当前位置:文档之家› 全息原理

全息原理

全息原理
全息原理

全息原理

围绕黑洞的视界表面积是黑洞熵的测度的证明导致人们建议,任何闭合空间区域的最大熵永远不能超过其表面积的四分之一。由于熵正是包含在一个系统中的总信息的测度,这便暗示,在和三维世界中的所有现象相关联的信息能被储存在它的二维边界上,正如一个全息像一样。在一定的意义上讲,这个世界是二维的。

全息术

利用干涉和衍射原理记录并再现物体光波波前的一种技术。其第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束(图A);另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下(图B),一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立体感强,具有真实的视觉效应。全息图的每一部分都记录了物体上各点的光信息,故原则上它的每一部分都能再现原物的整个图像,通过多次曝光还可以在同一张底片上记录多个不同的图像,而且能互不干扰地分别显示出来。

全息照片可分为振幅型(又叫吸收型)和位相型两大类,它们按照与被记录时的曝光量相对应的方式分别改变照明光波的振幅或位相。如果根据干涉条纹的间距和感光膜层厚度的相对大小来划分,则有薄型(二维型或平面型)和厚型(三维型或体积型)两类全息照片。在薄型全息照片中,按拍摄时物光束与参考光束是否在感光膜的同侧入射,分为透射型全息照片和反射型全息照片。如按记录全息图时光路布局的不同分类,有同轴型全息图和离轴型全息图。

全息学的原理适用于各种形式的波动,如X射线、微波、声波、电子波[1]等。只要这些波动在形成干涉花样时具有足够的相干性即可。光学全息术可望在立体电影、电视、展览、显微术、干涉度量学、投影光刻、军事侦察监视、水下探测、金属内部探测、保存珍贵的历史文物、艺术品、信息存储、遥感,研究和记录物理状态变化极快的瞬时现象、瞬时过程(如爆炸和燃烧)等各个方面获得广泛应用。

又称全息照相术。记录波动干扰的振幅和位相分布以及随后使之重现的技术。广泛地用作三维光学的成像,也可用于声波(见声全息)和射频波。

"全息"是由希腊字"holos"变来的,意即完全的信息──不仅包括光的振幅信息还包括位相信息。

发展简史 1947年D.伽柏从事提高电子显微镜分辨本领的工作。受W.L.布喇格在 X射线金属学方面工作及F.泽尔尼克的关于引入相干背景来显示位相的工作的启发,伽柏提出了全息术的设想以提高电子显微镜的分辨本领。1948年他利用水银灯首次获得了全息图及其再现象,从而创立了全息术,为此他在1971年获得了诺贝尔物理学奖。

50年代G.L.罗杰斯等人的工作大大扩充了波阵面再现理论。但是由于"孪生像"问题和光源相干性的限制,1955年以后全息术进入低潮阶段。

激光的出现,为全息术的发展开辟了广阔的前景,1961~1962年,E.N.利思等人对伽柏全息图进行了改进,引入"斜参考光束法"一举解决了"孪生像"问题,用氦氖激光器成功地拍摄了第一张实用的激光全息图。这样就使得全息术在1963年以后成为光学领域中最活跃的分支之一。1964年利思等人又提出了漫射全息图的概念,并得到三维物体的再现。与此同时,苏联的物理学家根据李普曼彩色照相法和伽柏全息法提出了反射全息图的概念。

1965年以来全息术的一个重要分支──脉冲全息术得到了发展,这使得动态全息干涉计量获得了实际应用。

基本原理 1948年伽柏提出了一种全新的两步无透镜成像法──全息术,也称为波阵面再现术。整个过程由两步──波阵面记录和波阵面再现──来完成。

波阵面记录这个过程中,引入适当的相干参考波,使它与由物体衍射(或散射)的光(物光)相干涉,把这干涉场记录下来,即可得到一张全息图。全息图是与物体毫不相似的干涉图,它上面不仅记录了物光的振幅信息而且也把在普通照相过程丢失的位相信息记录下来。记录如图1a所示。设在记录媒质如干板处物光和参考光波阵面的复振幅表达式分别为

由波的叠加原理知,照相干板记录下的总的光强分布是:

把照相干板(或其他记录媒质)放在(x,y)面内曝光,经过显影、定影后,就会把I(x,y)以复振幅透过率τ(x,y)的形式记录下来。在一定的条件下

τ(x,y)∝I(x,y)即

式中τo(x,y)只和参考光的光强有关;第二项与物光的光强(或振幅)有关;第三项由参考光和物光的位相来决定。这样全息图的复振幅透过率

τ(x, y)就是对物光振幅和位相的完全记录。

波阵面再现波阵面记录的结果是得到一张记有物光振幅和位相信息的

全息图。波阵面再现过程是利用适当的相干再现光B(x,y)照射全息图而得到物的实像或虚像。

用相干再现光B(x,y)照射全息图,则透过全息图的光μ(x,y)为

通常再现光B(x,y)选为A(x,y)或A*(x,y),

当B(x,y)=A(x,y)时,

如果经适当选择使|A(x,y)|2在各处有均匀的分布,则μ4就代表物光O(x,y)的再现,即得到物的三维虚像。

当B(x,y)=A*(x,y)时,

同样适当选择A(x,y)使|A(x,y)|2在各处有均匀分布时,则μ3(x,y)就代表物光的共轭光,得到物的三维实像。而在这两种情况中的其他各项以均匀背景或畸变像出现。在技术上可以想办法把它们消除或减少它们的影响。

全息图的分类全息图的种类繁多,有许多不同的分类方法。比如根据记录媒质的厚度与条纹间距之比,可以分为薄全息图和厚全息图;根据复振幅透过率的调制变量的不同可以分为振幅型全息图和位相型全息图;根据记录时物光和参考光的方位情况,可以分为同轴全息图和离轴全息图;根据记录时物光和参考光在干板的同侧还是两侧,可分为透射全息图和反射全息图;还可以根据记录的物体与干板的距离,分为菲涅耳型和夫琅和费型全息图;根

