当前位置:文档之家› 高频谐振功率放大器设计

高频谐振功率放大器设计

高频谐振功率放大器设计
高频谐振功率放大器设计

课程设计任务书

学生姓名:专业班级:

指导教师:工作单位:

题目:高频谐振功率放大器设计

初始条件:

具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。

要求完成的主要任务:

1、采用晶体管完成一个高频谐振功率放大器的设计

2、电源电压V cc=+12V,采用NXO-100环形铁氧体磁芯,

3、工作频率f0=6MHz

4、负载电阻R L=75Ω时,输出功率P0≥100mW,效率η>60%

5、完成课程设计报告(应包含电路图,清单、调试及设计总结)。

时间安排:

二十周一周,其中三天硬件设计,四天软、硬件调试及答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日

目录

摘要 (1)

2.高频谐振功率放大器原理 (3)

2.1 甲类功率放大器 (5)

2.1.1 静态工作点 (5)

2.1.2 负载特性 (5)

2.1.3 功率增益 (6)

2.2 丙类功率放大器 (7)

2.2.1 基本关系式 (7)

2.2.2 负载特性 (10)

2.3 变频变压器的绕制 (11)

2.4 重要技术指标及测试方法 (12)

2.4.1输出功率 (12)

2.4.2 效率 (13)

3.总体电路设计与参数计算 (14)

3.1 丙类功率放大器的设计 (14)

3.1.1 确定放大器工作状态 (14)

3.1.2 计算谐振回路和耦合回路参数 (15)

3.1.3 基极偏置电路参数计算 (15)

3.2 甲类功率放大器的设计 (15)

3.2.1 计算电路性能参数 (15)

3.2.2计算静态工作点 (16)

4.仿真测试 (17)

4.1 multisim软件简介 (17)

4.2 仿真电路及仿真波形图 (18)

5.实际电路组装与调试 (19)

5.1 电路组装要点 (19)

5.2 高频谐振功率放大器的调整 (19)

5.3实际电路模型及调试结果 (20)

6.心得体会 (21)

参考文献: (22)

附录:元件清单 (23)

摘要

利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线

电发射机中的重要单元电路。根据放大器中晶体管工作状态的不同或晶体管电流导通角θ的范围,可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。电流导通角越小,放大器的效率越高。丙类放大器的导通角θ<90%,效率η可达到80%,高频功率放大器一般选择在丙类工作状态。本设计采用甲类功放输出的最大不失真信号作为激励源,丙类功放作为末级功放以获得较大的输出功

率和较高的效率。

关键词:甲类功放,丙类功放,谐振,变压器

1.绪论

在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射没备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。这里提到的放大级都属于高频功率放大器的范畴。实际上高频功率放大器不仅仅应用于各种类型的发射机中,而且高频加热装置、高频换流器、微波炉等许多电子设备

中都得到了广泛的应用。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自 20 至 20000 Hz,高低频率之比达 1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百 kHz 一直到几百、几千甚至几万 MHz),但相对频带很窄。例如,调幅广播电台(535 -1605 kHz 的频段范围)的频带宽度为 10 kHz,如中心频率取为 1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。

高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。

2.高频谐振功率放大器原理

利用宽带变压器作耦合回路的功放称为宽带功放。常用宽带变压器有用高频磁芯绕制的高频变压器和传输线变压器。宽带功放不需要调谐回路,可在很宽的频率范围内获得线性放大。但效率很低,一般只有 20%左右,一般作为发射机的中间级,以提供较大的激励功率。

利用选频网络作为负载回路的功率放大器称为谐振功率放大器。根据放大器电流导通角θ的范围可以分为甲类、乙类、丙类及丁类等不同类型的功率放大器。电流导通角θ愈小,放大器的效率η愈高。如甲类功放的θ=180°,效率最高也只能达到50%,而丙类功放的θ<90%,效率η可达到80%。甲类放大器电流的流通角为180°,适用于小信号低功率放大。乙类放大器导通角等于180°;丙类放大器导通角则小于180°。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。综上考虑本设计采用甲类功率放大器作为激励级,丙类功率放大器作为末级功放以获得较大的输出功率和较高的效率。

本设计要求输入6.0MHz 信号经功率放大器放大输出一个信号, 再经过阻抗变换网络产生高频输出交流电压,其基本框图如下图2.1所示。

综上考虑本设计采用甲类功率放大器作为激励级,丙类功率放大器作为末级功放以获得较大的输出功率和较高的效率。如图2.2所示为由两级功放组成的高频功放电路。其中晶体管Q1与高频变压器T1组成甲类功放,晶体管Q2与选频

输出

6.0MH Z

功率 放大器

谐振电路

匹配网络

图2.1 高频谐振功放原理框图

网络L2、C3组成丙类谐振功放。下面介绍它们的工作原理与基本关系式。

图2.2

2.1 甲类功率放大器

2.1.1 静态工作点

如图 3-1 所示,晶体管 VT1 组成甲类功率放大器,工作在线性放大状态。其中RB1、RB2 为基极偏置电阻;RE1 为直流负反馈电阻,以稳定电路的静态工作点。RF1为交流负反馈电阻,可以提高放大器的输入阻抗,稳定增益。电路的静态工作点由下列关系式确定:

111)(E CQ E F EQ EQ R I R R I V ≈+= 式中,RF1一般为几欧至几十欧。 BQ CQ I I β= V V V EQ BQ 7.0+= )(11E F CQ CC CEQ R R I V V +-=

2.1.2 负载特性

如图 3-1 所示,甲类功率放大器的输出负载由丙类功放的输入阻抗决定,两级间通过变压器进行耦合,因此甲类功放的交流输出功率 P0可表示为:

B H P P η/'0=

式中,PH ′为输出负载上的实际功率,ηB 为变压器的传输效率,一般为

85.0~75.0=B η。

图2.3为甲类功放的负载特性。为获得最大不失真输出功率,静态工作点 Q 应选交流负载线 AB 的中点,此时集电极的负载电阻 RH 称为最佳负载电阻。集电极的输出功率 PC 的表达式为:

