当前位置:文档之家› 2009年高考物理复习资料----例题精讲(包括五大专题)

2009年高考物理复习资料----例题精讲(包括五大专题)

2009年高考物理复习资料----例题精讲(包括五大专题)
2009年高考物理复习资料----例题精讲(包括五大专题)

;2009年高考物理复习资料----例题精讲(包括五大专题) 一、隔离分析法与整体分析法

隔离分析法是把选定的研究对象从所在物理情境中抽取出来,加以研究分析的一种方法.需要用隔离法分析的问题,往往都有几个研究对象,应对它们逐一隔离分析、列式.并且还要找出这些隔离体之间的联系,从而联立求解.概括其要领就是:先隔离分析,后联立求解.

1.隔离法.

【例1】如图所示,跨过滑轮细绳的两端分别系有 m 1=1kg 、m 2=2kg 的物体A 和B.滑轮质量m=0.2kg ,不 计绳与滑轮的摩擦,要使B 静止在地面上,则向上的拉 力F 不能超过多大?

【解析】(1)先以B 为研究对象,当B 即将离开地面时, 地面对它的支持力为0.它只受到重力m B g 和绳子的拉力 T 的作用,且有:T- m B g=0.

(2)再以A 为研究对象,在B 即将离地时, A 受到重力和拉力的作用,由于T=m B g >m A g , 所示A 将加速上升.有T- m A g=m A a A .

(3)最后以滑轮为研究对象,此时滑轮受到四个力作用:重力、拉力、两边绳子的两个拉力T.有F- mg-2T=ma. 这里需要注意的是:在A 上升距离s 时,滑轮只上升了s/2,故A 的加速度为滑轮加速度的2倍,即: a A =2a. 由以上四式联立求解得:F=43N. 2.整体分析法.

整体分析法是把一个物体系统(内含几个物体)看成一个整体,或者是着眼于物体运动的全过程,而不考虑各阶段不同运动情况的一种分析方法.

【例2】如图所示,质量0.5kg 、长1.2m 的金属盒,放在水平桌面上,它与桌面间动摩擦因数μ=0.125.在盒内右端放着质量也是0.5kg 、半径0.1m 的弹性小球,球与盒接触光滑.若在盒的左端给盒以水平向右1.5N·s 的冲量,设盒在运动中与球碰撞的时间极短,且无能量损失.求:盒从开始运动到完全停止所通过的路程是多少?(g 取10m/s 2

)

【解析】此题中盒与球交替做不同形式的运动,若用隔离法分段求解,将非常复杂.我们可以把盒和球交替运动的过程看成是在地面摩擦力作用下系统动能损耗的整体过程.

这个系统运动刚开始所具有的动能即为盒的动能 mv 02/2=p 2/2m=1.52/(2×0.5)=2.25J 整体在运动中受到的摩擦力: f=μN=μ2mg=10×0.125=1.25N 根据动能定理,可得-fs=0-mv 02/2 , s=1.8m

【解题回顾】不少同学分析完球与盒相互作用和运动过程后,用隔离法分段求解.先判断盒与球能否相撞,碰撞后交换速度,再求盒第二次运动的路程,再把各段路程相加.对有限次碰撞尚能理解,但如果起初的初动能很大,将会发生多次碰撞,遇到这种情况时,同学们会想到整体法吗?

当然,隔离分析法与整体分析法是相辅相成的,是不可分割的一个整体。有时需要先用隔离分析法,再用整体分析法;有时需要先用整体分析法,再用隔离分析法。

二、极值法与端值法

极值问题是中学物理中常见的一类问题.在物理状态发生变化的过程中,某一个物理量的变化函数可能不是单调的,它可能有最大值或最小值.分析极值问题的思路有两种:一种是把物理问题转化为数学问题,纯粹从数学角度去讨论或求解某一个物理函数的极值.它采用的方法也是代数、三角、几何等数学方法;另一种是

根据物体在状态变化过程中受到的物理规律的约束、限制来求极值.它采用的方法是物理分析法.

【例3】如图所示,一辆有四分之一圆弧的小车 停在不光滑的水平地面上,质量为m 的小球从静止 开始由车的顶端无摩擦滑下,且小车始终保持静止 状态.试分析:当小球运动到什么位置时,地面对 小车的静摩擦力最大?最大值为多少?

【解析】设圆弧半径为R ,当小球运动到重力与半径夹角为θ时,速度为v.根据机械能守恒定律和牛顿第二定律有:

mv 2/2=mgRcos θ

N-mgcos θ=mv 2/R

解得小球对小车的压力为:N=3mgcos θ 其水平分量为Nx=3mgcos θsin θ=3mgsin2θ/2

根据平衡条件,地面对小车的静摩擦力水平向右,大小为:f=Nx=3mgsin2θ/2 可以看出:当sin2θ=1,即θ=45°时,地面对车的静摩擦力最大,其值为f max =3mg/2

【例4】如图所示,娱乐场空中列车 由许多节完全相同的车厢组成,列车 先沿水平轨道行驶,然后滑上半径为 R 的空中圆环形光滑轨道.若列车全长 为L(L >2πR),R 远大于一节车厢的长

度和高度,那么列车在运行到圆环前的速度v 0

至少多大,才能使整个列车安全通过圆环轨道?

【解析】滑上轨道前列车速度的最小值v 0与轨道最高处车厢应具有的速度的最小值v 相对应.这里v 代表车厢恰能滑到最高处,且对轨道无弹力的临界状态.由:

mg=mv 2/R

得:v=

因轨道光滑,根据机械能守恒定律,列车在滑上轨道前的动能应等于列车都能安全通过轨道时应具有的动能和势能.因各节车厢在一起,故它们布满轨道时的速度都相等,且至少为 . 另外列车势能还增加了M ′gh ,其中M ′为布满在轨道上车厢的质量,M ′=M(2πR/L),h 为它们的平均高度,h=R. 因L >2πR ,故仍有一些车厢在水平轨道上,它们的速度与轨道上车厢的速度一样,但其势能为0,由以上分析可得:

Mv 02/2=Mv 2/2+M(2πR/L)gR

三、等效法

等效法是物理思维的一种重要方法,其要点是在效果不变的前提下,把较复杂的问题转化为较简单或常见的问题.应用等效法,关键是要善于分析题中的哪些问题(如研究对象、运动过程、状态或电路结构等)可以等效.

【例5】如图(甲)所示电路甲由8个不同的 电阻组成,已知R 1=12Ω,其余电阻阻值未知, 测得A 、B 间的总电阻为4Ω,今将R 1换成 6Ω的电阻,则A 、B 间的总电阻是多少?

【解析】此题电路结构复杂,很难找出各电阻间串、并联的关系 由于8个电阻中的7个电阻的阻值未知,即使能理顺各 电阻间的关系,也求不出它们连结后的总阻值.但是,由于各 电阻值一定,连结成电路后两点间的电阻值也是一定的,我们 把R 1外的其余部分的电阻等效为一个电阻R ′,如图电路乙

Rg

L R Rg v /42

0π+=

Rg

所示,则问题将迎刃而解.由并联电路的规律得: 4=12R ′/(12+R ′) R=6R ′/(6+R ′) 解得R=3Ω

【例6】如图所示,一个“V ”型玻璃管 倒置于竖直平面内,并处于E=103v/m 、方向 竖直向下的匀强电场中,一个带负电的小球, 重为G=10-3

N ,电量q=2×10-6

C ,从A 点由 静止开始运动,球与管壁的摩擦因数μ=0.5. 已知管长AB=BC=2m ,倾角α=37°,且管顶B 处有一很短的光滑圆弧.求:

(1)小球第一次运动到B 时的速度多大? (2)小球运动后,第一次速度为0的位置在何处? (3)从开始运动到最后静止,小球通过的总路程是多少? (sin37°=0.6,cos37°=0.8)

【解析】小球受到竖直向上的电场力为F=qE=2×10-3N =2G ,重力和电场合力大小等于重力G ,方向竖直向上,这里可以把电场力

与重力的合力等效为一个竖直上的“重力”,将整个 装置在竖直平面内旋转180°就变成了常见的物理 模型——小球在V 型斜面上的运动.如图所示, (1)小球开始沿这个“V ”型玻璃筒运动的加速度为 a 1=g(sin α-μcos α)=10×(sin37°-μcos37°)=2m/s 2 所以小球第一次到达B 点时的速度为:

(2)在BC 面上,小于开始从B 点做匀减速运动,加速度的大小为: a 2=g(sin α+μcos α)=10×(sin37°+μcos37°)=10m/s 2 所以,速度为0时到B 的距离为 s=v 2/2a 2=0.4m

(3)接着小球又反向向B 加速运动,到B 后又减速向A 运动,这样不断地往复,最后停在B 点.如果将全过程等效为一个直线运动,则有:

mglsin α=μmgcos αL 所以 L=ltan α/μ=3m 即小球通过的全路程为3m. 四、排除法解选择题

排除法又叫筛选法,在选择题提供的四个答案中,若能判断A 、B 、C 选项不对,则答案就是D 项.在解选择题时,若能先把一些明显不正确的答案排除掉,在所剩下的较少选项中再选择正确答案就较省事了.

【例7】在光滑水平面上有A 、B 两个小球,它们均向右在同一直线上运动,若它们在碰撞前的动量分别是p A =12kg·m/s ,p B =13kg·m/s(向右为正方向),则碰撞后它们动量的变化量△p A 及△p B 有可能的是

A.△p A =4kg·m/s △p B =-4kg ·m/s

B.△p A =-3kg ·m/s △p B =3kg ·m/s

C.△p A =-24kg ·m/s △p B =24kg ·m/s

D.△p A =-5kg ·m/s △p B =8kg ·m/s

【解析】依题意:A 、B 均向右运动,碰撞的条件是A 的速度大于B 的速度,碰撞时动量将由A 向B 传递,A 的动量将减少,B 的动量将增加,即△p A <0,△p B >0,故A 是错误的.根据动量守恒定律应有:△p A =△p B .所以D 是

s

m l a v /2222221=??==

错误的,C选项中,A球的动量从12kg·m/s变为-12kg·m/s,大小不变,因而它的动能不变,但B球动量增大到37kg·m/s,动能增大,说明碰撞后系统的动能增加,这不符合能量守恒定律.所以只有B选项正确.

五、微元法

一切宏观量都可被看成是由若干个微小的单元组成的.在整个物体运动的全过程中,这些微小单元是其时间、空间、物质的量的任意的且又具有代表性的一小部分.通过对这些微小单元的研究,我们常能发现物体运动的特征和规律.微元法就是基于这种思想研究问题的一种方法.