据制作时所有光源的性质,又可分为连续波激光全息图和脉冲激光全息图等等。下面简要介绍一下各类全息图。

同轴全息图和离轴全息图 1948年,伽柏利用透明体的透射光为参考光,散射光为物光,记录了第一张全息图──同轴全息图。其原理如图2所示。由于这种全息图再现时有孪生像问题,利思等人引入斜参考光束,就得到了离轴全息图,克服了孪生像问题,如图3所示。

薄全息图和厚全息图当全息图所记录下来的干涉条纹间距大于记录媒

质厚度时,它可以看作是二维光栅结构,称之为薄全息图或平面全息图。否则,全息图可以看作三维光栅结构,称之为厚全息图或体全息图。实际上,一张全息图通常包含着不同间隔的条纹结构,所以它可能同时表现出薄结构和厚结构两种特性来。例如,对于柯达649F干板(厚度≈16微米、n≈1.5)来说,只有在物光、参考光夹角小于10度时,所制作的全息图才是薄全息图。

透射全息图与反射全息图对于最通常的全息图来讲,物体的像都是由通过全息图的衍射透过光所形成的,这一类全息图称为透射全息图,它是由处于记录媒质同侧的物光和参考光所形成的。

如果记录媒质是浮雕型的,在透射全息图的浮雕表面上镀一层反射膜就能形成一张反射全息图。对于非浮雕型的厚记录媒质,利用分别处于介质两侧的物光和参考光,就能得到更复杂的反射全息图,通常所说的反射全息图多指这后一种。图4给出几种点源全息图的记录位置。当物光与参考光夹角接近180°(图中的位置)时,厚反射全息图的波长选择性最好,因此可以用白光再现。实际上由于乳胶收缩(如卤化银干板)或膨胀(如铵板)再现时像的颜色向短波或长波方向偏移。

振幅型全息图和位相型全息图根据全息图的形成机理可以知道,它是以某种方式把物光和参考光干涉所形成的驻波场在全息图面上的光强分布I(x,y),转化为全息干板(或其他记录媒质)的复振幅透过率τ(x,y)。

对于银盐照相干板一类的记录媒质,处理后可使嗞(x,y)为常数,可令为0。

具有式 (2)这种由吸收大小决定振幅透过率分布的全息图,叫作振幅型全息图。对于漂白银盐干板、重铬酸明胶板、掺铁铌酸锂等媒质来讲,τ(x,y)≈1,则复振幅透过率为……

这一类全息图上只有位相嗞(x,y)受I(x,y)的调制,叫作位相型全息图。位相型全息图具有均匀的透过率,但由于厚度不同或折射率变化而引起入射

光的位相变化。它的特点是衍射效率高。表1给出了各种全息图的理论最大衍射效率η。

菲涅耳型和夫琅和费型全息图当二维物体距全息图面zo为有限值时形成菲涅耳全息图(图5),再现时,衍射波复振幅为物波复振幅的菲涅耳变换。若物体为三维分布时,则再现得到三维物体的像,其形成如图5所示。

像全息图可以看作是菲涅耳全息图的一种,它是由物体的像所形成的全息图,其原理如图6所示。

在物体的大小比起它距全息图面的距离小很多时,就得到夫琅和费全息图。再现时衍射波复振幅为物波复振幅的傅里叶变换。在这种条件下形成的全息图叫作夫琅和费全息图。

傅里叶全息图是夫琅和费全息图的一种,它是利用透镜把二维物体成像于无限远处(把物放于透镜的焦平面上),并使用相干的平面波作参考波,

这相当于无限远的像与参考波干涉,就得到了傅里叶全息图。此外还有无透镜傅里叶全息图,分别见图7与图8。

计算全息图一般全息图都是用光学方法制作的。但由于记录媒质的非线性而造成像的失真以及制造过程对技术条件的苛刻要求,使得光学全息图的质量和制作重复性存在不少问题。随着计算机技术的发展,人们开始利用计算机制作一个设想中的物体(无论多么复杂,在原则上都可以)的全息图──

计算全息图。它的优点很多,如计算机可与灰阶绘图仪一起使用,特别是在计算全息中常常使用黑白全息图或称为二进位全息图,可使记录媒质的非线性影响降低到相当小程度;另外由于计算机和绘图仪的可靠性,使得计算全息图的重复质量得到了保证;此外对于光学上难以得到的复杂物体,利用计算机可根据其数学表达式作出全息图并得到再现像,从而可以把计算机当作广义的光学元件来使用。因此计算全息一出现就受到普遍重视,在诸如光学空间滤波、检验光学表面、三维计算机显示等方面都获得越来越多的应用。

计算全息图的制作主要包括两个步骤:第一步是计算,利用设想物的数学模型计算出该物波与相干的参考波在全息图面上叠加后的光强分布。这一步也可以不用参考波,不用参考波计算出来的是物波的分布。第二步是绘图,把计算机算出的全息图的复振幅透过率分布用绘图仪绘出,经光学微缩或直接由电子计算机控制电子束绘图机进行绘制,就得到计算全息图。

彩虹全息彩虹全息术最初是由S.A.本顿提出的。它是用激光记录全息图,用白光透射再现。根据人眼是水平排列的特点,成像只有在水平方向有视差效应。彩虹全息保留了水平方向的物体信息,牺牲垂直方向的物体信息,从而可以降低对照明光源的时间相干性的要求。它将不同波长的光沿着垂直方向色散开来,在不同的高度可以看到不同颜色的假彩色立体再现像。

彩虹全息的衍射光有会聚性能,再现像的亮度较高。采用白光照明光源,可以避免相干散斑纹效应引起的噪声影响。

彩虹全息图是在物体实像附近记录的。根据产生实像的方法不同可分为一步法彩虹全息术和二步法彩虹全息术。二步法彩虹全息术的实像是由作为母片的一般全息图产生的。一步法彩虹全息术的实像是由成像透镜产生的。图9是一步法彩虹全息术的记录光路图。物体通过狭缝经透镜成像。参考光在狭缝的上方(或下方)斜射到干板上。再现时,白光点光源位于记录时参考光源的位置。白光被色散从而将狭缝像成在不同的垂直位置。眼睛在不同高度就看到不同颜色的像。眼睛在水平观察范围内移动,可以看到再现像的立体效果。