式中,Cm V 为集电极输出的交流电压振幅,Cm I 为交流电流的振幅,它们的表达式别为

CES E CQ CC Cm V R I V V --=1

式中,CES V 称为饱和压降,约1V 。

CQ Cm I I ≈

如果变压器的初级线圈匝数为 N1,次级线圈匝数为N2,则

式中,'H R 为变压器次级接入的负载电阻,即下级丙类功放的输入阻抗。

2.1.3 功率增益

与电压放大器不同的是功率放大器应有一定的功率增益, 对于图2.2所示电路,甲类功率放大器不仅要为下一级功放提供一定的激励功率,而且还要将前级输入的信号,进行功率放大,功率增益 Ap 的表达式为

i C p P P A /=

其中,i P 为放大器的输入功率,它与放大器的输入电压im V 及输入电阻i R 的关系为

i i im P R V 2=

式中,i R 又可以表示为

F fe ie i R h h R )1(++≈

式中,ie h 为共发射级接发晶体的输入阻抗,高频工作时,可认为它近似等于晶体管基极体电阻'bb r ;fe h 为晶体管共发射电流放大系数,即β。

'

22121H

Cm

Cm Cm C R V I V P =='

21H H

B R R N N η=

2.2 丙类功率放大器

2.2.1 基本关系式

如图 3-1所示,丙类功率放大器的基极偏置电压BE u 是利用发射 极电流的直流分量)(CO EO I I ≈在射极电阻2E R 上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号'i u 为正弦波时,则集电极的输出电流C i 为余弦脉冲波。利用谐振回路32C L 的选频作用可输出基波谐振电压1C u ,电流1c i 。图2.4画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。分析可得下列基本关系式:

011R I u m c m C =

式中,m C u 1为集电极输出的谐振电压即基波电压的振幅;

m C u 1为集电极基波电流振幅;0R 为集电极回路的谐振阻抗。

式中,PC 为集电极输出功率

CO CC D I u P =

式中,D P 为电源CC u 供给的直流功率;

CO I 为集电极电流脉冲C i 的直流分量。

电流脉冲C i 经傅立叶级数分解,可得峰值CM I 与分解系数)(θn a 的关系式

分解系数)(θn a 与θ的关系如图2.5所示

2

10211!212121R u R I I u P m

C m C m C m C C =

==?

?

?

?==)()(/001θθa I I a I I cm c cm cm

放大器集电极的耗散功率'C P 为

C D C P P P -='

放大器的效率η为

其中:CC m c U U /1=ξ称为电压利用系数。

图2.6为功放特性曲线折线化后的输入电压be u 与集电极电流脉冲c i 的波形关系。

图 2.4 丙类功放的基极、

集电极电流和电压波形

图2.5 电流脉冲的分解系数

)

()(21)()(2121010110

11θθξ

θθηa a a a U U I I U U P P CC m c c m

c CC m C D c =??=

??==

由图可得:

式中:j u 为晶体管导通电压(硅管约为0.6V ,锗管约为0.3V)。

bm u 为输入电压的振幅。 B u 为基极直流偏压。

2E CO B R I u -=

当输入电压be u 大于导通电压j u 时,工作在放大状态,则基极电流脉冲bm I 与集电极电流脉冲cm I 成线性关系,即满足

bm bm fe cm I I h I β≈=

因此基极电流脉冲的基波幅度m b I 1及直流分量0b I 也可以表示为

基极基波输入功率 Pi 为

放大器的功率增益 Ap 为

丙类功率放大器的输出回路采用了变压器耦合方式,其等效电路如图2.6

集电极谐振回路为部分接入,谐振频率为

谐振阻抗与变压器线圈匝数比为

?

?

?==)()(0011θθa I I a I I bm b bm m b m b m b i I u P 112

1

=

dB P P A P P A i

P i P 00lg 10==

或图2.6 变压器耦合电路

LC w 1

0=

式中,1N 为集电极接入初级匝数。 2N 为初级线圈总匝数。 3N 为次级线圈总匝数。

L Q 为初级回路有载品质因数,一般取10~2。

两类功率放大器的输入回路亦采用变压器耦合方式,以使输入阻抗与前级输出阻抗匹配。分析表明,这种耦合方式的输入阻抗i Z 为

式中,b b r '为晶体管基极体电阻,Ω≤25'b b r

2.2.2 负载特性

当功率放大器的电源电压CC u +,基极偏压b u ,输入电压C 或称激励电压sm u 确定后,如果电流导通角选定,则放大器的工作状态只取决于集电极回路的等效负载电阻q R 。谐振功率放大器的交流负载特性如图2.7所示,由图可见,当交流负载线正好穿过静态特性曲线的转折点A 时,管子的集电极电压正好等于管子的饱和压降CES u ,集电极电流脉冲接近最大值cm I 。

此时,集电极输出的功率C P 和效率η都较高,此时放大器处于临界工作状态。

q R 所对应的值称为最佳负载电阻值,用0R 表示,即

当0R R q <放大器处于欠压工作状态,如C 点所示,集电极输出电流虽然较大,但集电极电压较小,因此输出功率和效率都较小。当0R R q >时,放大器处于过压状态,如B 点所示,集电极电压虽然较大,但集电极电流波形有凹陷,因此输出功率较低,但效率较高。为了兼顾输出功率和效率的要求,谐振功率放大器通常选择在临界状态。判断放大器是否为临界工作状态的条件是:

CES cm CC u u u =-

式中,cm u 集电极输出电压幅度。CES u 晶体管饱和压降。

101

3

2R R u R P N N L m

c L =

=)

()cos 1(1'θθa r Z b

b i -=

2

02)(P u u R CES CC -=

2.3 变频变压器的绕制

高频变压器的磁芯应采用镍锌(NXO)铁氧体,而不能用硅钢片铁芯,因硅钢片在高频工作时铁损耗过大。NXO-100环形铁氧体作高频变压器磁芯时,工作频率可达十几兆赫兹。其结构如图2.8所示,尺寸为外径×内径×高,使用漆包线绕制,电感量L 由下式计算:

式中,μ为磁导率,单位m H /;

N 为线圈匝数;A 为磁芯截面积(单位2cm );l 为平均磁路长度(单位cm )。

若选尺寸为mm mm mm 5610??φφ的100-NXO 铁氧磁芯)/100(m H =μ,由图2.8可求出210mm A =,mm l 25=,则电感量L 、线圈匝数N 的值可用上述公式

图2.7 谐振功放的负载特性

{}32

2104-?=N l

A L H

μ

πμ图2.8 环形铁氧体高频变压器磁芯

确定。绕制高频变压器的漆包线一般选用线径为mm 31.0φ的漆包线。为减小线圈漏感与分布电容的影响,匝数应尽可能的少,匝间距离应尽可能大(绕希一些,并绕得紧一些)。