【例8】真空中以速度v飞行的银原子持续打在器壁上产生的压强为P,设银原子打在器壁上后便吸附在器壁上,银的密度为ρ.则器壁上银层厚度增加的速度u为多大?

【解析】银原子持续飞向器壁,打在器壁上吸附在器壁上速度变为0,动量发生变化是器壁对银原子有冲量的结果.

设△t时间内飞到器壁上面积为S的银原子的质量为m,银层增加的厚度为x.

由动量定理F△t=mv.又m=ρSx.

两式联立得F△t= ρSxv,整理变形得:

P=F/S=ρSxv/△t= ρvu.

所以:u=P/ρv.

六、作图法

作图法就是通过作图来分析或求解某个物理量的大小及变化趋势的一种解题方法.通过作图来揭示物理过程、物理规律,具有直观形象、简单明了等优点.

【例9】某物体做初速度不为0的匀变速直线运动,在时间t内通过的位移为s,设运动过程中间时刻的瞬时速度为v1,通过位移s中点的瞬间速度为v2,则

A.若物体做匀加速直线运动,则v1>v2

B.若物体做匀加速直线运动,则v1<v2

C.若物体做匀减速直线运动,则v1 >v2

D.若物体做匀减速直线运动,则v1<v2

【解析】初速度不为0的匀加速直线运动与匀减速运动的图像如图(a)、(b)所示,

在图(a)、(b)上分别作出中间时刻所对应的速度v1,根据图线下方所围的面积即为运动物体所通过的位移,将梯形分为左右面积相等的两部分,作出位移中点对应的速度v2,可见不论是匀加速运动还是匀减速运动,都是v1<v2.故本题答案应选B、D.

2009届物理一轮复习专题二力与运动

思想方法提炼

一、对力的几点认识

1.关于力的概念.力是物体对物体的相互作用.这一定义体现了力的物质性和相互性.力是矢量.

2.力的效果

(1)力的静力学效应:力能使物体发生形变.

(2)力的动力学效应:

a.瞬时效应:使物体产生加速度F=ma

b.时间积累效应:产生冲量I=Ft ,使物体的动量发生变化Ft=△p

c.空间积累效应:做功W=Fs ,使物体的动能发生变化△E k =W 3.物体受力分析的基本方法

(1)确定研究对象(隔离体、整体).

(2)按照次序画受力图,先主动力、后被动力,先场力、后接触力. (3)只分析性质力,不分析效果力,合力与分力不能同时分析.

(4)结合物体的运动状态:是静止还是运动,是直线运动还是曲线运动.如物体做曲线运动时,在某点所受合外力的方向一定指向轨迹弧线内侧的某个方向.

二、中学物理中常见的几种力

三、力和运动的关系

1.F=0时,加速度a =0.静止或匀速直线运动 F=恒量:F 与v 在一条直线上——匀变速直线运动

F 与v 不在一条直线上——曲线运动(如平抛运动) 2.特殊力:F 大小恒定,方向与v 始终垂直——匀速圆周运动 F=-kx ——简谐振动 四、基本理论与应用

解题常用的理论主要有:力的合成与分解、牛顿运动定律、匀变速直线运动规律、平抛运动的规律、圆周运动的规律等.力与运动的关系研究的是宏观低速下物体的运动,如各种交通运输工具、天体的运行、带电物体在电磁场中的运动等都属于其研究范畴,是中学物理的重要内容,是高考的重点和热点,在高考试题中所占的比重非常大.选择题、填空题、计算题等各种类型的试题都有,且常与电场、磁场、动量守恒、功能部分等知识相结合.

感悟 · 渗透 · 应用 一、力与运动的关系

力与运动关系的习题通常分为两大类:一类是已知物体的受力情况,求解其运动情况;另一类是已知物体的运动情况,求解物体所受的未知力或与力有关的未知量.在这两类问题中,加速度a 都起着桥梁的作用.而对物体进行正确的受力分析和运动状态及运动过程分析是解决这类问题的突破口和关键.

【例1】如图所示,质量M=10kg 的木楔 静止于粗糙水平地面上,木楔与地面间的 动摩擦因数μ=0.2,在木楔的倾角为θ=30° 的斜面上,有一质量m=1.0kg 的物块由静止 开始沿斜面下滑,当滑行路程s=1.4m 时,

其速度v=1.4m/s.在这个过程中木楔处于静止状态.求地面对木楔的摩擦力的大小和方向(取g=10m/s 2). 【解析】由于木楔没有动,不能用公式f=μN 计算木楔受到的摩擦力,题中所给出动摩擦因数的已知条件是多余的。首先要判断物块沿斜面向下做匀加速直线运动,由运动学公式v 2t -v 20=2as 可得其加速度a=v 2/2s=0.7m/s 2,由于a < gsin θ=5m/s 2,可知物块受摩擦力作用,

物块和木楔的受力如图所示: 对物块,由牛顿第二定律得: mgsin θ-f 1=ma f 1=4.3N

对木楔,设地面对木楔的摩擦力如图

所示,由平衡条件: f=N ′1sin θ-f ′1cos θ=0.61N

f 的结果为正值,说明所设的方向与图设方向相同.

【解题回顾】物理习题的解答,重在对物理规律的理解和运用,忌生拉硬套公式.对两个或两个以上的物体,理解物体间相互作用的规律,正确选取并转移研究对象,是解题的基本能力要求.本题也可以用整体法求解:对物块沿斜向下的加速度分解为水平方向acos θ和竖直方向asin θ,其水平方向上的加速度是木楔对木块作用力的水平分量产生的,根据力的相互作用规律,物块对木楔的水平方向的作用力也是macos θ,再根据木楔静止的现象,由平衡条件,得地面对木楔的摩擦力一定是macos θ=0.61N.

【例2】如图所示,一高度为h =0.2m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5m/s 的速度在平面上向右运动。求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10m/s 2)。某同学对此题的解法为:小球沿斜面运动,则

,sin 2

1

sin 20t g t v h ?+=θθ由此可求得落地的时间t 。 问:你同意上述解法吗?若同意,求出所需的时间;若不同意,则说明理由并求出你认为正确的结果。

【解析】不同意。小球应在A 点离开平面做平抛运动,而不是沿斜面下滑。正确做法为:落地点与A 点的水平距离)(110

2

.02520

0m g h v t v s =??=== ①

斜面底宽

)(35.032.0m hctg l =?==θ ② l s >

小球离开A 点后不会落到斜面,因此落地时间即为平抛运动时间。 ∴

)(2.010

2

.022s g h t =?==

③ 二、临界状态的求解

临界状态的问题经常和最大值、最小值联系在一起,它需要在给定的物理情境中求解某些物理量的上限或下限,有时它与数学上的极值问题相类似.但有些问题只能从物理概念、规律的约束来求解,研究处理这类问题的关键是:(1)要能分析出临界状态的由来.(2)要能抓住处于临界状态时物体的受力、运动状态的特征.

【例3】如图所示,在相互垂直的匀强电场、磁场 中,有一个倾角为θ且足够长的光滑绝缘斜面.磁感应强 度为B ,方向水平向外,电场强度的方向竖直向上.有 一质量为m ,带电量为+q 的小球静止在斜面顶端,这 时小球对斜面的压力恰好为0.若迅速把电场方向改为 竖直向下时,小球能在斜面上连续滑行多远?所用 时间是多少?

【解析】开始电场方向向上时小球受重力和电场力两个 力作用,mg=qE ,得电场强度E=mg/q.

当电场方向向下,小球在斜面上运动时小球受力 如图,在离开斜面之前小球垂直于斜面方向的加速度 为0.

mgcos θ+qEcos θ=Bqv+N ,

即2mgcos θ=Bqv+N

随v 的变大小球对斜面的压力N 在变小,当增大到某个值时压力为0,超过这个值后,小球将离开斜面做曲线运动.

沿斜面方向小球受到的合力

F=mgsin θ+qEsin θ=2mgsin θ为恒力,所以小球在离开斜面前做匀加速直线运动a=F/m=2gsin θ. 其临界条件是2mgcos θ=Bqv ,

得即将离开斜面时的速度v=2mgcos θ/Bq. 由运动学公式v 2=2as ,

得到在斜面上滑行的距离为s=m 2gcos 2θ/(B 2q 2sin θ) 再根据v=at 得运动时间:t=v/a=mctan θ/Bq.

【解题回顾】本题的关键有三点:(1)正确理解各种力的特点,如匀强电场中电场力是恒力,洛伦兹力随速度而变化,弹力是被动力等.(2)分析出小球离开斜面时临界状态,求出临界点的速度.(3)掌握运动和力的关系,判断出小球在离开斜面前做初速度为0的匀加速直线运动.下滑距离的求解也可以用动能定理求解,以加强对各种力的理解.

【例4】如图所示,一平直的传送带以v=2m/s 的速度匀速运行,传送带把A 处的工件运送到B 处.A 、B 相距L=10m.从A 处把工件无初速度地放到传送带上,经过时间t=6s 传送到B 处,欲用最短的

时间把工件从A 处传送到B 处, 求传送带的运行速度至少多大?

【解析】A 物体无初速度放上传送带以后,物体将在摩擦力作用下做匀加速运动,因为L/t >v/2,这表明物体从A 到B 先做匀加速运动后做匀速运动.

设物体做匀加速运动的加速度为a ,加速的时间为t 1,相对地面通过的位移为s ,则有v=at 1,s=at 21/2,s+v(t-t 1)=L. 数值代入得a=1m/s 2

要使工件从A 到B 的时间最短,须使物体始终做匀加速运动,至B 点时速度为运送时间最短所对应的皮带运行的最小速度.

由v 2=2aL ,v=

【解题回顾】对力与运动关系的习题,正确判断物体的运动过程至关重要.工件在皮带上的运动可能是一直做匀加速运动、也可能是先匀加速运动后做匀速运动,关键是要判断这一临界点是否会出现.在求皮带运行速度的最小值时,也可以用数学方法求解:设皮带的速度为v ,物体加速的时间为t 1,匀速的时间为t 2,则L=(v/2)t 1+vt 2,而t 1=v/a.t 2=t-t 1,得t=L/v+v/2a.由于L/v 与v/2a 的积为常数,当两者相等时其积为最大值,得v= 时t 有最小值.由此看出,求物理极值,可以用数学方法也可以采用物理方法.但一般而言,用物理方法比较简明.

三、在生产、生活中的运用.

高考制度的改革,不仅是考试形式的变化,更是高考内容的全面革新,其根本的核心是不仅要让学生掌握知识本身,更要让学生知道这些知识能解决哪些实际问题,因而新的高考试题十分强调对知识的实际应用的考查.

