当前位置:文档之家› 2008年高考数学理科试题分类汇编—数列

2008年高考数学理科试题分类汇编—数列

2008年高考数学理科试题分类汇编—数列
2008年高考数学理科试题分类汇编—数列

2008年高考数学试题分类汇编

数列

一.选择题:

1.(全国一5)已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( C ) A .138

B .135

C .95

D .23

2.(上海卷14) 若数列{a n }是首项为1,公比为a -3

2的无穷等比数列,且{a n }各项的和为a ,则a 的值是

(B )

A .1

B .2

C .12

D .5

4

3.(北京卷6)已知数列{}n a 对任意的*

p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( C )

A .165-

B .33-

C .30-

D .21-

4.(四川卷7)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是(D ) (A)(],1-∞- (B)()(),01,-∞+∞ (C)[)3,+∞ (D)(][),13,-∞-+∞

5.(天津卷4)若等差数列{}n a 的前5项和525S =,且23a =,则7a =B

(A )12 (B )13 (C )14 (D )15 6.(江西卷5)在数列{}n a 中,12a =, 11ln(1)n n a a n

+=++,则n a = A

A .2ln n +

B .2(1)ln n n +-

C .2ln n n +

D .1ln n n ++

7.(陕西卷4)已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( B ) A .64

B .100

C .110

D .120

8.(福建卷3)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为C

A.63

B.64

C.127

D.128

9.(广东卷2)记等差数列{}n a 的前n 项和为n S ,若11

2

a =,420S =,则6S =( D ) A .16

B .24

C .36

D .48

10.(浙江卷6)已知{}n a 是等比数列,4

1

252=

=a a ,,则13221++++n n a a a a a a =C (A )16(n

--41) (B )16(n

--2

1)

(C )

332(n --41) (D )3

32(n

--21)

11.(海南卷4)设等比数列{}n a 的公比2q =,前n 项和为n S ,则

4

2

S a =( C ) A. 2 B. 4 C.

152

D.

172

二.填空题:

1.(四川卷16)设等差数列{}n a 的前n 项和为n S ,若4510,15S S ≥≤,则4a 的最大值为______4_____。 安徽卷(14)在数列{}n a 在中,542

n a n =-

,212n a a a an bn ++=+ ,*

n N ∈,其中,a b 为常数,则lim n n n n

n a b a b →∞-+的值是 1 2.(江苏卷10)将全体正整数排成一个三角形数阵:

1 2 3 4 5 6 7 8 9 10

. . . . . . .

按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 .26

2

n n -+

3.(湖北卷14)已知函数()2x

f x =,等差数列{}x a 的公差为2.若246810()4f a a a a a ++++=,则

212310log [()()()()]f a f a f a f a ???= .-6

4.(湖北卷15)观察下列等式:

21

11,22n

i i n n ==+∑ 2321

111,326n

i i n n n ==++∑ 34321

111,424n i i n n n ==++∑ 45431

1111,52330n i i n n n n ==++-∑ 565421

1151,621212n i i n n n n ==++-∑ 676531

11111,722642n i i n n n n n ==++-+∑

……………………………………

212112101

,n

k

k k k k k k k k i i

a n a n a n a n a n a +--+--==++++???++∑

可以推测,当x ≥2(*

k N ∈)时,1111,,12k k k a a a k +-=

==+ 12

k

2k a -= .,0

5.(重庆卷14)设S n =是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16= .-72 三.解答题: 1.(全国一22).(本小题满分12分) (注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a b

k a b

-≥.证明:1k a b +>. 解析:

(Ⅰ)证明:()ln f x x x x =-,()()()'ln ,0,1'ln 0f x x x f x x =-∈=->当时, 故函数()f x 在区间(0,1)上是增函数;

(Ⅱ)证明:(用数学归纳法)(i )当n=1时,101a <<,11ln 0a a <,

211111()ln a f a a a a a ==->

由函数()f x 在区间(0

1),是增函数,且函数()f x 在1x =处连续,则()f x 在区间(01],是增函数,21111()ln 1a f a a a a ==-<,即121a a <<成立;

(ⅱ)假设当(*)x k k N =∈时,11k k a a +<<成立,即1101k k a a a +<<<≤

那么当1n k =+时,由()f x 在区间(01],

是增函数,1101k k a a a +<<<≤得 1()()(1)k k f a f a f +<<.而1()n n a f a +=,则121(),()k k k k a f a a f a +++==,

121k k a a ++<<,也就是说当1n k =+时,11n n a a +<<也成立;

根据(ⅰ)、(ⅱ)可得对任意的正整数n ,11n n a a +<<恒成立.

(Ⅲ)证明:由()ln f x x x x =-.1()n n a f a +=可得

k

k k k a a b a b a ln 1--=-+11

ln k

i i i a b a a ==--∑ 1, 若存在某i k ≤满足i a b ≤,则由⑵知:1k i a b a b +-<-≥0 2, 若对任意i k ≤都有b a i >,则k

k k k a a b a b a ln 1--=-+ 11

ln k

i i i a b a a ==--∑11

ln k

i i a b a b ==--∑11

()ln k

i i a b a b ==--∑b ka b a ln 1

1--> b ka b a ln 11--≥)(1

1b a b a --->0=,即1k a b +>成立. 2.(全国二20).(本小题满分12分)

设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*

n ∈N .

(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*

n ∈N ,求a 的取值范围.

解:

(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,

由此得1132(3)n n n n S S ++-=-. ······················· 4分 因此,所求通项公式为

13(3)2n n n n b S a -=-=-,*n ∈N .① ···················· 6分 (Ⅱ)由①知13(3)2n n n S a -=+-,*

n ∈N , 于是,当2n ≥时,

1n n n a S S -=-

1123(3)23(3)2n n n n a a ---=+-?---? 1223(3)2n n a --=?+-,

12143(3)2n n n n a a a --+-=?+-

22

321232n n a --????=+-?? ???????

当2n ≥时,

2

1312302n n n a a a -+??

?+- ?

??

≥≥

9a ?-≥.

又2113a a a =+>.

综上,所求的a 的取值范围是[)9-+∞,. ·················· 12分 3.(四川卷20).(本小题满分12分)

设数列{}n a 的前n 项和为n S ,已知()21n

n n ba b S -=-

(Ⅰ)证明:当2b =时,{}

12n n a n --?是等比数列;

(Ⅱ)求{}n a 的通项公式 【解】:由题意知12a =,且

()21n n n ba b S -=- ()11121n n n ba b S +++-=-

两式相减得()()1121n

n n n b a a b a ++--=-

即12n n n a ba +=+ ①

(Ⅰ)当2b =时,由①知122n n n a a +=+ 于是()()1122212n

n

n

n n a n a n +-+?=+-+?

