当前位置:文档之家› 嵌入式视频处理基本原理

嵌入式视频处理基本原理

嵌入式视频处理基本原理
嵌入式视频处理基本原理

Fundamentals of Embedded Video Processing (Part 1 of a 5-part series )

嵌入式视频处理基本原理(第1部分,共5部分)

By David Katz and Rick Gentile, ADI公司

As consumers, we’re intimately familiar with video systems in many embodiments. However, from the embedded developer’s viewpoint, video represents a tangled web of different resolutions, formats, standards, sources and displays.

作为消费者,我们对于各种形式的视频系统都已经了如指掌。不过,从嵌入式开发者的角度来看,视频技术就好象是一个具有不同的分辨率、格式、标准、信源和显示的复杂网络。

In this series, we will strive to untangle some of this intricate web, focusing on the most common circumstances you’re likely to face in today’s media processing systems. After reviewing the basics of video, we will discuss some common scenarios you may encounter in embedded video design and provide some tips and tricks for dealing with challenging video design issues.

在本章中,我们只对视频中的某些方面进行具体阐述,这些方面都是当今多媒体处理系统中比较常见的问题。首先,简要介绍视频方面的基本知识,然后,将会重点讨论一些在嵌入式多媒体设计中常见的问题,同时,也将针对一些具有挑战性的视频设计问题,提供一些技巧与窍门。

Human Visual Perception

人类视觉感知

Let’s start by discussing a little physiology. As we’ll see, understanding how our eyes work has paved an important path in the evolution of video and imaging.

首先来讨论一些简单的生理学问题。正如我们将看到的那样,对我们的眼睛的工作原理的理解为视频和成像技术的发展铺设出一条重要的道路。

Our eyes contain 2 types of vision cells: rods and cones. Rods are primarily sensitive to light intensity as opposed to color, and they give us night vision capability. Cones, on the other hand, are not tuned to intensity, but instead are sensitive to wavelengths of light between 400nm(violet) and 770nm(red). Thus, the cones provide the foundation for our color perception.

眼睛包含两种视觉细胞:杆状细胞和视锥细胞。杆状细胞主要对亮度信息敏感,而对颜色信息不敏感,它们使我们具备夜视能力。与此相反,视锥细胞对亮度并不敏感,但对400nm(紫光)~770nm(红光)波长范围内的光比较敏感。因此,这些视锥细胞使我们能够感知色彩。

There are 3 types of cones, each with a different pigment that’s either most sensitive to red, green or blue energy, although ther e’s a lot of overlap between the three responses. Taken together, the response of our cones peaks in the green region, at around 555 nm. This is why, as we’ll see, we can make compromises in LCD displays by assigning the Green channel more bits of resolution than the Red or Blue channels.

视锥细胞有3种,每一种都带有不同的色素,分别对红光、绿光或者蓝光波长敏感,虽然这3种细胞的响应特性有重叠区域。总的说来,视锥细胞对波长在555nm 左右的绿光区域最为敏感。这也就是为什么在LCD显示器中,绿色通道的分辨率

高于红色和蓝色通道。

The discovery of the Red, Green and Blue cones ties into the development of the trichromatic color theory, which states that almost any color of light can be conveyed by combining proportions of monochromatic Red, Green and Blue wavelengths.

红色、绿色和蓝色视锥细胞的发现大大促进了三色理论的发展,该理论认为,任何一种有色光,可以通过不同比例的红光、绿光和蓝光的组合生成。

Because our eyes have lots more rods than cones, they are more sensitive to intensity rather than actual color. This allows us to save bandwidth in video and image representations by subsampling the color information.

由于人眼含有的杆状细胞的数量要远多于视锥细胞,故眼睛对亮度的敏感度要高于对色彩的敏感度。这使得我们可以借助对色彩信息的子采样来节省视频和图像信息的带宽。

Our perception of brightness is logarithmic, not linear. In other words, the actual intensity required to produce a 50% gray image (exactly between total black and total white) is only around 18% of the intensity we need to produce total white. This characteristic is extremely important in camera sensor and display technology, as we’ll see in our discussion of gamma correction. Also, this effect leads to a reduced sensitivity to quantization distortion at high intensities, a trait that many media encoding algorithms use to their advantage.

我们对亮度的感受特性是对数性的,而非线性的。换句话说,用于产生50%灰度

图(恰好在全黑和全白之间的正中)所需的实际的光强仅为我们需要产生全白图像所需的光强的18%。这一特性在相机传感器和显示技术中尤为重要,正如我们将

在后面的伽马校正中讨论的。此外,这一效应还将导致人眼对高亮度环境下的量化失真的感知度下降,导致这一特性被许多媒体编码算法所利用。

Another visual novelty is that our eyes adjust to the viewing environment, always creating their own reference for white, even in low-lighting or artificial-lighting situations. Because camera sensors don’t innately act the same way, this gives rise to a white balance control in which the camera picks its reference point for absolute white.

视觉方面的另一新奇之处在于,人眼可以适应环境,创建自己的白光参考,即使在低照明或者人工照明的情况下也是如此。因为摄像传感器自身并不具有这一特性,因此它需要使用参考量作为绝对白色,并对传感器进行调整,这一过程称为称为白平衡控制。

The eye is less sensitive to high-frequency information than low-frequency information. What’s more, although it can detect fine details and c olor resolution in still images, it cannot do so for rapidly moving images. As a result, transform coding (DCT, FFT, etc.) and low-pass filtering can be used to reduce total bandwidth needed to represent an image or video sequence.