【例5】两个人要将质量M=1000kg 的小车沿 一小型铁轨推上长L=5m ,高h=1m 的斜坡 顶端,如图所示.已知车在任何情况下所受 的摩擦阻力恒为车重的0.12倍,两人能发挥的 最大推力各为800N.在不允许使用别的工具的

情况下,两人能否将车刚好推到坡顶?如果能,应如何办?(g 取10m/s

2 )

【解析】由于推车沿斜坡向上运动时,车所受“阻力”大于两个人的推力之和. 即f 1=Mgh/L+μMg=3.2×103N >F=1600N 所以不能从静止开始直接沿斜面将小车推到坡顶.

但因小车在水平面所受阻力小于两人的推力之和,即f 2=μMg=1200N <1600N 故可先在水平面上加速推一段距离后再上斜坡.小车在水平面的加速度为

s

m aL /522=

s

m aL /522=

a 1=(F-f 2)/M=0.4m/s 2

在斜坡上做匀减速运动,加速度为 a 2=(F-f 1)/M=-1.6m/s 2

设小车在水平面上运行的位移为s 到达斜面底端的速度为v. 由运动学公式2a 1s=v 2=-2a 2L

解得s=20m.即两人先在水平面上推20m 后,再推上斜坡,则刚好能把小车推到坡顶.

【解题回顾】本题的设问,只有经过深入思考,通过对物理情境的变换才能得以解决.由此可知,对联系实际问题应根据生活经验进行具体分析.不能机械地套用某种类型.这样才能切实有效地提高解题能力.另外,本题属半开放型试题,即没有提供具体的方法,需要同学自己想出办法,如果题中没有沿铁轨这一条件限制,还可以提出其他一些办法,如在斜面上沿斜线推等.

【例6】蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为 60kg 的运动员,从离水平网面 3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面 5.0m 高处。已知运动员与网接触的时间为 1.2s 。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g =10m/s 2)

【解析】将运动员看作质量为 m 的质点,从 h 1 高处下落,刚接触网时速度的大小

1v (向下)

弹跳后到达的高度为 h 2,刚离网时速度的大小

2v (向上)

速度的改变量

12v v v ?=+ (向上)

以 a 表示加速度,△t 表示接触时间,则 v a t ?=?

接触过程中运动员受到向上的弹力 F 和向下的重力 mg 。由牛顿第二定律, F mg ma -= 由以上五式解得,

F mg =+

代入数值得

31.510F =? N

四、曲线运动.

当物体受到的合力的方向与速度的方向不在一条直线上时,物体就要做曲线运动.中学物理能解决的曲线运动的习题主要有两种情形:一种是平抛运动,一种是圆周运动.平抛运动的问题重点是掌握力及运动的合成与分解.圆周运动的问题重点是向心力的来源和运动的规律.

【例7】在光滑水平面上有一质量m=1.0×10-3kg , 电量q=1.0×10-10C 的带正电小球,静止在O 点, 以O 点为原点,在该水平面内建立直角坐标系Oxy , 如图所示. 现突然加一沿x 轴正方向、场强大小 为E=2.0×106V/m 的匀强电场,使小球开始运动, 经过1.0s ,所加电场突然变为沿y 轴正方向,场强大小

仍为E=2.0×106V/m 的匀强电场,再经过1.0s 所加电场又突然变为另一个匀强电场.使小球在此电场作用下经

1.0s 速度变为0.求速度为0时小球的位置.

【解析】由牛顿定律可知小球在水平面上的加速度 a=qE/m=0.20m/s 2.

当场强沿x 轴正方向时,经1.0s 小球的速度大小为v x =at=0.20×1.0=0.20m/s (方向沿x 轴方向) 小球沿x 轴方向移动的距离为△x 1=at 2/2=0.10m. 在第2s 内,电场方向y 轴正方向,x 方向不再受力,

所以第2s 内小球在x 方向做匀速运动,在y 方向做初速度为0的匀加速直线运动(类似平抛运动) 沿y 方向的距离:△y=at 2/2=0.10m.

沿x 方向的距离:△x 2=v x t=0.2×1.0=0.20m. 第2s 未在y 方向分速度为: v y =at=0.20×1.0=0.20m/s

由上可知,此时小球运动方向与x 轴成45°角,要使小球速度变为0,则在第3s 内所加电场方向必须与此方向相反,即指向第三象限,与x 轴成225°角.

在第3s 内,设在电场作用下小球加速度的x 分量和y 方向分量分别为a x 、a y ,则 a x =v x /t=0.2m/s 2, a y =v y/t=0.20m/s 2;

在第3s 未,小球到达的位置坐标为 x 3=△x 1+△x 2+v x t-a x t 2/2=0.40m , y 3=△y+v y t-a y t 2/2=0.20m.

【解题回顾】学好物理要有一定的空间想像力,要分析、想像物体的运动状态和运动轨迹.作图可以化抽象为具体,提高解题成功率.本题小球的运动情景如图.

【例8】如图所示,有一质量为m 的小球P 与 穿过光滑水平板上小孔O 的轻绳相连,用手拉着 绳子另一端,使小球在水平板上绕O 点做半径 为a 、角速度为ω的匀速圆周运动. 求:(1)此时绳上的拉力有多大?

(2)若将绳子从此状态迅速放松,后又拉直,

使小球绕O 做半径为b 的匀速圆周运动.从放松到拉直这段过程经历了多长时间? (3)小球做半径为b 的匀速圆周运动时,绳子上的拉力又是多大? 【解析】(1)绳子上的拉力提供小球做匀速圆周运动的向心力,故有:F=m ω2a

(2)松手后绳子上的拉力消失,小球将从松手时的位置沿圆周的切线方向,在光滑的水平面上做匀速直线运动.当绳在水平板上长为b 时,绳又被拉紧.在这段匀速直线运动的过程中小球运动的距离为

s= ,

如图所示

故t=s/v=

(3)将刚拉紧绳时的速度分解为沿绳子的分量

和垂直于绳子的分量.

在绳被拉紧的短暂过程中,

球损失了沿绳的分速度,保留着垂直于绳的分速度做匀速圆周运动.

被保留的速度的大小为:

v 1=va/b=ωa 2

/b. 所以绳子后来的拉力为: F ′=mv 21/b=m ω2a 4/b 3.

【解题回顾】此题难在第3问,注意物体运动过程中的突变点,理解公式F=mv 2/R 中的v 是垂直于半径、沿切线方向的速度.

五、图像的运用 【例9】如图所示,一对 平行光滑轨道设置在水平面上, 两轨道间距L=0.20m ,电阻 R=1.0Ω;有一导体杆静止地放 在轨道上,与两轨道垂直, 杆及轨道的电阻皆可忽略不计,

22a b -a a b ω2

2-

整个装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直轨道向下,现用一外力F沿轨道方向拉杆,使之做匀加速运动,测得力F与时间t的关系如图所示.求杆的质量m和加速度a

【解析】物体做匀加速运动的条件是合外力不变.导体杆运动过程中受拉力和安培力两个力作用,因安培力随着速度增加电流变大而变大,所以拉力随着时间而变化.

设杆的质量为m,加速度为a,则由运动学公式v=at,

感应电动势E=BLv,感应电流I=E/R,

安培力f=BIL,

由牛顿第二定律F-f=ma,

整理得F=ma+B2L2at/R,

在图线上取两点代入后可得a = 10m/s2m = 0.1kg.

练习题

如图所示,离子源从某小孔发射出带电量q=1.6×10-10C

的正离子(初速度不计),在加速电压U= 1000V作用下沿O1O2

方向进入匀强磁场中.磁场限制在以O2为圆心半径为

R0=2.64cm的区域内,磁感强度大小B为0.10T,方向垂直纸

面向外,正离子沿偏离O1O2为60°角的方向从磁场中射出,

打在屏上的P点,计算:

(1)正离子质量m.

(2)正离子通过磁场所需要的时间t.

由图可见

R=R0·cot30°

由①、②、③式得

=1.67×10-27(kg)

(2)由图所示,离子飞出磁场,偏转60°角,故在磁场中飞

2009届物理一轮复习专题三动量与能量

思想方法提炼

牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题.

一、能量

1.概述

能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度.

高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。

2.能的转化和守恒定律在各分支学科中表达式

(1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理)

(2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理)

注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能

(2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。(3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。重力势能变化只与重力做功有关,与其他做功情况无关。

(4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。

注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。

(5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。

(6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之差。

(7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。(可以以粒子的动能、光子等形式向外释放)

动量与能量的关系

1.动量与动能

动量和能量都与物体的某一运动状态相对应,都与物体的质量和速度有关.但它们存在明显的不同:动量的大小与速度成正比p=mv;动能的大小与速度的平方成正比Ek=mv2/2 两者的关系:p2=2mE k

动量是矢量而动能是标量.物体的动量发生变化时,动能不一定变化;但物体的动能一旦发生变化,则动量必

发生变化.

2.动量定理与动能定理

动量定理:物体动量的变化量等于物体所受合外力的冲量.△p=I ,冲量I=Ft 是力对时间的积累效应 动能定理:物体动能的变化量等于外力对物体所做的功.△E k =W ,功W=Fs 是力对空间的积累效应. 3.动量守恒定律与机械能守恒定律

动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,(在研究某个物体与地球组成的系统的机械能守恒时,通常不考虑地球的影响),且研究的都是某一物理过程.动量守恒定律的内容是:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持不变

运用动量守恒定律值得注意的两点是:(1)严格符合动量守恒条件的系统是难以找到的.如:在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用的内力远大于外界对系统的作用,所以在作用前后的瞬间系统的动量可认为基本上是守恒的.(2)即使系统所受的外力不为0,但沿某个方向的合外力为0,则系统沿该方向的动量是守恒的.

动量守恒定律的适应范围广,不但适应常见物体的碰撞、爆炸等现象,也适应天体碰撞、原子的裂变,动量守恒与机械能守恒相结合的综合的试题在高考中多次出现,是高考的热点内容.

【例1】如图所示,滑块A 、B 的质量分别为m 1与m 2,m 1<m 2,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。两滑块一起以恒定的

速率v 0向右滑动.突然轻绳断开.当弹簧 伸至本身的自然长度时,滑块A 的速度 正好为0.求:

(1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能Ep ;

(2)在以后的运动过程中,滑块B 是否会有速度为0的时刻?试通过定量分析证明你的结论.

【解析】(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长到自然长度时,弹性势能为0,因这时滑块A 的速度为0,故系统的机械能等于滑块B 的动能.设这时滑块B 的速度为v ,则有E=m 2v 2/2.