2.4 重要技术指标及测试方法

2.4.1输出功率

高频功率放大器的输出功率是指放大器的负载L R 上得到的最大不失真功率。对于图 3-1 所示的电路中,由于负载L R 与丙类功率放大器的谐振回路之间采用变压器耦合方式,实现了阻抗匹配,则集电极回路的谐振阻抗0R 上的功率等于负载 RL 上的功率,所以将集电极的输出功率视为高频放大器的输出功率,即

测量功率放大器的主要技术的连接电路如图2.9所示, 其中高频信号发生器提供激励信号电压与谐振频率,示波器监测波形失真,直流毫安表mA 测量集电极的直流电流,高频电压表V 测量负载L R 的端电压。只有在集电极回路处于谐振状态时才能进行各项技术指标的测量。可以通过高频电压表V 及直流毫安表 mA 的指针来判断集电极回路是否谐振,即电压表V 的指示为最大,毫安表mA 的指示为最小时集电极回路处于谐振。当然用扫频仪测量回路的幅频特性曲线,使中心频率处的幅值最大也可以。

放大器的输出功率可以由下式计算:

21021110212121R V R I I V P m

C m C m C m C ?

==

=图2.9 高频功放的测试电路

V 2

式中,L V 为高频电压表V 的测量值。

2.4.2 效率

高频功率放大器的总效率由晶体管集电极的效率和输出网络的传输效率决定。 而输出网络的传输效率通常是由电感、电容在高频工作时产生一定损耗而引起的。放大器的能量转换效率主要由集电极的效率所决定。所以常将集电极的效率视为高频功率放大器的效率,用η表示,即

利用图2.9所示电路,可以通过测量来计算功率放大器的效率,集电极回路谐振 时,η的值由下式计算:

式中,L V 为高频电压表的测量值;0C I 为直流毫安表的测量值。

D

C

p p =

ηCC

C L

L

D C V I R V P P 02

/==η

3.总体电路设计与参数计算

3.1 丙类功率放大器的设计

3.1.1 确定放大器工作状态

因为要求获得的效率η>60%,放大器的工作状态采用临界状态,取θ=70°,所以谐振回路的最佳电阻为:

2

02)(P U U R CES CC -==110.25Ω

集电极基波电流振幅:00

12R P I m c =≈0.095A

集电极电流最大值为:)

70(11 αm

c cm I I =

=0.095/0.436=217.890mA

其直流分量为:CO I =cm I *)70(0 α=217.890*0.253=55.126mA 电源供给的直流功率P D =Ucc*Ico=661.5mW 集电极损耗功率P ’= P D - P C =161.532.3mW 转换效率η= P C /P D =500/661.5=75.6%

当本级增益ρA =13dB 即10倍放大倍数,晶体管的直流β=10时,有: 输入功率为:P1=P0/AP=25mW

基极余弦电流最大值为:β /ICM IBM =≈21.78mA

基极基波电流振幅:)70(11 α?=BM M B I I =21.78?0.436=9.5mA ∴输出电压的振幅为U BM =2P 1/ I B1M ≈3.5V

3.1.2 计算谐振回路和耦合回路参数

丙类功放输入、输出回路均为高频变压器耦合方式,其中基极体电阻bb R <25Ω, 则输入阻抗436

.0)70cos 1(25)()cos 1(11?-Ω

=?-=

θαθbb R Z ≈87.1Ω 则输出变压器线圈匝数比为:

13

R R N N L

=≈0.68 则这里,我们假设取N 3=2和N 1=3

若取集电极并联谐振回路的电容为C=100pF ,则20

)21(1f C L π?=≈100μH 用Φ10mm×Φ6mm×5mm 磁环来绕制输出变压器,

∵有32

2210)()()(4-???∏=N l A L cm

cm μ

其中μ=100H/m , A=210m m , l =25mm, L =60μH ∴2N ≈25

3.1.3 基极偏置电路参数计算

基极直流偏置电压(其中U 1≈0.6V ) θcos UbM -U1UB =≈ -1.1V 则射极电阻R E2=B U /CO I ≈20Ω 取高频旁路电容2E C =0.01μf 根据上诉条件,可得丙类的放大器的参数应如图3.2所示。

3.2 甲类功率放大器的设计

3.2.1 计算电路性能参数

综上所述,知甲类功率放大器输出功率等与丙类功放的输入功率,即:P H =P 1=25mW

输出负载等于丙类功放输入阻抗,即R H =1Z =87.1Ω

设甲类功率放大器的电路的激励级电路,如图1.2(变压器效率b η取0.8) 则集电极输出功率P C =b

H

p η≈31mW ;

若取放大器的静态电流I CC =I CM =7mA 则集电极电压振幅U CM =2P C / I CM =8.9V 最佳负载电阻为C CM

H P U R 22

=

=1.3

Ωk

则射极直流负反馈电阻cq

CES

CM CC E I U U U R --=

1≈357Ω (cq I ≈I CM )

则输出变压器线圈匝数比:

21

R R N N b

H η=≈3 本级功放采用3DG12晶体管,取30=β ρA =13dB 即20倍放大倍数 则输入功率P i =P 0/A P =1.55mW ,放大器输入阻抗i R =b b R '+β*R 3=25Ω+30R 3 若取交流负反馈电阻R 3=10Ω,则i R =335Ω,∴本级输入电压i i im P R U 2=≈1V

3.2.2计算静态工作点

综上可知i U =0时,晶体管射极电位 RE * I U 1cq eq == 2.5V ,bo U =3.2V

βIco/Ibo ==0.23mA

若基极偏置电流 5Ibo I1=,则Ubo/5Ibo R2=≈2.8Ωk ∴有21R U U U R bo

bo

CC ?-=

≈8.25Ωk

4.仿真测试

4.1 multisim软件简介

随着计算机技术飞速发展,电路设计可以通过计算机辅助分析和仿真技术来完成。计算机仿真在教学中的应用,代替了大包大揽的试验电路,大大减轻验证阶段的工作量;其强大的实时交互性、信息的集成性和生动直观性,为电子专业教学创设了良好的平台,并能保存仿真中产生的各种数据,为整机检测提供参考数据,还可保存大量的单元电路、元器件的模型参数。采用仿真软件能满足整个设计及验证过程的自动化。 Multisim 软件是一个专门用于电子线路仿真与设计的 EDA 工具软件。作为 Windows 下运行的个人桌面电子设计工具, Multisim 是一个完整的集成化设计环境。 Multisim 的特点:(1)直观的图形界面:整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的一样。(2)丰富的元器件库:Multisim 大大扩充了 EWB 的元器件库,包括基本元件、半导体器件、运算放大器、TTL和 CMOS 数字 IC、DAC、ADC 及其他各种部件,且用户可通过元件编辑器自行创建或修改所需元件模型,还可通过liT 公司网站或其代理商获得元件模型的扩充和更新服务。(3)丰富的测试仪器:除 EWB 具备的数字万用表、函数信号发生器、双通道示波器、扫频仪、字信号发生器、逻辑分析仪和逻辑转换仪外,Multisim 新增了瓦特表、失真分析仪、频谱分析仪和网络分析仪。尤其与 EWB不同的是:所有仪器均可多台同时调用。

