当前位置:文档之家› 功能材料

功能材料

功能材料
功能材料

BiFeO3铁磁电材料的研究

一、铁电材料简介

铁磁电材料是一种因为结构参数的有序而导致铁电性和磁性同时存在和具有磁电耦合性质的材料.该材料互补了纯的(反一)铁电或(反一)铁磁材料的不足而同时呈现电和磁的有序性,而铁电性和磁性的共存使得这种材料可由电场诱导产生磁场.同时磁场也可以诱发电极化,此性质被称为磁电效应.这种磁和电的相互控制在磁存储介质方面有着极其重要的应用前景。比如有可能通过此性质设计出用快速电极化诱导快速的磁化反转的磁一光盘以取代现有的慢速磁读写记忆材料。该材料既具有传统的铁电材料快速读写的优点,又能克服铁电材料在极化反转中因为电畴钉扎而产生的疲劳现象,可能成为一种集铁电材料和磁性材料优点于一身的性能优良的新型记忆材料。

同时,由于铁电性和磁性的共存,使得这种材料同时具有高的介电常数和磁导率,用此性质可以制成高电容和大电感一体化的电子元器件,为减少高密度电路板上的器件数量,解决感性器件和容性器件的相互干扰问题提供新的思路。另外,该材料的电与磁性参数的耦合也为其在自旋电子器件方面的应用提供了可能,这种序参数的耦合在基础物理方面也具有极其重要的意义。

二、BiFeO3简介

根据Schmid的分析,允许磁性和铁电性同时存在的点群仅有13个,因此大多数铁磁电材料是铁电材料和磁性材料的固熔体或通过其

他方式构成。作为一种典型的单相铁磁电材料,纯相的BiFeO3具有钙钛矿结构,是少数在室温下同时具有铁电性和磁性的材料之一,室温下呈反铁磁有序(尼尔温度为380℃)和铁电有序(居里温度为810℃)。虽然很早就发现BiFeO3中共存的铁电性及磁性,但由于大的漏导使得其铁电性无法正确测量而获得饱和极化,同时因为其反铁磁性在室温下很难测出,这些特点都大大地限制了其应用。近年来薄膜制备方法的发展使得人们能够制备出高质量的BiFeO3薄膜,极大地减小了漏导而获得了强的铁电性,使其重新受到了广泛关注

三、BiFeO3的结构和性能

BiFeO3被认为具有8个结构相变,室温下的结构如图1所示,块体BiFeO3的属于R3C点群,为扭曲的三角钙钛矿结构,其晶格常数根据不同的报导有较大的出入。S.V.等测得的结果为a=b=c=3.96A,而Fiebig等测得的结果则为a=b=c=5.63A,α=β=59.4A。三方钙钛矿结构由立方结构沿(111)方向拉伸而成,沿此方向Bi3相对Fe―0八面体位移,使晶体结构不均匀,自旋沿(110)面排列成螺旋结构,周期约为600A,磁性所属的3m点群允许线性磁电效应(磁电系数为),但是对BiFeO3反铁磁矢量及线性磁电效应在1个周期内的都平均为零。因此尽管纯相的BiFeO3在室温下呈弱的反铁磁性,大多数室温的磁性测量结果都是线性的。而薄膜结构则与衬底及薄膜的取向密切相关,对在不同取向的SrTiO3单晶衬底上BiFeO3薄膜结构的研究表明,生长在(111)衬底上的薄膜具BiFeO3有三方结构,与块体单晶的结构一致,处于未受应力的单畴状态。而生长在(101)及(001)衬底上

的薄膜结构则极大地受到衬底应力的影响,由三方结构沿(001)方向扭曲而转变为单斜结构。对(101)取向的薄膜,扭曲通过(101)及(001)方向的伸长来实现,而(001)取向的薄膜,则通过沿(101)方向的收缩及(001)方向的伸长来实现结构转变。在忽略单斜扭曲的情况下,(001)取向的薄膜结构为四方相结构,对称性为P4mm。此外,因受到衬底应力的影响,薄膜的结构还与厚度密切相关,在200nm厚度的条件下晶格常数为a=3.935A,c/a=1.016,在100~4O00A范围内,膜的c /a值随厚度的增加而减小,在BiFeO3-BaTiO3薄膜中也存在着类似规律。

四、BiFeO3陶瓷与薄膜的制备工艺

1.BiFeO3陶瓷的制备

目前对BiFeO3的研究主要集中在陶瓷与薄膜方面。陶瓷的制备方法主要有固相反应法和湿化学方法(如溶胶-凝胶法)等。固相反应法主要是用Bi与Fe的氧化物粉体通过混合,球磨,再在高温下烧结而成而溶胶-凝胶法则是用Bi与Fe的硝酸盐按适当的比例混合,制成溶液,退火,再次研磨,压成片,进行二次烧结得到。因为BiFeO3,

只能在很窄的温度范围内稳定存在,同时前驱体材料中杂质的存在也会导致杂相的产生,因此制备的BiFeO3陶瓷常常伴有Bi36Fe2O7和BiFeO3等相。这使得纯相的BiFeO3陶瓷的制备成为一个难题M.MasheshKumar等采用稀硝酸清洗的方法获得了纯相的BiFeO3陶瓷,而Y.P.Wang等采用快速液相退火的方法,在高的退火温度下获得了纯相的BiFeO3陶瓷,但在较低烧结温度下制备的陶瓷仍含有Bi36Fe2O57相,为消去杂相,对BiFeO3进行掺杂或将其与其他ABO,型钙钛矿结构的铁电材料互熔制备成固熔体是2条有效途径。

2. BiFeO3薄膜的制备工艺

考虑到未来在信息存储方面的应用及与硅工艺的整合问题,工作逐渐转到BiFeO3,薄膜的制备上来。早期的铁磁电薄膜的制备主要采用磁控溅射法,因为大的漏导存在,制备的薄膜也多限于与其他钙钛矿结构铁电材料的固熔体系。通过与适当比例的铁电材料的固熔,使BiFeO3薄膜的铁电性和磁性同时得到增强。通过磁控溅射沉积的薄膜退火之前一般是无定型结构,因此沉积之后的退火晶化过程在很大程度上决定着薄膜的性质,其中退火温度起着重要的作用,相对来说,退火气氛则不太重要。根据T.Fujii等对BiFeO3-BaTiO3、BiFeO3-PbZrO3,BiFeO3- PbTiO3,等固熔薄膜的研究,发现溅射后的薄膜,当退火温度在600℃以下时制备的薄膜显顺磁性和顺电性,而当退火温度上升至600-700℃时,无论在空气中还是在PbO气氛中退火,尽管结构仍为无定形的,但是薄膜都可以观察到共存的铁电性和磁性。