因系统所受外力为0,由动量守恒定律 (m 1+m 2)v 0=m 2v. 解得E=(m 1+m 2)2v 02/(2m 2).

由于只有弹簧的弹力做功,系统的机械能守恒 (m 1+m 2)v 02/2+E p =E.

解得E p =(m 1-m 2)(m 1+m 2)v 02/2m 2.

(2)假设在以后的运动中滑块B 可以出现速度为0的时刻,并设此时A 的速度为v 1,弹簧的弹性势能为E ′p ,由机械能守恒定律得

m 1v 12/2+E ′p =(m 1+m 2)2v 02/2m 2. 根据动量守恒得(m 1+m 2)v 0=m 1v 1, 求出v 1代入上式得:

(m 1+m 2)2v 02/2m 1+E ′p=(m 1+m 2)2v 02/2m 2. 因为E ′p ≥0,故得:

(m 1+m 2)2v 02/2m 1≤(m 1+m 2)2v 02/2m 2 即m 1≥m 2,这与已知条件中m 1<m 2不符.

可见在以后的运动中不可能出现滑块B 的速度为0的情况.

【解题回顾】“假设法”解题的特点是:先对某个结论提出可能的假设.再利用已知的规律知识对该假设进行剖析,其结论若符合题意的要求,则原假设成立.“假设法”是科学探索常用的方法之一.在当前,高考突出能力考察的形势下,加强证明题的训练很有必要.

【例2】如图所示,质量为m 的有孔物体A 套在光滑的水平杆上,在A 下面用细绳挂一质量 为M 的物体B ,若A 固定不动,给B 一水平冲量I , B 恰能上升到使绳水平的位置.当A 不固定时,要使 B 物体上升到使绳水平的位置,则给它的水平冲量 至少多大?

【解析】当A 固定不动时,B 受到冲量后以A 为圆心做圆周运动,只有重力做功,机械能守恒.在水平位置时B 的重力势能应等于其在最低位置时获得的动能Mgh=E k =p 2/2M=I 2/2M.

若A 不固定,B 向上摆动时A 也要向右运动,当B 恰能摆到水平位置时,它们具有相同的水平速度,把A 、B 看成一个系统,此系统除重力外,其他力不做功,机械能守恒.又在水平方向上系统不受外力作用,所以系统在水平方向上动量守恒,设M 在最低点得到的速度为v 0,到水平位置时的速度为v.

Mv 0=(M+m)v.

Mv 02/2=(M+m)v 2/2+Mgh. I ′=Mv 0. I ′=

【解题回顾】此题重要的是在理解A 不固定,B 恰能上升到使绳水平的位置时,其竖直方向的分速度为0,只有水平速度这个临界点.

另外B 上升时也不再是做圆周运动,此时绳的拉力对B

做功(请同学们思考一下,绳的拉力对B 做正功还是负功),有兴趣的同学还可以分析一下系统以后的运动情况.

【例3】下面是一个物理演示实验,它显示: 图中下落的物体A 、B 经反弹后,B 能上升到比 初始位置高的地方.A 是某种材料做成的实心球,质量 m 1=0.28kg ,在其顶部的凹坑中插着质量m 2=0.1kg 的 木棍B.B 只是松松地插在凹坑中,其下端与坑底之间 有小间隙. 将此装置从A 的下端离地板的高度H=1.25m 处由静止释放.实验中,A 触地后在极短的时间内反弹,

且其速度大小不变;接着木棍B 脱离球A 开始上升,而球A 恰好停留在地板上,求木棍B 上升的高度.重力加速度(g=10m/s 2

【解析】根据题意,A 碰地板后,反弹速度的大小等于它下落到地面时的速度的大小,由机械能守恒得 (m 1+m 2)gH=(m 1+m 2)v 2/2,v 1= . A 刚反弹时速度向上,立刻与下落的B 碰撞,碰前B 的速度v 2= . 由题意,碰后A 速度为0,以v 2表示B 上升的速度, 根据动量守恒m 1v 1-m 2v 2=m 2v ′2.

令h 表示B 上升的高度,有m 2v ′22/2=m 2gh , 由以上各式并代入数据得:h=4.05m. 【例4】质量分别为m 1、m 2的小球在一 直线上做弹性碰撞,它们在碰撞前后的 位移—时间图像如图所示,若m 1=1kg, m 2的质量等于多少?

【解析】从位移—时间图像上可看出:m 1和m 2

于t=2s 时在位移等于8m 处碰撞,碰前m 2的速度为0,m 1的速度v 0=△s/△t=4m/s

碰撞后,m 1的速度v 1=-2m/s ,

m

m M I

gH

2gH

2

m 2的速度v 2=2m/s ,

由动量守恒定律得m 1v 0=m 1v 1+m 2v 2, m 2=3kg.

【解题回顾】这是一道有关图像应用的题型,关键是理解每段图线所对应的两个物理量:位移随时间的变化规律,求出各物体碰撞前后的速度.不要把运动图像同运动轨迹混为一谈.

【例5】云室处在磁感应强度为B 的匀强磁场中,一质量为M 的静止的原子核在云室中发生一次α衰变,α粒子的质量为m ,电量为q ,其运动轨迹在与磁场垂直的平面内.现测得α粒子运动的轨道半径为R ,试求在衰变过程中的质量亏损.(注:涉及动量问题时,亏损的质量可忽略不计)

【解析】α粒子在磁场中做圆周运动的向心力是洛伦兹力,设α粒子的运动速度为v ,由牛顿第二定律得qvB=mv 2/R.

衰变过程中,粒子与剩余核发生相互作用,设衰变后剩余核的速度为v ′,衰变过程中动量守恒(M-m)v ′=mv. α粒子与剩余核的动能来源于衰变过程中亏损的质量,有 △m·c 2=(M-m)v ′2/2+mv 2/2. 解得:△m=M(qBR)2/[2c 2m(M-m)].

【解题回顾】此题知识跨度大,综合性强,将基础理论与现代物理相结合.考查了圆周运动、洛伦兹力、动量守恒、核裂变、能量守恒等知识.这类题型需注意加强.

【例6】如图所示,一轻绳穿过光滑的定滑轮, 两端各拴有一小物块.它们的质量分别为m 1、m 2,已知 m 2=3m 1,起始时m1放在地上,m 2离地面的高度 h=1.0m ,绳子处于拉直状态,然后放手.设物块与地面相碰 时完全没有弹起(地面为水平沙地),绳不可伸长,绳中 各处拉力均相同,在突然提起物块时绳的速度与物块的 速度相同,试求m 2所走的全部路程(取3位有效数字) 【解析】因m 2>m 1,放手后m 2将下降,直至落地. 由机械能守恒定律得 m 2gh-m 1gh=(m 1+m 2)v 2/2.

m 2与地面碰后静止,绳松弛,m 1以速度v 上升至最高点处再下降. 当降至h 时绳被绷紧.

根据动量守恒定律可得:m 1v=(m 1+m 2)v 1

由于m 1通过绳子与m 2作用及m 2与地面碰撞的过程中都损失了能量,故m 2不可能再升到h 处,m 1也不可能落回地面.设m 2再次达到的高度为h 1,m 1则从开始绷紧时的高度h 处下降了h 1.由机械能守恒

(m 1+m 2)v 12/2+m 1gh 1=m 2gh 1 由以上3式联立可解得

h 1=m 12h/(m 1+m 2)2=[m 1/(m 1+m 2)]2h

此后m 2又从h 1高处落下,类似前面的过程.设m 2第二次达到的最高点为h2,仿照上一过程可推得 h 2=m 12h 1/(m 1+m 2)2=m 14h/(m 1+m 2)4=[m 1/(m 1+m 2)]4h 由此类推,得:h 3=m 16h/(m 1+m 2)6=[m 1/(m 1+m 2)]6h 所以通过的总路程 s=h+2h 1+2h 2+2h 3+……

m

h h m m m m m m m m m h 13.1567.02]

)41

()41()41(21[2]

)()()(21[26426

21142112211≈?=++++=+++++++=

【解题回顾】这是一道难度较大的习题.除了在数学处理方面遇到困难外,主要的原因还是出在对两个物块运动的情况没有分析清楚.本题作为动量守恒与机械能守恒定律应用的一种特例,应加强记忆和理解.

【例7】如图所示,金属杆a 从 离地h 高处由静止开始沿光滑平行的 弧形轨道下滑,轨道的水平部分有竖直 向上的匀强磁场B ,水平轨道上原来 放有一金属杆b ,已知a 杆的质量为 m a ,且与杆b 的质量之比为m a ∶m b =3∶4, 水平轨道足够长,不计摩擦,求: (1)a 和b 的最终速度分别是多大? (2)整个过程中回路释放的电能是多少?

(3)若已知a 、b 杆的电阻之比R a ∶R b =3∶4,其余部分的电阻不计,整个过程中杆a 、b 上产生的热量分别是多少?

【解析】(1)a 下滑过程中机械能守恒 m a gh=m a v 02/2

a 进入磁场后,回路中产生感应电流,a 、

b 都受安培力作用,a 做减速运动,b 做加速运动,经过一段时间,a 、b 速度达到相同,之后回路的磁通量不发生变化,感应电流为0,安培力为0,二者匀速运动.匀速运动的速度即为a.b 的最终速度,设为v.由于所组成的系统所受合外力为0,故系统的动量守恒

m a v 0=(m a +m b )v 由以上两式解得最终速度 v a =v b =v=

(2)由能量守恒得知,回路中产生的电能应等于a 、b 系统机械能的损失,所以 E=m a gh-(m a +m b )v 2/2=4m a gh/7

(3)由能的守恒与转化定律,回路中产生的热量应等于回路中释放的电能等于系统损失的机械能,即Q a +Q b =E.在回路中产生电能的过程中,电流不恒定,但由于R a 与R b 串联,通过的电流总是相等的,所以应有

所以

【例8】连同装备质量M=100kg 的宇航员离飞船45m 处与飞船相对静止,他带有一个装有m=0.5kg 的氧气贮筒,其喷嘴可以使氧气以v=50m/s 的速度在极短的时间内相对宇航员自身喷出.他要返回时,必须向相反的方向释放氧气,同时还要留一部分氧气供返回途中呼吸.设他的耗氧率R 是2.5×10-4kg/s ,问:要最大限度地节省氧气,并安全返回飞船,所用掉的氧气是多少?