全息术的应用伽柏发明全息术不久,就指出它的三个方面的应用前景即全息干涉量度术、全息光学元件和全息信息存储。随着激光器的问世,这三方面都获得了不同程度的实用化。后来又扩展到全息立体显示、全息变换、特征识别等方面。目前全息术在科技、文化、工业、农业、医药、艺术、商业等领域都获得了一定程度的应用。但是由于种种技术原因,最有效的应用仍是全息干涉量度术和全息光学元件。

全息技术的原理及应用

全息技术的原理及应用 摘要:随着时代的发展,人们对光学的理解与认识更加透彻,关于光学的各种技术发展越来越快,其中全息技术广泛应用于生活中各个领域,如医学领域、军事领域、艺术领域、测量领域等。本文主要介绍全息技术的基本原理,以及全息技术在防伪技术的中的应用,在简要介绍在其他方面的应用。 关键字:振幅,相位,参考光波,全息防伪,全息投影。 1全息技术的原理 1.1物光波面的记录 全息技术的第一步是将光波的全部振幅和相位信息记录在感光材料上。由于感光材料只能接收光的振幅信息,因此必须想法把相位信息转换成强度的变化才能记录下来。,干涉法是将空间相位调制转换为空间强度调制的标准方法,因此采用相干光干涉条纹来记录图像。 设物体散射的物光波为 êo(x,y)=a o(x,y)exp[iφ0(x,y)] 另一个与物光波相干的参考光波为 êr(x,y)=a r(x,y)exp[iφr(x,y)] a o(x,y)、a r(x,y)、φ0(x,y)、φr(x,y)分别表示各波面的振幅和相位, 这两个相干光波在记录平面上叠加形成的光强为 I(x,y)=| êo(x,y)+ êr(x,y)|2 =| êo(x,y)|2+| êr(x,y)|2+êo*(x,y) êr(x,y)+ êo(x,y) êr*(x,y)

=a r2+a o2+2a r a o cos[φr-φo] 其中,第一项和第二项分别表示参考光波和物光波单独到达全息图的强度,它们的和表示干涉条纹的平均强度,第三项包含了物光波和参考光波的振幅和相位信息。参考光波的作用是使物光波波前的相位分布转化为干涉条纹的强度分布。 底片振幅透射系数t(x,y)为 t(x,y)=k o+k1I(x,y) 其中k o,k1是常数,k1<0是负片,k1>0是正片. t=(k0+k1|êr|2)+k1(|êo|2+|êr*êo+ êrêo*|)=t1+t2+t3+t4 1.2 物光波面的重现 全息术的第二步是利用衍射原理有全息图重现物光波。 如果照明光是与全息图记录时的参考光波完全相同的光波êc=êr, 透过全息图的光波的复振幅分布ê,(x,y)为 ê,(x,y)=êr t={(k0+k1|êr|2)}êr+k1|êo|2êr+k1|êr|2êo+ k1êr2êo*| =t1,+t2,+t3,+t4, 其中,第一项和第二项表示衰减的重现光êr方向不变的透过全息图,第三项是透过全息图的+1级衍射光,除了一个常数衰减外,这是一个与原物光波完全相同的重现物光波,第四项是通过全息图的-1级衍射波,这是一个与原物光波的共轭波。 2全息技术的应用 2.1全息防伪技术 全息防伪技术是应用激光全息技术发展起来的一种新型防伪技

全息照相实验的报告材料

全息照相实验报告 程子豪 2010035012 少年班01 一、实验目的: 1.了解全息照相记录和再现的基本原理和主要特点; 2.学习全息照相的操作技术; 3.观察和分析全息图的成像特性。 二、实验原理: 2.1全息照相原理的文字表述: 普通照相底片上所记录的图像只反映了物体上各点发光(辐射光或反射光)的强弱变化,显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 全息照相在记录物光的相位和强度分布时,利用了光的干涉。从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。 具体来说,全息照相包括以下两个过程: 1、波前的全息记录 利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。典型的全息记录过程是这样的:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。所以全息图不是别的,正是参考光波和物光波干涉图样的记录。显然,全息照片本身和原来物体没有任何相似之处。 2、衍射再现 物光波前的再现利用了光波的衍射。用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。这是一个虚像,它具有原始物体的一切特征。此外还有一个实像,称为共轭像。应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。

全息照相技术综述

全息照相的基本原理 作者:张新成 学号:20114052021 单位:吉首大学物理与机电工程学院2011级应用物理班 内容摘要: 全息摄影亦称:“全息照相”,一种利用波的干涉记录被摄物体反射(或透射)光波中信息(振幅、相位)的照相技术。全息摄影是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。全息摄影不仅记录被摄物体反射光波的振幅(强度),而且还记录反射光波的相对相位。全息图并不直接显示物体的图象。用一束激光或单色光在接近参考光的方向入射,可以在适当的角度上观察到原物的像。这是因为激光束在全息图的干涉条纹上衍射而重现原物的光波。再现的像具有三维立体感。本文试论全息照相的基本原理,来叙述学习本章节后的收获和感想。 关键词: 全息照相,波的干涉,全息照片,全息摄影 引言: “全息”来自希腊字“holos”,意即完全的信息------不仅包括光的振幅信息,还包括位相信息。利用干涉原理,将物光波前以干涉条纹的形式记录下来。由于物光波前的振幅和位相及全部信息都存储在记录介质中,顾晨伟“全息图”。光波照明全息图,由于衍射效应能再现出原始物光波,该光波将产生包含物体I全部信息的三维像。这