人眼对高频信息的敏感性要低于对低频信息。而且,虽然它可以检测出静态图像中细节和彩色部分的分辨率,但对于快速移动的图像,却无法做到这一点。于是,人们可以利用变换编码(DCT、FFT等)以及低通滤波技术来降低呈现一幅图像或者视频序列时所需的总带宽。

Our eyes can notice a “flicker” effect at image update rates less than 50-60 times per second, or 50-60 Hz, in bright light. Under dim lighting conditions, this rate drops to about 24 Hz. Additionally, we tend to notice flicker in large uniform regions more so than in localized areas. These traits have important implications for interlaced video, refresh rates and display technologies.

当图像的刷新速率低于50~60次/s时,我们的眼睛会感受到一种亮光“闪烁”的效应。在光线较暗的情况下,该频率值降低到24Hz。此外,我们更倾向于观察到大而均匀的区域内的闪烁,相比之下,对局部区域的闪烁敏感度较低。这些特性对于隔行视频、刷新速率和显示技术具有重要的潜在作用。

What’s a video signal?

何谓视频信号?

Figure 1: Composition of Luma signal

图1 亮度信号的组成

图中:Breakdown of Luma Signal——亮度信号的分类,Back Porch——后沿,Horizontal syc ——水平同步,White level——白色级,Grey Level——灰色级,Black Level——黑色级

At its root, a video signal is basically just a two-dimensional array of intensity and color data that is updated at a regular frame rate, conveying the perception of motion. On conventional cathode-ray tube (CRT) TVs and monitors, an electron beam modulated by the analog video signal shown in Figure 1 illuminates phosphors on the screen in a top-bottom, left-right fashion. Synchronization signals embedded in the analog signal def ine when the beam is actively “painting” phosphors and when it is inactive, so that the electron beam can retrace from right to left to start on the next row, or from bottom to top to begin the next video field or frame. These synchronization signals are represented in Figure 2.

从根本上来说,一个视频信号基本上只是由亮度和色彩数据构成的2维阵列,该阵列以一定帧率的刷新变化来描述运动。在传统的阴极射线管(CRT)电视和显示器中,屏幕上的磷粉由一个电子束从上到下、从左到右的方式激发产生光亮。该电子束是由一个如图1所示的模拟视频信号调制生成。嵌入该模拟信号中的同步信号,决定了电子束什么时候激亮磷粉,什么时候停止操作。这样电子束可以在下一行由右向左回程扫描,或者从下到上开始对下一帧视频场或帧信号进行扫描。这些同步信号如图2所示。

HSYNC is the horizontal synchronization signal. It demarcates the start of active video on each row (left to right) of a video frame. Horizontal Blanking is the interval in which the electron gun retraces from the right side of the screen back over to the next row on the left side.

HSYNC是水平同步信号。它界定了视频帧每一行中(从左到右)有效视频的起始位置。水平消隐为电子枪从屏幕右侧回扫至下一行左侧的时间间隔。VSYNC is the vertical synchronization signal. It defines the start (top to bottom) of a new video image. Vertical Blanking is the interval in which the electron gun retraces from the bottom right corner of the screen image back up to the top left corner. VSYNC是垂直同步信号。它定义了一个新的视频图像的起始位置(从上到下)。垂直消隐为电子枪从屏幕图像的右下角返回左上角所需的时间间隔。

FIELD distinguishes, for interlaced video, which field is currently being displayed. This signal is not applicable for progressive-scan video systems.

FIELD用于在隔行视频信号中区分出目前所显示的场。该信号并不适用于逐行扫描视频系统。

Figure 2: Typical timing relationships between HSYNC, VSYNC, FIELD

图2 HSYNC、VSYNC、FIELD信号之间的时序关系

The transmission of video information originated as a display of relative luminance from black to white – thus was born the black-and-white television system. The

voltage level at a given point in space correlates to the brightness level of the image at that point.

视频信息的传输起源于由黑到白的相关亮度显示,黑白电视系统也是这样产生的。在空间中的一个给定点处的电压水平则与该点图像的亮度水平相关。

When color TV became available, it had to be backward-compatible with B/W

systems, so the color burst information was added on top of the existing luminance signal, as shown in Figure 3. Color information is also called chrominance. We’ll talk more about it in our discussion on color spaces (in part 2 of this series).

当彩色电视出现后,它必须保证与黑白电视的后向兼容,因此彩色脉冲信息被添加到已有的亮度信号顶部,如图3所示。色彩信息也被称为色度。我们将在关于色彩空间的讨论中更多的探讨这一问题(见该系列文章的第2部分)。

Figure 3: Analog video signal with color burst

图3 带色同步信号的模拟视频信号

图中:Luma Channle——亮度通道,Chroma Channel——色度通道,Composite Video signal——复合视频信号。

Color Burst Demodulation Reference Signal——色彩脉冲解调参考信号

Broadcast TV – NTSC and PAL

广播电视——NTSC和PAL制式

Analog video standards differ in the ways they encode brightness and color

information. Two standards dominate the broadcast television realm – NTSC and PAL. NTSC, devised by the National Television System Committee, is prevalent in Asia and North America, whereas PAL (“Phase Alternation Line”) dominates Europe and South America. PAL developed as an offshoot of NTSC, improving on its color distortion performance. A third standard, SECAM, is popular in France and parts of

eastern Europe, but many of these areas use PAL as well. Our discussions will center on NTSC systems, but the results relate also to PAL-based systems.

模拟视频标准的区别在于它们各自对亮度和彩色信息的编码方式。目前广播电视领域占统治地位的是两种标准——NTSC和PAL。NTSC由美国国家电视系统委员会提出,在亚洲和北美广泛使用,而PAL是NTSC的一个分支,在欧洲和南美占据统治地位。另外一种制式,SECAM,则在法国和东欧部分地区流行,不过,在这些地区中,许多也都采用PAL。我们的讨论将集中在NTSC制上,但讨论的结果也适用于基于PAL制的系统。

Video Resolution

视频分辨率

Horizontal resolution indicates the number of pixels on each line of the image, and vertical resolution designates how many horizontal lines are displayed on the screen to create the entire frame. Standard definition (SD) NTSC systems are interlaced-scan, with 480 lines of active pixels, each with 720 active pixels per line (i.e.,

720x480 pixels). Frames refresh at a rate of roughly 30 frames/second (actually

29.97 fps), with interlaced fields updating at a rate of 60 fields/second (actually 59.94

fields/sec).