【解析】设喷出氧气的质量为m ′后,飞船获得的速度为v ′,喷气的过程中满足动量守恒定律,有: 0=(M-m ′)v ′+m ′(-v+v ′) 得v ′=m ′v/M

宇航员即以v ′匀速靠近飞船,到达飞船所需的时间 t=s/v ′=Ms/m ′v 这段时间内耗氧m ″=Rt

故其用掉氧气m ′+m ″=2.25×10-2/m ′+m ′

gh 27

3

4

322===b a b a b a R R t R I t R I Q Q gh

m E Q gh

m E Q a b a a 49

16

744912

73====

因为(2.25×10-2/m ′)×m ′=2.5×10-2为常数,

所以当2.25×10-2/m ′=m ′,即m ′=0.15kg 时用掉氧气最少,共用掉氧气是m ′+m ″=0.3kg.

【解题回顾】(1)动量守恒定律中的各个速度应统一对应于某一惯性参照系,在本题中,飞船沿圆轨道运动,不是惯性参照系.但是,在一段很短的圆弧上,可以视飞船做匀速直线运动,是惯性参照系.(2)此题中氧气的速度是相对宇航员而不是飞船,因此,列动量守恒的表达式时,要注意速度的相对性,这里很容易出错误.(3)要注意数学知识在物理上的运用.

【例9】质量为m 的飞机以水平速度v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其它力的合力提供,不含重力)。今测得当飞机在水平方向的位移为l 时,它的上升高度为h ,求:(1)飞机受到的升力大小;(2)从起飞到上升至h 高度的过程中升力所作的功及在高度h 处飞机的动能。

【解析】飞机水平速度不变 t v l 0= ① y 方向加速度恒定 2

2

1at h =

② 消去t 即得

2

02

2v l h a =

③ 由牛顿第二定律

)21(2

02

v gl h mg ma mg F +

=+= ④ (2)升力做功

)21(2

02v gl

h mgh Fh W +

== ⑤ 在h 处

l

hv ah at v t 022=

== ⑥

)41(21)(2122202

20l

h mv v v m E t k +=+= ⑦

【例10】有三根长度皆为 l =1.00m 的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的 O 点,另一端

分别拴有质量皆为 m =1.00×10-2kg 的带电小球 A 和 B ,它们的电量分别为 一q 和 +q ,q =l.00×10-

7C 。A 、B 之间用第三根线连接起来。空间中存在大小为 E =1.00×106N/C 的匀强电场,场强方向沿水平向

右,平衡时 A 、B 球的位置如图所示。现将 O 、B 之间的线烧断,由于有空气阻力,A 、B 球最后会达到新的平衡位置。求最后两球的机械能与电势能的总和与烧断前相比改变了多少。(不计两带电小球间相互作用的静电力)

【解析】图1中虚线表示 A 、B 球原来的平衡位置,实线表示烧断后重新达到平衡的位置,其中α、β 分别表示细线加 OA 、AB 与竖直方向的夹角。

A 球受力如图2所示:重力 mg 竖直向下;电场力 qE 水平向左;细线OA 对 A 的拉力 T 1,方向如图;细线 A

B 对 A 的拉力 T 2,方向如图。由平衡条件

12sin sin T T qE αβ+=

12cos cos T mg T αβ=+

B 球受力如图3所示:重力 mg 竖直向下;电场力 qE 水平向右;细线 AB 对 B 的拉力 T 2,方向如图。由平衡

条件

2sin T qE β

=

2cos T mg β=

联立以上各式并代入数据,得 0α= 45β=?

由此可知,A 、B 球重新达到平衡的位置如图4所示。与原来位置相比,A 球的重力势能减少了 (1sin 60)A

E mgl =-?

B 球的重力势能减少了

(1sin60cos45)B E mgl =-?+?

A 球的电势能增加了

cos60A

W qEl =?

B 球的电势能减少了

(sin 45sin30)B W qEl =?-?

两种势能总和减少了

B A A B W W W E E =-++

代入数据解得

26.810W -=? J

【例11】一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过

CD 区域时是倾斜的,AB 和CD 都与BC 相切。现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h 。稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L 。每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动)。已知在一段相当长的时间T 内,共

运送小货箱的数目为N 。这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均抽出功率P 。

【解析】以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有

s =1/2at 2 ① v 0=at ② 在这段时间内,传送带运动的路程为 s 0=v 0t ③ 由以上可得

s 0=2s ④

用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为 A =fs =1/2mv 02 ⑤ 传送带克服小箱对它的摩擦力做功 A 0=fs 0=2·1/2mv 02 ⑥ 两者之差就是克服摩擦力做功发出的热量 Q =1/2mv 02 ⑦

可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。 T 时间内,电动机输出的功为 W =P T ⑧

此功用于增加小箱的动能、势能以及克服摩擦力发热,即 W =1/2Nmv 02+Nmgh +NQ ⑨ 已知相邻两小箱的距离为L ,所以 v 0T =NL ⑩ 联立⑦⑧⑨⑩,得

P =T Nm [22

2T

L N +gh] 2009届物理一轮复习专题四带电粒子在场中的运动

思想方法提炼

带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题

电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化.

一、安培力

1.安培力:通电导线在磁场中受到的作用力叫安培力.

【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.

2.安培力的计算公式:F=BILsin θ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min =0N ;0°<θ<90°时,安培力F 介于0和最大值之间.

3.安培力公式的适用条件;

①一般只适用于匀强磁场;②导线垂直于磁场;

③L 为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L 由始端流向末端; 如图所示,

几种有效长度;

④安培力的作用点为磁场中通电导体的几何中心;

⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.

【说明】安培力的计算只限于导线与B 垂直和平行的两种情况. 二、左手定则

1.通电导线所受的安培力方向和磁场B 的方向、电流方向之间的关系,可以用左手定则来判定.

2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.

3.安培力F 的方向既与磁场方向垂直,又与通电导线方向垂直,即F 总是垂直于磁场与导线所决定的平面.但B 与I 的方向不一定垂直.

4.安培力F 、磁感应强度B 、电流I 三者的关系 ①已知I 、B 的方向,可惟一确定F 的方向;

②已知F 、B 的方向,且导线的位置确定时,可惟一确定I 的方向; ③已知F 、I 的方向时,磁感应强度B 的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsin θ;

2.当带电粒子的运动方向与磁场方向互相平行时,F=0;

3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB;

4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0;

四、洛伦兹力的方向

1.运动电荷在磁场中受力方向可用左手定则来判定;

2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f总是垂直于B和v所在的平面.

3.使用左手定则判定洛伦兹力方向时,若粒子带正电时,四个手指的指向与正电荷的运动方向相同.若粒子带负电时,四个手指的指向与负电荷的运动方向相反.

4.安培力的本质是磁场对运动电荷的作用力的宏观表现.

五、带电粒子在匀强磁场中的运动

1.不计重力的带电粒子在匀强磁场中的运动可分三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.从运动形式可分为:匀速直线运动和变加速曲线运动.

2.如果不计重力的带电粒子的运动方向与磁场方向平行时,带电粒子做匀速直线运动,是因为带电粒子在磁场中不受洛伦兹力的作用.

3.如果不计重力的带电粒子的运动方向与磁场方向垂直时,带电粒子做匀速圆周运动,是因为带电粒子在磁场中受到的洛伦兹力始终与带电粒子的运动方向垂直,只改变其运动方向,不改变其速度大小.

4.不计重力的带电粒子在匀强磁场中做匀速圆周运动的轨迹半径r=mv/Bq;其运动周期T=2πm/Bq(与速度大小无关).

5.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:带电粒子垂直进入匀强电场,在电场中做匀变速曲线运动(类平抛运动);垂直进入匀强磁场,则做变加速曲线运动(匀速圆周运动)

6.带电粒子在匀强磁场中做不完整圆周运动的解题思路:

(1)用几何知识确定圆心并求半径.

因为F方向指向圆心,根据F一定垂直v,画出粒子运动轨迹中任意两点(大多是射入点和出射点)的F或半径方向,其延长线的交点即为圆心,再用几何知识求其半径与弦长的关系.

(2)确定轨迹所对的圆心角,求运动时间.

先利用圆心角与弦切角的关系,或者是四边形内角和等于360°(或2π)计算出圆心角θ的大小,再由公式t=θT/3600(或θT/2 π)可求出运动时间.

六、带电粒子在复合场中运动的基本分析

1.这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛伦兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.

2.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.

3.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.

4.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.

5.当带电粒子所受的合外力的大小、方向均是不断变化的,则粒子将做变加速运动,这类问题一般只能用能量关系处理.

七、电场力和洛伦兹力的比较

1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用.

2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛伦兹力的大小f=Bqvsina,与电荷运动的速度大小和方向均有关.

3.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直.

4.电场既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小.

5.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能.

6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.

八、对于重力的考虑

重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)是直接看不出是否要考虑重力,但在进行受力分析与运动分析时,要由分析结果,先进行定性确定再是否要考虑重力.

九、动力学理论:

(1)粒子所受的合力和初速度决定粒子的运动轨迹及运动性质;

(2)匀变速直线运动公式、运动的合成和分解、匀速圆周运动的运动学公式;

(3)牛顿运动定律、动量定理和动量守恒定律;

(4)动能定理、能量守恒定律.

十、在生产、生活、科研中的应用:如显像管、回旋加速器、速度选择器、正负电子对撞机、质谱仪、电磁流量计、磁流体发电机、霍尔效应等等.

正因为这类问题涉及知识面大、能力要求高,而成为近几年高考的热点问题,题型有选择、填空、作图等,更多的是作为压轴题的说理、计算题.分析此类问题的一般方法为:首先从粒子的开始运动状态受力分析着手,由合力和初速度判断粒子的运动轨迹和运动性质,注意速度和洛伦兹力相互影响这一特点,将整个运动过程和各个阶段都分析清楚,然后再结合题设条件,边界条件等,选取粒子的运动过程,选用有关动力学理论公式求解 常见的问题类型及解法.