()

122n n a n -=-?

又111210n a --?=≠,所以{}

12n n a n --?是首项为1,公比为2的等比数列。

(Ⅱ)当2b =时,由(Ⅰ)知1122n n n a n ---?=,即()1

12n n a n -=+

当2b ≠时,由由①得

11111

22222n n n n n a ba b b

+++-

?=+-?-- 22n n b

ba b

=-?-

122n n b a b ??

=-? ?-??

因此11112222n n n n a b a b b ++??

-

?==-? ?--??

()212n

b b b

-=

?- 得()1

2

1122222n n n n a b b n b -=??=???+-≥??

?-? 4.(天津卷20)(本小题满分12分)

在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*

n N ∈),证明{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式;

(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*

n N ∈,n a 是3n a +与6n a +的等差中项. 本小题主要考查等差数列、等比数列的概念、等比数列的通项公式及前n 项和公式,考查运算能

力和推理论证能力及分类讨论的思想方法.满分12分. (Ⅰ)证明:由题设11(1)n n n a q a qa +-=+-(2n ≥),得

11()n n n n a a q a a +--=-,即1n n b qb -=,2n ≥.

又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为q 的等比数列. (Ⅱ)解法:由(Ⅰ) 211a a -=, 32a a q -=, ……

2

1n n a a q --=,(2n ≥). 将以上各式相加,得2

11n n a a q q

--+++= (2n ≥).

所以当2n ≥时,1

1,,.

1,111n n q q q a n q

-≠=?-+

?=-???

上式对1n =显然成立.

(Ⅲ)解:由(Ⅱ),当1q =时,显然3a 不是6a 与9a 的等差中项,故1q ≠. 由3693a a a a -=-可得5

2

2

8

q q q q -=-,由0q ≠得3

6

11q q -=-, ①

整理得323()20q q +-=,解得32q =-或31q =(舍去).于是32q =-.

另一方面,2113

3(1)11n n n n n q q q a a q q q +--+--==---,

151

66(1)11n n n n n q q q a a q q q

-+-+--==---.

由①可得36n n n n a a a a ++-=-,*

n N ∈.

所以对任意的*

n N ∈,n a 是3n a +与6n a +的等差中项. 5.(安徽卷21).(本小题满分13分)

设数列{}n a 满足3

*010,1,,n n a a ca c c N c +==+-∈其中为实数

(Ⅰ)证明:[0,1]n a ∈对任意*

n N ∈成立的充分必要条件是[0,1]c ∈;

(Ⅱ)设1

03c <<

,证明:1*1(3),n n a c n N -≥-∈; (Ⅲ)设103c <<,证明:222

*1221,13n a a a n n N c

++>+-

∈- 解 (1) 必要性 :120,1a a c ==-∵∴ ,

又 2[0,1],011a c ∈≤-≤∵∴ ,即[0,1]c ∈

充分性 :设 [0,1]c ∈,对*

n N ∈用数学归纳法证明[0,1]n a ∈ 当1n =时,10[0,1]a =∈.假设[0,1](1)k a k ∈≥

则31111k k a ca c c c +=+-≤+-=,且3

1110k k a ca c c +=+-≥-=≥

1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立

(2) 设 1

03

c <<

,当1n =时,10a =,结论成立 当2n ≥ 时,

3

2

11111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴ 103

C <<

∵,由(1)知1[0,1]n a -∈,所以 21113n n a a --++≤ 且 110n a --≥ 113(1)n n a c a --≤-∴

2

1

112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-= ∴

1

*1(3)

()n n a c n N -≥-∈∴

(3) 设 103c <<

,当1n =时,2

120213a c

=>--,结论成立 当2n ≥时,由(2)知11(3)0n n a c -≥->

2

1212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴ 222222112212[3(3)(3)

]n n n a a a a a n c c c -+++=++>--+++ ∴

2(1(3))2

111313n c n n c c

-=+->+---

6.(山东卷19)。(本小题满分12分)

将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表: a 1

a 2 a 3

a 4 a 5 a 6

a 7 a 8 a 9 a 10

……

记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1. S n 为数列{b n }的前n 项和,且满足=

n

N n n

S S b b 2

2-1=(n ≥2). (Ⅰ)证明数列{

n

S 1

}成等差数列,并求数列{b n }的通项公式; (Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当91

4

81-

=a 时,求上表中第k (k ≥3)行所有项和的和. 证明:(Ⅰ)由已知,

2

12121111111121,

,21,

()21,

111

,

21.

111.2111

11,

222

.

1

22n

n n n n n n n n n n n n n n n n n

n n n n n b b S S S b b b S S S S S S S S S S S S S b a S n n S S n n b S n ------=-=+++-=---=-=-===??????

+-==

+≥=-=

又 ()所以 ()

即 所以 又所以数列是首项为

,公差为的等差数列由上可知 =+()即 所以 当时,22

1(1).

h n n -=-

++

??

?

??≥--==2,)1(2

1,1n n n n b n (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且q >0. 因为 1213

121278,2

?++???+=

= 所以表中第1行至第12行共含有数列{a n }的前78项, 故 a 82在表中第13行第三列, 因此2

82134.91

a b q ==- 又 132

,1314

b =-

?

所以 q =2.

记表中第k (k ≥3)行所有项的和为S ,

则(1)2(12)2

(12)1(1)12(1)

k k k k b q S q k k k k --===--+-+ (k ≥3).

7.(江苏卷19).(Ⅰ)设12,,,n a a a 是各项均不为零的等差数列(4n ≥),且公差0d ≠,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列: ①当n =4时,求

1

a d

的数值;②求n 的所有可能值; (Ⅱ)求证:对于一个给定的正整数n(n ≥4),存在一个各项及公差都不为零的等差数列12,,,n b b b ,其中任意三项(按原来顺序)都不能组成等比数列.

【解析】本小题主要考查等差数列与等比数列的综合运用.

(Ⅰ)①当n =4 时,1234,,,a a a a 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d =0.

若删去2a ,则有2314,a a a = 即()()2

11123a d a a d +=+ 化简得214a d d +=0,因为d ≠0,所以

1

a d

=4 ; 若删去3a ,则有214a a a = ,即()()2

1113a d a a d +=+ ,故得1

a d

=1. 综上

1

a d

=1或-4. ②当n =5 时,12345,,,,a a a a a 中同样不可能删去首项或末项.

