当前位置:文档之家› 基于滑模变结构控制的汽车稳定性控制系统研究

基于滑模变结构控制的汽车稳定性控制系统研究

基于滑模变结构控制的汽车稳定性控制系统研究
基于滑模变结构控制的汽车稳定性控制系统研究

汽车操纵稳定性

关键词:汽车操纵稳定性 1、蔡世芳(1985). "汽车操纵稳定性评价指标和参数匹配的工程分析方法." 汽车工程7(3): 21-29. 本文提出一种工程分析方法,并利用此方法研究评价指标和参数匹配规律。全文主要内容有四部份: (1)工程分析方法的数学模型; (2)评价指标的工程计算方法; (8)评价指标的相关分析和主要评价指标的推荐。(4)操纵稳定性参数匹配的基本规律。 2、岑少起, 潘筱, et al. (2006). "ADAMS 在汽车操纵稳定性仿真中的应用研究." 郑州大学学报: 工学版27(003): 55-58. 运用ADAMS软件建立了C型车多自由度整车多体动力学仿真模型,详细分析了前悬架系统、后钢板弹簧系统和轮胎模型,同时提出了一种建立钢板弹簧多体模型的新方法——中性面法,并对不同方向盘转角及改变整车质心位置下的操纵稳定性进行了动力学仿真.经过与实际车型性能比较,该模型与分析结果是准确、可靠的,可应用于汽车平顺性研究中. 3、陈克, 王工, et al. (2005). "基于ADAMS 的汽车操纵稳定性虚拟试验演示系统开发." 沈阳理工大学学报24(001): 59-61. 利用ADAMS动力学软件建立了整车多刚体系统模型.分别考虑车型、悬架、轮胎、车速等不同因素对整车操纵稳定性的影响,进行整车操纵稳定性6个性能试验的仿真分析.利用获取的动力学分析数据、仿真动画,实现汽车操纵稳定性虚拟试验演示系统. 4、陈黎卿, 王启瑞, et al. (2005). "基于ADAMS 的双横臂扭杆独立悬架操纵稳定性分析." 合肥工业大学学报: 自然科学版28(004): 341-345. 悬架的主要性能参数在悬架运动过程中的变化规律是影响悬架性能的主要因素。文章采用ADAMS软件建立了某商务车独立悬架的数学模型和仿真模型,分析了该悬架对操纵稳定性的影响,以及悬架主要性能参数的变化规律,为悬架设计奠定了基础。与传统的设计方法相比,这种方法提高了精度和效率。 5、邓亚东, 余路, et al. (2005). "ADAMS 在汽车操纵稳定性仿真分析中的运用." 武汉大学学报: 工学版38(002): 95-98. 利用ADAMS软件建立了某轿车的操纵动力学多体仿真模型,详细考虑了前后悬架系统、转向系统、轮胎以及各种连接件中的弹性衬套的影响,分析了汽车在方向盘转角阶跃输入时的转向特性.通过对不同车速、不同载荷下的仿真计算,得出汽车转向特性在这些条件下的不同表现,揭示了汽车转向特性与车速、载荷和轮胎的内在关系,为汽车操纵稳定性分析提供了参考. 6、董涵(2003). 侧风环境下高速汽车稳定性研究与分析[D], 长沙: 湖南大学. 随着汽车车速的不断提高,汽车侧风稳定性的研究日益重要。由于实车试验风险大、场地设备要求高,而使用计算机仿真则可以极大的的缩短产品开发周期。因而进行高速汽车侧风稳定性计算机仿真研究具有现实意义。在车辆动力学研究过程中,汽车数学模型的精确与否始终是一个关键问题。随着计算机技术的长足进步,以及多体系统动力学这一学科的成熟,汽车模型的自由度越来越多,仿真结果越来越精确。本文首先整理了汽车操纵稳定性的各项评价指标,根据汽车高速运动时的受力分析,使用非线性轮胎模型,建立了侧风环境下汽车运动十八自由度数学模型并进行了直线行驶运动仿真。

汽车操纵稳定性研究方法探讨

汽车操纵稳定性研究方法探讨

汽车操纵稳定性研究方法探讨 1 操纵稳定性的研究历史和概况研究 对汽车操稳性的系统研究, 早在20 世纪3O 年代就已经开始。对车辆控制的重视导致对悬架和转向机构的运动学研究。1925 年平顺性理论初步形成规模。同年, Broulheit 在文章中首次提出侧偏和侧偏角的概念【Broulheit, 1925】。1931 年, Becker、Fromm 和Maruhn 在发表的文章中分析了轮胎在转向系振动中起的作用, 进一步研究了轮胎特性【Becker,1931】。对轮胎的研究使进一步分析车辆稳定性成为可能。 20 世纪50 年代, 建立简单的汽车动力学模型,研究人员开始从事汽车动力学性能仿真, 分析汽车操纵稳定性。19 世纪50 年代中期所作的研究工作为建立汽车数学模型打下基础。对轮胎的基本了解使建立相对精确的轮胎数学模型成为可能。 20 世纪60 年代, 开始从控制理论和振动理论出发, 采用开环系统瞬态响应、系统特性分析和系统稳定性理论设计汽车的总成系统。但是, 应用开环系统分析方法, 仅用于分析汽车的方向稳定性条件, 因为当时不知道如何评价汽车的开环特性和瞬态特性, 很难直接在车辆设计中应用。 到20 世纪70 年代, 安全实验车( ESV)研究计划实施, 促使人们去研究之中实用方法, 用来设计汽车的动力学性能。这个阶段, 各国主要采用系统工程学方法探索汽车动力学性能评价方法。依据大量实验和理论分析, 形成了以驾驶员主观评价为主, 客观评价指标限制为辅的一整套主观评价设计方法。 20 世纪70 年代车辆动力学仿真模型变得更加复杂和真实。这主要归功于计算机技术的发展。以前的仿真工作都在模拟计算机上进行, 它能解决实时动力学问题, 但其致命缺点是不能解决非线性问题。由于数字计算机逐步取代了模拟计算机和混合计算机, 因而必须建立完全数字化的车辆动力学模型。考虑到计算机的费用及计算速度, 建立有效的计算机模型是必要的。 近年来, 随着多体动力学的诞生和发展, 汽车建模方法出现了新的改变。由于