4)完备的分析手段:除了 EWB 提供的直流工作点分析、交流分析、瞬态分析、傅里叶分析、噪声分析、失真分析、参数扫描分析、温度扫描分析、极点一零点分析、传输函数分析、灵敏度分析、最坏情况分析和蒙特卡罗分析外,Multisim 新增了直流扫描分析、批处理分析、用户定义分析、噪声图形分析和射频分析等,基本上能满足一般电子电路的分析设计要求。网络分析仪和频谱分析仪。

4.2 仿真电路及仿真波形图

在multism中按下图4.1中元件及线路连接,连接好后开始仿真。仿真波形图如图4.2所示。

图4.1

图4.2

高频功率放大器的设计及仿真

东北大学秦皇岛分校电子信息系 综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。 2. 前言(绪论) 我们通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 3. 系统原理 3.1 高频功率放大器知识简介 在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,

高频调谐放大器,LC振荡电路和高频谐振功率放大器的设计(通信电子线路)

课程设计任务书 学生姓名:专业班级:通信0704 指导教师:工作单位:信息工程学院 题目: 通信电子线路综合设计 课程设计目的: ①较全面了解常用的数据分析与处理原理及方法; ②能够运用所学知识进行初步电路的设计; ③掌握基本的文献检索和文献阅读的方法; ④提高正确地撰写论文的基本能力。 课程设计内容和要求 1.高频小信号调谐放大器的电路设计 2. LC振荡器的设计; 3.高频谐振功率放大器电路设计。 初始条件: ①电路板及元件,参数; ②通信原理,高频,电路等基础知识。 时间安排: 课程设计时间为5天。 (1)方案设计,时间1天; (2)软件设计,时间2天; (3)系统调试,时间1天; (4)答辩,时间1天。 指导教师签名: 2010年月日 系主任(或责任教师)签名:年月

目录 目录 (1) 摘要 .................................................................................................................................................. I Abstract ............................................................................................................................................ II 1高频小信号调谐放大器的电路设计.. (1) 1.1 主要技术指标: (1) 1.2给定条件 (1) 1.3设计过程 (2) 1.4 单调谐高频小信号放大器电路调试 (5) 2 LC三点式反馈振荡器设计与制作 (6) 2.1电容三点式振荡器原理工作原理分析 (6) 2.2 主要设计技术性能指标 (10) 2.3 基本设计条件 (10) 2.4 电路结构 (10) 2.5 静态工作电流的确定 (10) 2.6 确定主振回路元器件 (11) 2.7 电路调试 (12) 3 高频谐振功率放大器电路设计与制作 (13) 3.1设计要求 (13) 3.2确定功放的工作状态 (13) 3.3 基极偏置电路计算 (14) 3.4计算谐振回路与耦合线圈的参数 (14) 3.5电源去耦滤波元件选择 (15) 3.6 电路调试 (15) 4 心得体会 (16) 5 参考文献 (17) 本科生课程设计成绩评定表 (18)

高频 谐振功率放大器

高频谐振功率放大器实验 121180166 赵琛 1、实验目的 1.进一步掌握高频丙类谐振功率放大器的工作原理。 2.掌握丙类谐振功率放大器的调谐特性和负载特性。 3.掌握激励电压、集电极电源电压及负载变化对放大器工作状态的影响。 4. 掌握测量丙类功放输出功率,效率的方法。 二、实验使用仪器 1. 丙类谐振功率放大器实验板 2. 200MH泰克双踪示波器 3. FLUKE万用表 4. 高频信号源 5. 扫频频谱仪(安泰信) 6 . 高频毫伏表 三、实验基本原理与电路 1.高频谐振功率放大器原理电路 高频谐振功率放大器是一种能量转换器件,它可以将电源供给的直流能量转换为高频交流输出。高频谐振功率放大器是通信系统中发送装置的重要组件,其作用是放大信号,使之达到足够的功率输出,以满足天线发射和其它负载的要求。 高频谐振功率放大器研究的主要问题是如何获得高效率、大功率的输出。放大器电流导通角θ愈小,放大器的效率η愈高。如甲类功放的θ=180,效率η最高为50%,而丙类功放的θ<90°,效率η可达到80%。谐振功率放大器采用丙类功率放大器,采用选频网络作为负载回路的丙类功率放大器称为高频谐振功率放大器。高频谐振功率放大器原理电路如图3-1。 图中U b为输入交流信号,E B是基极偏置电压,调整E B,改变放大器的导通角,以改变放大器工作的类型。E C是集电极电源电压。集电极外接LC并联振荡回路的功用是作放大器负载。放大器工作时,晶体管的电流、电压波形及其对应关系如图3-1所示。晶体管转移特性如图3.2中虚线所示。由于输入信号较

大,可用折线近似转移特性,如图中实线所示。 图中' B U 为管子导通电压,g m 为特征斜率(跨导)。 图3-1 高频谐振功率放大器的工作原理 设输入电压为一余弦电压,即 u b =U bm cos ωt 则管子基极、发射极间电压u BE 为 u BE =E B +u b =E B +U bm cos ωt 在丙类工作时,E B <' B U ,在这种偏置条件下,集电极电流i C 为余弦脉冲,其最 大值为i Cmax ,电流流通的相角为2θ,通常称θ为集电极电流的通角,丙类工作时,θ<π/2 。把集电极电流脉冲用傅氏级数展开,可分解为直流、基波和各次谐波i C =I C0+i c1+i c2+=I C0+I c1m cos ωt+I c2m cos2ωt+… 式中,I C0为直流电流,I c1m 、I c2m 分别为基波、二次谐波电流幅度。 i R L