若删去2a ,则有15a a =34a a ,即()()()1111423a a d a d a d +=++ .故得1

a d

=6 ; 若删去3a ,则15a a =24a a ,即()()()111143a a d a d a d +=++ . 化简得32

d =0,因为d ≠0,所以也不能删去3a ;

若删去4a ,则有15a a =23a a g ,即()()()111142a a d a d a d +=++g g .故得

1

a d

= 2 . 当n ≥6 时,不存在这样的等差数列.事实上,在数列1a ,2a ,3a ,…,2n a -,1n a -,n a 中, 由于不能删去首项或末项,若删去2a ,则必有1n a a =32n a a - ,这与d ≠0 矛盾;同样若删 去2n a -也有1n a a =32n a a - ,这与d ≠0 矛盾;若删去3a ,…,2n a - 中任意一个,则必有

1n a a =21n a a - ,这与d ≠0 矛盾.

综上所述,n ∈{4,5}. (Ⅱ)略

8.(江西卷19).(本小题满分12分)

数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且113,1a b ==,数列{}n a b 是公比为64的等比数列,2264b S =. (1)求,n n a b ; (2)求证

121113

4

n S S S +++< . 解:(1)设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,

3(1)n a n d =+-,1n n b q -=

依题意有1363(1)22642(6)64n n nd

a d n d a

b q q b q S b d q +++-?====?

??=+=?

由(6)64d q +=知q 为正有理数,故d 为6的因子1,2,3,6之一, 解①得2,8d q ==

故1

32(1)21,8

n n n a n n b -=+-=+=

(2)35(21)(2)n S n n n =++++=+ ∴

121111111

132435(2)

n S S S n n +++=++++

???+ 11111111(1)2324352n n =

-+-+-++-+ 11113(1)22124n n =+--<++

9.(湖北卷21).(本小题满分14分) 已知数列{}n a 和{}n b 满足:1a λ=,12

4,(1)(321),3

n n n n n a a n b a n +=+-=--+其中λ为实数,n 为正整数.

(Ⅰ)对任意实数λ,证明数列{}n a 不是等比数列; (Ⅱ)试判断数列{}n b 是否为等比数列,并证明你的结论;

(Ⅲ)设0a b <<,n S 为数列{}n b 的前n 项和.是否存在实数λ,使得对任意正整数n ,都有

n a S b <

本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分

析问题的能力和推理认证能力,(满分14分)

(Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 2

2=a 1a 3,即

,0949

4

9494)494()332(222=?-=+-?-=-λλλλλλλ矛盾. 所以{a n }不是等比数列.

(Ⅱ)解:因为b n +1=(-1)n +1

[a n +1-3(n -1)+21]=(-1)n +1

(

3

2

a n -2n +14) =

32(-1)n

·(a n -3n +21)=-3

2b n 又b 1x -(λ+18),所以

当λ=-18,b n =0(n ∈N +

),此时{b n }不是等比数列: 当λ≠-18时,b 1=(λ+18) ≠0,由上可知b n ≠0,∴

3

2

1-=+n a b b (n ∈N +). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-3

2

为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,b n =0,S n =0,不满足题目要求. ∴λ≠-18,故知b n = -(λ+18)·(-

3

2)n -1

,于是可得 S n =-.321·)18(5

3??

????+n )-(- λ

要使a

53(λ+18)·[1-(-3

2)n ]〈b(n ∈N +

)

,则

)2

(1)()3

2(1)18(5

3

)3

2(1--=--<

+-<--n f b a n

n

λ ①

当n 为正奇数时,1

;35<≤≤

n f n 为正偶数时,当 ∴f (n )的最大值为f (1)=35,f (n )的最小值为f (2)= 9

5

,

于是,由①式得95a <-53(λ+18),<.183185

3

--<<--?a b b λ

当a

当b >3a 存在实数λ,使得对任意正整数n ,都有a

21221,2,(1cos

)sin ,1,2,3,.22

n n n n n a a a a a n ππ

+===++= 满足 (Ⅰ)求34,,a a 并求数列{}n a 的通项公式; (Ⅱ)设21

122,.n n n n n

a b S b b b a -=

=+++ 证明:当162.n n S n ≥-<时,

解: (Ⅰ)因为121,2,a a ==所以2

2

311(1cos

)sin 12,2

2

a a a π

π

=++=+=

22422(1cos )sin 2 4.a a a ππ=++==

一般地,当*

21(N )n k k =-∈时,2

22121(21)21

[1cos

]sin 22

k k k k a a ππ+---=++ =211k a -+,即2121 1.k k a a +--=

所以数列{}21k a -是首项为1、公差为1的等差数列,因此21.k a k -=

当*

2(N )n k k =∈时,2

2222222(1cos

)sin 2.22

k k k k k a a a ππ

+=++= 所以数列{}2k a 是首项为2、公比为2的等比数列,因此22.k k a =

故数列{}n a 的通项公式为*

*21,21(N ),

22,2(N ).

n n n n k k a n k k +?=-∈?=??=∈?

(Ⅱ)由(Ⅰ)知,2122,2

n n n a n

b a -=

=23123,2222n n n S =++++ ①

2241112322222

n n n

S +=++++ ② ①-②得,23111111.222222

n n n n

S +=++++-

21111[1()]

1221.122212

n n n n n ++-=-=--- 所以112

22.222

n n n n n n S -+=--=-

要证明当6n ≥时,12n S n -<成立,只需证明当6n ≥时,

(2)

12n

n n +<成立. 证法一

(1)当n = 6时,6

6(62)48312644

?+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2)

1.2

k

k k +< 则当n =k +1时,

1(1)(3)(2)(1)(3)(1)(3)

1.222(2)(2)2k k

k k k k k k k k k k k k

++++++++=?<<++ 由(1)、(2)所述,当n ≥6时,2

(1)12n n +<.即当n ≥6时,1

2.n S n

-< 证法二

令2(2)(6)2n n n c n +=≥,则2

112

1(1)(3)(2)30.222

n n n n n n n n n c c ++++++--=-=< 所以当6n ≥时,1n n c c +<.因此当6n ≥时,6683

1.644

n c c ?≤=

=< 于是当6n ≥时,

2

(2)

1.2

n n +< 综上所述,当6n ≥时,12.n S n

-<

11.(陕西卷22).(本小题满分14分) 已知数列{}n a 的首项135a =

,1321

n

n n a a a +=+,1

2n = ,,. (Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x >,21121(1)3n n

a x x x ??