车辆稳定控制系统VSC

车辆稳定性控制系统VSC ---汽车主动安全新技术关键词:车辆动态稳定性控制系统、主动安全、打滑、传感器、转向不足、转向过度。 摘要:车辆动态稳定性控制系统(VSC) 是一种可在各种行驶条件下提高车辆行驶稳定性的新型主动安全体系。它是由是由VSC 控制系统、发动机电控系统、各传感器、制动控制器、油门控制器等单元构成的完整控制体系。系统的大部分元件与ABS、TCS 系统共用, 系统通过各传感器数据的输入对车辆打滑情况进行判断,然后自动介入车辆的操控, 以油门及制动控制器来修正车辆的动态,由此可迅速的将车辆于转弯过程中出现转向过度或转向不足的现象修正到原有正常路径的循迹行驶, 正文: 1 简单介绍 车辆动态稳定性控制系统(VSC) 是一种可在各种行驶条件下提高车辆行驶稳定性的新型主动安全体系。VSC 控制系统增强了制动防抱死系统(ABS)、牵引力控制系统(TCS) 以及发动机扭矩控制系统的功能, 其功能处于比ABS 和TCS 更高的控制层次统计资料显示, 在重大死亡车祸中, 约1 /6是由于车辆失控造成的; 而在车辆失控事件中,由车辆打滑造成的占到了75%。丰田VSC 系

统利用控制单元与制动系统及发动机系统相联, 随时监测车身的 动态状况, 当出现打滑现象时, 系统自动介入油门与制动的操作, 控制发动机的功率输出, 并适时对适当的车轮施加制动, 以利用有附着力的轮胎, 使车辆稳定减速, 修正车辆的动态, 使其稳 定行驶在本来的行驶路线上, 保证车辆安全。丰田公司开发的VSC (Vehicle Stability Control)车辆动态稳定性控制系统, 首见于1997 年推出的Lexus 车系中, 现已普及至Lexus 及 Toyota旗下大部分的车辆: 花冠、锐志、皇冠、佳美、霸道等等。在2007年3月新推出的锐志2.5S特别天窗版中,更是增加了VSC 系统作为其一个卖点。作为ABS、TCS (亦称TRC 驱动防滑转或ASR 加速防滑控制系统) 系统的功能扩展, 车辆动态稳定控制 系统已成为主动安全系统发展的一个重要方向。 VSC 系统在汽车高速转弯将要出现失控时, 可有效地增加汽车的稳定性, 系统通过对从各传感器传来的车辆行驶状态信息进行分析, 向制动防抱 死系统ABS、牵引力控制系统TCS 发出纠偏指令, 帮助车辆维持动态平衡, 减少事故发生。VSC 系统可使车辆在各种状况下保持最佳的稳定性, 在过度转向或不足转向的情形下作用尤为明显。 目前不同厂家对车辆稳定性控制系统的称谓不同, 如宝马公司将 其称为DSC 系统; 保时捷则称其为PSM; 本田公司称为VSA 系统。VSA 及VSC 系统与奔驰公司的VSC 均属同一类系统, 是转 向时对由制动力产生危险的汽车进行动态修正的主动安全装置。

汽车操纵稳定性

第5章汽车的操纵稳定性 学习目标 通过本章的学习,应掌握汽车行驶的纵向和横向稳定性条件;掌握车辆坐标系的有关术语,了解影响侧偏特性的因素,掌握轮胎回正力矩与侧偏特性的关系;熟练掌握汽车的稳态转向特性及其影响因素;了解汽车转向轮的振动和操纵稳定性的道路试验内容。 汽车在其行驶过程中,会碰到各种复杂的情况,有时沿直线行驶,有时沿曲线行驶。在出现意外情况时,驾驶员还要作出紧急的转向操作,以求避免事故。此外,汽车还要经受来自地面不平、坡道、大风等各种外部因素的干扰。一辆操纵性能良好的汽车必须具备以下的能力: (1)根据道路、地形和交通情况的限制,汽车能够正确地遵循驾驶员通过操纵机构所给定的方向行驶的能力——汽车的操纵性。 (2)汽车在行驶过程中具有抵抗力图改变其行驶方向的各种干扰,并保持稳定行驶的能力——汽车的稳定性。 操纵性和稳定性有紧密的关系:操纵性差,导致汽车侧滑、倾覆,汽车的稳定性就破坏了。如稳定性差,则会失去操纵性,因此,通常将两者统称为汽车的操纵稳定性。 汽车的操纵稳定性,是汽车的主要使用性能之一,随着汽车平均速度的提高,操纵稳定性显得越来越重要。它不仅影响着汽车的行驶安全,而且与运输生产率与驾驶员的疲劳强度有关。 节汽车行驶的纵向和横向稳定性 5.1.1 汽车行驶的纵向稳定性 汽车在纵向坡道上行驶,例如等速上坡,随着道路坡度增大,前轮的地面法向反作用力不断减小。当道路坡度大到一定程度时,前轮的地面法向反作用力为零。在这样的坡度下,汽车将失去操纵性,并可能产生纵向翻倒。汽车上坡时,坡度阻力随坡度的增大而增加,在坡度大到一定程度时,为克服坡度阻力所需的驱动力超过附着力时,驱动轮将滑转。这两种情况均使汽车的行驶稳定性遭到破坏。 图汽车上坡时的受力图 图为汽车上坡时的受力图,如汽车在硬路面上以较低的速度上坡,空气阻力 w F可以忽略不计,由于剩余驱动力用于等速爬坡,即汽车的加速阻力0 = j F,加速阻力矩0 = j M,而车轮的滚动阻力矩 f M的数值相对来说比较小,可不计入。 分别对前轮着地点及后轮着地点取力矩,经整理后可得 ? ? ? ?? ? ? = + - = - - sin cos sin cos 2 1 L G h aG Z L G h bG Z g g α α α α () 当前轮的径向反作用力0 1 = Z时,即汽车上陡坡时发生绕后轴翻车的情况,由式可得