【例1】如图,在某个空间内有一个水平方向的匀强电场,电场强度

,又有一个与电场垂直的水平方向匀强磁场,磁感强度B=10T。

现有一个质量m=2×10-6kg、带电量q=2×10-6C的微粒,在这个电场和磁场叠加的

空间作匀速直线运动。假如在这个微粒经过某条电场线时突然撤去磁场,那么,当

它再次经过同一条电场线时,微粒在电场线方向上移过了多大距离。(g取10m/

S2)

【解析】题中带电微粒在叠加场中作匀速直线运动,意味着微粒受到的重力、电场力

和磁场力平衡。进一步的分析可知:洛仑兹力f与重力、电场力的合力F等值反向,微粒运

动速度V与f垂直,如图2。当撤去磁场后,带电微粒作匀变速曲线运动,可将此曲线运动

分解为水平方向和竖直方向两个匀变速直线运动来处理,如图3。由图2可知:

又:

解之得:

由图3可知,微粒回到同一条电场线的时间

则微粒在电场线方向移过距离

【解题回顾】本题的关键有两点:

(1)根据平衡条件结合各力特点画出三力关系;(2)将匀变速曲线运动分解

【例2】如图所示,质量为m,电量为q的带正电

2021年高考物理选择题专题训练含答案 (1)

2021模拟模拟-选择题专项训练之交变电流 本考点是电磁感应的应用和延伸.高考对本章知识的考查主要体现在“三突出”:一是突出考查交变电流的产生过程;二是突出考查交变电流的图象和交变电流的四值;三是突出考查变压器.一般试题难度不大,且多以选择题的形式出现.对于电磁场和电磁波只作一般的了解.本考点知识易与力学和电学知识综合,如带电粒子在加有交变电压的平行金属板间的运动,交变电路的分析与计算等.同时,本考点知识也易与现代科技和信息技术相联系,如“电动自行车”、“磁悬浮列车”等.另外,远距离输电也要引起重视.尤其是不同情况下的有效值计算是高考考查的主要内容;对变压器的原理理解的同时,还要掌握变压器的静态计算和动态分析. 北京近5年高考真题 05北京18.正弦交变电源与电阻R、交流电压表按照图1所示的方式连接,R=10Ω,交流电压表的示数是10V。图2是交变电源输出电压u随时间t变化的图象。则( ) A.通过R的电流i R随时间t变化的规律是i R=2cos100πt (A) B.通过R的电流 i R 随时间t变化的规律是i R=2cos50πt (A) C.R两端的电压u R随时间t变化的规律是u R=52cos100πt (V) D.R两端的电压u R随时间t变化的规律是u R=52cos50πt (V) 07北京17、电阻R1、R2交流电源按照图1所示方式连接,R1=10Ω,R2=20Ω。合上开关后S后,通过电阻R2的正弦交变电流i随时间t变化的情况如图2所示。则() A、通过R1的电流的有效值是1.2A B、R1两端的电压有效值是6V C、通过R2的电流的有效值是1.22A D、R2两端的电压有效值是62V 08北京18.一理想变压器原、副线圈匝数比n1:n2=11:5。原线圈与正弦交变电源连接,输入电压u如图所示。副线圈仅接入一个10 Ω的电阻。则() A.流过电阻的电流是20 A B.与电阻并联的电压表的示数是1002V C.经过1分钟电阻发出的热量是6×103 J D.变压器的输入功率是1×103 W 北京08——09模拟题 08朝阳二模16.在电路的MN间加一如图所示正弦交流电,负载电阻为100Ω,若不考 虑电表内阻对电路的影响,则交流电压表和交流电流表的读数分别为()A.220V,2.20 AB.311V,2.20 AC.220V,3.11A D.311V,3.11A t/×10-2s U/V 311 -311 1 2 3 4 A V M ~ R V 交变电源 ~ 图1 u/V t/×10-2s O U m -U m 12 图2

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

最新高考物理直线运动真题汇编(含答案)

最新高考物理直线运动真题汇编(含答案) 一、高中物理精讲专题测试直线运动 1.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。求: (1)车在加速过程中木箱运动的加速度的大小 (2)木箱做加速运动的时间和位移的大小 (3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。 【答案】(1)(2)4s;18m(3)1.8m 【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律 解得 则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为 (2)设木箱的加速时间为,加速位移为。 (3)设平板车做匀加速直线运动的时间为,则 达共同速度平板车的位移为则 要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足 考点:牛顿第二定律的综合应用. 2.某汽车在高速公路上行驶的速度为108km/h,司机发现前方有障碍物时,立即采取紧急刹车,其制动过程中的加速度大小为5m/s2,假设司机的反应时间为0.50s,汽车制动过程中做匀变速直线运动。求: (1)汽车制动8s后的速度是多少 (2)汽车至少要前行多远才能停下来? 【答案】(1)0(2)105m

【解析】 【详解】 (1)选取初速度方向为正方向,有:v 0=108km/h=30m/s ,由v t =v 0+at 得汽车的制动时间为:003065t v v t s s a ---= ==,则汽车制动8s 后的速度是0; (2)在反应时间内汽车的位移:x 1=v 0t 0=15m ; 汽车的制动距离为:023******* t v v x t m m ++?= == . 则汽车至少要前行15m+90m=105m 才能停下来. 【点睛】 解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,注意汽车在反应时间内做匀速直线运动. 3.某人驾驶一辆小型客车以v 0=10m/s 的速度在平直道路上行驶,发现前方s =15m 处有减速带,为了让客车平稳通过减速带,他立刻刹车匀减速前进,到达减速带时速度v =5.0 m/s .已知客车的总质量m =2.0×103 kg.求: (1)客车到达减速带时的动能E k ; (2)客车从开始刹车直至到达减速带过程所用的时间t ; (3)客车减速过程中受到的阻力大小f . 【答案】(1)E k =2.5×104J (2)t =2s (3)f =5.0×103N 【解析】 【详解】 (1) 客车到达减速带时的功能E k = 12mv 2,解得E k =2.5×104 J (2) 客车减速运动的位移02 v v s t +=,解得t =2s (3) 设客车减速运动的加速度大小为a ,则v =v 0-at ,f =ma 解得f =5.0×103 N 4.如图,AB 是固定在竖直平面内半径R =1.25m 的1/4光滑圆弧轨道,OA 为其水平半径,圆弧轨道的最低处B 无缝对接足够长的水平轨道,将可视为质点的小球从轨道内表面最高点A 由静止释放.已知小球进入水平轨道后所受阻力为其重力的0.2倍,g 取 10m/s 2.求: (1)小球经过B 点时的速率;

高中物理选修3-5经典例题

物理选修3-5动量典型例题 【例1】质量为0.1kg 的小球,以10m /s 的速度水平撞击在竖直放置的厚钢板上,而后以7m /s 的速度被反向弹回,设撞击的时间为0.01s ,并取撞击前钢球速度的方向为正方向,则钢球受到的平均作用力为( ). A .30N B .-30N C .170N D .-170N 【例2】质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短离地的速率为2v ,在碰撞过程中,地面对钢球的冲量的方向和大小为( ). A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 【例3】质量为2m 的物体A ,以一定的速度沿光滑水平面运动,与一静止的物体B 碰撞后粘为一体继续运动,它们共同的速度为碰撞前A 的速度的2/3,则物体B 的质量为( ). A .m B .2m C .3m D . 2 3 m 【例4】一个不稳定的原子核,质量为M ,处于静止状态,当它以速度0v 释 放一个质量为m 的粒子后,则原子核剩余部分的速度为( ). A .0 m v M m - B . m v M - C .0m v M m -- D .0 m v M m - + 【例5】带有光滑圆弧轨道、质量为M 的滑车静止置于光滑水平面上,如图所示.一质量为m 的小球以速度v 0水平冲上滑车,当小球上滑再返回并脱离滑车时,有①小球一定水平向左做 平抛运动 ②小球可能水平向左做平抛运动 ③小球可能做自由落体运动 ④小球一定水平向右做平抛运动 以上说法正确的是( ) A.① B .②③ C.④ D.每种说法都不对 【例6】质量为m 的物体静止在足够大的水平面上,物体与桌面的动摩擦因数为μ,有一水平恒力作用于物体上,并使之加速前进,经1t 秒后去掉此恒力,求物体运动的总时间t . 【例7】将质量为0.10kg 的小球从离地面20m 高处竖直向上抛出,抛出时 的初速度为15m /s ,当小球落地时,求: (1)小球的动量; (2)小球从抛出至落地过程中的动量增量; (3)小球从抛出至落地过程中受到的重力的冲量. 【例8】气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 高的地方,气球下方悬根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这根绳长至少为多少米?(不计人的高度)

高考物理易错题解题方法大全 (3)

高考物理易错题解题方法大全(6) 碰撞与动量守恒 例76:在光滑水平面上停放着两木块A和B,A的质量大,现同时施加大小相等的恒力F 使它们相向运动,然后又同时撤去外力F,结果A和B迎面相碰后合在一起,问A和B合在一起后的运动情况将是() A.停止运动 B.因A的质量大而向右运动 C.因B的速度大而向左运动 D.运动方向不能确定 【错解分析】错解:因为A的质量大,所以它的惯性大,所以它不容停下来,因此应该选B;或者因为B的速度大,所以它肯定比A后停下来,所以应该选C。 产生上述错误的原因是没有能够全面分析题目条件,只是从一个单一的角度去思考问题,失之偏颇。 【解题指导】碰撞问题应该从动量的角度去思考,而不能仅看质量或者速度,因为在相互作用过程中,这两个因素是一起起作用的。 【答案】本题的正确选项为A。 由动量定理知,A和B两物体在碰撞之前的动量等大反向,碰撞过程中动量守恒,因此碰撞之后合在一起的总动量为零,故选A。 练习76:A、B两球在光滑水平面上相向运动,两球相碰后有一球停止运动,则下述说法中正确的是() A.若碰后,A球速度为0,则碰前A的动量一定大于B的动量 B.若碰后,A球速度为0,则碰前A的动量一定小于B的动量 C.若碰后,B球速度为0,则碰前A的动量一定大于B的动量 D.若碰后,B球速度为0,则碰前A的动量一定小于B的动量 例77:质量为M的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子的速度将() A. 减小 B. 不变 C. 增大 D. 无法确定 【错解分析】错解:因为随着砂子的不断流下,车子的总质量减小,根据动量守恒定律总动量不变,所以车速增大,故选C。 产生上述错误的原因,是在利用动量守恒定律处理问题时,研究对象的选取出了问题。因为,此时,应保持初、末状态研究对象的是同一系统,质量不变。 【解题指导】利用动量守恒定律解决问题的时候,在所研究的过程中,研究对象的系统一定不能发生变化,抓住研究对象,分析组成该系统的各个部分的动量变化情况,达到解决问题的目的。 【答案】本题的正确选项为B。

高考物理专题一(受力分析)(含例题、练习题及答案)