-- ?++??

,12n = ,,; (Ⅲ)证明:2

121

n n a a a n +++>+ .

解法一:(Ⅰ)1321n n n a a a +=

+ ,1121

33n n a a +∴=+

,1111113n n a a +??∴-=- ???

, 又12

13n a -=,11n a ??∴- ???

是以23为首项,13为公比的等比数列.

∴11212

1333n n n a --== ,332n n n

a ∴=+. (Ⅱ)由(Ⅰ)知3032

n

n n

a =>+, 21121(1)3n

x x x ??-- ?++?? 2112111(1)3n x x x ??

=

-+-- ?++??

2

111(1)1(1)n x x x a ??=-

-+??++??

2112

(1)1n a x x

=-

+

++ 2

111n n n a a a x ??=--+ ?+??

n a ≤,∴原不等式成立.

(Ⅲ)由(Ⅱ)知,对任意的0x >,有

122221121121(1)31(1)3n a a a x x x x x x ????

+++--+-- ? ?++++???? ≥

21121(1)3n x x x ??++-- ?++??

2212221(1)333n

n nx x x ??

=

-+++- ?++??

. ∴取22111222113311333313n n n x n n n ??

- ???????=+++=

=- ? ???????

- ???

, 则22

121111

11133n n

n n n n a a a n n n +++=>+??+-+- ???

≥.

∴原不等式成立.

解法二:(Ⅰ)同解法一.

(Ⅱ)设2112()1(1)3n

f x x x x ??

=

-- ?++??

, 则2222

22(1)2(1)2133()(1)(1)(1)n n x x x x f x x x x ????

-+--+- ? ?????'=--=+++

0x > , ∴当23n x <时,()0f x '>;当2

3

n x >时,()0f x '<,

∴当2

3

n x =

时,()f x 取得最大值2123

13n n n

f a ??== ???+

. ∴原不等式成立.

(Ⅲ)同解法一. 12.(重庆卷22)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 设各项均为正数的数列{a n }满足3

2

112

2,(N*)n a a a a a

a n ++==∈.

(Ⅰ)若21

4

a =

,求a 3,a 4,并猜想a 2cos 的值(不需证明); (Ⅱ)记32(N*),22n n n b a a a n b =∈≥ 若对n ≥2恒成立,求a 2的值及数列{b n }的通项公式. 解:(Ⅰ)因2122,2,a a -==故

3

42

312

382

423

2,2.

a a a a a a -

--====

由此有0

223

(2)(2)(2)(2)12342,2,2,2a a a a ----====,故猜想n a 的通项为 1

(2)*2(N ).n n a n --=∈

(Ⅱ)令2log ,2.n S

n n n n n x a S x n b ==表示的前项和,则 由题设知x 1=1且

*123

(N );2

n n n x x x n ++=

+∈ ①

123

(2).2

n n S x x x n =+++≥≥ ② 因②式对n =2成立,有1213

,12

x x x ≤+=又得 21

.2

x ≥

下用反证法证明:2211

..22

x x ≤>假设 由①得2121131

2()(2).22

n n n n n n x x x x x x ++++++=+++

因此数列12n n x x ++是首项为22x +,公比为1

2

的等比数列.故

*

121111()(N ).222n n n x x x n +--=-∈ ④

又由①知 211111311

()2(),2222

n x n n n n n x x x x x x x +++++-=--=--

因此是11

2

n n x x +-

是首项为212x -,公比为-2的等比数列,所以

1*1211

()(2)(N ).22

n n n x x x n -+-=--∈ ⑤ 由④-⑤得

1*221511

(2)()(2)(N ).222

n n n S x x n --=+---∈ ⑥ 对n 求和得

2*2215111(2)(2)(2)()(N ).2223

n n x x x n ---=+---∈ ⑦

由题设知21231

,22

k S x +≥

>且由反证假设有 21*22221

*2222112115

2)(2)()(N ).

2234

1211151

()(2)(2)2(N ).

23244

k k k k x x k x x x k ++++---≥∈+-≤+--<+∈ (从而 即不等式22k +1<

22364112

x x +

--

对k ∈N *

恒成立.但这是不可能的,矛盾.

因此x 2≤12,结合③式知x 2=12

,因此a 2=2*2

= 2.

将x 2=1

2代入⑦式得

S n =2-11

2

n -(n ∈N*),

所以b n =2S n =22-

112n -(n ∈N*)

13.(广东卷21).(本小题满分12分)

设p q ,为实数,αβ,是方程2

0x px q -+=的两个实根,数列{}n x 满足1x p =,22x p q =-,

12n n n x px qx --=-(34n =,

,…).(1)证明:p αβ+=,q αβ=;(2)求数列{}n x 的通项公式; (3)若1p =,1

4

q =

,求{}n x 的前n 项和n S . 【解析】(1)由求根公式,不妨设<αβ,得2244,22

--+-==

p p q p p q

αβ 224422--+-∴+=+=p p q p p q p αβ,224422--+-=?=p p q p p q

q αβ

(2)设112()----=-n n n n x sx t x sx ,则12()--=+-n n n x s t x stx ,由12n n n x px qx --=-得+=??=?

s t p

st q ,

消去t ,得20-+=s ps q ,∴s 是方程20x px q -+=的根,由题意可知,12,==s s αβ

①当≠αβ时,此时方程组+=??=?

s t p

st q 的解记为1212==????==??s s t t ααββ或 112(),---∴-=-n n n n x x x x αβα112(),----=-n n n n x x x x βαβ

即{}11--n n x t x 、{}21--n n x t x 分别是公比为1=s α、2=s β的等比数列, 由等比数列性质可得2121()---=-n n n x x x x ααβ,2121()---=-n n n x x x x ββα, 两式相减,得2212121()()()----=---n n n x x x x x βααββα

221,=-= x p q x p ,222∴=++x αβαβ,1=+x αβ

22221()--∴-== n n n x x αββββ,22221()---== n n n x x βαααα

1()-∴-=-n

n

n x βαβα,即1--∴=

-n n n x βαβα,11++-∴=-n n n x βαβα

②当=αβ时,即方程20x px q -+=有重根,2

40∴-=p q ,

即2()40+-=s t st ,得2

()0,-=∴=s t s t ,不妨设==s t α,由①可知

2121()---=-n n n x x x x ααβ,= αβ,2121()--∴-=-=n n n n x x x x αααα

即1-∴=+n

n n x x αα,等式两边同时除以n

α,得

1

1

1--=

+n

n n

n x x α

α

,即

1

1

1---

=n

n n

n x x α

α

∴数列{}n n x α

是以1为公差的等差数列,12(1)111∴=+-?=

+-=+n n x x n n n α

ααα,∴=+n n n x n αα

综上所述,11

,(),()++?-≠?

