路设计;负责或参与的项目包括:主动式射频识别系统设计、雷达信号模拟器射频前端电路设计、集成运算放大器芯片设计,兼容型GNSS接收机射频前端设计,等。 第1章射频电路概述 本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。 第1节频谱及其应用 第2节射频电路概述 第2章射频电路理论基础 本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负载等 第1节品质因数 第2节无源器件特性 第3章传输线 工作频率的提高意味着波长的减小,当频率提高到UHF时,相应的波长范围为10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。 第1节传输线的基本参数 第2节终端带负载的传输线分析 (1) 第3节终端带负载的传输线分析 (2) 第4章史密斯圆图 为了简化反射系数的计算,P.H.Smith开发了以保角映射原理为基础的图解方法。这种近似方法的优点是有可能在同一个图中简单直观的显示传输线阻抗以及反射系数。本小节将对史密斯圆图进行系统的介绍。第1节史密斯圆图

相关主题
相关文档 最新文档