水平分辨率是指图像每行的像素个数,而垂直分辨率则是指显示完整一帧时屏幕上出现的水平线的数量。标清NTSC系统采用隔行扫描方式,具有480线有效像素,每条线上有720个有效的像素(即总计720×480像素)。

High definition systems (HD) often employ progressive scanning and can have much higher horizontal and vertical resolutions than SD systems. We will focus on SD systems rather than HD systems, but most of our discussion also generalizes to the higher frame and pixel rates of the high-definition systems.

高清系统常常采用逐行扫描方式,其水平和垂直分辨率要远高于标清系统。我们将专注于标清系统,而非高清系统,但我们讨论的大部分,也将推广到具有更高帧和像素传输率的高清系统。

When discussing video, there are two main branches along which resolutions and frame rates have evolved. These are computer graphics formats and broadcast video formats. Table 1 shows some common screen resolutions and frame rates belonging to each category. Even though these two branches emerged from separate domains with different requirements (for instance, computer graphics uses RGB progressive-scan schemes, while broadcast video uses YCbCr interlaced schemes), today they are used almost interchangeably in the embedded world. That is, VGA compares closely with the NTSC “D-1” broadcast format, and QVGA parallels CIF. It should be noted that although D-1 is 720 pixels x 486 rows, it’s commonly referred to as being

720x480 pixels (whi ch is really the arrangement of the NTSC “DV” format used for DVDs and other digital video).

在讨论视频技术时,分辨率和帧速率的提升是沿着两条主要的分支发展的,即计算机图形图像格式和广播视频格式。表1给出了各种常见的屏幕分辨率和帧率的比较。即使这两路分支源于不同的领域,而且要求也不同(例如,计算机图形显示使用RGB逐行扫描方法,而广播视频则使用YCbCr隔行扫描方

法),如今在嵌入式领域,它们在使用上几乎可以是互换的。也就是说,VGA 与NTSC“D-1”广播格式相当, QVGA对应的则是CIF。应该注意的是,虽然D-1是720像素×480行格式,但它通常被称为720×480像素(这实际上是针对DVD和其他数字视频的NTSC“DV”格式)。

Table 1: Graphics vs Broadcast standards

表1 图形图像与广播标准之间的对比

Interlaced vs. Progressive Scanning

隔行和逐行扫描

Interlaced scanning originates from early analog television broadcast, where the

image needed to be updated rapidly in order to minimize visual flicker, but the

technology available did not allow for refreshing the entire screen this quickly.

Therefore, each frame was “interlaced,” or split into two fields, one consisting of odd-numbered scan lines, and the other composed of even-numbered scan lines, as

depicted in Figure 4. The frame refresh rate for NTSC/(PAL) was set at

approximately 30/(25) frames/sec. Thus, large areas flicker at 60 (50) Hz, while

localized regions flicker at 30 (25) Hz. This was a compromise to conserve bandwidth while accounting for the eye’s greater sensiti vity to flicker in large uniform regions.

隔行扫描方式源于早期的模拟电视广播技术,这种技术需要对图像进行快速扫描,以便最大限度地降低视觉上的闪烁感,但是当时可以运用的技术并不能以如此之快的速度对整个屏幕进行刷新。于是,将每帧图像进行“交错”排列或分为两场,一个由奇数扫描线构成,而另一个由偶数扫描线构成,如图4所示。NTSC/(PAL)的帧刷新速率设定为约30/(25)帧/秒。于是,大片图像区域的刷新率为60(50)Hz,而局部区域的刷新率为30(25)Hz,这也是出于节省带宽的折中考虑,因为人眼对大面积区域的闪烁更为敏感。

Not only does some flickering persist, but interlacing also causes other artifacts. For one, the scan lines themselves are often visible. Because each NTSC field is a snapshot of activity occurring at 1/60 second intervals, a video frame consists of two temporally different fields. This isn’t a problem when you’re watching the display, because it presents the video in a temporally appropriate manner. However, converting interlaced fields into progressive frames (a process known as “deinterlacing”), can cause jagged edges when there’s motion in an image. Deinterlacing is important because it’s often more efficient to process video frames as a series of adjacent lines.

隔行扫描方式不仅会产生闪烁现象,也会带来其它问题。例如,扫描线本身也常常可见。因为NTSC中每场信号就是1/60s时间间隔内的快照,故一幅视频帧通常包括两个不同的时间场。当正常观看显示屏时,这并不是一个问题,因为它所呈现的视频在时间上是近似一致的。然而,当画面中存在运动物体时,把隔行场转换为逐行帧(即解交织过程),会产生锯齿边缘。解交织过程非常重要,因为将视频帧作为一系列相邻的线来处理,这将带来更高的效率。

With the advent of digital television, progressive (that is, non-interlaced) scan has become a very popular input and output video format for improved image quality. Here, the entire image updates sequentially from top to bottom, at twice the scan rate of a comparable interlaced system. This eliminates many of the artifacts associated with interlaced scanning. In progressive scanning, the notion of two fields composing a video frame does not apply.