脉冲激光沉积方法的采用使BiFeO3薄膜的质量得到了大大提高。V.R.Palkar等制备了纯相的BiFeO3薄膜并首次观察到了饱和的电滞回线,2Pr值约为1.5μC/cm2,认为氧分压为脉冲激光沉积方法的关键,氧分压的偏差会导致Fe离子从三价降低到二价从而产生高的电导而无法得到饱和的铁电回线”。Kwi Young Yun等也用脉冲激光沉积方法在PTiO2/SiO2/Si上制备了BiFeO3薄膜,并详细研究了沉积过程中氧分压的影响。结果表明,在氧分压为6.65Pa和13.3Pa 的条件下制备的薄膜中存在Bi2O3相,而当氧压降到0.133Pa时得到了纯相的BiFeO3薄膜。铁电性测量的结果表明纯相的BiFeO3薄膜因大的漏导而未能得到饱和的电滞回线,而6.65Pa条件下制备的薄膜在125kV/cm的外场下2Pr值达到71.3μC/cm2。用脉冲激光沉积方法制备BiFeO3薄膜最突出的工作来自J.Wang,他们在SrRuO3包覆的SrRuO3,单晶衬底上制备了纯(001)取向的纯相的BiFeO3,薄膜,并测量到了室温下共存的铁电性和铁磁性,剩余极化强度达到55μC /cm2。

3.稀土掺杂改性

同时具有较强的铁电性、磁性和磁电效应是其作新型记忆材料和电容电感一体化的关键所在,纯的BiFeO3显然不能满足要求,要做到这一点必须增强材料的铁电性和磁性,同时减少漏导。为此人们对纯的铁酸盐进行了掺杂改性。用稀土元素进行替换能使BiFeO3,的磁性和铁电性得到增强。掺杂方面的主要工作仍然来自V.R.P-kar,他们首先制备了Ta和La且掺杂的Bi0.6Ta0.3La0.1FeO3,发现用湿化学方

法制备的靶材存在着杂相,而通过在Pt/TiO2/Si衬底上的外延生长则可以消除杂相,同时观察到了室温共存的铁电性和磁性,增强的铁电性被认为是材料自身的属性所致,而磁性的增强则被认为是由于Tb离子取代磁性较弱的Bi离子所致。此外还进行了A位和B位的非磁性和磁性同时替代,用湿化学方法制备了Bi0.1La0.9Fe1-x-Mn x O3,粉体,当x=0.5时固熔达到饱和,开始出现第二相。因为Mn的直径小于Fe3+替代结果使a与c同时减小但Mc却基本保持不变;铁电居里点及损耗因子也不发生变化铁电性质不受Mn替代的影响。另外,Prasad 的研究表明],随着替代的稀土离子直径的减小,系统表现出更强的反铁磁有序在掺杂体系中同时存在着倾斜的反铁磁有序和铁磁有序,低温下铁磁有序占支配地位,而高温时则主要表现出反铁磁有序另外的研究表明,稀土的掺杂能够有效地改变材料中的载流子浓度。与纯铁电材料相似,稀土掺杂的另一个结果是产生弛豫型相变,A.Snnivas 等认为这是由于掺杂导致了A位或B位的替代,从而产生了转变温度在弥散型相变温度之上和之下的极化纳区所致。

五、前景展望

自从上世纪60年代BiFeO3被发现以来,国外在实验和理论上都进行了大量的研究,相对其他铁磁电材料,BiFeO3无论在理论上还是实验上的研究都是最成熟的。随着脉冲激光沉积方法的成熟和衬底的改善,BiFeO3薄膜大的漏导问题已经基本解决,大剩余极化和高度取向的BiFeO3薄膜已经被制备出来。陶瓷方面,通过稀土的掺杂和与钙钛矿结构的铁电体的互熔,也使其漏导减小,介电性和可测得铁电性

大大增强。目前铁电磁材料中磁场控制的极化反转的工作正在进行”,并已经取得了重要进展。而国内在BiFeO3方面的研究却进行得很少,目前仅有的报道来自南京大学固体微结构实验室,他们用液相快速热退火的方法制备了BiFeO3陶瓷,并在室温下获得了饱和的电滞回线。作为记忆元件重要形式的铁磁电薄膜,目前国内尚无报道。在铁磁电材料特别是铁磁电薄膜方面,我国与国外还存在较大的差距。目前,尽管通过解决BiFeO3薄膜的漏导获得了大的剩余极化,其室温下弱的磁性却没有得到大的改善,离应用还有差距。因此如何增强BiFeO3的磁性是目前需要解决的最主要的问题。

功能材料试题及参考答案

功能材料试题及参考答案 篇一:功能材料试题参考答案 一、名词解释(共24分,每个3分) 居里温度:铁电体失去自发极化使电畴结构消失的最低温度(或晶体由顺电相到铁电相的转变温度)。 铁电畴:铁电晶体中许许多多晶胞组成的具有相同自发极化方向的小区域称为铁电畴。 电致伸缩:在电场作用下,陶瓷外形上的伸缩(或应变)叫电致伸缩。 介质损耗:陶瓷介质在电导和极化过程中有能量消耗,一部分电场能转变成热能。单位时间内消耗的电能叫介质损耗。 n型半导体:主要由电子导电的半导体材料叫n型半导体。 电导率:电导率是指面积为1cm2,厚度为1cm的试样所具有的电导(或电阻率的倒数或它是表征材料导电能力大小的特征参数)。压敏电压:一般取I=1mA时所对应的电压作为I随V陡峭上升的电压大小的标志称压敏电压。 施主受主相互补偿:在同时有施主和受主杂质存在的半导体中,两种杂质要相互补偿,施主提供电子的能力和受主提供空状态的能力因相互抵消而减弱。 二、简答(共42分,每小题6分)

1.化学镀镍的原理是什么? 答:化学镀镍是利用镍盐溶液在强还原剂(次磷酸盐)的作用下,在具有催化性质的瓷件表面上,使镍离子还原成金属、次磷酸盐分解出磷,获得沉积在瓷件表面的镍磷合金层。由于镍磷合金具有催化活性,能构成催化自镀,使得镀镍反应得以不断进行。 2.干压成型所用的粉料为什么要造粒?造粒有哪几种方式?各有什么特点? 答:为了烧结和固相反应的进行,干压成型所用粉料颗粒越细越好,但是粉料越细流动性越差;同时比表面积增大,粉料占的体积也大。干压成型时就不能均匀地填充模型的每一个角落常造成空洞、边角不致密、层裂、弹性后效等问题。为了解决以上问题常采用造粒的方法。造粒方式有两种方式:加压造粒法和喷雾干燥法。加压造粒法的特点是造出的颗粒体积密度大、机械强度高、能满足大型和异型制品的成型要求。但是这种方法生产效率低、自动化程度不高。喷雾干燥法可得到流动性好的球状团粒,产量大、可连续生产,适合于自动化成型工艺。但是这种方法得到的团粒体积密度不如喷雾干燥法大、机械强度不如喷雾干燥法高。 3.铁电体与反铁电体的自发极化有何不同特点?并分别解释为什么总的 ΣP=0?