汽车操纵稳定性研究方法探讨

汽车操纵稳定性研究方法探讨 刘进伟1,徐达1,吴志新2 1.武汉理工大学汽车学院车辆工程系,湖北武汉 430070 2.天津清源电动车辆有限公司,天津 300457 liujinweixiaodao@https://www.doczj.com/doc/f14522218.html, 摘要:本文综述了操稳性研究和评价的历史、现状和存在的问题,着重介绍了客观评价、主观评价、人一车闭环系统综合评价等几种评价方法,以及基于汽车一驾驶员一环境(道路)闭环系统、模糊逻辑控等几种研究方法。提出了操稳性研究的发展趋势,这对全面了解汽车操纵稳定性问题具有指导和借鉴的作用。 关键词:操纵稳定性,历史,研究方法,评价,发展趋势 1操纵稳定性的研究历史和概况 对汽车操稳性的系统研究,早在20世纪3O年代就已经开始。对车辆控制的重视导致对悬架和转向机构的运动学研究。1925 年平顺性理论初步形成规模。同年,Broulheit 在文章中首次提出侧偏和侧偏角的概念【Broulheit, 1925】。1931 年,Becker、Fromm 和 Maruhn 在发表的文章中分析了轮胎在转向系振动中起的作用,进一步研究了轮胎特性【Becker,1931】。对轮胎的研究使进一步分析车辆稳定性成为可能[1]。 20世纪50年代,建立简单的汽车动力学模型,研究人员开始从事汽车动力学性能仿真,分析汽车操纵稳定性。19 世纪 50 年代中期所作的研究工作为建立汽车数学模型打下基础。对轮胎的基本了解使建立相对精确的轮胎数学模型成为可能。 20世纪60年代,开始从控制理论和振动理论出发,采用开环系统瞬态响应、系统特性分析和系统稳定性理论设计汽车的总成系统[2]。但是,应用开环系统分析方法,仅用于分析汽车的方向稳定性条件,因为当时不知道如何评价汽车的开环特性和瞬态特性,很难直接在车辆设计中应用。 到20世纪70年代,安全实验车(ESV)研究计划实施,促使人们去研究之中实用方法,用来设计汽车的动力学性能。这个阶段,各国主要采用系统工程学方法探索汽车动力学性能评价方法。依据大量实验和理论分析,形成了以驾驶员主观评价为主,客观评价指标限制为辅的一整套主观评价设计方法[2]。20 世纪70年代车辆动力学仿真模型变得更加复杂和真实。这主要归功于计算机技术的发展。以前的仿真工作都在模拟计算机上进行,它能解决实时动力学问题,但其致命缺点是不能解决非线性问题。由于数字计算机逐步取代了模拟计算机和混合计算机,因而必须建立完全数字化的车辆动力学模型。考虑到计算机的费用及计算速度,建立有效的计算机模型是必要的。 - 1 -

汽车理论课后习题答案 第五章 汽车的操纵稳定性

第 五 章 5.1一轿车(每个)前轮胎的侧偏刚度为-50176N /rad 、外倾刚度为-7665N /rad 。若轿车向左转弯,将使两前轮均产生正的外倾角,其大小为40。设侧偏刚度与外倾刚度均不受左、右轮载荷转移的影响.试求由外倾角引起的前轮侧偏角。 答: 由题意:F Y =k α+k γγ=0 故由外倾角引起的前轮侧偏角: α=- k γγ/k=-7665?4/-50176=0.6110 5.2 6450轻型客车在试验中发现过多转向和中性转向现象,工程师们在前悬架上加装前横向稳定杆以提高前悬架的侧倾角刚度,结果汽车的转向特性变为不足转向。试分析其理论根据(要求有必要的公式和曲线)。 答: 稳定性系数:??? ? ??-=122k b k a L m K 1k 、2k 变化, 原来K ≤0,现在K>0,即变为不足转向。 5.3汽车的稳态响应有哪几种类型?表征稳态响应的具体参数有哪些?它们彼此之间的关系如何(要求有必要的公式和曲线)? 答: 汽车稳态响应有三种类型 :中性转向、不足转向、过多转向。 几个表征稳态转向的参数: 1.前后轮侧偏角绝对值之差(α1-α2); 2. 转向半径的比R/R 0;

3.静态储备系数S.M. 彼此之间的关系见参考书公式(5-13)(5-16)(5-17)。 5.4举出三种表示汽车稳态转向特性的方法,并说明汽车重心前后位置和内、外轮负荷转移如何影响稳态转向特性? 答:方法: 1.α1-α2 >0时为不足转向,α1-α2 =0时 为中性转向,α1-α2 <0时为过多转向; 2. R/R0>1时为不足转向,R/R0=1时为中性转向, R/R0<1时为过多转向; 3 .S.M.>0时为不足转向,S.M.=0时为中性转向, S.M.<0时为过多转向。 汽车重心前后位置和内、外轮负荷转移使得汽车质心至前后轴距离a、b发生变化,K也发生变化。 5.5汽车转弯时车轮行驶阻力是否与直线行驶时一样? 答:否,因转弯时车轮受到的侧偏力,轮胎产生侧偏现象,行驶阻力不一样。 5.6主销内倾角和后倾角的功能有何不同? 答:主销外倾角可以产生回正力矩,保证汽车直线行驶;主销内倾角除产生回正力矩外,还有使得转向轻便的功能。 5.7横向稳定杆起什么作用?为什么有的车装在前恳架,有的装在后悬架,有的前后都装? 答:横向稳定杆用以提高悬架的侧倾角刚度。