高考定位 受力分析、物体的平衡问题是力学的基本问题,主要考查力的产生条件、力的大小方向的判断(难点:弹力、摩擦力)、力的合成与分解、平衡条件的应用、动态平衡问题的分析、连接体问题的分析,涉及的思想方法有:整体法与隔离法、假设法、正交分解法、矢量三角形法、等效思想等.高考试题命题特点:这部分知识单独考查一个知识点的试题非常少,大多数情况都是同时涉及到几个知识点,而且都是牛顿运动定律、功和能、电磁学的内容结合起来考查,考查时注重物理思维与物理能力的考核. 考题1对物体受力分析的考查 例1如图1所示,质量为m的木块A放在质量为M的三角形斜面B上,现用大小均为F,方向相反的水平力分别推A和B,它们均静止不动,则() 图1 A.A与B之间不一定存在摩擦力 B.B与地面之间可能存在摩擦力 C.B对A的支持力一定大于mg D.地面对B的支持力的大小一定等于(M+m)g 审题突破B、D选项考察地面对B的作用力故可以:先对物体A、B整体受力分析,根据平衡条件得到地面对整体的支持力和摩擦力;A、C选项考察物体A、B之间的受力,应当隔离,物体A受力少,故:隔离物体A受力分析,根据平衡条件求解B对A的支持力和摩擦力. 解析对A、B整体受力分析,如图, 受到重力(M+m)g、支持力F N和已知的两个推力,水平方向:由于两个推力的合力为零,故

整体与地面间没有摩擦力;竖直方向:有F N=(M+m)g,故B错误,D正确;再对物体A受力分析,受重力mg、推力F、斜面体B对A的支持力F N′和摩擦力F f,在沿斜面方向:①当推力F沿斜面分量大于重力的下滑分量时,摩擦力的方向沿斜面向下,②当推力F沿斜面分量小于重力的下滑分量时,摩擦力的方向沿斜面向上,③当推力F沿斜面分量等于重力的下滑分量时,摩擦力为零,设斜面倾斜角为θ,在垂直斜面方向:F N′=mg cos θ+F sin θ,所以B对A的支持力不一定大于mg,故A正确,C错误.故选择A、D. 答案AD 1.(单选)(2014·广东·14)如图2所示,水平地面上堆放着原木,关于原木P在支撑点M、N处受力的方向,下列说法正确的是() 图2 A.M处受到的支持力竖直向上 B.N处受到的支持力竖直向上 C.M处受到的静摩擦力沿MN方向 D.N处受到的静摩擦力沿水平方向 答案 A 解析M处支持力方向与支持面(地面)垂直,即竖直向上,选项A正确;N处支持力方向与支持面(原木接触面)垂直,即垂直MN向上,故选项B错误;摩擦力与接触面平行,故选项C、D错误. 2.(单选)如图3所示,一根轻杆的两端固定两个质量均为m的相同小球A、B,用两根细绳悬挂在天花板上,虚线为竖直线,α=θ=30°,β=60°,求轻杆对A球的作用力() 图3 A.mg B.3mg C. 3 3mg D. 3 2mg

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

高考物理大题专题训练专用(带答案)

高考物理大题常考题型专项练习 题型一:追击问题 题型二:牛顿运动问题 题型三:牛顿运动和能量结合问题 题型四:单机械能问题 题型五:动量和能量的结合 题型六:安培力/电磁感应相关问题 题型七:电场和能量相关问题 题型八:带电粒子在电场/磁场/复合场中的运动 题型一:追击问题3 1. (2014年全国卷1,24,12分★★★)公路上行驶的两汽车之间应保持一定的安全距离。 当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s。当汽车在晴天干燥沥青路面上以108km/h的速度匀速行驶时,安全距离为120m。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m,求汽车在雨天安全行驶的最大速度。 答案:v=20m/s 2.(2018年全国卷II,4,12分★★★★★)汽车A在水平冰雪路面上行驶,驾驶员发现其 正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m,已知A和B 的质量分别为2.0×103 kg和1.5×103kg,两车与该冰雪路面 间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车 轮均没有滚动,重力加速度大小g = 10m/s2.求: (1)碰撞后的瞬间B车速度的大小; (2)碰撞前的瞬间A车速度的大小. 答案.(1)v B′ = 3.0 m/s (2)v A = 4.3m/s 3.(2019年全国卷II,25,20分★★★★★)一质量为m=2000kg的汽车以某一速度在平直

高中物理必修1知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

高考物理知识专题整理大全二:直线运动

二、直线运动 1、质点: ⑴定义:用来代替物体的只有质量、没有形状和大小的点,它是一个理想化的物理模型。 ⑵物体简化为质点的条件:只考虑平动或物体的形状大小在所研究的问题中可以忽略不计这两种情况。 2、位置、位移和路程 ⑴位置:质点在空间所处的确定的点,可用坐标来表示。 ⑵位移:描述质点位置改变的物理量,是矢量。方向由初位置指向末位置。大小则是从初位置到末位置的直线距离 ⑶路程:质点实际运动轨迹的长度,是标量。只有在单方向的直线运动中,位移的大小才等于路程。 3、时间与时刻 ⑴时刻:在时间轴上可用一个确定的点来表示。如“第3秒末”、“第5秒初”等 ⑵时间:指两时刻之间的一段间隔。在时间轴上用一段线段来表示。如:“第2秒内”、“1小时”等 4、速度和速率 ⑴平均速度:①v=Δs/Δt ,对应于某一时间(或某一段位移)的速度。 ②平均速度是矢量,方向与位移Δs 的方向相同。 ③公式2 0t v v v += ,只对匀变速直线运动才适用。 ⑵瞬时速度:①对应于某一时刻(或某一位置)的速度。 ②当Δt 0时,平均速度的极限为瞬时速度。 ③瞬时速度的方向就是质点在那一时刻(或位置)的运动方向。 ④简称速度 ⑶平均速率:①质点在某一段时间内通过的路程和所用的时间的比值叫做这段时间内的平 均速率。 ②平均速率是标量。 一、知识网络 概念

③只有在单方向的直线运动中,平均速度的大小才等于平均速率。 ④平均速率是表示质点平均快慢的物理量 ⑷瞬时速率:①瞬时速度的大小。 ②是标量。 ③简称为速率。 5、加速度 ⑴速度的变化:Δv =v t -v 0,描述速度变化的大小和方向,是矢量。 ⑵加速度:①是描述速度变化快慢的物理量。 ②公式:a =Δv/Δt 。 ③是矢量。 ④在直线运动中,若a 的方向与初速度v 0的方向相同,质点做匀加速运动;若a 的方向与初速度v 0的方向相反,质点做匀减速运动 6、匀速直线运动: ⑴定义:物体在一条直线上运动,如果在任何相等的时间内通过的位移都相等,则称物体 在做匀速直线运动 ⑵匀速直线运动只能是单向运动。定义中的“相等时间”应理解为所要求达到的精度范围内的任意相等时间。 ⑶在匀速直线运动中,位移跟发生这段位移所用时间的比值叫做匀速直线运动的速度。它是描述质点运动快慢和方向的物理量。速度的大小叫做速率。 ⑷匀速直线运动的规律:①t s v = ,速度不随时间变化。 ②s=vt ,位移跟时间成正比关系。 ⑸匀速直线运动的规律还可以用图象直观描述。 ①s-t 图象(位移图象):依据S = vt 不同时间对应不同的位移, 位移S 与时间t 成正比。所以匀速直线运动的位移图象是过原点的一条倾斜的直线, 这条直线是表示正比例函数。而直线的斜率即匀速 直线运动的速度。(有tg α= =S t v )所以由位移图象不仅可以求出速度, 还可直接读出任意时间内的位移(t 1时间内的位移S 1)以及可直接读出发生任一位移S 2所需的时间t 2。 ②v-t 图象,由于匀速直线运动的速度不随时间而改变, 所以它的 速度图象是平行时间轴的直线。直线与横轴所围的面积表示质点的位移。 例题: 关于质点,下述说法中正确的是: (A)只要体积小就可以视为质点 (B)在研究物体运动时,其大小与形状可以不考虑时,可以视为质点 (C)物体各部分运动情况相同,在研究其运动规律时,可以视为质点 (D)上述说法都不正确 解析:用来代替物体的有质量的点叫做质点。用一个有质量的点代表整个物体,以确定物体的位置、研究物体的运动,这是物理学研究问题时采用的理想化模型的方法。 把物体视为质点是有条件的,条件正如选项(B)和(C)所说明的。 答:此题应选(B)、(C)。 例题: 小球从3m 高处落下,被地板弹回,在1m 高处被接住,则小球通过的路程和位移的大小分别是: (A)4m,4m (B)3m,1m (C)3m,2m (D)4m,2m

高考物理 解题的策略与方法

2012高考物理解题的策略与方法 在高三的最后复习阶段,学生常会遇到这样的场景:高考物理也就是“12道选择题、l道选作题、2道实验题和4道计算题”,总分150分.学生对于一般的物理基础题基本上没有问题,其错误大多是在不定项选择题上发生;另外,做计算题的能力还有些差,有时候没有一点解题的思路和程序,有时候理解题意有些偏差,有时候把问题搞得很复杂,有时候又把问题想得过于简单;而对于实验题,简直是摸不着头脑,常考常新,基本上得不到分数.“老师?我该怎么办呢?” 上述“物理场景”具有广泛性与普遍性,是高三学生学习过程中常会出现的一种现象.同学们要正视问题,调整心态,充满信心,更要注重解题方法与应试技巧的积累,把自己头脑中储存的物理知识有效地转化成分数.高考——分数是硬道理,学物理不能“一看就懂,一听就会,一作就错”,而要把自己的知识与能力转化成分数.在这里我想从“物理场景”的角度谈谈物理解题的策略与方法,望能对同学们有所帮助. 一、关于12道物理选择题 1.选择题失分的原因剖析 物理考试中,选择题有12题共48分,分数非常可观,故考试成败的关键在于选择题,这个问题应该引起同学们的高度重视.选择题失分较多的关键是处理题目时过于草率,这和平时的练习有直接联系.无论单选多选,处理选择题时建议把它当做稍大些的题处理.在处理大题的时候,同学们会自觉地画图、审题、弄清物理情境中出现的系统、状态与过程,挖出隐含条件,同学们格外重视这些因素,也做得比较到位.但在处理选择题的过程中,画图、审题程序往往被忽略,这样就埋下了隐患,导致丢分.所以,选择题失分不要总是归结为马虎、粗心!一定要注重审题及其他程序,不能凭一种单纯的物理感觉去解题. 2.选择题的求解技巧

【物理】高考物理临界状态的假设解决物理试题解答题压轴题提高专题练习含详细答案

【物理】高考物理临界状态的假设解决物理试题解答题压轴题提高专题练习含 详细答案 一、临界状态的假设解决物理试题 1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求: (1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。 【答案】(1)0.3;(2)1 3 ;(3)2m 【解析】 【分析】 【详解】 (1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小 21241m /s 3m /s 1 v a t ==?-?= 若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则 1mg ma μ= 联立可得 0.3μ= (2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律 2mg Ma μ= 得 1 3 m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能