金属材料与人类社会的发展

金属材料与人类社会的发展 概要: 金属是人类历史发展中最不可或缺的材料,更是人类社会进步的关键所在,本篇论文将围绕金属在人类社会中的地位,应用等方面展开。主要论述金属材料与人类社会之间的关系,回顾金属过去在人类历史中的作用,分析其在现代社会的地位,并且展望金属才来的在未来的发展前景。 正文: 从100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉镍管炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。至今,金属材料在材料工业中一直占有主导地位。金属材料可以说是人类社会发展的全称见证者,我之所以那么说,是与他在人类社会各个转型期所起到的举足轻重的作用所分不开的。作为人类最早发现并开始加以利用的一种材料,金属可以说从方方面面影响着人类的历史发展进程。从最初把金属打造成狩猎武器到如今人类的生活已完全离不开金属,可见金属早已融入了整个人类社会,那么金属在人类社会中的过去,现在和将来又会是什么样的呢? 金属的在人类社会的过去时中扮演的角色多为一个时期的社会性质的缩影。如新石器时代,青铜器时代等等,而之所会如此为这些时代命名,归根结底,最主要的原因,便是人类在这一石器开发出了某种新的金属,而这一金属几乎决定了人类在这一时期的文明发展进程。如在战国石器,由于铁器的发明和使用,既解放了农村的大量生产力,又在投入战争使用后,大大缩短了战争的进程,从而加速了整个国家的统一,结束了乱世的局面,使得我国文明在一段动荡时期后能够继续得以正常的发展。其中,金属在武器方面的贡献主要在冷兵

新材料科学导论期末复习题(有答案版)

一、填空题: 1.材料性质的表述包括力学性能、物理性质和化学性质。 2.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。 3.材料的结构包括键合结构、晶体结构和组织结构。 4.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、制备/加工和结构/成分。 5.按组成和结构分,材料分为金属材料,无机非金属材料,高分子材料和复合材料。 6.高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。 7.复合材料可分为结构复合材料和功能复合材料两大类。 8.聚合物分子运动具有多重性和明显的松弛特性。 9.功能复合材料是指除力学性能以外,具有良好的其他物理性能并包括部分化学和生物性能的复合材料。如有 光,电,热,磁,阻尼,声,摩擦等功能。 10.材料的物理性质表述为光学性质、磁学性质、电学性质和热学性质。 11.由于高分子是链状结构,所以把简单重复(结构)单元称为链节,简单重复(结构)单元的个数称为聚 合度。 12.对于脆性的高强度纤维增强体与韧性基体复合时,两相间若能得到适宜的结合而形成的复合材料,其性能显示 为增强体与基体的互补。(ppt-复合材料,15页) 13.影响储氢材料吸氢能力的因素有:(1)活化处理;(2)耐久性(抗中毒性能); (3)抗粉末化性能;(4)导热性能;(5)滞后现象。 14.典型热处理工艺有淬火、退火、回火和正火。 15.功能复合效应是组元材料之间的协同作用与交互作用表现出的复合效应。复合效应表现线性效应和非线性效 应,其中线性效应包括加和效应、平均效应、相补效应和相抵效应。 16.新材料发展的重点已经从结构材料转向功能材料。 17.功能高分子材料的制备一般是指通过物理的或化学的方法将功能基团与聚合物骨架相结合的过程。功能高 分子材料的制备主要有以下三种基本类型: ①功能小分子固定在骨架材料上; ②大分子材料的功能化; ③已有功能高分子材料的功能扩展; 18.材料的化学性质主要表现为催化性能和抗腐蚀性。 19.1977年,美国化学家MacDiarmid,物理学家Heeger和日本化学家Shirakawa首次发现掺杂碘的聚乙炔具有金 属的导电特性,并因此获得2000年诺贝尔化学奖。 20.陶瓷材料的韧性和塑性较低,这是陶瓷材料的最大弱点。 第二部分名词解释

薄膜材料的应用与发展

薄膜材料的应用与发展 薄膜材料的发展以及应用,薄膜材料的分类,如金刚石薄膜、铁电薄膜、氮化碳薄膜、半导体薄膜复合材料、超晶格薄膜材料、多层薄膜材料等。各类薄膜在生产与生活中的运用以及展望。 1 膜材料的发展 在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。 自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。 2 膜材料的应用 人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。它的一个很重要的应用就是海水的淡化。虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%~3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。因此将浩瀚的海水转为可以饮用的淡水迫在眉睫。淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分子渗透膜,在膜的一边给海水施加高压,使水分子透过渗透膜,达到膜的另一边,而把各种盐类离子留下来,就得到了淡水。反渗透法的关键就是渗透膜的性能,目前常用有醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。 利用膜两边的浓度差不仅可以淡化海水,还可以提取多种有机物质。工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约了成本,有利于我们的生存环境。 膜的应用还体现在表面化学上面。在日常生活中,我们会发现在树叶表面,水滴总是呈圆形,是因为水不能在叶面铺展。喷洒农药时,如果在农药中加入少量的润湿剂(一种表面活性剂),农药就能够在叶面铺展,提高杀虫效果,降低农药用量。 更重要的,研究人员还将膜材料用于血液透析,透析膜的主要功能是移除体内多余水份和清除尿毒症毒素,大大降低了肾功能衰竭患者的病死率[1] 3 膜材料的分类 近年来,随着成膜技术的飞速发展,各种材料的薄膜化已经成为一种普遍趋势。 薄膜材料种类繁多,应用广泛,目前常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。目前很受人们注目的主要有一下几种薄膜。 3.1金刚石薄膜 金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔。 近年来,随着科技的发展,人们发展了多种金刚石薄膜的制备方法,比如离子束沉积法、磁控溅射法、热致化学气相沉积法、等离子化学气相沉积法等.成功获得了生长速度快、具有较高质量的膜,从而使金刚石膜具备了商业应用的可能。

功能材料概论个人版考试专用

第一章功能材料概论 功能材料的定义 功能材料指以特殊的电、磁、声、光、热、力、化学及生物学等性能作为主要性能指标的一类材料。 功能材料的特征 1)功能材料的功能对应于材料的微观结构和微观物体的运动,是最本质的特征。2)功能材料的聚集态和形态非常多样化,除晶态外,还有气态、液态、液晶态、非晶态、混合态和等离子态。除三维材料外,还有二维、一维和零维材料。 3)结构材料常以材料形式为最终产品,而功能材料有相当一部分是以元件形式为最终产品,即材料元件一体化。 4)功能材料是利用现代科学技术,多学科交叉的知识密集型产物。 5)功能材料的制备技术不同于结构材料用的传统技术,而是采用许多先进的新工艺和新技术,如急冷、超净、超微、超纯、薄膜化、集成化、微型化、智能化以及精细控制和检测技术。 功能材料的分类 功能材料种类繁多,涉及面广,有多种分类方法。目前主要是根据材料的化学组成、应用领域、使用性能进行分类。