汽车稳定性分析及对策研究

86 研究与探索Research and Exploration ·监测与诊断 中国设备工程 2018.02 (上) 近年来,随着社会经济的发展和科学技术的进步,汽车工业和道路建设质量都有了很大程度的改善,因此,汽车的运行速度和制动性能等动力学性能都有了很大的提升。从而使汽车逐渐成为了人们出行过程中使用的普通、快捷、方便的交通工具。但也应该认识到汽车对人类社会的生命财产所造成的伤害和损失。本文将重点研究汽车失稳的原因以及汽车稳定性应对策略。 1?汽车失稳原因分析 区分不同转向特性的车辆,如果某一汽车是转向过度特性的汽车,当车度过高,达到一定的限度时,即便其是处于线性区域内也非常可能会出现失去稳定的情况。而对于转向不足特性的车辆来说,相比转向过度的汽车,在较高的车速时其仍然具有较好的稳定性,从而确保车辆在线性区域内能够得到较好的操控稳定性。具体来说,在非线性区域内由于侧偏角的增大,轮胎的侧向力会逐渐地趋于饱和,从而导致在非线性区域内车辆失去稳定性的概率较大。车辆后轴的侧向力达到一定极限时,这时车辆的后轴会出现横向移动,引发车辆甩尾等其他十分严重事故;在车辆前轴侧向力达到一定极限时,前轴就会出现横向运动,从而导致汽车的驾驶方向出现偏差,方向失控。与此同时,导致车辆失稳的因素还有很多,比如不同路面u 值的摩擦系数,自然界的侧向风,不同的驾驶操纵等。下面列举了一些致使汽车失稳的一些主要因素。 (1)在驾驶员进行紧急刹车或者突然加速等紧急操纵而致使车辆进入非线性区内,这时质心侧偏角会增大,车辆会失去稳定性,驾驶员不能通过操纵方向盘来控制汽车的行驶方向。 (2)转向不足的汽车在不同的驾驶模式下运行时,车辆的轴荷会因为过度的速度变化而转移,在某些情况 下会导致车辆由转向不足转变为转向过度,车辆也会因此失稳。 (3)由于不同的路面其附着系数u 值是不同的,它对汽车行驶特性影响较大。另外,自然界等产生的横向力,道路的纵横曲线同样会对汽车的运行产生影响,进而引发质心侧偏角的增大使车辆失稳。 (4)当汽车突然要变更车道时,往往会产生较高的质心侧偏角。汽车实际的横摆角速度总是滞后于驾驶员对汽车的操作,汽车转向时这种滞后会导致汽车出现相对较高的横摆力矩,在横摆力矩的影响下车辆往往会失去稳定性。 上述主要分析了4条影响汽车稳定性的因素,从上述分析来看,影响车辆稳定性的变量主要包括车辆的横摆角速度和质心的侧偏,在目前国内外的研究中也主要用这两个参数作为理想变量来描述车辆的运行情况。 2?汽车稳定性控制策略分析 汽车稳定性控制技术包括汽车动力学建模、行驶状态观测、失稳控制策略和控制技术产业化。动力学建模则包括面向控制和面向仿真的建模。面向仿真的建模通常采用Carsim、ADAMS 等仿真软件建立仿真模型,面向控制的建模可采用两轮、四轮模型。状态观测通常是指对汽车运行过程中的状态参数的观测,包括对轮缸压力、摩擦系数、轮胎侧向力、纵横向车速等进行的实时观测。在产业化方面通过不断的探索和研究,在国内汽车的生产线中,稳定性控制技术的产业化在逐步实现。控制车辆稳定性的策略主要有以下几个方面。 (1)汽车制动防抱死系统(ABS)。由于车轮在边滚变化状态下与地面的附着力大于车轮处于抱死状态下的附着力,这样不仅可以防止车辆发生侧滑,还可以最大限度缩小制动距离,从而控制车轮的滑移率在20%,制动达到最安全的效果。 汽车稳定性分析及对策研究 杨昌伟,王志荣,冯迪 (长安大学工程机械学院,陕西?西安?710034) 摘要:汽车动力学稳定性是汽车驾驶过程中保持汽车安全的一项十分重要的性能,一直以来都是汽车安全行业研究的热点,其主要是指汽车在行驶过程中不发生侧滑、偏移和侧翻的性能。因此,深入分析汽车在实际运行工况中发生侧滑、偏移、侧翻等危险状况的内在机理,积极研究解决汽车在运行过程中尤其是极限工况下的稳定性的有效应对策略对汽车驾驶安全是十分重要的。 关键词:汽车动力学;稳定性;汽车安全;控制策略 中图分类号:U461.3 文献标识码:A 文章编号:1671-0711(2018)02(上)-0086-02