丙类高频功率放大器课程设计

高频电子线路课程设计报告 题目:丙类功率放大器 院系: 专业:电子信息科学与技术 班级: 姓名: 学号: 指导教师: 报告成绩: 2013年12月20日

目录 一、设计目的 (1) 二、设计思路 (1) 三、设计过程 (2) 3.1、系统方案论证 3.1.1 丙类谐振功率放大器电路 3.2、模块电路设计 3.2.1丙类谐振功率放大器输入端采用自给偏置电路 3.2.2丙类谐振功率放大器输出端采用直流馈电电路 3.2.3匹配网络 3.2.4 VBB 、Vcm、Vbm、VCC对丙类谐振功率放大器性能影响分析 四、整体电路与系统调试及仿真结果 (11) 4.1 电路设计与分析 4.2.仿真与模拟 4.2.1 Multisim 简介 4.2.2 基于Multisim电路仿真用例 五、主要元器件与设备 (14) 5.1 晶体管的选择 5.1.2 判别三极管类型和三个电极的方法 5.2电容的选择 六、课程设计体会与建议 (17) 6.1、设计体会 6.2、设计建议 七、结论 (18) 八、参考文献 (19)

一、设计目的 电子技术迅猛发展。由分立元件发展到集成电路,中小规模集成电路,大规模集成电路和超大规模集成电路。基本放大器是组成各种复杂放大电路的基本单元。弱电控制强电在许多电子设备中需要用到。放大器在当今和未来社会中的作用日益增加。 高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗,要求发射机具有较大的输出功率,而且,通信距离越远,要求输出功率越大。所以,为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。丙类谐振功率放大器在人类生活中得到了广泛的应用,而且能高效率的将电源供给的直流能量转换为高频交流输出,研究它具有很高的社会价值。 设计简单丙类谐振功率放大器电路并进行仿真,以及对丙类谐振功率放大器发展的展望。 二、设计思路 丙类谐振功率放大器工作原理 图2-2-1为丙类谐振功率放大器原理图,为实现丙类工作,基极偏置电压V BB 应设置在功率的截止区。 输入回路 由于功率管处于截止状态,基极偏置电压V BB 作为结外电场,无法克服结内电场,没有达到晶体管门坎电压,从而,导致输入电流脉冲严重失真,脉冲宽度小于90o。 由i C ≈βi B 知,i C 也严重失真,且脉宽小于90o。 输出回路 若忽略晶体管的基区宽度调制效应以及结电容影响,在静态转移特性曲线 (i C ~V BE )上画出的集电极电流波形是一串周期重复的脉冲序列,脉冲宽度小于半 个周期。

高频谐振功率放大器课程设计说明书

前言 在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射没备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。这里提到的放大级都属于高频功率放大器的范畴。实际上高频功率放大器不仅仅应用于各种类型的发射机中,而且高频加热装置、高频换流器、微波炉等许多电子设备中都得到了广泛的应用。 本次课设报告先是对高频功率放大器有关理论知识作了一些简要的介绍,然后在性能指标分析基础上进行单元电路设计,最后设计出整体电路图,在软件中仿真验证是否达到技术要求,对仿真结果进行分析,最后总结课设体会。 工程概况 高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百Hz 一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz 的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 正文 3.1课程设计目的 由于高频振动器所产生的高频振动信号的功率很小,不能满足发射机天线对发射机的功率要求,所以在发射之前需要经过功率放大后才能获得足够的功率输出。 本次课程设计使通过已学的电路基础知识,模拟高频振动功率放大器,使发射机内部各级电路之间信号功率能有效传输,这就要求放大器输入端和输出端都能实现阻抗匹配。即放大器输入端阻抗和信号阻抗匹配,放大器输出端阻抗和负载阻抗匹配。

谐振功率放大电路的设计

毕业设计(论文)任务书 2010 年 1 月 10 日至 2010 年 4 月 25 日题目:谐振功率放大电路的设计 姓名: 学号: 系部:物理系 专业:电子信息科学与技术 年级:二00六 指导教师:(签名) 系主任(或教研室主任):(签章)

谐振功率放大电路的设计 XX大学 XXX 摘要: 本论文利用所学的高频电子线路知识,设计一个高频功率放大器。通过对电路的设计,来掌握高频谐振功率放大器的设计方法、电路调谐及测试技术。加深对高频电子线路课程理论知识的理解,提高电路设计及电子实践能力。 高频功率放大器是发送设备的重要组成部分之一,在高频范围内,为了获得足够大的高频输出功率,就要采用高频功率放大器。由于高频功率放大器的工作频率高,相对频带窄,所以一般采用选频网络作为负载回路。功率放大电路的主要性能指标:输出功率、效率和非线性失真,而通常在实际应用中为了节省能量所以效率显得尤为重要,因此丙类工作状态为我们所采用,而在工作中为了滤除丙类工作中产生的众多高次谐波分量,因而采用LC谐振回路作为选频网络,也因此也称为丙类谐振功率放大电路 由于丙类谐振功率放大电路方便实用而且容易实现,所以本篇论文主要展示其工作原理、状态及效果。 关键词:谐振、功率、丙类谐振功率、放大电路的设计

目录 (一)设计原理 (5) (二)谐振功率放大电路的工作原理 (7) (三)选定器件 (11) (四)安装调试 (12) (五)结束语 (12) (六)致谢 (13) (七)参考文献 (13)

引言 高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。 高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出 随着现代信息技术的飞速发展和传统工业改造的逐步实现,功率放大电路的应用也变得越来越广泛,作为电子器件中最重要的的功率放大元件,功率放大器也是高频电子线路中需要我们学习的一门主要课程。因此,这门课程也要求我们熟悉谐振功率放大器的工作方法及工作状态,懂得谐振功率放大器的工作原理并且能设计和测试简单的谐振功率放大电路。 因为功率放大器在实际应用中重要而广泛,所以谐振功率放大器的性能以及效率就显得尤为重要。在放大器中根据晶体管的工作状态的不同,或晶体管集电极导通角的范围的差异,放大器又可以分为甲、乙、丙、丁等不同的种类。晶体管中电流的导通角越小,放大器的工作效率也就越高。所以谐振功率放大器一般都工作在丙类状态,主要应用于无线发射机中,用来对载波信号或高频已调波信号进行功率放大。