=-??+=?

n n n n n x n βααββααααβ

(3)把1p =,14q =

代入20x px q -+=,得2

104-+=x x ,解得12

==αβ 11

()()22

∴=+ n n n x n

23231

1111111()()()...()()2()3()...()2

2222222n n n S n ????=+++++++++ ? ?????

2311

1111()()2()3()...()22

222n n n ??=-+++++ ??? 111111()2()()3(3)()2222n n n n n n -=-+--=-+

14.(浙江卷22)(本题14分) 已

{}

n a ,

≥n a ,

1=a ,

)

(12

121?++∈=-+N n a a a n n n .记

n n a a a S +++= 21.)

1()1)(1(1

)1)(1(11121211n n a a a a a a T ++++

+++++=

. 求证:当?

∈N n 时, (Ⅰ)1+n S n ; (Ⅲ)3

本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能

力.满分14分.

(Ⅰ)证明:用数学归纳法证明.

①当1n =时,因为2a 是方程2

10x x +-=的正根,所以12a a <. ②假设当*

()n k k =∈N 时,1k k a a +<,

因为22

1k k a a +-2

2

2211(1)(1)k k k k a a a a ++++=+--+-

2121()(1)k k k k a a a a ++++=-++, 所以12k k a a ++<.

即当1n k =+时,1n n a a +<也成立.

根据①和②,可知1n n a a +<对任何*

n ∈N 都成立.

(Ⅱ)证明:由22111k k k a a a +++-=,121k n =- ,,,(2n ≥),

得2

2231()(1)n n a a a a n a ++++--= . 因为10a =,所以21n n S n a =--.

由1n n a a +<及2211121n n n a a a ++=+-<得1n a <, 所以2n S n >-.

(Ⅲ)证明:由221112k k k k a a a a +++=+≥,得

111

(2313)12k k k

a k n n a a ++=-+ ≤,,,,≥

所以

2342

1

(3)(1)(1)(1)2n n n a a a a a a -+++ ≤≥,

于是

2222

232211

(3)(1)(1)(1)2()22

n n n n n n a a n a a a a a ---=<++++ ≤≥, 故当3n ≥时,211

11322

n n T -<++

++< , 又因为123T T T <<, 所以3n T <. 15.(辽宁卷21).(本小题满分12分)

在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*

N ) (Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (Ⅱ)证明:

1122111512

n n a b a b a b +++<+++…. 本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识

进行归纳、总结、推理、论证等能力.满分12分. 解:(Ⅰ)由条件得2

1112n n n n n n b a a a b b +++=+=, 由此可得

2233446912162025a b a b a b ======,,,,,. ············· 2分

猜测2

(1)(1)n n a n n b n =+=+,. ······················ 4分 用数学归纳法证明:

①当n =1时,由上可得结论成立. ②假设当n =k 时,结论成立,即

2(1)(1)k k a k k b k =+=+,,

那么当n =k +1时,

2

2

221122(1)(1)(1)(2)(2)k

k k k k k

a a

b a k k k k k b k b +++=-=+-+=++==+,.

所以当n =k +1时,结论也成立.

由①②,可知2(1)(1)n n a n n b n =++,对一切正整数都成立. ·········· 7分 (Ⅱ)

11115

612

a b =<+.

n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. ··········· 9分

112211111111622334(1)n n a b a b a b n n ??

+++<++++ ?+++??+??

…… 111111116223341n n ??=

+-+-++- ?+?? (111111562216412)

n ??=

+-<+= ?+?? 综上,原不等式成立. ·························· 12分

2011—2019年新课标全国卷1理科数学分类汇编——9.解析几何

9.解析几何(含解析) 一、选择题 【2019,10】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =, 1||||AB BF =,则C 的方程为 A .2 212x y += B .22132x y += C .22143x y += D .22154 x y += 【2018.8】抛物线C :y 2=4x 焦点为F ,过点(–2,0)且斜率为 23直线与C 交于M ,N 两点,则FM FN ?u u u u r u u u r = A .5 B .6 C .7 D .8 【2018.11】已知双曲线C :2 213 x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |= A . 32 B .3 C . D .4 【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10 【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( ) A .2 B .4 C .6 D .8 【2016,5】已知方程1322 22=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的 取值范围是( ) A .)3,1(- B .)3,1(- C .)3,0( D .)3,0( 【2015,5】已知00(,)M x y 是双曲线C :2 212 x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ?的一个焦点,则点F 到C 的一条渐近线的距离为 A B .3 C D .3m

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

2015高考数学分类汇编数列

专题六 数列 1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( ) A 、-1 B 、0 C 、1 D 、6 【答案】B 【解析】由等差数列的性质得64222240a a a =-=?-=,选B . 【考点定位】本题属于数列的问题,考查等差数列的通项公式及等差数列的性质. 【名师点晴】本题可以直接利用等差数列的通项公式求解,也可应用等差数列的性质求解,主要考查学生灵活应用基础知识的能力.是基础题. 2.【2015高考福建,理8】若,a b 是函数()()2 0,0f x x px q p q =-+>> 的两个不同的零 点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .9 【答案】D 【解析】由韦达定理得a b p +=,a b q ?=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ?==,.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,,解得1a =,4b =;当 4 a 是等差中项时,,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D . 【考点定位】等差中项和等比中项. 【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心.三个数成等差数列或等比数列,项及项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题. 3.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( ) A .若120a a +>,则230a a +> B .若130a a +<,则120a a +< C .若120a a <<,则2a > D .若10a <,则()()21230a a a a --> 【答案】C

2018年高考数学试题分类汇编-向量

1 2018高考数学试题分类汇编—向量 一、填空题 1.(北京理6改)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的_________条件(从“充分而不必要”、“必要而不充分条件”、“充分必要”、“既不充分也不必要”中选择) 1.充分必要 2.(北京文9)设向量a =(1,0),b =(?1,m ),若()m ⊥-a a b ,则m =_________. 2.-1 3.(全国卷I 理6改)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = _________. (用,AB AC 表示) 3.3144 AB AC - 4.(全国卷II 理4)已知向量a ,b 满足||1=a ,1?=-a b ,则(2)?-=a a b _________. 4.3 5.(全国卷III 理13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a+b ,则λ=________. 5. 12 6.(天津理8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=?,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ?uu u r uu u r 的最小值为_________. 6. 2116 7.(天津文8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠= ,2,2,BM MA CN NA == 则· BC OM 的值为_________. 7.6- 8.(浙江9)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b 满足b 2?4e · b +3=0,则|a ?b |的最小值是_________. 8.3?1 9.(上海8).在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF = ,则AE BF ? 的最小值为_________. 9.-3