随着数字电视的出现,逐行(即非隔行)扫描已经成为一种具有更高图像品质的流行的输入和输出视频格式。在这种方式下,整幅图像将从上到下依次刷新,其扫描速率约为相应隔行系统的扫描速率的两倍,这消除了隔行扫描产生的许多弊病。在逐行扫描中,由两场信号来表示一帧视频的方式不再使用。

Figure 4: Interlaced Scan vs Progressive Scan illustration

图4:隔行扫描与逐行扫描方式的对比

图中:486 Lines:One Frame——486线:1帧

Line——行,Interlaced:Frame is split into 2 field——隔行:图像帧被分离为两个视场;

Progressivew:Frame is displayed in sequence as a single field——逐行:图像帧作为一个视场依序显示;

Now that we’ve bri efly discussed the basis for video signals and some common terminology, we’re almost ready to move to the really interesting stuff – digital video. We’ll get to that in the next installment of this series.

我们已经简要地讨论了视频信号的基础以及某些常用的术语,接下来,我们将在下

一章节开始讨论令人感兴趣的部分——数字视频技术。

浙江大华:大型视频监控系统的技术要点

浙江大华:大型视频监控系统的技术要点 随着宽带网络的普及和行业管理部门对管理水平提高的需求增加,城市公安、交通、金融、环保、电力、医疗、教育等管理部门对城市范围内的大型联网安全与视频监控平台的需求也在这两年开始大量增加,其中尤其以城市公安和金融领域的需求最为突出。 在城市公安领域,公安部门正在大力进行科技强警示 范城市的建设,首批22个城市的城市治安监控系统已经开 始实施,2008年科技强警示范建设城市将达到180个,而 最终我国660个城市和1642个县城都需要上基于网络的公 共安全与图像监控系统。 而在金融领域,在过去的几年中,国内各大国有银行 和商业银行根据中国人民银行总行和公安部关于银行图像 监控系统的数字化改建要求,已经建设完成了大量基层网 点的数字化监控系统建设改造工作,目前也已经开始进行各种联网监控管理系统的改造试点工作。 随着网络传输技术、图像编解码技术的成熟,实现这些新兴行业客户需求的已经取得了重大的突破,大型的视频监控系统正在全国各地迅速地建设起来。 一、大型监控系统的特点 随着城市治安系统、行业治安系统的建设,我们可以看到这些大型的监控系统有着一些共同的特点: 1 以平台为核心,以网络为纽带 我们现在的安防系统的规模及规划,已经让人有点生畏,或者让使用者有点生畏。数量众多的摄像头采集的图像如何监看?数量众多的编解码设备如何管理?数量众多的后端服务器如何配合及管理?靠人力已经不能解决大规模监控系统出现的管理问题了,所以打造一个管理平台的需求就显得非常迫切。一个好的管理平台可以将所有的摄像头纳入管理,将所有的报警点纳入管理,将所有的编解码设备纳入管理,将所有的后台服务器纳入管理,从而使得整套系统能够顺畅运行。 而以平台作为核心来管理整个监控系统要有一个前提,就是要有一个足够带宽(或者说经过管理后可以满足要求的足够带宽)的网络来连接这些设备和服务器,没有网络一切就是空谈。 2 接入多家不同的设备,实现互联互通 由于安防行业的历史状况(独立的小规模应用为主),造成了设备的生产厂家非常众多,而且各个厂家都有自己的一套编解码和网络传输的做法。这个现状对于组成大型网络的非常不利的。但是也是因为这个现状的存在,所以就要求我们的大型监控系统平台能够接入多家厂商的设备。一者保护用户原有的投资;二者在用户在新系统建设时减少投入提供解决办法。

视频处理技术

S3 视频处理 S1.1 视频基础知识 视频信息是连续变化的影像,通常是指实际场景的动态演示,例如电影、电视、摄像资料等。视频信息带有同期音频,画面信息量大,表现的场景复杂,通常采用专门的软件对其进行加工和处理。 S3.1.1 视频设备 常用的视频设备主要有采集卡(用于采集模拟信号)、1394卡(用于采集数字视频信号)、DVD/CD 刻录机(存储视频)。 S3.1.2 视频格式 1、AVI AVI的英文全称为Audio Video Interleaved,即音频视频交错格式。它于1992年被Microsoft 公司推出,随Windows3.1一起被人们所认识和熟知。所谓“音频视频交错”,就是可以将视频和音频交织在一起进行同步播放。这种视频格式的优点是图像质量好,可以跨多个平台使用,其缺点是体积过于庞大,而且更加糟糕的是压缩标准不统一,最普遍的现象就是高版本Windows媒体播放器播放不了采用早期编码编辑的AVI格式视频,而低版本Windows媒体播放器又播放不了采用最新编码编辑的AVI格式视频,所以我们在进行一些AVI格式的视频播放时常会出现由于视频编码问题而造成的视频不能播放或即使能够播放,但存在不能调节播放进度和播放时只有声音没有图像等一些莫名其妙的问题,如果用户在进行AVI格式的视频播放时遇到了这些问题,可以通过下载相应的解码器来解决。 DV-AVI格式:DV的英文全称是Digital Video Format,是由索尼、松下、JVC等多家厂商联合提出的一种家用数字视频格式。目前非常流行的数码摄像机就是使用这种格式记录视频数据的。它可以通过电脑的IEEE 1394端口传输视频数据到电脑,也可以将电脑中编辑好的的视频数据回录到数码摄像机中。这种视频格式的文件扩展名一般是.avi,所以也叫DV-AVI格式。 2、MPEG MPEG-1制定于1992年,为工业级标准而设计,可适用于不同带宽的设备,如CD-ROM、Video-CD、CD-i。它可针对SIF标准分辨率(对于NTSC制为352X240;对于PAL制为352X288)的图象进行压缩,传输速率为1.5Mbits/sec,每秒播放30帧,具有CD(指激光唱盘)音质,质量级别基本与VHS相当。MPEG的编码速率最高可达4-5Mbits/sec,但随着速率的提高,其解码后的图象质量有所降低。 MPEG-2制定于1994年,设计目标是高级工业标准的图象质量以及更高的传输率。MPEG-2所能提供的传输率在3-10Mbits/sec间,其在NTSC制式下的分辨率可达720X486,MPEG-2也可提供并能够提供广播级的视像和CD级的音质。MPEG-2的音频编码可提供左右中及两个环绕声道,以及一个加重低音声道,和多达7个伴音声道(DVD可有8种语言配音的原因)。由于MPEG-2在设计时的巧妙处理,使得大多数MPEG-2解码器也可播放MPEG-1格式的数据,如VCD。 MPEG-4标准主要应用于视像电话(videophone),视像电子邮件(VideoEmail)和电子新闻(Electronicnews)等,其传输速率要求较低,在4800-64000bits/sec之间,分辨率176X144。 MPEG-4利用很窄的带宽,通过帧重建技术,压缩和传输数据,以求以最少的数据获得最佳的图象质量。与MPEG-1和MPEG-2相比,MPEG-4的特点是其更适于交互AV服务以及远程监控。