按化学组成:金属功能材料、陶瓷功能材料、高分子功能材料、复合功能材料 按应用领域: 电子材料、能源材料、信息材料、光学材料、仪器仪表材料、航空航天材料、生物医学材料、传感器用敏感材料。 按使用性能:电功能材料、磁功能材料、光功能材料、热功能材料、化学功能材料、生物功能材料、声功能材料、隐形功能材料。 功能材料的现状 近几年来,功能材料迅速发展,已有几十大类,10万多品种,且每年都有大量新品种问世。现已开发的以物理功能材料最多,主要有: 1)单功能材料,如:导电材料、介电材料、铁电材料、磁性材料、磁信息材料、发热材料、热控材料、光学材料、激光材料、红外材料等。 2)功能转换材料,如:压电材料、光电材料、热电材料、磁光材料、声光材料、电流变材料、磁敏材料、磁致伸缩材料、电色材料等。 3)多功能材料:如防振降噪材料、三防材料(防热、防激光和防核)、电磁材料等。4)复合和综合功能材料,如:形状记忆材料、隐身材料、传感材料、智能材料、显示材料、分离功能材料、环境材料、电磁屏蔽材料等。 5)新形态和新概念功能材料,如:液晶材料、梯度材料、纳米材料、非平衡材料等。 功能材料的展望

材料期末考试题目及答案

第一章概述 1、材料与工艺是设计的物质技术条件,是产品设计的前提,它与产品的功能、形态构成了产品设计的三大要素。 2、按材料的物质结构分类,材料可分为: 金属材料:黑色金属(铸铁、碳钢、合金钢)、有色金属(铜、铝及合金等) 无机非金属材料:石材、陶瓷、玻璃、石膏等 有机高分子材料:塑料、橡胶、纤维、木材、皮革等 复合材料:玻璃钢、碳纤维复合材料等 3、材料设计的方式:一、从产品的功能、用途出发;二、从原材料出发。 4、材料的固有特性:物理性能、化学性能。 材料的派生特性:材料的加工特性、材料的感觉特性、环境特性和材料的经济性。 第三章材料感觉特性的运用 1、产品造型设计的三大感觉要素:形态感色彩感材质感 2、材料感觉特性的概念及分类 概念:材料质感又称材料感觉特性,指人的感觉器官(触觉和视觉)对材料作出的综合印象,由人的知觉系统从材料表面特征得出的信息,是人对材料的生理和心理活动。 分类:、一、触觉质感和视觉质感;二、自然质感和人为质感(利用人为质感设计可以做到同材异质感、异材同质感,从而使设计更加灵活多样、变化无穷。) 3、质感设计的三大运用原则:合理、艺术性、创造性地使用材料 4、质感设计在产品造型设计中的作用。 1)、提高适用性—良好的触觉质感设计,可以提高整体设计的适用性。 2)、增加装饰性-——良好的视觉质感设计可以提高工业产品整体设计的装饰性,还能补充形态和色彩所难以替代的形式美。 3)、获得多样性和经济性———良好的人为质感设计可以替代自然质感或弥补自然质感的某些不足,可以节约大量珍贵的自然材料,达到工业产品设计的多样性和经济性。 4)、表现真实性和价值性——良好的整体设计的真实性和价值性。 第五章金属材料及其加工技术 1、金属材料的性能

材料发展的回顾与展望未来

材料发展的回顾与展望未来 摘要:回顾过去,人类的生活、生产和发展离不开材料。从人类早期发展到现在,材料的发展在人类发展史上占着不可或缺的地位。直到现代,人类的材料生产与制备技术已经相当成熟,各种新材料如雨后春笋般不断涌现。展望未来,材料依然将在人类社会的各个方面扮演重要角色。主要向半导体材料、结构材料、有机高分子材料等方向发展。 关键词:材料,发展 一、回顾材料发展历程 材料是人类生活和生产的物质基础,是人类认识自然和改造自然的工具。人类文明曾被划分为旧石器时代、新石器时代、青铜器时代、铁器时代等,由此可见材料的发展对人类社会的影响——没有材料就是没有发展。 人类诞生以前其实就有了材料,材料的历史与人类史一样久远,可能还要比之久远呢! 在人类文明的进程中,材料大致经历了以下五个发展阶段,他们是 1.使用纯天然材料的初级阶段:旧石器时代,人类只能使用天然材料(如兽皮、甲骨、羽毛、树木、草叶、石块、泥土等),之后也都只是纯天然材料的简单加工而已。 2.人类单纯利用火制造材料的阶段:新石器时代、铜器时代和铁器时代,是人类利用火来对天然材料进行煅烧、冶炼和加工的时代,主要材料有:陶、铜和铁。 3.利用物理与化学原理合成材料的阶段:20世纪初,由于物理和化学等科学理论在材料技术中的应用,从而出现了材料科学。在此基础上,人类开始了人工合成材料的新阶段,主要材料:人工合成塑料、合成纤维及合成橡胶等合成高分子材料的出现,加上已有的金属材料和陶瓷材料(无机非金属材料)构成了现代材料(除合成高分子材料以外,人类也合成了一系列的合金材料和无机非金属材料。超导材料、半导体材料、光纤等材料都是这一阶段的杰出代表)。 4.材料的复合化阶段:20世纪50年代金属陶瓷的出现标志着复合材料时代的到来。人类已经可以利用新的物理、化学方法,根据实际需要设计独特性能的复合材料(只要是由两种不同的相组成的材料都可以称为复合材料)。 5.材料的智能化阶段:如形状记忆合金、光致变色玻璃等等都是近年研发的智能材料(自然界中的材料都具有自适应、自诊断合资修复的功能,而目前研制成功的智能材料还只是一种智能结构)。 20 世纪以来,物理、化学、力学、生物学等学科的研究和发展推动了对于物质结构、材料的物理化学和力学性能的深入认识和了解。同时,金属学、冶金学、工程陶瓷技术、高分子科学、半导体科学、复合材料科学以及纳米技术等学科的发展促进了各种新型材料的产生,并推进了对于材料的制备、生产工艺、结构、性能及其相互之间关系的研究,为材料的设计、制造、工艺优化和材料功能和性能的合理使用,提供了充分的科学依据。现代材料科学更注重于研究新型复合材料和纳米材料的制备和创新,对于设计具有不同性能要求的材料复合工艺和纳米态材料的凝聚过程,以及各类材料之间的相互渗透和交叉的性能以及综合性能的研究给予了更多的重视。现代材料科学的发展不仅与揭露材料本质及其演化