汽车电子稳定性控制系统现状及标准分析

10.16638/https://www.doczj.com/doc/f14522218.html,ki.1671-7988.2018.12.040 汽车电子稳定性控制系统现状及标准分析 赵永刚1,吕彪2 (1.重庆车辆检测研究院有限公司,重庆401122;2.上海万象汽车制造有限公司,上海201611) 摘要:汽车电子稳定性控制(Electronic Stability Control,简称ESC)系统通过调节车辆行驶和制动过程中牵引力和制动力分配,能有效提高车辆行驶及制动过程中的安全性能。文章介绍了ESC系统的组成、工作原理、国内外研究现状以及国内外标准法规现状,并对国内外标准法规进行了分析比较。 关键词:ESC系统;现状;标准 中图分类号:U461.99 文献标识码:B 文章编号:1671-7988(2018)12-113-03 Standardized On-Road Test of City bus Zhao Yonggang1, Lu Biao2 (1.Chongqing Vehicle Test &Research Institute Co., Ltd, Chongqing 401122; 2.Shanghai vientiane automobile manufacturing Co., Ltd, Shanghai 201611) Abstract: Electronic stability control system by adjusting the vehicle traction and braking force of during driving and braking, can effectively improve the safety performance in the process of vehicle driving and braking. This paper intro -duces composition of ESC system, working principle, research status domestic and foreign , situation of domestic and foreign standards research, and analyzes and compares domestic and foreign standards of status quo. Keywords: Electronic Stability Control system; Standard; The status quo CLC NO.: U461.99 Document Code: B Article ID: 1671-7988(2018)12-113-03 前言 车辆操纵稳定性是汽车安全领域的长期研究课题,随着汽车底盘系统的逐渐电子化和智能化,针对车辆操纵稳定性的汽车电子稳定性控制(Electronic Stability Control,简称ESC)系统已经成为该领域的热点研究课题之一。国内对ESC系统的研究起步较晚,特别是重型车的ESC系统的研究尚处于理论分析阶段,目前还没有相对成熟的重型车ESC 系统测试方法标准发布。开展汽车电子稳定性控制系统现状及标准体现的分析,有助于推进我国现有车辆ESC系统的装车调试,对提升汽车安全技术水平意义重大。1 ESC系统介绍 美国国家公路交通安全管理局于2007年对ESC系统进行了标准化的定义,规定ESC必须具备以下特征:1)通过对单个车轮进行制动力调来产生一个横摆力矩,从而增强汽车的方向稳定性;2)由计算机控制,通过闭环控制算法来限制汽车的转向;3)具备测量汽车横摆角速度以及估算汽车质心侧偏角的方法;4)具备监测驾驶员转向输入的方法;5)具有控制算法来确定是否有改变发动机输出扭矩的需要,并且有相应的方法来实现输出转矩的调节,帮助驾驶员保持对汽车的控制。为了实现ESC系统的上述功能,ESC系统应用了先进的传感器、电子控制单元、执行器等有关技术。图1展示了ESC系统的组成。 在具体的工作过程中,ESC系统经过传感器信息处理和 作者简介:赵永刚(1984-),男,硕士,就职于重庆车辆检测研究 院有限公司,从事汽车测试技术与研究。 113

汽车稳定性控制研究【开题报告】

开题报告 电气工程及其自动化 汽车稳定性控制研究 一、课题研究意义及现状 摘要: 通过对车辆稳定性控制理论研究, 得出车辆的质心侧偏角和横摆角速度是稳定性控制的重要控制变量。并基于建立的二自由度整车仿真模型, 进一步分析了它们对车辆稳定性的影响。 随着工程建设和生产发展的需要,车辆( 尤其是工程车辆) 受到路面条件、交通法规的限制, 依靠单纯增加单个轴的承载能力, 降低整车质量已经达不到要求。需对底盘进行全盘考虑。 汽车运动是一个模型阶次高、输入输出变量多的复杂系统,因此针对整个运动系统设计单一的控制器是不可行的。本文提出了一种基于多变量频域控制方法的车辆底盘集成控制策略,协调控制车辆主动转向系统和主动制动系统。对典型多变量车辆系统进行分析,应用多变量频域控制理论设计底盘集成控制器,并利用matlab仿真平台进行典型工况仿真分析。结果表明,基于多变量频域控制方法的车辆底盘集成控制器能够消除主动转向系统和主动制动系统之间的干涉和耦合,同时显著提高车辆操纵稳定性。 对于操纵稳定性控制的研究,人们最初是从车辆的后轮主动转向(RWS,4WS)开始研究的,四轮转向汽车的出现,极大地提高了车辆的操纵稳定性。随着研究的不断深入,人们发现在车辆的侧向加速度和车身侧偏角较小,轮胎的侧偏力和侧偏角还处于线性关系时,四轮转向或前轮主动转向汽车可以取得良好的操纵稳定性。而当车辆处于紧急工况时,车辆的侧向加速度、车身侧偏角和横摆角速度都比较大,四轮转向汽车的操纵稳定性并不能取得良好的性能。因为,此时轮胎的侧向受力已经趋于饱和,它的侧向力和侧偏角已经处于高度的非线性关系,单纯依靠车辆的四轮转向已经不能增加车辆的侧向力,提高车辆的侧向操纵稳定性了。 二、课题研究的主要内容和预期目标 本设计要求应用matlab系统设计出基于网络实验平台的电机控制实验项目: (1)转向系统的阶跃响应; (2)转向系统的稳定性分析; 本设计的预期目标: (1)熟练应用matlab软件; (2)能独自完成实验的各项内容; (3)在完成实验内容后,能对实验要求有所改进。 三、课题研究的方法及措施 (1)先收集与设计有关的各种资料 (2)在以上的基础上学习与课题有关的各种知识,并掌握课题中以前不懂的知识,理论