个波前记录和再现的过程就是全息术。 1947年匈牙利出生的英国物理学家D.伽柏(D.Gabor)提出全息术的设想,意图提高电子显微镜的分辨本领。方法是完全撇开电子显微物镜,用胶片纪录经物体衍射的末聚焦的电子波,得到全息图。一相干的可见光照明全息图,衍射波将产生原物体放大的光学像。为了检验他的理论,1948年他利用水银灯发出的可见光代替电子波,获得了第一张全息图及其再现像。由于全息图的发明,D.伽柏1971年获得诺贝尔物理奖。20世纪50年代GL诺杰斯(G.L.Rogers)等科学家进一步丰富了波前再现理论。 光波的位相信息是通过与参考光波相干涉,在记录介质上形成干涉图而记录下来,所以要求两束光高度相干。早期由于没有更好的相干光源,在两侧同轴方向产生不可分离的“孪生像”。观察者对虚像聚焦时,会看到由实像引起的离焦像;対实像聚焦时,伴随有离焦的虚像。从而像质大大降低。由于光源相干性的限制以及”孪生像“的问题,全息术研究的进展极大受阻。 1960年,激光的出现为全息术的迅速发展开辟了道路。激光是一种单色性很强的光,是制作全息图最理想的光源。1962年美国密执安大学雷达实验室的 E.N利思(E.N.Leith)和J.乌帕特尼克斯(J.upatnieks)借鉴雷达中载频技术,提出”斜参考光法“。这种方法不像伽柏全息图那样以物体直接透射光作为参考光,而是单独引入分离的倾斜照射的参考光波。依据这种方法采用氦氖激光器拍摄成功第一张三维物体的激光透射全息图。激光照明全息图,可看到清楚的三

全息投影系统方案

360度全息投影系统方案

目录 一.概述.................................................................................... 错误!未定义书签。二.特点.................................................................................... 错误!未定义书签。三.三维全息影像的优越性.................................................................... 错误!未定义书签。四.环境要求................................................................................ 错误!未定义书签。五.原理.................................................................................... 错误!未定义书签。六.拓扑图.................................................................................. 错误!未定义书签。七.应用领域................................................................................ 错误!未定义书签。八.软硬件配置方案(以四个锥面为例)........................................................ 错误!未定义书签。

全息照相实验实验报告

物理与光电工程学院 光电信息技术实验报告 姓名:张皓景 学号:20111359069 班级:光信息科学与技术专业2011级2班实验名称:全息照相实验 任课教师:裴世鑫

一、实验目的 1.了解光学全息照相的基本原理及其主要特点。 2.学习全息照相的拍摄方法和实验技术。 3.了解全息照相再现物像的性质、观察方法。 二、实验仪器 三、实验装置示意图 5底片 图1 全息照相光路 四、实验原理 全息照相是一种二步成像的照相技术。第一步采用相干光照明,利用干涉原理,把物体

在感光材料(全息干版)处的光波波前纪录下来,称为全息图。第二步利用衍射原理,按一定条件用光照射全息图,原先被纪录的物体光波的波前,就会重新激活出来在全息图后继续传播,就像原物仍在原位发出的一样。需要注意的是我们看到的“物”并不是实际物体,而是与原物完全相同的一个三维像。 1.全息照相的纪录——光的干涉 由光的波动理论知道,光波是电磁波。一列单色波可表示为: 2cos(t )r x A πω?λ =+- (1) 式中,A 为振幅,ω 为圆频率,λ 为波长,φ 为波源的初相位。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加: 1 2cos(t )n i i i i i r x A πω?λ==+- ∑ (2) 因此,任何一定频率的光波都包含着振幅(A )和位相(ωt+φ-2πr/λ)两大信息。 全息照相的一种实验装置的光路如图(1)所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射(或透射)后照射到感光底片(全息干版)上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。 2.全息照相的再现——光的衍射 由于全息照相在感光板上纪录的不是被摄物的直接形象,而是复杂的干涉条纹,因此全息照片实际上相当于一个衍射光栅,物象再现的过程实际是光的衍射现象。要看到被摄物体的像,必须用一束同参考光的波长和传播方向完全相同的光束照射全息照片,这束光叫再现光。这样在原先拍摄时放置物体的方向上就能看到与原物形象完全一样的立体虚像。如图2 所示把拍摄好的全息底片放回原光路中,用参考光波照射全息片时,经过底片衍射后有三部分光波射出。 0 级衍射光——它是入射再现光波的衰减。 +1 级衍射光——它是发散光,将形成一个虚像。如果此光波被观察者的眼睛接收,就等于接收了原被摄物发出的光波,因而能看到原物体的再现像。

全息照相原理及应用

1引言 我们看到的世界是三维的、彩色的,这是因为每个物体发射的光被人眼接受时,光的强弱、射向和距离、颜色都不同。从波动光学的观点看,是由于各物体发射的特定的光波不同,光的特征主要取决于光波的振幅、相位、和波长。如果能看到景物光波的完全特征,就能看到景物逼真的三维像,这就是全息术。全息术诞生到现在60年来取得了很大的进展,已经被广泛应用于近代科学研究和工业生产中。 1948年,丹尼斯·盖伯提出一种记录光波振幅和相位的方法,随后用实验验证了这一想法,即全息术,并制成世界上第一张全息图。全息术在刚开始的十多年中进展缓慢,直到激光的出现使得全息术获得巨大进展。总结全息照相的发展,可以分为四个阶段:第一阶段是用水银灯记录同轴全息图,这时是全息照相的萌芽时期,主要原因是没有好的相干光源,再现像和共轭像不能分离;第二阶段是用激光记录、激光再现的全息照相,能够把原始像和共轭像分离;第三阶段是激光记录、白光再现的全息照相,主要有反射全息、象全息、彩虹全息及合全息;第四阶段是当前所致力的方向,就是白光记录全息图。[1]

2 全息照相的原理 全息照相是一种二步成像的照相技术,它利用物光和参考光在感光胶片上进行干涉叠加形成全息照片,在运用衍射原理使之再现,因此全息照相的过程包括全息记录和全息再现两个过程。 2.1 全息记录 2-1图 全息记录 如图1所示,激光器射出的激光束通过分束镜分成两束,一束光经扩束镜扩束后直接投摄到感光底片上,这束光称为参考光,另一束光经反射镜反射及扩束镜扩束后射到被摄物体上,在经过物体反射到感光板上,这束光称为物光。两束光将在感光板上产生干涉,形成干涉条纹。设 物光波:()()()1,00,=A ,i x y U x y x y e ?-?% 参考光波:()()()2,,=A ,i x y R R U x y x y e ?-?% 式中012,,,R A A ??分别为物光波参考光波的振幅和初相位。当两束光波发生干涉,其合成光波为:

浅谈全息技术的发展及前景

物 理 小 论 文 程 秋 菊 计 科 B111

浅谈全息技术的发展及前景 摘要:全息技术也称全息照相、全息摄影等,是一种神奇的光信息记录技术。其原理可用八个字来概括“干涉记录,衍射再现”。扥问简单的介绍了全息技术的发展历程,特点,一些突破性的进展,和在现代生活中的应用,以及全息技术的前景。 关键词:全息技术、全息照相、全系信息储存、激光 1、引言 全息技术是一门正在蓬勃发展的光学分支,主要运营用了光学原理,是一种不用透镜,而用相干光干涉得到物体全部信息的二部成像技术。如果说全息技术在照相方面的应用与普通照相技术的最大区别,那就是全息技术能够利用激光的相干性原理,将物体对光的振幅和相位反射(或透镜)同时记录在感光板上,也就是把物体反射光的所有信息全部记录下来,并能够再现出立体的三维图像,儿是光波。全息技术近年来已渗透到社会生活的各个领域并被广泛的应用于近代科学研究和工业生产中,特别是在现代测试。生物工程、医学、艺术、商业、保安、及现代存储技术等方面已显示出特殊的优势。随着全息技术的快速发展,全息技术的产品正越来越走向市场、应用与现代生活中。 2、全息技术的发展简介 全息照相技术是1948年英国科学家丹尼斯伽伯为改善电子显微镜成像质量提出的重现波前的理论,并因此获得诺贝尔奖。但当时由于缺乏纯净的能够相互干涉的光,全息图的质量很差。知道十二年以后的1960年,激光器问世,美国密执安大学的埃梅蒂利斯与朱丽斯尤培妮克拍成了第一张全息照片,全息技术才有了蓬勃快速的发展。 全息技术的发展大约可分同轴全息术、离轴全息术、白光再现全息术、白光全息术等4个阶段。 同轴全息术是伽伯当时采用的技术,这一阶段主要是在1960年激光器出现之前,这种技术获得的物体再现像与照明光混在一起,不易观察。 1948年,伽伯为提高电子显微镜的分辨率,在布拉格的“x射线显微镜”、择尼克的相衬原理的启示下,提出了一种用光波记录物光波的振幅和相位的方法,并用实验证实了这一想法。为了进一步证实其原理,他先后采用了电子波与可见光进行了验证,并在可见光中得到了证实,同时制成了第一张全息图。从那时起至20世纪50年代末期,全息图都是用汞灯作为光源,而且是参考光与物光共轴的共轴全息即同轴全息图。它与4-1级衍射波是分不开的,这是全息术的萌芽时期。这个时期全息图存在2个严重问题,一个是再现的原始像与共轭像分不开;另一个是光源的相干性太差,因此在这10多年中,全息术进展缓慢。 离轴全息术是在激光器出现以后产生的用激光再现的全息术,其特点是获得的物体重现像与照明光分离,易于观察。 1960年激光的出现,提供了一种高相干度光源。1962年,美国科学家利斯和乌帕特尼科斯将通信理论中的载频概念推广到空域中,提出了离轴全息术,就是用立轴的参考光照射全息图,使全息图产生3个在空间相互分离的衍射分量,其中一个复制出原始物光。这样,同轴全息图两大难题宣告解决,产生了激光记录、激光再现的全息图。从而使全息术在沉睡了十几年之后得到了新生并进入了一个极为活跃的阶段。此后,又相继出现了多种全息方法,

激光全息照相

实验32 激光全息照相 【实验目的】 1、学习全息照相的基本原理和方法。 2、了解全息照相的主要特点。 3、学习观察全息照片的方法。 【实验装置】 全息照相的整套装置(PHYWE),如图1所示: 【全息照相的特点】 全息照相与普通照相无论在原理上还是方法上都有本质上的差别。普通照相是以几何光学的折射定律为基础,利用透镜把物体成像在平面上,记录各点的光强或振幅分布,物象之间各点一一对应,但却是二维平面像上的点与三维物体各点之间的对应,因此并不完全逼真,即使一般所谓的“立体照相”也多是利用双目视差的错觉,而不是物体的真正三维图象。而全息照相是以光的干涉、衍射等物理光学的规律为基础,借助于参考光波记录物光波的振幅与位相的全部信息, 在记录介质(如感光干版)上得到的不是物体的像,而只有在高倍显微镜下才能观察得到的细密干涉条纹,称之为全息图。(在感光版上看见的同心环,斑纹之类不是原来物体的真正信号,而是由给出参考光的发射镜上的灰尘微粒及其它散射物引起的。)条纹的明暗程度和图样反映了物光波的振幅与位相分布,好象是一个复杂的衍射光栅,只有经过适当的再照明才能重建原来的物光波。 与普通照片相比,全息照片还具有如下几个特点: 1)全息照片在适当的照明下重建物光波与原来的物光波具有相同的深度和视差。改变观察的位置,就可以看到景物被遮拦的物体,观察近距离的物体,眼睛必须重新调焦。 2)把全息照片分成小块,其中每一小块都可以再现整个图象。因为照片上每一点都受到参考光和被摄物体所有部分的光的作用,所以这些点就用编码的形式包含了整个图象的信息。但是当小块逐渐减小时,分辨率逐渐变差。这是因为分辨率是成像系统孔径的函数。 3)全息照片可以用接触法复制,但无正负片之分,不论是原来的还是复制的都再现被摄物体的正像。而且无论照明乳剂的反差特性如何,再现影象的反差同原物体的反差都非常接近。 4)全息照片绕垂直轴线转,引起一个倒转的像,让全息照片绕一水平轴线旋转,也产