复合材料期末考试复习题(汇编)

1.复合材料的分类方法? 复合材料的分类方法也很多。常见的有以下几种。 按基体材料类型分类聚合物基复合材料以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体制成的复合材料。 金属复合材料以金属为基体制成的复合材料,如铝墓复合材料、铁基复合材料等。 无机非金属基复合材料以陶瓷材料(也包括玻璃和水泥)为基体制成的复合材料。 按增强材料种类分类 玻璃纤维复合材料。 碳纤维复合材料。 有机纤维(芳香族聚酰胺纤维、芳香族聚酯纤维、高强度聚烯烃纤维等)复合材料。 金属纤维(如钨丝、不锈钢丝等)复合材料。 陶瓷纤维(如氧化铝纤维、碳化硅纤维、翩纤维等)复合材料。 此外,如果用两种或两种以上的纤维增强同一基体制成的复合材料称为“混杂复合材料”。混杂复合材料可以看对免戈趁两种或多种单一纤维复合材料的相互复合,即复合材料的“复合材料”。 按增强材料形态分类 连续纤维复合材料作为分散相的纤维,每根纤维的两个端点都位于复合材料的边界处。 短纤维复合材料短纤维无规则地分散在基体材料中制成的复合材料。 粒状填料复合材料微小颗粒状增强材料分散在基体中制成的复合材料。 编织复合材料以平面二维或立体三维纤维编织物为增强材料与基体复合而成的复合材料。 按用途分类 复合材料按用途可分为结构复合材料和功能复合材料。 2.举例说明复合材料在现代工业中的应用? <1>建筑工业中,复合材料广泛应用于各种轻型结构房屋,建筑装饰、卫生洁具、冷却塔、储水箱、门窗及其门窗构件、落水系统和地面等。 <2>化学工业中,复合材料主要应用于防腐蚀管、罐、泵、阀等。 <3>交通运输方面,如汽车制造业中,复合材料主要应用于各种车身结构件、引擎罩、仪表盘、车门、底板、座椅等;在铁路运输中用于客车车厢、车门窗、水箱、卫生间、冷藏车、储藏车、集装箱、逃生平台等。

《化学材料的发展与应用》

《化学与人类文明》课程论文 化学材料的发展与应用 学院:机械学院 专业:机械制造及其自动化 班级:机制101 学号: 学生姓名: 电子信箱: 2012年12月12日

化学材料的发展与应用 摘要:随着现代科学技术的飞跃发展,以前传统的材料早已不能满足我们人类的需求和发展,为了获得更多满足人类工业和日常生活中所需要的具有特定性能的材料,化学材料先如今得到了很大的发展,化学材料不仅获得了传统材料的有点,还具备了一些特殊的功能,极大的满足了工业生产和生活所需。本文章分析了一些常见的化学材料的应用和发展状况,并提出了未来材料化学的发展趋势的一些简单看法。 关键词:材料化学;化学材料;性能;应用;发展 化学与材料息息相关,面对传统的材料不能满足工业生产、日常生活的时候,世界上各国都已开始把目光看向了材料化学,材料化学的发现和使用,使之研发出一系列的新材料,材料化学在原子和分子的水准上设计新材料的战略意义有着广阔的应用前景。然而,材料化学在发挥巨大作用的同时也不短的推动自身理论与技术水平的提高,并且为材料工程的发展带来了新的活力和更加广阔的发展空间。 1材料化学简介 材料化学是材料科学的一个重要分支,也是材料科学的核心部分,在新材料的发现和合成,制备和修饰工艺的发展以及表征方法的革新等领域所作出了的独到贡献。材料是具有使其能够用于机械、结构、设备和产品的性质的物质,是人们利用化合物的某些功能来制作物件时用的化学物质。而化学是在原子、分子水平上研究物质的组成、结构、件能、反应和应用的学科。材料与化学试剂不同,后者在使用过程中通常被消耗并转化成别的物质,而材料则一般可重复持续使用,除了正常消耗以外,它不会不可逆的转变为别的物质。化学则是关于物质的组成,结构和性质以及物质相互转变的研究。显然,材料科学和化学的对象都是物质,前者注重的是宏观方面,而后者则关注原子和分子水平的相互作用。材料化学正是这两者结合的产物,它是关于材料的结构、性能,制备和应用的化学。2化学材料的分类、功能及应用 材料一般按其化学组成,结构进行分类。通常可把材料分成金属材料,无机非金属材料,聚合物材料和复合材料四大类。此外,随着材料科学的迅猛发展,

材料的发展趋势

材料的发展趋势 装饰材料既是一泞日专统话题,也是一个同现代科技的发展有密切关联的概念。最早的装饰材料有石、木、土、铁、铜、编织物等,随看科技进步和现代工业的发展,装饰材料从品种、规格、档次上都进入了新的时期。 近年来,展示材料总的发展趋势是:品种日益增多,性能越来越好。例如,装饰玻璃品种越来越多,包括复合装饰玻璃、组合装饰玻璃、高虽凹凸装饰玻璃等,这些材料已广泛用于各类展示设计中。日本还推出一种新颖的立体色彩玻璃,这种玻璃在白色光线的照射下,显示出立体感的彩虹色彩,其装饰效果极佳。 墙纸仍是广泛使用的墙面装饰材料,并向多功能方向发展,出现了防污染、防菌、防蛀、防火、隔热、调节湿度、防又对线、抗静电等不同功能的墙纸。欧美发展较快的是织物堆海拜口天然材料作面层的墙纸。 陶瓷面砖正逐步取代塑料、金属等饰面材料。其主要原因是塑料易老化、易燃烧,而金属饰面材料易腐蚀、价格高。陶瓷面砖则具有坚固耐用、易清洗、色彩鲜艳、防火、防水、耐磨和维修费用侃等优点。目前国外的陶瓷面砖品种正朝多样化方向发展。有一种浮雕面砖,艺术效果好、重量轻、隔音保温、长期使用不褪色,很受欢迎。 目前有一种以木头、砂石、玻璃、天然纤维等为原料制成的装饰材料受到月门的青睐,它能产生回归自然感觉。而以合成、化工原料为主的展示装饰材料,相比之下自然显得冷落。 采用金属或镀金属的复合材料也是国外材料的发展方向之一。例如,展示设计中采用不锈钢装饰墙板,立面庄重、质疙躬虽;墙面赐吕台金,装饰效果好、安装简单、成本低、使用寿命长。金属表面经阳极氧化或嚼泰处理,可以得到不同色彩。其他如铜浮雕艺术装饰板、镀金属材料等也开始在各种装饰中使用。 在今后一段时间内装饰材料将向以下几个方向发展:首先,是复合化、多功能、预制化方向。也就是利用复合技术、特殊性能来提高其性能的材料.复合装饰玻璃、组合装饰玻璃、高虽凹凸装饰玻璃、最新开发的i立体影像玻离将成为商家关注的热点。金属或镀金属复合材料成为颇具市场发展潜力的装饰用料。 其次,是向高性能材料方向发展。轻质、高虽度、高耐腐蚀性、高防火性、