2018-2020三年高考数学分类汇编

专题一 集合与常用逻辑用语 第一讲 集合 2018------2020年 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为 ( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____. 6.(2020?新全国1山东)设集合A ={x |1≤x ≤3},B ={x |2

2018年高考数学试题分类汇编数列

2018试题分类汇编---------数列 一、填空题 1.(北京理4改)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理 论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为__________. 1.1272f 2.(北京理9)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 2.63n a n =- 3.(全国卷I 理4改)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a __________. 3.10- 4.(浙江10改).已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则13,a a 的大小关系是_____________,24,a a 的大小关系是_____________. 4.1324,a a a a >< 5.(江苏14).已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依 次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为__________. 5.27 二、解答题 6.(北京文15)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a a a +++. 6.解:(1)设等差数列{}n a 的公差为d ,∵235ln 2a a +=,∴1235ln 2a d +=, 又1ln 2a =,∴ln 2d =.∴1(1)ln 2n a a n d n =+-=. (2)由(I )知ln 2n a n =,∵ln2ln2e e e =2n n a n n ==, ∴{e }n a 是以2为首项,2为公比的等比数列.∴2 12ln2ln2ln2e e e e e e n n a a a ++ +=++ + 2=222n +++1=22n +-.∴12e e e n a a a +++1=22n +-. 7.(全国卷I 文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n = . (1)求123b b b , ,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 7.解:(1)由条件可得a n +1=2(1) n n a n +.将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列. 由条件可得121n n a a n n +=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n n a n -=,所以a n =n ·2n -1. 8.(全国卷II 理17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 8. 解:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =-得d =2.所以{}n a 的通项公式为 29n a n =-.(2)由(1)得228(4)16n S n n n =-=--,所以当n =4时,n S 取得最小值,最小值为?16.

全国高考理科数学试题分类汇编—统计

年高考真题理科数学解析分类汇编 12 统计
1. 【 高 考 上 海 理 17 】 设 10 ? x1 ? x2 ? x3 ? x4 ? 10 4 , x5 ? 10 5 , 随 机 变 量 ?1 取 值
x1、x 2、x 3、x 4、x 5 的 概 率 均 为 0.2 , 随 机 变 量 ? 2 取 值
x1
? 2
x2
、x2
? 2
x3
、x3
? 2
x4
、x4
? 2
x5
、x5
? 2
x1
的概率也均为 0.2
,若记
D?1、D? 2
分别为
?1、?2 的方差,则( )
A. D?1 ? D?2
B. D?1 ? D?2
C. D?1 ? D?2
D. D?1 与 D? 2 的大小关系与 x1、x2、x3、x4 的取值有关
【答案】A
【 解 析 】 由 随 机 变 量 ?1,?2 的 取 值 情 况 , 它 们 的 平 均 数 分 别 为 :
1 x1 ? 5 (x1 ? x2 ? x3 ? x4 ? x5 ),

x2
?
1? 5 ??
x1
? 2
x2
?
x2
? 2
x3
?
x3
? 2
x4
?
x4
? 2
x5
?
x5
? 2
x1
? ??
?
x1,
且随机变量?1 ,? 2 的概率都为 0.2 ,所以有 D?1 > D? 2 . 故选择 A.
【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提 和基础,本题属于中档题. 2.【高考陕西理 6】从甲乙两个城市分别随机抽取 16 台自动售货机,对其销售额进行统计,
统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为 x甲 , x乙 ,中位数分
别为 m甲 , m乙,则(

A. x甲 ? x乙 , m甲 ? m乙
B. x甲 ? x乙 , m甲 ? m乙
C. x甲 ? x乙 , m甲 ? m乙
D. x甲 ? x乙 , m甲 ? m乙
【答案】B.
【解析】根据平均数的概念易计算出
x甲
?
x乙
,又 m甲
?
18 ? 22 2
?
20 ,m乙
?
27 ? 31 2
?
29
故选 B.
3.【高考山东理 4】采用系统抽样方法从 960 人中抽取 32 人做问卷调查,为此将他们随机编
号为 1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为 9.抽到的 32
人中,编号落入区间?1, 450?的人做问卷 A ,编号落入区间?451, 750? 的人做问卷 B ,其余

2019-2020高考数学试题分类汇编

2019---2020年真题分类汇编 一、 集合(2019) 1,(全国1理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2,(全国1文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A = A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3,(全国2理1)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 4,(全国2文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2) C .(-1,2) D .? 5,(全国3文、理1)已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 6,(北京文,1)已知集合A ={x |–11},则A ∪B = (A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞) 7,(天津文、理,1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤∈R ,则A B = . 10,(上海1)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = . 一、 集合(2020) 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则 a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.

【高考真题】2016---2018三年高考试题分类汇编

专题01 直线运动 【2018高考真题】 1.高铁列车在启动阶段的运动可看作初速度为零的均加速直线运动,在启动阶段列车的动能() A. 与它所经历的时间成正比 B. 与它的位移成正比 C. 与它的速度成正比 D. 与它的动量成正比 【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷) 【答案】 B 2.如图所示,竖直井中的升降机可将地下深处的矿石快速运送到地面。某一竖井的深度约为104m,升降机运行的最大速度为8m/s,加速度大小不超过,假定升降机到井口的速度为零,则将矿石从井底提升到井口的最短时间是 A. 13s B. 16s C. 21s D. 26s 【来源】浙江新高考2018年4月选考科目物理试题 【答案】 C

【解析】升降机先做加速运动,后做匀速运动,最后做减速运动,在加速阶段,所需时间 ,通过的位移为,在减速阶段与加速阶段相同,在匀速阶段所需时间为:,总时间为:,故C正确,A、B、D错误;故选C。 【点睛】升降机先做加速运动,后做匀速运动,最后做减速运动,根据速度位移公式和速度时间公式求得总时间。 3.(多选)甲、乙两汽车同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。已知两车在t2时刻并排行驶,下列说法正确的是() A. 两车在t1时刻也并排行驶 B. t1时刻甲车在后,乙车在前 C. 甲车的加速度大小先增大后减小 D. 乙车的加速度大小先减小后增大 【来源】2018年普通高等学校招生全国统一考试物理(全国II卷) 【答案】 BD 点睛:本题考查了对图像的理解及利用图像解题的能力问题