高频谐振功率放大器设计

课程设计任务 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、采用晶体管完成一个高频谐振功率放大器的设计 2、电源电压V cc=+12V,采用NXO-100环形铁氧体磁芯, 3、工作频率f0=6MHz 4、负载电阻R L=75Ω时,输出功率P0≥100Mw,效率η>60% 5、完成课程设计报告(应包含电路图,清单、调试及设计总 时间安排: 二十周一周,其中3天硬件设计,4天软、硬件调试及答辩。 指导老师签名 年月日 系主任(或责任老师)签名: 年月日

目录 摘要...................................................................................................................................... I 1 高频功率放大器简介. (1) 1.1 宽带功放 (1) 1.2 丙类功率放大器. (4) 2 单元电路的设计 (6) 2.1 丙类功率放大器的设计 (6) 2.2 甲类功率放大器的设计 (8) 2.3 电路仿真 (9) 3 电路的安装与调试 (10) 4 课程设计心得体会 (12) 参考文献 (14) 附录1 (15)

摘要 高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大。以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360°,适用于小信号低功率放大。乙类放大器电流的流通角约等于180°;丙类放大器电流的流通角则小于180°。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。高频功率放大器在很多领域和方面都有应用,并且涉及到很多方面的知识点,则在此次设计中我们可以掌握高频宽带功放与高频谐振功放的设计方法,电路调谐及测试技术;负载的变化及激励电压,基极偏置电压,集电极电压的变化对放大器工作状态的影响;了解寄生振荡引起的波形失真及消除寄生振荡的方法;并且可以了解并掌握仿真软件的应用。 关键词:高频谐振功率放大器谐振回路耦合回路工作状态

功率放大器设计(DOC)

电子电路设计实践 设计题目:直流稳压电源设计 系别:电气工程学院专业:电子信息工程 班级:2011级1 班姓名:腾伟峰 学号:201151746 指导教师:张全禹 时间:2013年3月17日 绥化学院电气工程学院

高频功率放大器 1设计要求 1.1 已知条件 +VCC=+12V,晶体管3DG130的主要参数为PCM=700mW,ICM=300mA,VCES≤0.6V,hfe≥30,fT≥150MHz,放大器功率增益AP≥6dB。晶体管3DA1的主要参数为PCM=1W,ICM=750mA,VCES≥1.5V,hfe≥10,fT=70MHz,AP≥13dB。 1.2 主要技术参数 输出功率P0≥500mW,工作中心频率f0≈5MHz,效率η>50%,负载RL=50Ω。 1.3 具体要求 分析高频功率放大器原理,通过给定的技术指标要求确定甲类功率放大器和丙类谐振功率放大器设计的工作状态和计算出电路中各器件参数,利用电子设计工具软件multisim对电路进行仿真测试,分析电路的特性。

2原理分析 高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器。 利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。电流导通角θ愈小,放大器的效率η愈高。如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90o,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。图 1为丙类谐振功率放大器。 图 1 丙类谐振功率放大器

丙类高频功率放大器专业课程设计

丙类高频功率放大器专业课程设计

高频电子线路课程设计报告 题目:丙类功率放大器 院系: 专业:电子信息科学与技术 班级: 姓名: 学号: 指导教师: 报告成绩: 2013年12月20日

目录 一、设计目的 (1) 二、设计思路 (1) 三、设计过程 (2) 3.1、系统方案论证 3.1.1 丙类谐振功率放大器电路 3.2、模块电路设计 3.2.1丙类谐振功率放大器输入端采用自给偏置电路 3.2.2丙类谐振功率放大器输出端采用直流馈电电路 3.2.3匹配网络 3.2.4 VBB 、Vcm、Vbm、VCC对丙类谐振功率放大器性能影响分析 四、整体电路与系统调试及仿真结果 (11) 4.1 电路设计与分析 4.2.仿真与模拟 4.2.1 Multisim 简介 4.2.2 基于Multisim电路仿真用例 五、主要元器件与设备 (14) 5.1 晶体管的选择 5.1.2 判别三极管类型和三个电极的方法 5.2电容的选择 六、课程设计体会与建议 (17) 6.1、设计体会 6.2、设计建议 七、结论 (18) 八、参考文献 (19)

一、设计目的 电子技术迅猛发展。由分立元件发展到集成电路,中小规模集成电路,大规模集成电路和超大规模集成电路。基本放大器是组成各种复杂放大电路的基本单元。弱电控制强电在许多电子设备中需要用到。放大器在当今和未来社会中的作用日益增加。 高频功率放大器是发送设备的重要组成部分之一,通信电路中,为了弥补信号在无线传输过程中的衰耗,要求发射机具有较大的输出功率,而且,通信距离越远,要求输出功率越大。所以,为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。丙类谐振功率放大器在人类生活中得到了广泛的应用,而且能高效率的将电源供给的直流能量转换为高频交流输出,研究它具有很高的社会价值。 设计简单丙类谐振功率放大器电路并进行仿真,以及对丙类谐振功率放大器发展的展望。 二、设计思路 丙类谐振功率放大器工作原理 图2-2-1为丙类谐振功率放大器原理图,为实现丙类工作,基极偏置电压V BB 应设置在功率的截止区。 输入回路 由于功率管处于截止状态,基极偏置电压V BB 作为结外电场,无法克服结内电场,没有达到晶体管门坎电压,从而,导致输入电流脉冲严重失真,脉冲宽度小于90o。 由i C ≈βi B 知,i C 也严重失真,且脉宽小于90o。 输出回路 若忽略晶体管的基区宽度调制效应以及结电容影响,在静态转移特性曲线 (i C ~V BE )上画出的集电极电流波形是一串周期重复的脉冲序列,脉冲宽度小于半 个周期。

高频谐振功率放大器设计

天津天狮学院 《高频电子线路》设计报告 题目:高频谐振功率放大器 专业:(本14级电子信息工程 班级:2班 :黄霞 总成绩: 天津天狮学院信息与自动化学院 2016年 5月 10 日

课程设计任务 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、采用晶体管完成一个高频谐振功率放大器的设计 2、电源电压V cc=+12V,采用NXO-100环形铁氧体磁芯, 3、工作频率f0=6MHz 4、负载电阻R L=75Ω时,输出功率P0≥100Mw,效率η>60% 5、完成课程设计报告(应包含电路图,清单、调试及设计总