全息照相实验报告

全息照相实验报告 全息照相实验报告 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、高频滤波器)、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 1.全息记录 全息照相的光路图如下图所示: 感光底板 用激光光源照射物体,物体因漫反射发出物光波。波场上没一点的振幅和相位都是空间坐标的函数。我们用O表示物光波没一点的复振幅与相位。用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R表示,草考光通常为平面或球面波。这样在记录信息的底板上的总光场是物光与参考光的叠加。叠加后的复振幅为O+R,如图从而底板上各点的发光强度分布为 I(O R)(O*R*)OO*RR*OR*O*R IO IR OR*O*R (式1) 式子中,O*与R*分别是O和R的共轭量;I。,IR分别为物光波和参考光波独立照射底版时的放光强度。 2.物相再现 3.底板经过曝光冲洗后,形成各处透光率不同的全息照片,它相当于一个复杂的光栅。一般来说,光透过这样的全息照片时,振幅以及位相都要发生变化。如果令 t=透过光的复振幅/入射光的复振幅(式2) 则复振幅透过率t一般为复数。但对于平面吸收型全息照片t为实数。如果曝光及冲洗合适,可使得 t t0KI (式3) 物象再现是用光照射已经摄制好的全息照片并观察透过光。这个过程称为波

光学全息照相实验报告

光学全息照相实验报告

实验II 光学全息照相 光学全息照相是利用光波的干涉现象,以干涉条纹的形式,把被摄物表面光波的振幅和位相信息记录下来,它是记录光波全部信息的一种有效手段。这种物理思想早在1948年伽柏(D.Gabor)即就已提出来了,但直到1960年,随着激光器的出现,获得了单色性和相干性极好的光源时,才使光学全息照相技术的研究和应用得到迅速地发展。光学全息照相在精密计量、无损检测、遥感测控、信息存储和处理、生物医学等方面的应用日益广泛,另外还相应出现了微波全息,X光全息和超声全息等新技术,全息技术已发展成为科学技术上的一个新领域。 本实验通过对三维物体进行全息照相并再现其立体图像,了解全息照相的基本原理及特点,学习拍摄方法和操作技术,为进一步学习和开拓应用这一技术奠定基础。 实验目的

了解光学全息照相的基本原理和主要特点; 学习静态光学全息照相的实验技术; 观察和分析全息全图的成像特性。 仪器用具 全息台、He —Ne 激光器及电源、分束镜、全反射镜、扩束透镜、曝光定时器、全息感光底版等。 基本原理 全息照片的拍摄 全息照相是利用光的干涉原理将光波的振幅和相位信息同时记录在感光板上的过程.相干光波可以是平面波也可以是球面波,现以平面波为例说明全息照片拍摄的原理。如图1所示,一列波函数为t i ae y πυ21=、振幅为a 、频率为υ、波长为λ 的平面单色光波作为参考光垂直入射到感光板上。另一列同频率、波函数为t i r T t i Be be y πυλπ222==??? ??-的相 干平面单色光波从物体出发,称为物光,以入射角θ同时入射到感光板上,物光与参考光产生干涉,在感光板上形成的光强分布为 ax ab b a I cos 222++= (1)

全息技术的发展历史及其应用前景

全息技术的发展历史及 其应用前景 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

全息技术的发展历史及其应用前景 整理By:标准时间3 本文主要介绍全息技术的工作原理、发展历史及应用前景。 1.全息技术的工作原理 全息技术利用了光的干涉原理来记录物光波并利用光的衍射原理来再现物光波,因此其工作过程主要分为全息记录和全息图的再现。本文以激光全息照相为例说明其工作原理。 全息记录 全息记录利用了光的干涉原理,因此要求记录的光源必须是相干性能很好的激光。图1-1是拍摄全息照片的光路图。 由激光器发出的激光束,通过分束镜(Beam splitter)分成两束相干的透射光和反射光:一束光经反射镜Mirror1反射,扩束镜Lenses1扩束后照射到被拍摄物体上,再从物体投向照相底片(Film)上,这部分光称为物光(Object beam)。另一束光经反射镜Mirror2反射,扩束镜Lenses2扩束直接照射到底片上,称为参考光(Reference beam)。由于同一束激光分成的两束光具有高度的时间相干性和空间相干性,在照相底片上相遇后,形成干涉条纹。由于被摄物体发出的物光波是不规则的,这种复杂的物光光波是由无数的球面波叠加 图1-1 拍摄全息照片

而成的,因此,在全息底片上记录的干涉图样是一些无规则的干涉条纹,这就是全息图。 全息图的再现 全息图的物像再现过程就是光的衍射过程。一般采用拍摄时所用的激光作照明光,并以特定方向或与原参考光相同的方向照射全息图片,就能在全息图片的衍射光波中得到0级衍射光波和±1级衍射光波(如图1-2所示)。 图1-2中,把拍好的全息照片放回底片架上,遮挡住光路中的物光,移走光路中的被拍物体,只让参考光照在全息图片上。这样在拍摄物体方向可看到物的虚像,在全息照片另一侧有一个与虚像共轭的对称实像(不易观察到),这是最简单的再现方法。 2.全息技术的发展历史 全息照相技术是1948年英国科学家丹尼斯?伽伯(Dennis Gabor)为改善电子显微镜成像质量提出的重现波前的理论,并因此获得了诺贝尔奖。但当时由于缺乏纯净的能够相互干涉的光,全息图的质量很差。直到十二年以后的1960年,激光器问世,美国密执安大学的埃梅蒂?利斯与朱里斯?尤佩尼克拍成了第一张全息相片,全息技术才有了蓬勃快速的发展。 全息技术的发展大致可分同轴全息术、离轴全息术、白光再现全息术、白光全息术等4个阶段。 同轴全息技术 同轴全息术是伽伯当时采用的技术,这一阶段主要是在1960年激光器出现以前。这种技术获得的物体的再现像与照明光混在一起,不易观察。 1948年,伽伯为提高电子显微镜的分辨率,在布拉格的“x射线显微镜”、泽尼克的相衬原理的启示下,提出了一种用光波记录物光波的振幅和相位的方法,并用实验证实了这一想法。为了进一步证实其原理,他先后采用电子波与可见光进行了验证,并在可见光中得到了证实,同时制成了第1张全息图。从那时起至20世纪5O年代末期,全息图都是 图1-2 全息图的物象再现