4.(多选)地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。不考虑摩擦阻力和空气阻力。对于第①次和第②次提升过程, A. 矿车上升所用的时间之比为4:5 B. 电机的最大牵引力之比为2:1 C. 电机输出的最大功率之比为2:1 D. 电机所做的功之比为4:5 【来源】2018年全国普通高等学校招生统一考试物理(全国III卷) 为2∶1,选项C正确;加速上升过程的加速度a1=,加速上升过程的牵引力F1=ma1+mg=m(+g),减速上升过程的加速度a2=-,减速上升过程的牵引力F2=ma2+mg=m(g -),匀速运动过程的牵引力F 3=mg。第次提升过程做功W1=F1××t0×v0+ F2××t0×v0=mg v0t0;第次提升过 程做功W2=F1××t0×v0+ F3×v0×3t0/2+ F2××t0×v0 =mg v0t0;两次做功相同,选项D错误。

高考数学真题分类汇编专题直线与圆理科及答案

专题八 直线 与圆 1.【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :2 2 4210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( ) A 、2 B 、 C 、6 D 、 【答案】C 【解析】圆C 标准方程为2 2 (2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此 2110a +?-=,1a =-,即(4,1)A --,6AB ===. 选C . 【考点定位】直线与圆的位置关系. 【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点P 到 圆的距离为d ,圆的半径为r ,则由点P 所作切线的长l = . 2.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C 【解析】由已知得321143AB k -= =--,27 341 CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ?为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为 22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =C . 【考点定位】圆的方程. 【名师点睛】本题考查三角形的外接圆方程,要注意边之间斜率的关系,得出ABC ?是直角三角形,可以简洁快速地求出外接圆方程,进而求弦MN 的长,属于中档题. 3.【2015高考广东,理5】平行于直线012=++y x 且与圆52 2 =+y x 相切的直线的方程是( ) A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x

2019年高考数学真题分类汇编专题18:数列

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , . 因为数列{c n }为“M–数列”,设公比为q , 所以c 1=1,q >0. 因为c k ≤b k ≤c k +1 , 所以 ,其中k =1,2,3,…,m .

当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e(e,+∞) +0– f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项公式。②由①知,b k=k, .因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0,因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m ,再利用分类讨论的方法结合求导的方法判断函数的单调性,从而求出函数的极值,进而求出函数的最值,从而求出m的最大值。

2020年高考试题分类汇编(集合)

2020年高考试题分类汇编(集合) 考法1交集 1.(2020·上海卷)已知集合{1,2,4}A =,{2,3,4}B =,求A B = . 2.(2020·浙江卷)已知集合{14}P x x =<<,{23}Q x x =<<,则P Q = A.{|12}x x <≤ B.{|23}x x << C.{|34}x x ≤< D.{|14}x x << 3.(2020·北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = A.{1,0,1}- B.{0,1} C.{1,1,2}- D.{1,2} 4.(2020·全国卷Ⅰ·文科)设集合2{340}A x x x =--<,{4,1,3,5}B =-,则A B = A .{4,1}- B .{1,5} C .{3,5} D .{1,3} 5.(2020·全国卷Ⅱ·文科)已知集合{3,}A x x x Z =<∈,{1,}A x x x Z =>∈,则A B = A .? B .{3,2,2,3}-- C .{2,0,2}- D .{2,2}- 6.(2020·全国卷Ⅲ·文科)已知集合{1,2,3,5,7,11}A =,{315}B x x =<<,则A B 中元素的个数为 A .2 B .3 C .4 D .5 7.(2020·全国卷Ⅲ·理科)已知集合{(,),,}A x y x y N y x *=∈≥, {(,)8}B x y x y =+=,则A B 中元素的个数为 A .2 B .3 C .4 D .6 8.(2020·全国卷Ⅰ·理科)设集合2{40}A x x =-≤,{20}B x x a =+≤,且 {21}A B x x =-≤≤,则a = A .4- B .2- C .2 D .4 考法2并集 1.(2020·海南卷)设集合{13}A x x =≤≤,{24}B x x =<<,则A B =

全国高考理科数学历年试题分类汇编

全国高考理科数学历年试题分类汇编 (一)小题分类 集合 (2015卷1)已知集合A={x x=3n+2,n ∈N},B={6,8,10,12,14},则集合A ?B 中的元素个( )(A ) 5 (B )4 (C )3 (D )2 1. (2013卷2)已知集合M ={x|-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( ). A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D .{-3,-2,-1} 2. (2009卷1)已知集合A=1,3,5,7,9},B={0,3,6,9,12},则A ?B= A .{3,5} B .{3,6} C .{3,7} D .{3,9} 3. (2008卷1)已知集合M ={ x|(x + 2)(x -1) < 0 }, N ={ x| x + 1 < 0 },则M∩N =( ) {A. (-1,1) B. (-2,1) C. (-2,-1) D. (1,2) 复数 1. (2015卷1)已知复数z 满足(z-1)i=1+i ,则z=( ) (A ) -2-i (B )-2+i (C )2-i (D )2+i 2. (2015卷2)若a 实数,且 i ai ++12=3+i,则a= ( ) A.-4 B. -3 C. 3 D. 4 3. (2010卷1)已知复数() 2 313i i z -+= ,其中=?z z z z 的共轭复数,则是( ) A= 4 1 B= 2 1 C=1 D=2 向量 1. (2015卷1)已知点A(0,1),B(3,2),向量AC =(-4,-3),则向量BC = ( ) (A ) (-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 2. (2015卷2)已知向量=(0,-1),=(-1,2),则() ?+2=( ) A. -1 B. 0 C. 1 D. 2 3. (2013卷3)已知两个单位向量,的夹角为60度,()0,1=?-+=t t 且,那么t= 程序框图 (2015卷2)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入的a,b 分别为14,18,则输出的a 为 A . 0 B. 2 C. 4 D.14