IP视频流处理系统技术方案.

IP视频流处理系统技术方案

2010年10月21日 目录 一、项目需求 (4) 二、系统主要技术及功能介绍 (4) 2.1、视频流压缩编码技术: (4) 2.2、服务器处理技术: (5) 2.3、网络传输协议: (6) 2.4、对端流媒体播放技术(解码) (7) 三、系统组成 (7) 3.1 编码硬件(服务器)介绍; (7) 3.1.1 编码硬件(服务器)构架 (7) 3.1.2 编码硬件(服务器)组成 (8) 3.1.3 编码硬件(服务器)编码技术介绍及转换格式说明 (8) 3.1.4 编码硬件(服务器)编码流程介绍及GPU并行处理技术介绍 (8)

3.1.5 编码硬件(服务器)编码指标说明(压缩比、分辨率、带宽、信号类型、流 媒体格式、码流、帧数等指标) (10) 3.1.6 编码硬件(服务器)处理性能 (11) 3.1.7 编码硬件(服务器)扩展能力 (11) 3.2解码器介绍; (12) 3.2.1 解码器介绍 (12) 3.2.2 解码技术介绍 (12) 3.2.3 解码后最终显示性能 (13) 3.2.4 解码器与编码器协同工作原理 (13) 3.2.5 窗口显示性能 (14) 四、IP视频流处理系统技术点实现方式 (14) 五、IP视频流处理系统优势所在及对比 (14) 六、系统图 (16) 七、新版本介绍 (17) 7.1、版本介绍 (17) 7.2、BlendOneV2窗口管理介绍: (19) 八、系统测试 (20)

一、项目需求 ●支持多路IP流媒体信号源并行输入; ●可以将外部视频信号转换为IP流媒体以窗口的形式在 大屏幕上显示; ●所有操作均兼容集中控制主机、操作电脑等控制设备; ●完美实现多窗口显示,并且可以进行窗口放大、缩小、 漫游、叠加、拉伸等功能; ●支持显示模式预存、调用、修改等功能; 二、系统主要技术及功能介绍 2.1、视频流压缩编码技术: 视频流压缩编码技术。由于存在视频信息数据量大而网

视频处理技术制作报告

成绩 音视频编辑技术 课程设计报告 项目名称爱情密码 学院 专业 年级 学号 姓名 指导教师 2011年4 月19日

爱情密码的制作 1 内容简介: 爱情,从古至今都为人们所赞颂,且看“众里寻他千百度,蓦然回首,那人却在灯火阑珊处”,“衣带渐宽终不悔,为伊消得人憔悴”,“被你牵着手,慢慢随你走,千年一回首,你依旧牵我手”,由此看出爱情是人们的美好追求,而爱情到底是什么呢?其实,爱情就在我们的举手投足之间!为了赞美爱情,特制作了此视频!视频由特效视频,剪辑视频,以及用图片组成。这次视频制作组要用了Adobe Premiere CS4视频编辑工具,此外还以Corel Video Studio Pro12作为辅助工具。 2 实现方法: 本次演示所使用的视频编辑工具是Adobe Premiere CS4,该工具功能强大,是视频制作专业人士或视频发烧友必备工具,而Corel Video Studio Pro12也是比较好的视频编辑工具。下面就视频的各个部分进行制作过程的讲解。 制作步骤如下: ①打开Corel Video Studio Pro12并新建项目 ,保存为“三面电视”,然后添加2条轨道并插 入相关素材进行编辑,如图2.0所示 如图2.0所示 (其中使用了Bubble特效以及进入方向的编辑),完成后输出保存。 ②打开Adobe Premiere CS4并新建项目,设置相关参数,保存为“心形”,如图 2.1 所示:

图2.1 ③接下来导入素材,然后将这些心形图片插入轨道并进行编辑,如图 2.1 所示: 图2.2 其中使用了十几种视频切换特效,如图2.3所示 图2.3 完成编辑后输出保存。