(完整版)材料分析方法期末考试总结

材料分析方法 1.x射线是一种波长很短的电磁波,具有波粒二相性,粒子性往往表现突出,故x射线也可视为一束具有一定能量的光量子流。X射线有可见光无可比拟的穿透能力,可使荧光物质发光,可使气体或其它物质电离等。 2.相干散射:亦称经典散射,物质中的电子在X射线电场的作用下,产生强迫振动。这样每个电子在各方向产生与入射X射线同频率的电磁波。新的散射波之间发生的干涉现象称为相干散射。 3.不相干散射:亦称量子散射,X射线光子与束缚力不大的外层电子,或自由电子碰撞时电子获得一部分动能成为反冲电子,X射线光子离开原来方向,能量减小,波长增加。 4.吸收限:物质原子序数越大,对X射线的吸收能力越强;对一定的吸收体,X射线的波长越短,穿透能力越强,表现为吸收系数的下降,但随着波长的的降低,质量吸收系数并非呈连续的变化,而是在某些波长位置上突然升高,出现了吸收限。 5.荧光辐射:由入射X射线所激发出来的特征X射线称为荧光辐射(荧光X 射线,二次X射线)。 6.俄歇效应:由于光电效应而处于激发态的原子还有一种释放能量的方式,及俄歇效应。原子中一个K层电子被入射光量子击出后,L层一个电子跃入K层填补空位,此时多余的能量不以辐射X光量子放出,而是以另一个L层电子活的能量跃出吸收体,这样的一个K层空位被两个L层空位代替的过程称为俄歇效应,跃出的L层电子称为俄歇电子。 7.光电子:当入射光量子的能量等于或大于吸收体原子某壳体层电子的结合能时,此光量子就很容易被电子吸收,获得能量的电子从内层溢出,成为自由电子,称为光电子。原子则处于激发态,这种原子被入射辐射电离的现象即光电效应。8.滤波片的作用:滤波片是利用吸收限两侧吸收系数差很大的现象制成的,用以吸收不需要的辐射而得到基本单色的光源。 9.布拉格方程只是获得衍射的必要条件而非充分条件。 10.晶面(hkl)的n级反射面(nh nk nl),用符号(HKL)表示,称为反射面或干涉面。 11.掠射角是入射角(或反射角)与晶面的夹角,可表征衍射的方向。 12.衍射极限条件:在晶体中,干涉面的划取是无极限的,但并非所有的干涉面均能参与衍射,因存在关系dsinθ=λ/2,或d>=λ/2,说明只有间距大于或等于X 射线半波长的那些干涉面才能参与反射。 13.劳埃法:采用连续X射线照射不动的单晶体,因为X射线的波长连续可变,故可从中挑选出其波长满足布拉格关系的X射线使产生衍射。 14.周转晶体法:采用单色X射线照射转动的单晶体,并用一张以旋转轴为轴的圆筒形底片来记录。 15.粉末法:采用单色X射线照射多晶体,试样是由数量众多、取向混乱的微晶体组成。 16.吸收因数:由于试样本身对X射线的吸收,使衍射强度的实测值与计算值不符,为了修正这一影响,则在强度公式中乘以吸收因数。 17.温度因数:原子热振动使晶体点阵原子排列的周期性受到破坏,使得原来严格满足布拉格条件的相干散射产生附加的相差,从而使衍射强度减弱。为修正实验温度给衍射强度带来的影响,需要在积分强度公式中乘以温度因数。

材料化学试题库

一填空题 (1)材料是具有使其能够用于机械、结构、设备和产品性质的物质。这种物质具有一定的性能或功能。 (2)材料按照化学组成、结构一般可分为金属材料、无机非金属材料、聚合物材料和复合材料。 (3)材料按照使用性能可分为结构材料和功能材料。结构材料更关注于材料的力学性能;而另一种则考虑其光、电、磁等性能。 (4)材料化学是关于材料的结构、性能、制备和应用的化学。 (5)一般材料的结构可分为三个层次,分别是微观结构、介观结构和宏观结构。 (6)对于离子来说,通常正离子半径小于相应的中性原子,负离子的半径则变大。 (7)晶体可以看成有无数个晶胞有规则的堆砌而成。其大小和形状由晶轴(a,b,c)三条边和轴间夹角(α,β,γ)来确定,这6个量合称晶格参数。 (8)硅酸盐基本结构单元为硅氧四面体,四面体连接方式为共顶连接。 (9)晶体的缺陷按照维度划分可以分为点缺陷、线缺陷、面缺陷和体缺陷,其延伸范围为零维、一维、二维和三维。 (10)位错分为韧型位错、螺型位错以及由前两者组成的混合位错三种类型。 (11)固溶体分为置换型固溶体和填隙型固溶体,前者溶质质点替代溶剂质点进入晶体结点位置;后者溶质质点进入晶体间隙位置。 (12)材料热性能主要包括热容、热膨胀和热传导。 (13)材料的电性能是指材料被施加电场时的响应行为,包括有导电性、介电性、铁电性和压电性等。 (14)衡量材料介电性能的指标为介电常数、介电强度和介电损耗。 (15)磁性的种类包括:反磁性、顺磁性、铁磁性、反铁磁性和铁氧体磁性等。 (16)铁磁材料可分为软磁材料、硬磁材料和矩磁材料。 (17)材料的制备一般包括两个方面即合成与控制材料的物理形态。 (18)晶体生长技术主要有熔体生长法和溶液生长法,前者主要包括有提拉法、坩埚下降法、区融法和焰融法等。 (19)溶液达到过饱和途径为:一,利用晶体的溶解度随改变温度的特性,升高或降低温度而达到过饱和;二,采用蒸发等办法移去溶剂,使溶液浓度增高。 (20)气相沉积法包括物理气相沉积法PVD和化学气相沉积法CVD。 (21)液相沉淀法包括直接沉淀法、共沉淀法、均匀沉淀法和水解法。 (22)固态反应一般包括相界面上的反应和物质迁移两个过程,反应物浓度对反应的影响很小,均相反应动力学不适用。 (23)自蔓延高温合成按照原料组成可分为元素粉末型、铝热剂型和混合型。 (24)金属通常可分为黑色金属和有色金属;黑色金属是指铁、铬、锰金属与它们的合金。(25)合金基本结构为混合物合金、固溶体合金和金属间化合物合金。 (26)铁碳合金的形态包括有奥氏体、马氏体、铁素体、渗碳体与珠光体等。 (27)金属材料热处理包括整体热处理、表面热处理和化学热处理。 (28)超耐热合金包括铁基超耐热合金、镍基超耐热合金和钴基超耐热合金。 (29)提高超耐热合金性能的途径有改变合金的组织结构和采用特种工艺技术,后者主要有定向凝固和粉末冶金。 (30)产生合金超塑性的条件为产生超细化晶粒与适宜的温度和应变速率。 (31)无机非金属材料主要有以氧化物、碳化物、氮化物、硼化物、硫系化合物(包括硫化物、硒化物及碲化物)和硅酸盐、钛酸盐、铝酸盐、磷酸盐等含氧酸盐为主要组成的无机材