最新高考数学分类理科汇编

精品文档 2018 年高考数学真题分类汇编 学大教育宝鸡清姜校区高数组2018 年7 月

1.(2018 全国卷 1 理科)设Z = 1- i + 2i 则 Z 1+ i 复数 = ( ) A.0 B. 1 C.1 D. 2 2(2018 全国卷 2 理科) 1 + 2i = ( ) 1 - 2i A. - 4 - 3 i B. - 4 + 3 i C. - 3 - 4 i D. - 3 + 4 i 5 5 5 5 5 5 5 5 3(2018 全国卷 3 理科) (1 + i )(2 - i ) = ( ) A. -3 - i B. -3 + i C. 3 - i D. 3 + i 4(2018 北京卷理科)在复平面内,复数 1 1 - i 的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5(2018 天津卷理科) i 是虚数单位,复数 6 + 7i = . 1+ 2i 6(2018 江苏卷)若复数 z 满足i ? z = 1 + 2i ,其中 i 是虚数单位,则 z 的实部为 . 7(2018 上海卷)已知复数 z 满足(1+ i )z = 1- 7i (i 是虚数单位),则∣z ∣= . 2

集合 1.(2018 全国卷1 理科)已知集合A ={x | x2 -x - 2 > 0 }则C R A =() A. {x | -1 2} B. {x | -1 ≤x ≤ 2} D. {x | x ≤-1}Y{x | x ≥ 2} 2(2018 全国卷2 理科)已知集合A={(x,y)x2 元素的个数为() +y2 ≤3,x ∈Z,y ∈Z}则中 A.9 B.8 C.5 D.4 3(2018 全国卷3 理科)已知集合A ={x | x -1≥0},B ={0 ,1,2},则A I B =() A. {0} B.{1} C.{1,2} D.{0 ,1,2} 4(2018 北京卷理科)已知集合A={x||x|<2},B={–2,0,1,2},则A I B =( ) A. {0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2} 5(2018 天津卷理科)设全集为R,集合A = {x 0

2019年高考真题分类汇编(全)

2019年高考真题分类汇编 第一节 集合分类汇编 1.[2019?全国Ⅰ,1]已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?= A. }{43x x -<< B. }{42x x -<<- C. }{22x x -<< D. }{23x x << 【答案】C 【解析】【分析】 本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{} 42,23M x x N x x =-<<=-<<,则 {}22M N x x ?=-<<.故选C . 【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 2.[2019?全国Ⅱ,1]设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A. (-∞,1) B. (-2,1) C. (-3,-1) D. (3,+∞) 【答案】A 【解析】【分析】 本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{} 2,3,1A x x x B x x ==<或,则{} 1A B x x ?=<.故选A . 【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 3.[2019?全国Ⅲ,1]已知集合{}{} 2 1,0,1,21A B x x ,=-=≤,则A B ?=( ) A. {}1,0,1- B. {}0,1 C. {}1,1- D. {}0,1,2 【答案】A 【解析】【分析】 先求出集合B 再求出交集. 【详解】由题意得,{} 11B x x =-≤≤,则{}1,0,1A B ?=-.故选A . 【点睛】本题考查了集合交集的求法,是基础题. 4.[2019?江苏,1]已知集合{1,0,1,6}A =-,{} 0,B x x x R =∈,则A B ?=_____. 【答案】{1,6}.

2020年全国高考理科数学试题分类汇编5:平面向量

2020年全国高考理科数学试题分类汇编5:平面向量 一、选择题 1 .(2020年高考上海卷(理))在边长为1的正六边形ABCDEF 中,记以 A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a u r u u r u u r u u r u u r ;以 D 为起点,其 余顶点为终点的向量分别为 12345 ,,,,d d d d d u u r u u r u u r u u r u u r .若 ,m M 分别为 ()() i j k r s t a a a d d d ++?++u r u u r u u r u u r u u r u u r 的最小值、最大值,其中 {,,}{1,2,3,4,5}i j k ?,{,,}{1,2,3,4,5}r s t ?,则,m M 满足 ( ) A .0,0m M => B .0,0m M <> C .0,0m M <= D .0,0m M << 【答案】 D . 2 .(2020年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已 知点()()1,3,4,1,A B AB -u u u r 则与向量同方向的单位向量为 ( ) A .345 5?? ??? ,- B .435 5?? ??? ,- C .3455??- ??? , D .4355?? - ??? , 【答案】A 3 .(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 设0,P ABC ?是边AB 上一定点,满足AB B P 4 10=,且对于边AB 上任一点P , 恒有C P B P PC PB 00?≥?.则 ( ) A .090=∠ABC B .090=∠BA C C .AC AB = D .BC AC = 【答案】D 4 .(2020年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 在四边形ABCD 中,(1,2)AC =u u u r ,(4,2)BD =-u u u r ,则四边形的面积为 ( )

2015-2019全国卷高考数学分类汇编——集合

2014年1卷 1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ?= A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2014年2卷 1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A. {1} B. {2} C. {0,1} D. {1,2} 2015年2卷 (1) 已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B = (A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2} 2016年1卷 (1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =( ) (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3 (,3)2 2016-2 (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( ) (A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,,

2016-3 (1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( ) (A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 2017-1 1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x => D .A B =? 2017-2 2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =,则B =( ) A .{}1,3- B .{}1,0 C .{}1,3 D .{}1,5 2017-3 1.已知集合A ={}22(,)1x y x y +=│ ,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3 B .2 C .1 D .0 2018-1 2.已知集合{}220A x x x =-->,则A =R e A .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <-> D .}{}{|1|2x x x x ≤-≥

2017年高考数学试题分类汇编之数列(精校版)

2017年高考试题分类汇编之数列 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1. (2017年新课标Ⅰ) 记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则 {}n a 的公差为( )1.A 2.B 4.C 8.D 2.( 2017年新课标Ⅱ卷理) 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) 1.A 盏 3.B 盏 5.C 盏 9.D 盏 3.(2017年新课标Ⅲ卷理) 等差数列{}n a 的首项为1,公差不为0.若632,,a a a 成等比数列,则{}n a 前6项的和为( ) 2 4.-A 3.-B 3.C 8.D 4. (2017年浙江卷) 已知等差数列}{n a 的公差为d ,前n 项和为n S ,则“0>d ”是 “5642S S S >+”的( ) .A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件 5.(2017年新课标Ⅰ) 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家 学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列?,16,8,4,2,1,8,4,2,1,4,2,1,2,1,1其中第一项是0 2,接下来的两项是1 2,2,再接下来的三项是2 1 2,2,2,依此类推.求满足如下条件的最小整数 100:>N N 且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) 440.A 330.B 220.C 110.D 二、填空题(将正确的答案填在题中横线上) 6. (2017年北京卷理) 若等差数列{}n a 和等比数列{}n b 满足8,14411==-==b a b a , 2 2 a b =_______. 7.(2017年江苏卷)等比数列的各项均为实数,其前项和为,已知, 则=_______________. {}n a n n S 36763 44 S S ==,8a

相关文档 最新文档