汽车操控稳定性研究

汽车操控稳定性研究 一(车辆车身各部件对车辆操纵稳定性影响的研究 1. 电动助力转向系统对汽车操控稳定性的影响 在电动助力转向系统中引入横摆角速度反馈传感器 ,建立了包含电动助力转向系统的人 -车系统数学模型 ;经模拟仿真分析 ,表明该模型在 EPS中引入横摆角 速度负反馈可以显著改善前轮角阶跃输入下车辆的横摆角速度的瞬态响应 ;并且EPS助力矩响应曲线上升平稳缓慢 ,有利于汽车在低附着系数路面高速转向行驶时的操纵 ,从而提高汽车的行驶安全性。 1.1. 横摆角速度反馈 当汽车的运动进入失稳状态时 ,驾驶员很容易做出过度转向的车辆 ,可在 EPS 中引入一个负反馈 ,以降低系统的助力矩 ,削弱驾驶员快速改变前轮转向角的能力。 1.2. 仿真结果及结论 对于不引入反馈的系统 ,瞬态响应曲线的振荡幅度很大 ,收敛较慢 ,稳定性较差。引入反馈后 ,系统的超调量显著降低 ,并很快的趋于稳态值 ,但反应时间较前者增长。引入反馈后 (实线表示 )系统在横摆角速度出现剧烈振荡的阶段 ( t < 1 s)提供远小于常规系统 (虚线表示 )的助力矩。这样转向系能提供给驾驶员更多的“路感”,同时也使转向系变得较“迟钝”,削弱了驾驶员快速控制前轮转向的能力[ 6 ] ,防止因驾驶员 (错误的 )快速转向操纵而导致的系统不稳定。另外 ,带有反馈的系统提供的助力矩曲线很平滑 ,而不带反馈的系统却出现了一定的波动。抑制助力矩的波动不仅有利于保持车辆的稳定性 ,也有利于延长助力电机的寿命。 因此在 EPS引入横摆角速度反馈可以减少前轮阶跃输入车辆的横摆角速度瞬态响应的时间 ,显著降低超调量 ,可明显改善车辆的行驶稳定性 ,但会增长反应时间。为 EPS引入横摆角速度反馈后 , EPS系统的助力矩上升较慢 ,但增长平稳 ,

汽车操纵稳定性试验解析

汽车操纵稳定性试验解析! 汽车的操稳性不仅影响到汽车驾驶的操纵方面,而且也 是决定汽车安全行驶的一个主要性能;为了保证安全行驶, 汽车的操稳性受到汽车设计者很大的重视,成为现代汽车的 重要使用性能之一,如何试验并评价汽车的操稳性显得极其 重要。汽车操控稳定性分为两个方面:1、操控性: 指汽车能够确切的响应驾驶员转向指令的能力;2、稳定性:指汽车受到外界扰动(路面扰动或阵风扰动)后恢复原来运动状态 的能力。一、常用试验仪器 1、陀螺仪:用于汽车运动状态下测动态参数,如汽车行进方位角,汽车横摆角速度,车身侧倾角及纵倾角等; 2、光 束水准车轮定位仪:测车轮外倾角,主销内倾角,主销外倾角,车轮前束,车轮最大转角及转角差;3、车辆动态测试仪:测汽车横摆角速度,车身侧倾角及纵倾角,汽车横向加 速度与纵向加速度等运动参数;4、力矩及转角仪:测转向盘转角或力矩;5、五轮仪和磁带机等。二、试验分类三、稳态回转试验01 试验步骤1、在试验场上,用明显的颜色画出半径为15m 或20m 的圆周;2、接通仪器电源,使之加热到正常工作温度;3、试验 开始前,汽车应以侧向加速度为3m/s2 的相应车速沿画定的圆周行驶500m 以使轮胎升温。4、以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对称面上的车速传感器在半圈内

都能对准地面所画的圆周时,固定转向盘不动,停车并开始 记录,记下各变量的零线,然后,汽车起步,缓缓连续而均 匀地加速(纵向加速度不超过0·25m/s2),直至汽车的侧向加速度达到6· 5m/s2 为止,记录整个过程。5、试验按向左转和右转两个方向进行,每个方向试验三次。每次试验开始时车身应处于正中央。 02 评价条件 1、中性转向点侧向加速度值An :前后桥侧偏角之差与侧向加速度关系曲线上斜率为零的点的侧向加速度值,越大越好; 2、不足转向度:按前后桥侧偏角之差与侧向加速度关 系曲线上侧向加速度2m/s2 点的平均值计算,越小越好; 3、车厢侧倾度K :按车厢侧倾角与侧向加速度关系曲线上侧向加速度2m/s2 点的平均斜率计算,越小越好。转向特性曲线图四、转向回正试验 01 试验步骤一)低速回正性能试验:1 、在试验场地上用明显的颜色画出半径为15m 的圆周。2、试验前试验汽车沿半径为15m 的圆周、以侧向加速度达3m/ s 2 的相应车速,行驶500m ,使轮胎升温。3、接通仪器电源,使其达到正常工 作温度。4、试验汽车直线行驶,记录各测量变量零线,然 后调整转向盘转角,使汽车沿半径为15± 1m 的圆周行驶,调整车速,使侧向加速度达到4± 0.2m/s 2, 固定转向盘转角,稳定车速并开始记录,待3s 后,驾驶员突然松开转

滑模变结构控制

滑模变结构控制作为一种特殊的鲁棒控制方法【原理,优点,意义,步骤,特点】 变结构控制系统的特征是具有一套反馈控制律和一个决策规则,该决策规则就是所谓的切换函数,将其作为输入来衡量当前系统的运动状态,并决定在该瞬间系统所应采取的反馈控制律,结果形成了变结构控制系统。该变结构系统由若干个子系统连接而成,每个子系统有其固定的控制结构且仅在特定的区域内起作用。引进这种变结构特性的优势之一是系统具有每一个结构有用的特性,并可进一步使系统具有单独每个结构都没有的新的特性,这种新的特性即是变结构系统的滑动模态。滑动模态的存在,使得系统在滑动模态下不仅保持对系统结构不确定性、参数不确定性以及外界干扰等不确定性因素的鲁棒性,而且可以获得较为满意的动态性能。迄今为止,变结构控制理论已经历了50年的发展历程,形成了自己的体系,成为自动控制系统中一种一般的设计方法。它适用的控制任务有镇定与运动跟踪等。 滑模控制(sliding mode control, SMC)也叫变结构控制,本质上是一类特殊的非线性控制,且非线性表现为控制的不连续性。这种控制策略与其他控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中,根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动。由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得滑模控制具有快速响应、对应参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点。 原理: 滑模变结构控制的原理,是根据系统所期望的动态特性来设计系统的切换超平面,通过滑动模态控制器使系统状态从超平面之外向切换超平面收束。系统一旦到达切换超平面,控制作用将保证系统沿切换超平面到达系统原点,这一沿切换超平面向原点滑动的过程称为滑模控制。由于系统的特性和参数只取决于设计的切换超平面而与外界干扰没有关系,所以滑模变结构控制具有很强的鲁棒性。所设计的切换超平面需满足达到条件,即系统在滑模平面后将保持在该平面的条件。现在以N维状态空间模型为例,采用极点配置方法得到M(N