大型视频监控系统的技术要点

大型视频监控系统的技术要点 随着宽带网络的普及和行业管理部门对管理水平提高的需求增加,城市公安、交通、金融、环保、电力、医疗、教育等管理部门对城市范围内的大型联网安全与视频监控平台的需求也在这两年开始大量增加,其中尤其以城市公安和金融领域的需求最为突出。 在城市公安领域,公安部门正在大力进行科技强警示范城市的建设,首批22个城市的城市治安监控系统已经开始实施,2008年科技强警示范建设城市将达到180个,而最终我国660个城市和1642个县城都需要上基于网络的公共安全与图像监控系统。 而在金融领域,在过去的几年中,国内各大国有银行和商业银行根据中国人民银行总行和公安部关于银行图像监控系统的数字化改建要求,已经建设完成了大量基层网点的数字化监控系统建设改造工作,目前也已经开始进行各种联网监控管理系统的改造试点工作。  随着网络传输技术、图像编解码技术的成熟,实现这些新兴行业客户需求的已经取得了重大的突破,大型的视频监控系统正在全国各地迅速地建设起来。 一、大型监控系统的特点 随着城市治安系统、行业治安系统的建设,我们可以看到这些大型的监控系统有着一些共同的特点: 1 以平台为核心,以网络为纽带 我们现在的安防系统的规模及规划,已经让人有点生畏,或者让使用者有点生畏。数量众多的摄像头采集的图像如何监看?数量众多的编解码设备如何管理?数量众多的后端服务器如何配合及管理?靠人力已经不能解决大规模监控系统出现的管理问题了,所以打造一个管理平台的需求就显得非常迫切。一个好的管理平台可以将所有的摄像头纳入管理,将所有的报警点纳入管理,将所有的编解码设备纳入管理,将所有的后台服务器纳入管理,从而使得整套系统能够顺畅运行。 而以平台作为核心来管理整个监控系统要有一个前提,就是要有一个足够带宽(或者说经过管理后可以满足要求的足够带宽)的网络来连接这些设备和服务器,没有网络一切就是空谈。 2 接入多家不同的设备,实现互联互通 由于安防行业的历史状况(独立的小规模应用为主),造成了设备

2数字视频处理重点总结

1.三基色原理:任何一种颜色可以通过三基色按不同比例混合得到。 照明光源的基色系包括红色、绿色和蓝色,称为RGB基色。R+G+B=White 反射光源的基色系包括青色、品色和黄色,称为CMY基色。C+M+Y=Black RGB和CMY基色系是互补的,也就是说混合一个色系中的两种彩色会产生另外一个色系中的一种彩色。 2.HVS(人类视觉系统) -人类获取外界图像、视频信息的工具。 视网膜有两种类型感光细胞: 锥状细胞:在亮光下起作用,感知颜色的色调。含有三种类型的锥状细胞。 杆状细胞:在暗一些的光强下工作,只能感知亮度信息。 3.相加混色法: 1)空间混色法:将三种基色光同时分别投射到同一平面的相邻3点,若3点相距足够近,由于人眼的分辨力有限和相加混色功能,因此,人眼看到的不是基色,而是这三种基色的混合色。 彩色显像管的现象就是利用了空间混色法。 2)时间混色法:按一定顺序轮流将三种基色光投射到同一平面上,由于人眼的视觉惰性和相加混色功能,因此,人眼看到的不是基色,而是这三种基色的混合色。 场顺序制彩色电视就是采用时间混色法以场顺序来传送三种基色信号的。 3)生理混色法:(立体彩色电视的显像原理) 4)全反射混色法:(投影电视的基本原理) 4.彩色电视三种制式: NTSC制:正交平衡调幅制(采用YIQ彩色空间) PAL制:正交平衡调幅逐行倒相制(采用YUV彩色空间) SECAM制:行轮换调频制(采用YDbDr彩色空间) 矢量量化 编码--用二进制数来表示量化后样值的过程 9.量化:(将无限极的信号幅度变换成有限级的数码表示) 量化的用途 1)将模拟信号转换为数字信号,以便进行数字处理和传输 2)用于数据压缩 10.二维采样定理: 若二维连续信号f(x,y)的空间频率u和v分别限制在|u|<=Um、|v|<=Vm (Um、Vm为最高空间频率),则只要采样周期Δx、Δy满足Δx<=1/2Um、Δy<=1/2Vm,就可以由采样信号无失真的恢复原信号。 3.基于多分辨率的运动估计: 1)运动场接近最优解的概率更大;在较小分辨率层上,误差函数可以接近全局最小值,通过插值,获得高分辨率上的初始解,最后到达最大分辨率时,运动场很可能接近最优解。 2)计算量比直接在最大分辨率上进行运动估计时要小;在较小分辨率层上,搜索范围限制在较小的范围。 1.压缩时,视频冗余:

什么是多媒体技术

什么是多媒体技术 多媒体技术是可以将文本、图形、图像、音频、视频等多媒体信息,经过计算机设备的获取、操作、编辑。存储等综合处理后,以单独或合成的形式表现出来的技术和方法。 多媒体技术的用途 既然我们已经知道了多媒体技术的含义和地位,你是否正迫切地想进一步了解多媒体产品的创作工具及用途呢? 多媒体创作工具是电子出版物、多媒体应用系统的开发工具,它提供了组织和编辑电子出版物和多媒体应用的系统各成分所需要的框架,包括图形、动画、声音、和视频的剪辑。其用途是建立具有交互式的用户界面,在屏幕上显示出版物及制作好的多媒体作品。以及将各种多媒体成分集成一个完整而内在联系的系统。其实,我们学习多媒体技术的最终目的就是为了掌握多媒体产品的制作技巧。现在问题是如何才能掌握这种多媒体制作技巧呢?实践证明:一个高素质的“产品造型设计师”,不仅应具有很强的创作设计能力,还应该熟练掌握强大的电脑设计工具。所以学习并精通相关多媒体设计软件也就变得至关重要。 多媒体软件的分类 学习多媒体设计软件要先认识一下它的分类,下面我们一起来认识一下多媒体产品制作过程中各种设计工具的分类;基于特殊效果的制作工具;基于时间的编辑工具;基于图符或流线的创作工具;基于卡片和页面的创作设计工具;传统程序语言为基础的编程工具。各多媒体软件在制作过程中的应用领域以及具体作用; 视频编辑软件Adobe premiere 是一个专业化数字视频处理软件,它可以配合多种硬件进行视频捕获和输出,并提供各种精确的视频编辑工具,能产生广播级质量的视频文件,为多媒体应用系增添高水平的创意。 数字音频编辑工具Awave Studio 是在一个Windows环境下录制、播放和编辑波形文件的应用软件,它不但可以进行简单的录音,还可以编辑和应用众多的特赦效果。 绘图软件Coredraw 是一个功能强大的整合性绘图软件,我们使用它来制作各类图文并茂的桌面印刷品,如请柬、简报、宣传品、海报、广告等。用Coredraw 可以制作非常专业的设计作品,从商业区地图、机械结构装配图等技术图纸,到漫画、怪兽等计算机作品。 图像处理软件Photoshop 是目前最流行的图像处理工具,可用于编辑、扫描磁盘的绘画艺术品和图片,还可以制作出如同水彩画和油画等一样的自然主义风格的图画。