全息照相实验报告

全息照相实验报告 班级:XXX :XXX 学号:XXX 时间:XXX 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、曝光定时器及快门、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 1.全息记录 全息照相的光路图如下图所示: 用激光光源照射物体,物体因漫反射发出物光波。波场上没一点的振幅和相位都是空间坐标的函数。我们用O 表示物光波没一点的复振幅与相位。用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R 表示,草考光通常为平面或球面波。这样在记录信息的底板上的总光场是物光与参考光的叠加。叠加后的复振幅为O+R ,如图从而底板上各点的发光强度分布为 ********()()O R I O R O R OO RR OR O R I I OR O R =++=+++=+++ (式1) 式子中,O*与R*分别是O 和R 的共轭量;I 。,IR 分别为物光波和参考光波独立照射底版时 感光底板

全息照相原理

全息照相原理 王颢璠 (西安交通大学理学院,应用物理专业91班) 摘要:了解全息照相的拍摄原理及观察原理,介绍了全息照相的应用. 关键词:反射衍射干涉菲涅尔-基尔霍夫积分衍射公式 PACC:0760,0768 1.引言 也称"全息摄影".一种可把被摄物反射的光波中的全部信息记录下来的新型照相技术.全息照相和常规照相不同,在底片上记录的不是三维物体的平面图像,而是光场本身. 2.全息照相的拍摄原理 拍摄全息照片的基本光路大致如 图. 激光光源(波长为λ)的光分成 两部分:直接照射到底片上的叫参考 光;另一部分经物体表面散射的光也照 射到照相底片,称为物光.参考光和物 光在底片上各处相遇时将发生干涉,底 片记录的即是各干涉条纹叠加后的图 像. 关于强度:显然参考光各处的强度是一样的,但由于物体表面的反射率不同,所以物光的强度各处不同.因此,参考光和物光叠加干涉时形成的

干涉条纹各处浓淡也就不同

. 关于相位.如图.设O 为物体上某一发光点. 设参考光在a 处的波动方程为: )cos(0?ω+=t A y 物光在O 点的波动方程为: )cos(11?ω+=t A y 物光在a 处的波动方程为: )/2cos(11λπ?ωr t A y -+= 参考光与物光的相位差: λπ??δ?/210r +-= 由干涉知:=δ?(2k+1)π处为暗条纹, 解得r=λ[(2k+1)π+10??-]/2π =δ?2k π处为明条纹,解得 r=λ[2k π+10??-]/2π 设a 、b 为相邻的两暗纹,由干涉知:a 、b 两处的物光与参考光必须都反相.因为a b 两处的参考光相同,所以其物光的波程差为λ.由几何关系知: θ λθλsin /sin ==d d 由此可知: 当θ不同时,物光与参考光形成的干涉条纹的间距也不 同,而θ的大小又可以反映出物光光波的相位.;再根据条纹的方向即可确定出物体的前后,上下,左右的位置. 3.全息照相的观察原理

全息照相大学物理实验总结

全息照相大学物理实验总结 篇一:物理实验-全息照相-实验报告 物 理实验报告 班级__信工C班___组别______D______ 姓名____李铃______学号_1111000048_ 日期___2013.3.6___指导教师___张波____ 【实验题目】_________全息照相 【实验目的】 1.了解全息摄影的基本原理、实验装置以及实验方法; 2.掌握激光全息摄影和激光再现的实验技术; 3.通过观察全息图像的再现,弄清全息照片和普通照片的本质区别 【实验仪器】 防震全息台,氦—氖激光器,扩束透镜,分束棱镜(或分束板),反射镜,毛玻璃屏,调节支架,米尺,计时器,照相冲洗设备等。 【实验原理】 全息摄影采用激光作为照明光源,并将光源发出的光分为两束,一束直接射向感光片,另一束经被摄物的反射后再射向感光片。两束光在感光片上叠加产生干涉,感光底片上各点的感光程度不仅随强度也随两束光的位相关系而不同。所以全息摄影不仅记录了物体上的反光强度,也记录了位相信息。人眼直接去看这种感光的底片,只能看到像指纹一样的干涉条纹,但如果用激光去照射它,人眼透过底片就能看到

原来被拍摄物体完全相同的三维立体像。 全息图种类很多,有菲涅耳图、夫琅和费图、傅立叶变换全息图、彩虹全息图、像全息图、体积全息图等。不管哪种全息图都要分成两步来完成,即用干涉法记录光波全息图,称波前记录;用衍射原理使原光波波前再现,称波前再现。 1.全息照相的过程 物体发出的包含振幅和位相信息的光可以用下式表示:其中: 信息,而位相信息 为振幅,为位相。普通摄影只能记录物体光波的振幅全部丢失,因此照片没有立体感。数学表达式为: 实际上没有任何一种感光材料可以直接记录光波的位相,在全息摄影中我们利用光的干涉原理来记录光波的振幅和位相信息。如右图 所示,激光器L发出的激光由分束镜BS将光线一 分为二,透射光线经反射镜M2反射再经过扩束后 照射在被摄物体上,这束光线称为物光(O光);反 射光线经反射镜M1反射再经过扩束后直接照射在 感光材料上,因而称为参考光(R光);两束光线在 P处相干并形成干涉条纹,这些条纹记录了物光的 所有振幅和位相信息。数学表达式如下: 物光为: 参考光为: 两光相干后总光强为:

全息照相实验报告

全息照相实验报告 程子豪2010035012 少年班01 一、实验目的: 1.了解全息照相记录和再现的基本原理和主要特点; 2.学习全息照相的操作技术; 3.观察和分析全息图的成像特性。 二、实验原理: 2.1全息照相原理的文字表述: 普通照相底片上所记录的图像只反映了物体上各点发光(辐射光或反射光)的强弱变化,显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 全息照相在记录物光的相位和强度分布时,利用了光的干涉。从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。 具体来说,全息照相包括以下两个过程: 1、波前的全息记录 利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。典型的全息记录过程是这样的:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。所以全息图不是别的,正是参考光波和物光波干涉图样的记录。显然,全息照片本身和原来物体没有任何相似之处。 2、衍射再现 物光波前的再现利用了光波的衍射。用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。这是一个虚像,它具有原始物体的一切特征。此外还有一个实像,称为共轭像。应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。