重型汽车电子稳定性控制系统试验标准的对比分析

客 车 技 术 与 研 究 第2期 BUS &COACH TECHNOLOGY AND RESEARCH No.2 2018 作者简介:来 飞(1983 ),男,博士;高级工程师;主要从事智能汽车及主动安全方面的测试研究工作三 重型汽车电子稳定性控制系统试验标准的对比分析 来 飞1,夏 钧2,刘昌仁1,曹 飞1,张仪栋1 (1.重庆车辆检测研究院国家客车质量监督检验中心,重庆 401122;2.重庆力帆乘用车有限公司,重庆 401122) 摘 要:对美标FMVSS 136和欧标ECE R 13中关于重型汽车电子稳定性控制系统的试验方法和性能评价进行对比分析,着重介绍美标FMVSS 136规定的试验方法和性能要求三关键词:重型汽车;电子稳定性控制;试验标准;对比分析中图分类号:U461.6 文献标志码:A 文章编号:1006-3331(2018)02-0059-04 Contrastive Analysis of Test Standards on Electronic Stability Control System for Heavy Vehicles Lai Fei 1,Xia Jun 2,Liu Changren 1,Cao Fei 1,Zhang Yidong 1 (1.Chongqing Vehicle Test &Research Institute,National Bus Quality Supervision and Inspection Center,Chongqing 401122,China;2.Chongqing Lifan Passenger Vehicle Co.,Ltd,Chongqing 401122,China) Abstract :The test method and performance evaluation on electronic stability control system for heavy vehi?cles are compared and analyzed between the FMVSS 136and the ECE R13.The test methods and perform?ance requirements prescribed by the FMVSS 136are emphatically introduced. Key words :heavy vehicle;electronic stability control (ESC);test standard;contrastive analysis 汽车电子稳定性控制(ESC)系统能显著减少车辆失稳及其引发的交通事故,在乘用车上已得到广泛应用三目前关于轻型汽车ESC 系统的性能要求及测试方法标准,欧洲和美国均早已发布并强制实施,我国也参照欧标制定了相应的推荐性标准[1]三与轻型汽车相比,重型汽车ESC 试验标准的研究较为迟缓, 原因在于相对乘用车而言,重型汽车ESC 的试验过程更加危险,此外,由于其整车质量变动范围更广,行驶条件更加恶劣,其评价指标的提出也更加困难[2]三 但由于重型汽车事故易造成群死群伤,世界各国对重型汽车的ESC 试验也较为重视[3-7]三目前,欧标ECE R13附录21提供了重型汽车ESC 测试的大致试验方法,但并未给出相应的性能评价指标;美标FMVSS 136则在大量试验的基础上,提出了具体的试验方法和性能评价指标,从2019年8月起对所有重型汽车强制实施[8-9]三我国JT /T 1094-2016[10]对重型营运客车也有相关要求,具体试验方法与美标FMVSS 136基本相同三 1 ECE R13和FMVSS 136试验方法对比 ECE R13和FMVSS 136对重型汽车ESC 系统在 试验方法上的对比如表1所示三其中,ECE R13附录21对重型汽车ESC 系统在方向控制和侧翻控制上分开考核,并有相关推荐的试验方法,但具体的试验过程并未详细规定,仅列出了可选择的试验测试方法,如在方向控制上只需选取8种方法中的1种进行,在侧翻控制上也只需选取2种方法中的1种进行三同时ECE R13规定也可采用仿真方式进行认证三FMVSS 136则对方向控制和侧翻控制一并考核,主要通过具体的J-转向试验来考核发动机扭矩减小性能和侧倾稳定性三值得注意的是,FMVSS 136中的J-转向试验与ECE R13中的J-转向试验有所不同,后者并没有对可供选择的试验方法进行具体规定,如不同企业在减小圆周半径试验过程中的试验车速二圆周半径的选取上都可能不完全一样三 J-转向试验为FMVSS 136中规定的基础试验,图1为其试验示意图三图中为逆时针布置,试验完毕 9 5

第5章_汽车的操纵稳定性 (2)