数字视频技术及应用复习题

第一章数字视频概述 1.什么是复合视频?2页,可改为填空题 例如:黑白视频信号是一个已经经过加工处理并包含扫描同步和消隐的图像信号,通常也叫做复合视频,简称视频。由于频带范围在1-6MHZ人们又把它叫做电视基带视频。 2.什么是视频技术?它主要应用在哪些领域?3页,可以改为填空题 例如:在不考虑电视调制发射和接收等诸多环节时,单纯考虑和研究电视基带信号的摄取、改善、传输、记录、编辑、显示的技术就叫做视频技术。 主要应用领域:广播电视的摄录编系统、安全及监控、视频通信和视频会议、远程教育及视听教学、影像医学、影音娱乐和电子广告。 3.什么是数字视频?5页 广义的数字视频表述为数字视频是指依据人的视觉暂留特性,借着计算机或微处理器芯片的高速运算,加上Codec技术、传输存储技术等来实现的以比特流为特征的,能按照某种时基规律和标准在显示终端上再现活动影音的信息媒介。狭义的数字视频时指与具体媒体格式所对应的数字视频。 第二章彩色数字视频基础 1.彩色电视系统是根据色光三基色原理来再现彩色图像的。按照此原理,任何一种色光颜色都可以用R G B三个彩色分量按一定的比例混合得到。7页 2.匹配兼容制彩色电视亮度信号的公式是:8页(2-2) 3.两个色差信号正交调制的目的是什么?10页 4.电视扫描分为逐行扫描和隔行扫描两种。 5.电视基带视频有复合视频、亮色分离视频和分量视频三种。13页 6.彩色电视制式有哪三种?制式差异主要体现在哪些方面?14页或改为填空 世界上现行的彩色电视制式有NTSC制式、PAL制式和SECAM制式三大制式。制式差异主要体现在亮度合成公式、色差信号提取、色副载选取及其正交调制类型、扫描方式、同步时基确定等方面的参数。 7.彩色电视图像的数字化有信号上游数字化和信号下游数字化两种。 8.A/D转换主要包括哪些环节?量化的实质是什么?编码的实质是什么?17,18页,可改为填空 A/D转换就是指对幅值连续变化的模拟视频电信号进行脉冲抽样保持、量化、编码等环节后形成二进制码流的技术处理过程。 9.一般常用的线性D/A转换器,其输出模拟电压U和输入数字量D之间成正比关系。19页 10.YCbCr信号和YUV信号是正比关系。21页,或选择A正比B反比C非线性D平方11.CCIR601标准为NTSC、PAL、和SECAM制式规定了共同的图像采样频率是13.5MHZ。21页 12.PAL制NTSC制的现行标准数字电视有效显示分辨率(清晰度)各为720X576像素和720X480像素。公用中分辨率为352X288像素。23页 第三章广义数字视频及分类 1.广义数字视频的定义?28页 2.广义的数字视频是依据人的视觉暂留特性,借助计算机或微处理器芯片的高速运算加上Codec编解码技术、传输存储技术等来实现的比特流为特征的全新的信息媒介。 3.图像序列的特点有哪些?33页 特点是每帧的分辨率相同,图像内容相关、图像文件名连续编号,而且有表示开始的图像序列头和表示结束的图像终止码。

多媒体技术考试试题及参考答案

多媒体技术试题 一、选择题 1、Photoshop是一款 B 软件。 A.多媒体操作系统 B.多媒体工具软件 C.视频处理软件 D.音乐播放软件 2、多媒体计算机的硬件系统除了要有基本计算机硬件以外,还要具备一些多媒体信息处理 的 A 。 A. 外部设备和接口卡 B.主机 C.显示器 D.外部设备 3、在播放音频时,一定要保证声音的连续性,这就意味着多媒体系统在处理信息时有严格 的 D 要求。 A.多样性

B.集成性 C.交互性 D.实时性 4、不进行数据压缩的、标准的Windows图像文件格式是 A 。 A.BMP B.GIF C.JPG D.TIFF 5、由CompuServe公司开发、可以存储多幅图像并形成动画效果的图像文件格式是 B 。 A.BMP B.GIF C.JPG D.PNG 6、GIF图像文件可以用1~8位表示颜色,因此最多可以表示 C 种颜色。 A.2 B.16

C.256 D.65536 7、对于调频立体声广播,采样频率为44.1kHz,量化位数为16位,双声道。其声音信号数字化后未经压缩持续一分钟所产生的数据量是 D 。 A.5.3Mb B.5.3MB C.8.8Mb D.10.6MB 8、通常用来保存未压缩的音频、属于事实上的通用音频文件格式的是 C 。 A.MP3 B.MIDI C.W A V D.WMA 9、显示器所用的颜色模型是采用 C 三种基本颜色按照一定比例合成颜色的方法。 A.红色、黄色、蓝色 B.青色、品红、黄色 C.红色、绿色、蓝色

D.红色、黄色、绿色 10、PNG图像文件采用无损压缩算法,其像素深度可以高达 D 位。 A.8 B.24 C.32 D.48 11、既是图像文件格式,又是动画文件格式的文件格式是 A 。 A.GIF B.JPG C.SWF D.MPG 12、数据压缩是指对原始数据进行重新编码,去除原始数据中 C 数据的过程。 A.噪音 B.冗长 C.冗余 D.重复