目录 摘要.................................................................................................................................................. I 1 高频功率放大器简介 (1) 1.1 高频功率放大器的分类 (1) 1.2 高频功率放大器的主要技术指标. (2) 1.3 功率放大器的三种工作状态 (2) 1.4 高频功率放大器的分析方法 (3) 2 放大器电路分析 (4) 2.1 谐振功放基本电路组成 (4) 2.2 集电极电流余弦脉冲分解 (5) 2.3 谐振功率放大器的动态特性 (7) 2.3.1 谐振功放的三种工作状态 (7) 2.3.2 谐振功率放大器的外部特性 (8) 3 单元电路的设计 (11) 3.1 丙类功率放大器的设计 (11) 3.1.1 放大器工作状态的确定 (11) 3.1.2谐振回路和耦合回路参数计算 (12) 3.2 甲类功率放大器的设计 (12) 3.2.1电路性能参数计算 (12) 3.2.2静态工作点计算 (14) 3.3 电路原理图 (14) 4 电路的安装与调试 (15) 5 课程设计心得体会 (16) 参考文献 (17) 附录1 (18)

高频功率放大器_课程设计报告

高频电子线路课程设计报告设计题目:高频功率放大器设计 专业班级电信09-3 学号 310908030305 学生姓名董一含 指导教师高娜 教师评分 2012年6月13日

摘要 高频功率放大器是通信系统中发送装置的主要组件,用于发射机地末端。 本课程设计的高频功率放大器电路由两极功率放大器组成,第一级为甲类功率放大器,第二级为丙类谐振功率放大器。分别对甲类功率放大器和丙类谐振功率放大器设计,通过给定的技术指标要求确定甲类功率放大器和丙类谐振功率放大器设计的工作状态和计算出电路中各器件参数,从而设计出完整高频功率放大器电路,再利用电子设计软件multisim对电路仿真。 关键词:甲类功率放大器、丙类功率放大器、multisim仿真。

目录 1设计要求 (1) 1.1已知条件 (1) 1.2主要技术参数 (1) 1.3具体要求 (1) 2原理分析 (2) 3电路设计 (3) 3.1电路概要设计 (3) 3.2丙类功率放大器设计 (3) 3.2.1放大器的工作状态 (3) 3.2.2谐振回路及耦合回路的参数 (4) 3.2.3基极偏置电路参数计算 (5) 3.3甲类功率放大器设计 (5) 3.3.1电流性能参数 (5) 3.3.2静态工作点 (6) 4高频功率放大器完整电路图 (7) 5电路仿真 (8) 6设计心得 (10) 参考文献 (11)

1设计要求 1.1 已知条件 +VCC=+12V,晶体管3DG130的主要参数为PCM=700mW,ICM=300mA,VCES≤0.6V,hfe≥30,fT≥150MHz,放大器功率增益AP≥6dB。晶体管3DA1的主要参数为PCM=1W,ICM=750mA, VCES≥1.5V,hfe≥10,fT=70MHz,AP≥13dB。 1.2 主要技术参数 输出功率P0≥500mW,工作中心频率f0≈5MHz,效率η>50%,负载RL=50Ω。 1.3 具体要求 分析高频功率放大器原理,通过给定的技术指标要求确定甲类功率放大器和丙类谐振功率放大器设计的工作状态和计算出电路中各器件参数,利用电子设计工具软件multisim对电路进行仿真测试,分析电路的特性。

高频谐振功率放大器实验实验报告

丙类高频谐振功率放大器与基极调幅实验报告 一. 实验目的 1.了解和掌握丙类高频谐振功率放大器的构成及工作原理。 2.了解丙类谐振功率放大器的三种工作状态及负载特性、调制特性、放大特性和调谐特性。 3. 掌握丙类谐振功率放大器的输出功率o P 、直流功率D P 、集电极效率C 测量方法。 4. 掌握用频谱仪观测信号频谱、频率及调制度的方法。 二.实验仪器及设备 1.调幅与调频接收模块。 2.直流稳压电压GPD-3303D 3.F20A 型数字合成函数发生器/计数器 4.DSO-X 2014A 数字存储示波器 5.SA1010频谱分析仪 三.实验原理 1.工作原理 高频谐振功率放大器是通信系统重要的组成电路,用于发射机的末级。主要任务是高效率的输出最大高频功率,馈送到天线辐射出去。为了提高效率,晶体管发射结采用负偏置, 使放大器工作于丙类状态(导通角θ<90O )。高频谐振功率 放大器基本构成如图1.4.1所示, 丙类谐振功率放大器属于大信号非线性放大器,工程上常采用折线分析法,各级电压、电流波形如图1.4.2所示。 (a )原理电路 (b )等效电路 图1.4.1 高频功率放大器

图1.4.1中,晶体管放大区的转移(内部静态)特性折线方程为: ()C C BE BZ i g v U =- 1.4.1 放大器的外电路关系为: cos BE B b m u E U t ω=+ 1.4.2 cos CE C cm u E U t ω=- 1.4.3 当输入信号B B Z b u E U <+时,晶体管截止,集电极电流0C i =;当输入信号 B BZ b u E U >+时,发射结导通,由式1.4.1、1.4.2和1.4.3得集电极电流 C i 为: m a x c o s c o s 1c o s C C t i i ωθθ-=- 1.4.4 式中,BZ U 为晶体管开启电压,C g 为转移特性的斜率。 以上分析可知,晶体管的集电极输出电流c i 为尖顶余弦脉冲,可用傅里叶级数展开为: ++++=t I t I t I I t i m C m C m C C c ωωω3cos 2cos cos )(3210 1.4.5 其中,0C I 为C i 的直流分量,m C I 1、2C m I 、…分别为c i 的基波分量、二次谐波分量、…。集电极余弦脉冲电流C i 及各次谐波的波形如图1.4.3所示,其频谱如图1.4.4所示。 (a ) (b ) 图1.4.2 各级电压、电流波形

高频功率放大器设计--毕业设计论文

辽宁省交通高等专科学校机电系 毕业设计文件 设计题目: 高频功率放大器设计 专业:应用电子技术 姓名:班级:学号: 完成期限: 201 年03月25 日至201 _年05月03日指导教师:臧雪岩