第5章汽车的操纵稳定性 1. 何谓汽车的操纵稳定性?其性能如何在时域和频域中进行评价?具体说明有几种型式可 以判定和表征汽车的稳态转向特性? 2. 解释下列名词和概念侧偏现象侧偏刚度回正力矩转向灵敏度特征车速临界车速 中性转向点侧向力变形转向系数侧向力变形外倾系数转向盘力特性静态储备系数S.M. 轮胎拖距 3. 举出三种表示汽车稳态转向特性的方法,并说明汽车重心前后位置和内、外轮负荷转移 如何影响稳态转向特性? 4. 汽车的稳态响应由哪几种类型?表征稳态响应的具体参数由哪些?它们彼此之间的关系 如何(要求有必要的公式和曲线)。 5. 汽车转弯时车轮行驶阻力是否与直线行驶时一样? 6. 主销内倾角和后倾角的功能有何不同? 7. 横向稳定杆起什么作用?为什么有的车装在前悬架,有的车装在后悬架,有的前后都装? 8. 某种汽车的质心位置、轴距和前后轮胎的型号已定。按照二自由度操纵稳定性模型,其 稳态转向特性为过多转向,请找出5种改善其转向特性的方法。 9. 汽车空载和满载是否具有相同的操纵稳定性? 10. 试用有关计算公式说明汽车质心位置对主要描述和评价汽车操纵稳定性、稳态响应指标 的影响。 11. 为什么有些小轿车后轮也没有设计有安装前束角和外倾角? 12. 转向盘力特性与哪些因素有关,试分析之。 13. 地面作用于轮胎的切向反力是如何控制转向特性的? 14. 汽车的三种稳态转向特性是什么?我们希望汽车一般具有什么性质的转向特性?为什 么?有几种型式可以判定或表征汽车的稳态转向特性?具体说明。 15. 画出弹性轮胎侧偏角和回正力矩特性曲线,分析其变化规律的原因。 16. 轮胎产生侧偏的条件是什么?侧偏的结果又是什么?试分析侧倾时垂直载荷在左、右车 轮上重新分配对汽车操纵稳定性的稳态响应有什么影响? 17. 试述外倾角对车轮侧偏特性的影响。 18. 汽车表征稳态响应的参数有哪几个?分别加以说明。 19. 汽车重心位置变化对汽车稳态特性有何影响? 20. 用何参数来评价汽车前轮角阶跃输入下的瞬态特性?试加以说明。 21. 车厢侧倾力矩由哪几种力矩构成?写出各力矩计算公式。 22. 试述等效单横臂悬架的概念。 23. 什么是线刚度?如何计算单横臂独立悬架的线刚度? 24. 试述汽车瞬态响应的稳定条件。 25. 转向时汽车左右轮的垂直载荷变化对车轮侧偏特性有何影响? 26. 汽车在前轴增加一横向稳定杆后不足转向量有何变化?为什么? 27. 非独立悬架汽车车厢侧倾力矩由哪两种力矩组成?写出其计算公式。

滑模变结构控制理论及其算法研究与进展_刘金琨

第24卷第3期2007年6月 控制理论与应用 Control Theory&Applications V ol.24No.3 Jun.2007滑模变结构控制理论及其算法研究与进展 刘金琨1,孙富春2 (1.北京航空航天大学自动化与电气工程学院,北京100083;2.清华大学智能技术与系统国家重点实验室,北京100084) 摘要:针对近年来滑模变结构控制的发展状况,将滑模变结构控制分为18个研究方向,即滑模控制的消除抖振问题、准滑动模态控制、基于趋近律的滑模控制、离散系统滑模控制、自适应滑模控制、非匹配不确定性系统滑模控制、时滞系统滑模控制、非线性系统滑模控制、Terminal滑模控制、全鲁棒滑模控制、滑模观测器、神经网络滑模控制、模糊滑模控制、动态滑模控制、积分滑模控制和随机系统的滑模控制等.对每个方向的研究状况进行了分析和说明.最后对滑模控制的未来发展作了几点展望. 关键词:滑模控制;鲁棒控制;抖振 中图分类号:TP273文献标识码:A Research and development on theory and algorithms of sliding mode control LIU Jin-kun1,SUN Fu-chun2 (1.School of Automation Science&Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing100083,China; 2.State Key Laboratory of Intelligent Technology and Systems,Tsinghua University,Beijing100084,China) Abstract:According to the development of sliding mode control(SMC)in recent years,the SMC domain is character-ized by eighteen directions.These directions are chattering free of SMC,quasi SMC,trending law SMC,discrete SMC, adaptive SMC,SMC for mismatched uncertain systems,SMC for nonlinear systems,time-delay SMC,terminal SMC, global robust SMC,sliding mode observer,neural SMC,fuzzy SMC,dynamic SMC,integral SMC and SMC for stochastic systems,etc.The evolution of each direction is introduced and analyzed.Finally,further research directions are discussed in detail. Key words:sliding mode control;robust control;chattering 文章编号:1000?8152(2007)03?0407?12 1引言(Introduction) 滑模变结构控制本质上是一类特殊的非线性控制,其非线性表现为控制的不连续性,这种控制策略与其它控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动.由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线辩识,物理实现简单等优点.该方法的缺点在于当状态轨迹到达滑模面后,难于严格地沿着滑模面向着平衡点滑动,而是在滑模面两侧来回穿越,从而产生颤动. 滑模变结构控制出现于20世纪50年代,经历了50余年的发展,已形成了一个相对独立的研究分支,成为自动控制系统的一种一般的设计方法.以滑模为基础的变结构控制系统理论经历了3个发展阶段.第1阶段为以误差及其导数为状态变量研究单输入单输出线性对象的变结构控制;20世纪60年代末开始了变结构控制理论研究的第2阶段,研究的对象扩大到多输入多输出系统和非线性系统;进入80年代以来,随着计算机、大功率电子切换器件、机器人及电机等技术的迅速发展,变结构控制的理论和应用研究开始进入了一个新的阶段,所研究的对象已涉及到离散系统、分布参数系统、滞后系统、非线性大系统及非完整力学系统等众多复杂系统,同时,自适应控制、神经网络、模糊控制及遗传算法等先进方法也被应用于滑模变结构控制系统的设计中. 2滑模变结构控制理论研究进展(Develop-ment for SMC) 2.1消除滑模变结构控制抖振的方法研 究(Research on chattering elimination of SMC) 2.1.1滑模变结构控制的抖振问题(Problems of SMC chattering) 从理论角度,在一定意义上,由于滑动模态可以 收稿日期:2005?10?19;收修改稿日期:2006?02?23. 基金项目:国家自然科学基金资助项目(60474025,90405017).

相关主题
文本预览
相关文档 最新文档