2 20 1 1() 22 mgL mv M m v μ=-+ 解得 L =2m 2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。圆形底面的直径为2R ,圆筒的高度为R 。 (1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率; (2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。 【答案】(1)5n ≥甲;(2)2n >乙 【解析】 【详解】 (1)盛满甲液体,如图甲所示,P 点刚好全反射时为最小折射率,有 1 sin n C = 由几何关系知 2 2 2sin 2R C R R = ??+ ? ?? 解得 5n =则甲液体的折射率应为 5n ≥甲

(完整word版)高考物理经典大题练习及答案

14.(7分)如图14所示,两平行金属导轨间的距离 L=0.40 m,金属导轨所在的平面与水平面夹角θ=37°,在 导轨所在平面内,分布着磁感应强度B=0.50 T、方向垂直于 导轨所在平面的匀强磁场.金属导轨的一端接有电动势 E=4.5 V、内阻r=0.50 Ω的直流电源.现把一个质量m=0.040 kg的导体棒ab放在金属导轨上,导体棒恰好静止.导体棒 与金属导轨垂直、且接触良好,导体棒与金属导轨接图14 触的两点间的电阻R0=2.5 Ω,金属导轨电阻不计,g取 10 m/s2.已知sin 37°=0.60,cos 37°=0.80,求: (1)通过导体棒的电流; (2)导体棒受到的安培力大小; (3)导体棒受到的摩擦力 15.(7分)如图15所示,边长L=0.20m的正方形导线框ABCD 由粗细均匀的同种材料制成,正方形导线框每边的电阻R0=1.0 Ω, 金属棒MN与正方形导线框的对角线长度恰好相等,金属棒MN的电 阻r=0.20 Ω.导线框放置在匀强磁场中,磁场的磁感应强度B=0.50 T,方向垂直导线框所在平面向里.金属棒MN与导线框接触良好,且 与导线框的对角线BD垂直放置在导线框上,金属棒的中点始终在BD 连线上.若金属棒以v=4.0 m/s的速度向右匀速运动,当金属棒运动 至AC的位置时,求(计算结果保留两位有效数字): 图15 (1)金属棒产生的电动势大小; (2)金属棒MN上通过的电流大小和方向; (3)导线框消耗的电功率. 16.(8分)如图16所示,正方形导线框abcd的质量为m、边长为l, 导线框的总电阻为R.导线框从垂直纸面向里的水平有界匀强磁场的上 方某处由静止自由下落,下落过程中,导线框始终在与磁场垂直的竖直 平面内,cd边保持水平.磁场的磁感应强度大小为B,方向垂直纸面向 里,磁场上、下两个界面水平距离为l已.知cd边刚进入磁场时线框 恰好做匀速运动.重力加速度为g. (1)求cd边刚进入磁场时导线框的速度大小. (2)请证明:导线框的cd边在磁场中运动的任意瞬间,导线框克 服安培力做功的功率等于导线框消耗的电功率.图16 (3)求从导线框cd边刚进入磁场到ab边刚离开磁场的过程中,导 线框克服安培力所做的功. 17.(8分)图17(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n=100、电阻r=10 Ω,线圈的两端经集流环与电阻R连接,电阻R=90 Ω,与R并联的交流电压表为理想电表.在t=0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量φ随时间t按图17(乙)所示正弦规律变化.求: (1)交流发电机产生的 电动势最大值;

高考物理专题:运动学

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= 反向时2202/14/1 4 10s m s m t v v a t -=--=-= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此 时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向的运 动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速度s m gh v /320==, 由题意知整个过程运动员的位移为-10m (以向上为正方向),由202 1 at t v s +=得: -10=3t -5t 2 解得:t ≈1.7s 思考:把整个过程分为上升阶段和下降阶段来解,可以吗? 例题4.如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

高考物理经典考题300道(10)

一、计算题(解答写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题,答案中必须明确写出数值和单位。本题包含55小题,每题?分,共?分) 1.如图所示,在光滑的水平面上,有两个质量都是M 的小车A 和B ,两车间用轻质弹簧相连,它们以共同的速度向右运动,另有一质量为 0M 的粘性物体,从高处自由下落,正好落 至A 车并与之粘合在一起,在此后的过程中,弹簧获得最大弹性势能为E ,试求A 、B 车开始匀速运动的初速度 0v 的大小. 解析:物体 0M 落到车A 上并与之共同前进,设其共同速度为1v , 在水平方向动量守恒,有 100)(v M M M v += 所以 0 01v M M M v += 物体0M 与A 、B 车共同压缩弹簧,最后以共同速度前进,设共同速度为2v ,根据动量守 恒有 200)2(2v M M Mv += 所以 0222v M M M v += 当弹簧被压缩至最大而获得弹性势能为E ,根据能量守恒定律有: ()()202102202121221 Mv v M M v M M E ++=++ 解得 ()()002 0022M M M M MM E v ++= . 2.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一个质量为m 的木块,车的右端固定一个轻质弹簧.现给木块一个水平向右的瞬时冲量I ,木块便沿小车向右滑行,在与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端.试求: (1)木块返回到小车左端时小车的动能. (2)弹簧获得的最大弹性势能. 解:(1)选小车和木块为研究对象.由于m 受到冲量I 之后系统水平方向不受外力作用,系统动量守恒.则v m M I )(+=

高考物理直线运动真题汇编(含答案)及解析

高考物理直线运动真题汇编(含答案)及解析 一、高中物理精讲专题测试直线运动 1.研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t 0=0.4s ,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v 0=72km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L=39m .减速过程中汽车位移s 与速度v 的关系曲线如图乙所示,此过程可视为匀变速直线运动.取重力加速度的大小g=10m/s 2.求: (1)减速过程汽车加速度的大小及所用时间; (2)饮酒使志愿者的反应时间比一般人增加了多少; (3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值. 【答案】(1)28/m s ,2.5s ;(2)0.3s ;(3)0415 F mg =【解析】 【分析】 【详解】 (1)设减速过程中,汽车加速度的大小为a ,运动时间为t , 由题可知初速度020/v m s =,末速度0t v =,位移2 ()211f x x =-≤ 由运动学公式得:2 02v as =① 2.5v t s a = =② 由①②式代入数据得 28/a m s =③ 2.5t s =④ (2)设志愿者饮酒后反应时间的增加量为t ?,由运动学公式得 0L v t s ='+⑤ 0t t t ?='-⑥ 联立⑤⑥式代入数据得 0.3t s ?=⑦ (3)设志愿者力所受合外力的大小为F ,汽车对志愿者作用力的大小为0F ,志愿者的质量

为m ,由牛顿第二定律得 F ma =⑧ 由平行四边形定则得 2220()F F mg =+⑨ 联立③⑧⑨式,代入数据得 041 5F mg = ⑩ 2.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s 时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g 取10m/s 2)。求: (1)车在加速过程中木箱运动的加速度的大小 (2)木箱做加速运动的时间和位移的大小 (3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。 【答案】(1) (2)4s ;18m (3)1.8m 【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律 解得 则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为 (2)设木箱的加速时间为,加速位移为 。 (3)设平板车做匀加速直线运动的时间为,则 达共同速度平板车的位移为 则 要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足 考点:牛顿第二定律的综合应用.

高考物理常考题型+解题方法汇总·

高中物理考试常见的类型无非包括以下16种,今天为同学们总结整理了这16种常见题型的解题方法和思维模板,同时介绍给大家高考物理各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一做就对! 1题型1 直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板: 解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 2 题型2 物体的动态平衡问题

题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板: 常用的思维方法有两种. (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化; (2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化. 3 题型3 运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等. (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析. 4 题型4 抛体运动问题

2021高考物理大题专题训练含答案 (3)

物理:2021模拟高三名校大题天天练(八) 1.(12分)如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求: ⑴当圆盘转动的角速度ω=2rad/s时, 物块与圆盘间的摩擦力大小多大?方向如何? ⑵欲使A与盘面间不发生相对滑动, 则圆盘转动的最大角速度多大?(取g=10m/s2) 2.(10 分)如图所示,A物体用板托着,位于离地h=1.0m处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A物体质量M=1.5㎏,B物体质量m=1.0kg,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮, 求:B物体在上升过程中离地的最大高度为多大?取g =10m/s2. A h B 3.(15分)如图所示,某人乘雪橇从雪坡经A点滑至B点,接着沿水平路面滑至C点停止.人与雪橇的 总质量为70kg.表中记录了沿坡滑下过程中的有关数据,请根据图表中的数据解决下列问题:(取g=10m/s2) (1)人与雪橇从A到B的过程中,损失的机械能为多少? (2)设人与雪橇在BC段所受阻力恒定,求阻力的大小. (3)人与雪橇从B到C的过程中,运动的距离。 位置 A B C 速度(m/s) 2.0 12.0 0 时刻(s)0 4 10

4.(14分)大气中存在可自由运动的带电粒子,其密度随离地面的距离的增大而增大,可以把离地面50㎞以下的大气看作是具有一定程度漏电的均匀绝缘体(即电阻率较大的物质);离地面50㎞以上的大气可看作是带电粒子密度非常高的良导体.地球本身带负电,其周围空间存在电场,离地面50㎞处与地面之间的电势差为4×105V.由于电场的作用,地球处于放电状态,但大气中频繁发生闪电又对地球充电,从而保证了地球周围电场恒定不变.统计表明,大气中每秒钟平均发生60次闪电,每次闪电带给地球的电量平均为30C.试估算大气的电阻率和地球漏电的功率.已知地球的半径r=6400㎞. 5.(18分)如图所示,ABC为光滑轨道,其中AB段水平放置,BC段为半径R的圆弧,AB与BC相切于B 点。A处有一竖直墙面,一轻弹簧的一端固定于墙上,另一端与一质量为M的物块相连接,当弹簧处于原长状态时,物块恰能与固定在墙上的L形挡板相接触与B处但无挤压。现使一质量为m的小球从圆弧轨道上距水平轨道高h处的D点由静止开始下滑。 小球与物块相碰后立即共速但不粘连,物块与L形挡板 相碰后速度立即减为零也不粘连。(整个过程中,弹簧 没有超过弹性限度。不计空气阻力,重力加速度为g) (1) 试求弹簧获得的最大弹性势能; (2) 求小球与物块第一次碰后沿BC上升的最大高度h’ (3) 若R>>h。每次从小球接触物块至物块撞击L形挡板历时均为△t,则小球由D点出发经多长时间第 三次通过B点? 6.(18分)如下左图所示,真空中有两水平放置的平行金属板C、D,上面分别开有正对的小孔O1和O2,金属板C、D接在正弦交流电源上,两板间的电压u CD随时间t变化的图线如下右图所示。t=0时刻开始,从D板小

相关主题
文本预览
相关文档 最新文档