《功能材料学》复习重点.doc

《功能材料学》复习重点 1.什么是功能材料和主要特征: 功能材料是指具有优良的物理、化学、生物或其相互转化的功能,用于非承载目的的材料。有以下五大主要特征: %1功能对应于材料的微观结构和微观物体的运动。 %1其聚集态和形态非常多样化。 %1产品形式主要是材料元件一体化。 %1是利用现代科学技术,多学科交叉的知识密集型产物。 %1采用许多新工艺和新技术进行制备与检测。 2.电了导电材料中的超导体、导体、半导体和绝缘体的区别? 答:导体、超导体、半导体和绝缘体的区别在于电导率、能带结构和导电机理三方面。(1)电导率:导体的电导率Wl()5S/m;超导体的电导率为无限大;半导体的电导率为10-7-104S/m;绝缘体的电导率W10-7S/m。 (2)能带结构:导体和超导体的能带结构有三类:未满带+重带+空带;满带+空带;未满带+禁带+空带。半导体和绝缘体的能带结构是满(价)带+禁带+空(导)带,半导体的禁带宽度为0Tc时,导体的P尹0,即失去超导性。 (2)临界磁场强度He。除温度外,足够强的磁场也能破坏超导态。使超导态转变成正常态的最小磁场He⑴叫做此温度下该超导体的临界磁场。 (3)临界电流密度Jc。当超导电流超过某临界值Jc时,也可使金属从超导态恢夏到正常态。Jc称为临界电流密度,临界电流密度Jc本质上是超导体在产生超导态时临界磁场的电流。 (4)Meissner (迈斯纳)效应。处于超导态的材料,不管其经历如何,磁感应强度始终为零。超导体是一种抗磁体。因此具有屏蔽磁场和排除磁通的功能。 4.铁电体及其特性? 铁电体是指在某温度范围内具有自发极化且极化强度可以因外电场而反I小的晶体,也就是,凡具有电畴和电滞回线的介电材料就称为铁电体。 铁电体的特性:(1)铁电体育许多电畴,不同的电畴之间永久偶极矩的取向不一致;(2)P 与E形成电滞回线;(3)居里温度Tc是铁电相与顺电相的相转变温度。(4)介电常数E与非铁电体不同。 5.介电材料及其特征值?

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

功能材料 考试必备 复习思考题

功能材料复习思考题 一、基本概念题 1、超导体的同位素效应是指超导体的临界温度依赖于依赖于同位素质量的现象。 2、气敏陶瓷是吸收某种气体后电阻率发生变化的一种功能陶瓷,其气敏特性,大多通过待测气体在陶瓷表面附着,产生某种化学反应、与表面产生电子的交换等作用来实现的,这种气敏现象称为表面过程。湿敏陶瓷:是指对气体、液体和固体物质中水分含量敏感的陶瓷材料。 3、精细陶瓷按照化学组成可分为氧化物陶瓷、非氧化物陶瓷;按照陶瓷材料的功能可分为结构陶瓷、功能陶瓷、生物陶瓷。精细陶瓷生产的基本工序包括粉体制备、成形和烧结。 4、形状记忆合金中生物相容性好的是Ti-Ni基形状记忆合金,不具有生物相容 性的是Cu基形状记忆合金。 5、第二类超导体的主要特征是有两个临界磁场,在混合态下,第二类超导体仍 具有零电阻,但不具有完全抗磁性。 6、相对于用天然无机物烧结的传统陶瓷,以精制的人工合成的无机化合物或高纯天然无机物为原料,采用精密控制的制造加工工艺烧结,具有远胜过以往独特性能的优异特性的陶瓷,称为精细陶瓷。 7、形状记忆合金应具备的条件是:合金能够发生热弹性马氏体相变;母相和马 氏体的晶体结构通常是有序的;(3)母相的晶体结构具有较高的对称性,而马氏体的晶体结构具有较低的对称性。 8、储氢合金吸氢、放氢时体积会膨胀、收缩,反复的吸氢、放氢,会使合金中 产生裂纹、破碎、粉化,这对储氢合金的应用是有害的。 9、形状记忆效应的变形具有一定的限度,取决于母相与马氏体的晶体结构参数。 10、非晶态合金的主要缺点表现在两方面,一是由于采用急冷方法制备材料,使 其厚度受到限制,二是热力学上不稳定,受热有晶化倾向。 11、精细陶瓷的制备工艺流程中预烧合成的目的是去除去除原料中挥发的杂质,化学结合和物理吸附的水分、气分、有机物等;使原料颗粒致密化及结晶长大,以减小在以后烧结中的收缩,提高产品合格率;完成同质异晶的晶型转变,形成稳定的结晶相。 12、马氏体相变是非扩散型相变,相变过程是以切变方式进行,由于切变方向不 同,产生结构相同,位向不同的马氏体,即马氏体变体。 13、Ms、As、M f、A f是表征记忆合金的热弹性马氏体相变的特征温度,也是形 状记忆过程中变形及形状恢复的特征温度。定义(As-Ms)为热滞后,是形状记忆合金的一个重要参量。 14、马氏体相变是非扩散型相变,相变过程是以切变方式进行。外加应力可以改变相变温度,即使温度在Ms点以上,只需进行适当的变形也可以发生马氏体相变,称为应力诱发马氏体相变。热弹性马氏体相变是指马氏体相变过程中,马氏体片随着温度的升降表现出弹性式消长,称为热弹性马氏体相变。 15、超导态下,外磁场的磁化使超导体表面产生感应电流,感应电流在超导体内产生的磁场正好和外磁场相抵消,导致超导体内部磁场为零,即具有完全抗磁性,这种现象就是迈斯纳效应。 16、非晶态合金是指由一定成分的液态合金经高速冷却而形成的在常温和低温固态下原子排列具有短程有序而长程无序的金属合金。 17、功能陶瓷是指利用材料的电、磁、光、声、热等直接的性能或其耦合效应