摘要:高频功率放大器是无线电发送设备的重要组成部分,它主要用在发射机的末端。信号经高频功率放大器放大后能够满足天线对发射功率的要求,以足够大的功率发射出去,被远方的接收机可靠地接收。高频功率放大器按工作频带来分,可分为窄带高频功率放大器和宽带高频功率放大器,窄带高频功率放大器通常以LC谐振网络作为负载,又称谐振功率放大器,实用高频信号通常是窄带信号,窄带信号是指带宽远小于其中心频率的信号,如中波广播电台的带宽为10kHz,如果中心频率为1000kHz,其带宽远小于其中心频率,该信号即为窄带信号。窄带信号具有类似于单一频率正弦信号的特性,可采用谐振电路滤波。宽带功率放大器是以传输线变压器为负载,又称非谐振功率放大器,区别于窄带功率放大器,宽带功率放大器可在很宽的范围内变换工作频率而不必调谐,但不具有滤波能力。 关键词:高频功率放大器、窄带信号、谐振功率放大器。 Abstract:High frequency power amplifier is an important part of radio transmission equipment, it mainly use at the end of the transmitter. Signal after high frequency power amplifier amplification can satisfy the requirements of the antenna to transmit power, with enough power to launch out, distant receiver receives in a reliable way. High frequency power amplifier according to the working frequency points, high frequency power amplifier can be divided into narrowband and broadband high frequency power amplifier, narrow-band high frequency power amplifier is usually to LC resonant network as a load, also called resonance power amplifier, high frequency signal is usually a narrow-band signal, narrow-band signal refers to the signal bandwidth is far less than its center frequency, such as the bandwidth of the medium wave radio station to 10 KHZ, if the center frequency of 1000 KHZ, its bandwidth is far less than its center frequency, the signal is narrow band signal. Narrow-band signal is similar to the single frequency sine signal characteristics, resonant circuit filter can be used. Broadband power amplifier is based on a transmission line transformer load, also known as the resonance power amplifier, difference in narrow band power amplifier and broadband power amplifier working frequency can be changed in a very wide range and don't have to be tuned, but I don't have filtering capability. Key words: High frequency resonance power amplifier, power amplifier, narrow band signal.

高频电子线路杨霓清答案第七章-高频功率放大器

高频电子线路杨霓清答案第七章-高频功 率放大器 本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21year.March

思考题与习题 为什么高频功率放大器一般要工作于乙类或丙类状态为什么采用谐振回路作负 载为什么要调谐在工作频率上回路失谐将产生什么结果 答:高频功率放大器的输出功率高,其效率希望要高些,这样在有源器 件的损耗的功率就低,不仅能节省能源,更重要的是保护有源器件的安全 工作。乙类丙类放大器状态的效率比甲类高因此高频功率放大器常选用乙 类或丙类放大器。 乙类和丙类放大器的集电极电流为脉冲状,只有通过谐振电阻p R 相 乘,产生边疆的基波电压输出。回路调谐于工作频率是为了取出基波电压 输出。 丙类高频功率放大器的动态特性与低频甲类功率放大器的负载线有什么区别为 什么会产生这些区别动态特性的含义是什么 答:所谓动态特性是指放大器的晶体管(c g 、bz U )、偏置电源(cc V 、 bb V )、输入信号(bm U )、输出信号或谐振电阻(cm U 或p R )确定后,放 大器的集电极电流c i 随be u 和ce u 的变化关系。事实上,改变bb V 可以使放大 器工作于甲类、乙类或丙类。而工作在甲类,电流c i 是不失真的,所作的 负载线也是在确定动态特性,它的动态特性为一条负斜的直线,是由负载 线决定的。 而丙类放大器的bb V <bz V ,电流产生失真,是周期脉冲电流。而输出 电压是谐振回路的谐振电阻p R 与电流脉冲的基波电流相乘,即电流c i 的变 化为脉冲状,而输出电压是连续的基波电压,因此动态特性不能简单地用 谐振电阻p R 负载线决定。只能根据高频谐振功率放大器的电路参数用解析 式和作图法求得,它与甲类放大的负载线不同,其动态特性为。原因是电 流为脉冲状,有一段时间c i 是为0的 为什么谐振功率放大器能工作于丙类,而电阻性负载功率放大器不能工作于丙 类 答:因为谐振功放的输出负载为谐振回路,该回路具有迁频特性,可以 从晶体管的余弦脉冲电流中,将不失真的基波电流分量迁频出来,在并联谐振 回路上形成不失真的基波余弦电压,而电阻听电阻特性输出负载不具备这样的 功能,因此不能在丙类工作。

高频功率放大器的

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 高频功率放大器设计 初始条件: 1、可选元件:晶体管、高频磁环、电阻、电容、开关等 2、仿真软件:Mulitisim 要求完成的主要任务: 设计一个高频功率放大器,要求 1.输出功率Po≥125mW 2.工作中心频率fo=6MHz 3. >65% 时间安排: 1.理论讲解,老师布置课程设计题目,学生根据选题开始查找资料;2.课程设计时间为1周。 (1)确定技术方案、电路,并进行分析计算,时间1天; (2)选择元器件、安装与调试,或仿真设计与分析,时间2天; (3)总结结果,写出课程设计报告,时间2天。 指导教师签名: 2010年月日 系主任(或责任教师)签名:年月日

目录 摘要.......................................................................................................................................................... I ABSTRACT ........................................................................................................................................... I I 1 谐振功率放大器的工作原理.. (1) 1.1基本原理电路 (1) 1.2高频谐振功率放大器的电路组成 (3) 1.3集电极电流余弦脉冲分解 (3) 1.4高频谐振功率放大器的性能分析 (6) 1.4.1 谐振功率放大器的动态特性 (6) 1.4.2 谐振功率放大器的负载特性 (7) 1.4.3 放大器工作状态的调整 (9) 2 具体设计过程 (9) 2.1电路元件参数计算 (10) 2.1.1基极偏置电路计算 (10) 2.1.2计算谐振回路与耦合线圈的参数 (11) 2.1.3电源去耦滤波元件选择 (11) 2.2谐振功率放大器的功率和效率关系协调 (11) 3高频谐振功率放大器电路仿真及结果分析 (13) 3.1仿真结果 (13) 3.1.1第一放大级并测量所需参数和输出波形 (13) 3.1.2第二放大级并测量所需参数和输出波形 (13) 3.1.3第三放大级并测量所需参数和输出波形 (14) 3.2仿真结果分析 (15) 总结 (16) 参考文献 (17) 附录 (18)

完整word版,高频功率放大器设计及仿真

综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。

摘要 通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 关键词:高频;功率;放大;

相关主题
相关文档 最新文档