全息照相实验报告

全息照相实验 【目的要求】 1.了解全息照相记录和再现的基本原理; 2.掌握漫反射全息照片的摄制方法及加深对全息照片特点的理解。 【仪器用具】 JQX-1型激光全息实验台,He-Ne激光器,分束镜(50%)一个,扩束镜(40倍)两个,全反射镜两个,被摄物体(如:小瓷猪,小瓷马等)及放置物体的底座,全息干版及底架,暗室技术使用的设备。 【原理】 普通照相底片上所记录的图象只反映了物体上各点发光(辐射光或反射光)的强弱变化,也就是只记录了物光的振幅信息,于是,在照相纸上显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 (一)、全息照相与全息照相术 在介绍全息照相的基本原理之前,首先看一下全息照相和普通照相有什么区别。总的来说,全息照相和普通照相的原理完全不同。普通照相通常是通过照相机物镜成像,在感光底片平面上将物体发出的或它散射的光波(通常称为物光)的强度分布(即振幅分布)记录下来,由于底片上的感光物质只对光的强度有响应,对相位分布不起作用,所以在照相过程中把光波的位相分布这个重要的信息丢失了。因而,在所得到的照片中,物体的三维特征消失,不再存在视差,改变

全息术的原理、应用及展望解读

全息术的原理、应用及展望 摘要:全息术是一种用相干光干涉得到物体全部信息的2步成像技术,是一门正在蓬勃发展的光学分支,近年来已渗透到社会生活的各个领域并被广泛地应用于近代科学研究、工业生产和生活中.本论文首先介绍了全息术的发展历程,然后就其原理及应用进行了深入探讨,最后探讨了一下全息术的发展前景. 关键字:全息术;原理;应用;展望;白光再现 The Principal, Application and Prospects of holography Abstract:Holography is a two-step imaging technology which obtains the whole information from an object with the coherent light interference. It is an active branch of optical, in recent years, it has penetrated into every field of the social life and widely used in modern scientific research, industrial production, and it have already been stepping into the modern life. Firstly, this thesis introduces the development of holography, and then had a thorough discussion on the principle and application, and finally discusses the prospects for the development of holography. Key words:Holography;Principal;Application;Prospects;White light reconstruction 引言 1948年伽柏提出了一种全新的两步无透镜成像法──全息术,也称为波阵面再现术。整个过程由两步──波阵面记录和波阵面再现来完成。在波阵面记录过程中,引入适当的相干参考波,使它与由物体衍射(或散射)的光(物光)相干涉,把这干涉场记录下来,即可得到一张全息图。全息图是与物体毫不相似的干涉图,它上面不仅记录了物光的振幅信息而且也把在普通照相过程丢失的位相信息记录下来。它具有三维立体性、可分割性以及信息容量大等特点。 1 全息照相概述 全息术是利用光的干涉和衍射原理,将物体发射的特定光波——干涉的形式记录下来,并在一定的条件下使其再现,形成原物逼真的立体像。因为它记录了物体光波的全部信息(振幅和相位),因此称为全息照相或全息术。其原理可用8个字来表述:“干涉记录,衍射再现”。[1]全息术是一种不用透镜成像,而用相干光干涉得到物体

全息技术的应用及其前景展望

全息术的发展及其应用展望 全息术的发展及其应用展望 第一章全息术简介 1.1什么是光全息术? 光全息术是利用光的干涉和衍射原理,将物体反射的特定光波以干涉条纹的形式记录下来,并在一定条件下使其再现,形成与原物体逼真的三维像.由于记录了物体的全部信息(振幅和位相) ,因此称为全息术或全息照相术. 显然,这是一种用光学方法在人的视觉上再现物体三维清晰像的典型技术. 近年来,这种技术的实际应用范围越来越广,且已超出工程技术领域,扩展到医学、艺术、装饰、包装、印刷等领域. 正如1983 年英国泰晤士报宣称:“全息照相术面临的突破比150 年前照相术面临的突破更加有意义. ”提出这种观点的基础是因为模压全息图的产生. 这种产品使几十年来仅限于少数专家在实验室中的全息显示技术形成了能大规模生产的产业. 1.2全息术的类型 全息术的类型很多, 可以从不同的角度来进行分类: 比如根据拍摄时物与底片距离的远近分为夫琅和费全息与菲涅耳全息; 根据参考光与物光共轴与否分为共轴全息与离轴全息;也可以根据底片上乳胶层的厚度与干涉条纹间距的比例分为平面全息(乳胶层很薄以至全息片的性能不受乳胶层厚度影响) 和体全息(介质厚度大于干涉条纹间距, 介质内部也记录了干涉场的信息)。 1.3全息术的特点 1三维性因为全息图记录了物光的相位信息, 再现时,可观察到如同真实物体一样逼真的三维图像。当观察者改变位置时, 可以看到物体后面被挡住的部分, 可以看到逼真的三维图像。2不可撕毁性因为全息图记录的是物光与参考光的干涉条纹, 所以具有可分割性。它被分割后的任一碎片都能再现完整的被摄物形象, 只是分辨率受到一些影响。 3再现像的缩放性因衍射角与波长有关, 用不同波长的激光照射全息图, 再现像就会发生放大或缩小。 4信息容量大同一张全息感光板可多次重复曝光记录, 并能互不干扰地再现各个不同的图像。 第二章光全息术的发展 光全息术是D. Gabor在1948年为改善电子显微镜像质所提出的,其意义在于完整的记录。盖伯的实验解决了全息术发明中的基本问题,即波前的记录和再现,但由于当时缺乏明亮的相干光源(激光器),全息图的成像仍然质量很差。科家们认为新的显示时代已到来. 但由于当时没有足够强的相干辐射源,全息术的发展陷入了休眠状态.面临着巨大的障碍和仅有的一点结果,使它的早期研究者不得不放弃了这种光学显示技术. 全息术黯淡的前途直至60 年代初由于美国密执安大学雷达实验室进行的工作才使它

相关主题
文本预览
相关文档 最新文档