纳米功能材料试题大学期末复习资料

《纳米功能材料》—思考题 第一章、概论 1.纳米材料定义及分类。 定义:利用物质在小到原子或分子尺度以后,由于尺寸效应、表面效应或量子效应所出现的奇异现象而发展出来的新材料。 分类:纳米粒子(零维纳米结构);纳米线、纳米棒(一维纳米结构);薄膜(二维纳米结构);纳米复合材料和纳米晶材料(三维纳米结构)。 2.功能材料定义及分类。 定义:是指通过光、电、磁、热、化学、生化等作用后具有特定功能的材料。 分类:常见的分类方法:(1)按材料的化学键分类:金属材料、无机非金属材料、有机材料、复合材料;(2)按材料物理性质分类:磁性材料、电学材料、光学材料、声学材料、力学材料;其他分类方法:(3)按结晶状态分类:单晶材料、多晶材料、非晶态材料;(4)按服役的领域分类:信息材料、航空航天材料、能源材料、生物医用材料等。 3.按照产物类型,纳米材料如何划分类别。 按照产物类型进行划分:(1)纳米粒子(零维):通过胶质处理、火焰燃烧和相分离技术合成;(2)纳米棒或纳米线(一维):通过模板辅助电沉积,溶液-液相-固相生长技术,和自发各向异性生长的方式合成;(3)薄膜(二维):通过分子束外延和原子层沉积技术合成;(4)纳米结构块体材料(三维):例如自组织纳米颗粒形成光带隙晶体 4.纳米结构和材料的生长介质类型? (1)气相生长,包括激光反应分解合成纳米粒子、原子层沉积形成薄膜等;

(2)液相生长,包括胶质处理形成纳米粒子、自组织形成单分散层等;(3)固相生成,包括相分离形成玻璃基体中的金属颗粒、双光子诱导聚合化形成三维光子晶体等;(4)混合生长,包括纳米线的气-液-固生长等。 5.按照生长介质划分: (1)气相生长,包括激光反应分解合成纳米粒子、原子层沉积形成薄膜等; (2)液相生长,包括胶质处理形成纳米粒子、自组织形成单分散层等;(3)固相生成,包括相分离形成玻璃基体中的金属颗粒、双光子诱导聚合化形成三维光子晶体等;(4)混合生长,包括纳米线的气-液-固生长等 6.纳米技术的定义? 定义:由于纳米尺寸,导致的材料及其体系的结构与组成表现出奇特而明显改变的物理、化学和生物性能、以及由此产生的新现象和新工艺。 7.制备纳米结构和材料的2大途径是什么?各自的特点或有缺点? 两大途径:自下而上;自上而下。 8.什么是描述小尺寸化的“摩尔定律”? 当价格不变时,上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。 9.根据自己的理解,说明促进纳米材料相关科学与技术发展的意义。 新世纪高科技的迅速发展对高性能材料的要求越来越迫切,而纳米材料的合成为发展高性能的新材料和对现有材料性能的改善提供了一个新的途径。纳米科技是一门新兴的尖端科学技术。它将是21世纪最先进、最重要的科学技术之一,它的迅速发展有可能迅速改变物质产品的生产方式,引发一场新的产业革命,导致社会发生巨大变革。正如像自来水、电、抗生素和微电子的发

材料概论试题

1.何为材料,为何材料是人类社会生活的物质基础? 材料是人类用于制造物品、器件或其他产品的物质。是人类要生存需要的最基本的物质生活资料。物质生产活动是人类从事其他各种社会活动的先决条件。 2.材料科学与工程的四个基本要素是什么?请说明他们之间的关系。 材料的四个基本要素:结构与成分、性质、合成与制备、用途与性能 3. 复合材料设计的基本思想是什么?举一例说明。 达到功能复合,能保留原组成原料的特性,并通过复合效应得到原来所不具有的更为优越的新性能。碳纤维复合材料制造大飞机;轮胎是由橡胶、碳黑、帘子线等材料构成的。 4. 从燕子造窝到人用草拌泥造房、再到我们用碳纤维复合材料制造大飞机的过程,你得到了哪些启示?这些复合材料的制备都还停留在经验的层面上,而碳纤维复合材料制造大飞机虽然使用了一贯的复合思想,但相比之下更具有系统性、科学性。如今我们创造新的复合材料不再需要像过去一样完全依靠试错法,而有相关的理论指导,所以我们在探索新领域时可以从一些已有的思想中获取灵感,再用理论化地手段将其转化为材料科学。 5.绿色建筑的基本涵义? 绿色建筑指在建筑的全寿命周期内,最大限度地节约资源,保护环境和减少污染,为人们提供健康、舒适和高效的使用空间,与自然和谐共生的建筑物。 6.建筑生态环境材料的基本涵义? 生态环境材料是指那些具有良好的使用性能和优良的环境协调性的材料 7.看《终结者2》推测那个人材料的性能与特点,并推测由什么方法合成。(描述电影中未来人材料的特点和性能,并设想可由什么方式合成? 终结者2中的机器人由液态金属构成,具有流动性和高强度性,韧性好,可再组合。 合成方法: 合金合成法,置于电解液中的镓基液态合金在和铝合金结合后,能长期高速运转。 8.试说明金属材料在民航飞机中的应用情况 铝合金用作承力件,钛合金用于具有一定耐热性和耐腐蚀性的板材结构件,高强度结构钢,用于前后起落架;不锈钢,用于发动机的一些装置。高温合金用于耐高温的板材结构件和螺栓,螺母等固件和排气孔的蜂窝结构 9.说明燃料电池的工作原理及其特点。 燃料电池的工作原理是通过氧化还原反应将化学能直接转化为电能。 燃料范围广,不受卡诺循环限制、能量转换效率高、超低污染、运行噪声低、可靠性高、维护方便等 10.说明质子交换膜燃料电池的特性 a.可低温运行。 b.比能量和比功率高;c.结构紧凑、质量小,水易排出。 d.采用固态电解质不会出现变形、迁移或从燃料电池中气化,无电解液流失。 e.可靠性高,寿命长。 f.因唯一的液体是水,本质上可避免腐蚀。 11.什么是有机半导体? 具有半导体性质的有机材料,即导电能力介于金属和绝缘体之间 12.导电机理是什么,为什么有机物能导电? 含有共轭基团的有机分子之间形成连续共轭的大结构,用来传导电子和空穴,然后在电场的作用下,载流子可以沿聚合物链作定向运动,从而使高分子材料导电 13.有机导体的优点和缺点是什么? 优点:成膜技术更多、器件尺寸更小,集成度更高、有机物易于获得、柔韧性好,质量轻、可修饰性强。缺点:电阻率的变化受杂质含量的影响极大.电阻率受外界条件(如热、光等)的影响很大 14.有机导体有哪些应用方向? 光盘、有机发光二极管、传感器、有机太阳能电池等。 15.生物医用材料的定义及其主要性能特征

相关主题
文本预览
相关文档 最新文档