第4章_视频处理技术

08电子信息工程2班林伟彬3108002633 第四章视频处理技术 一、选择题 1、在视频通信应用中,用户对视频质量的要求和对网络带宽占用的要求之间的关系是:A A、矛盾的 B、一致的 C、反向的 D、互补的2在视频应用通信中,解决用户对视频质量要求和占用网络带宽要求之间矛盾的是:B A、提高视频质量B、视频编解码技术 C、降低视频质量 D、增加带宽 3、图像和视频之所以能进行压缩,在于图像和视频中存在大量的:A A、冗余 B、相似性 C、平滑区 D、边缘区 4、在视频图像中,C 是相邻两帧的差值,体现了两帧之间的不同之处。 A、视觉冗余 B、运动估计 C、运动补偿 D、结构冗余 5、在视频图像中主要存在的是:B A、视觉冗余 B、时间冗余 C、空间冗余 D、结构冗余6.视频图像的编码方法的基本思想是:第一帧和关键帧采用A方法进行压缩。 A.帧内编码B.帧间编码C.运动估计D.运动补偿 7.如果视频图像只传输第一帧和关键帧的完整帧,而其他帧只传输B,可以得到较高的圧缩比。 A.运动估计和补偿B.帧差信息 C.运动估计D.运动补偿 8.下列D视频压缩系列标准主要用于视频通信应用中。 A.MPEG B.H.26x C.JPEG D.AVS 9.下列B视频压缩系列标准主要用于视频存储播放应用中。 A.MPEG B.H.26x C.JPEG D.AVS 10.基于LAN网络的视频压缩标准是:C。 A.MPEG B.H.324 C.H.323 D.H.320 11、基于ISDN网络的视频压缩框架标准是: D A、MPEG B、H.324 C、H.323 D、H.320 12、基于PSTN网络的视频压缩框架标准是: B A、MPEG B、H.324 C、H.323 D、H.320 13、视频压缩系列标准MPEG-x主要是应用于视频存储播放应用中,例如,DVD中的视频压缩标准为 B A、MPEG-1 B、MPEG-2 C、MPEG-3 D、MPEG-4 14、CIF图像格式的大小是 B A、176×144 B、352×288 C、704×576 D、1408×1152 15、当采用H.261标准编码时,亮度分量与颜色分量的比值为 A A、4:1:1 B、4:2:2 C、4:0:2 D、4:2:0 16、曾经普遍使用的VCD系统就是基于 A 编码标准研制的。 A、MPEG-1 B、MPEG-2 C、MPEG-3 D、MPEG-4 17.MPEG-1标准的典型编码码率为A ,其中1.1Mbps用于视频,128看kps用于音频,其余带宽用于MPEG系统本身。 A 1.5Mps B 2Mps C 10Mps D 15Mps 18.MPEG-1标准中, C是图像编码的基本单元,运动补偿、量化等均在其上进行。

多媒体技术图片音视频知识点

多媒体=多种媒体(文本、图形、图像、声音、动画和视频等)多媒体技术:计算机综合处理文字、图形、图像、音频、视频等多媒体信息,使多种信息建立逻辑连接,集成为一个系统并且具有交互性的一门综合性技术。 多媒体技术主要包括:媒体处理技术、人机交互技术、数据压缩技术、软硬件平台技术、通信与网络技术。 多媒体技术基本特征:数字性、多样性、交互性、集成性和实时性。其中交互性是关键特征。 多媒体计算机特征部件:光驱、音箱、显卡 声卡、视频采集卡、刻录机、摄像头、触摸屏、扫描仪、数码相机、数字投影仪…… 多媒体技术主要应用:教育培训、电子出版、影音娱乐、网络。 多媒体【例题】 1、多媒体技术不包含以下哪种技术(C) A、数据压缩技术 B、人机交互技术 C、机械技术 D、通信与网络技术 2、以下哪一项不是常用的多媒体设备(B) A、摄像头 B、U盘 C、数据照相机 D、数字投影仪 3、以下哪一项不是多媒体技术的应用(D) A、教育培训 B、电子出版 C、网络 D、数字投影仪 4、计算机可以处理图像、声音和视频等信息,这种技术属于(D) A、智能化技术 B、自动控制技术 C、网络技术 D、多媒体技术

5、在多媒体计算机中,用来播放、录制声音的硬件设备是(B) A、网卡 B、声卡 C、视频卡 D、显卡 6. 下列关于多媒体技术主要特征描述正确的是:(D) ①多媒体技术要求各种信息媒体必须要数字化 ②多媒体技术要求对文本,声音,图像,视频等媒体进行集成 ③多媒体技术涉及到信息的多样化和信息载体的多样化 ④交互性是多媒体技术的关键特征 A. ①② B. ①④ C. ①②③ D. ①②③④ 7. 下面关于多媒体技术的描述中,正确的是:(C) A. 多媒体技术只能处理声音和文字 B. 多媒体技术不能处理动画 C. 多媒体技术就是计算机综合处理声音,文本,图像等信息的技术 D. 多媒体技术就是制作视频 8、以下属于多媒体技术应用的是:(B) (1)远程教育(2)美容院在计算机上模拟美容后的效果(3)电脑设计的建筑外观效果图(4)房地产开发商制作的小区微缩景观模型 A、(1)(2) B、(1)(2)(3) C、(2)(3)(4) D、全部 9、在多媒体课件中,课件能够根据用户答题情况给予正确和错误的回复,突出显示了多媒体技术的(D)。 A、多样性B、非线性 C、集成性D、交互性

第4章 视频处理技术

第四章视频处理技术 一、选择题 1、在视频通信应用中,用户对视频质量的要求和对网络带宽占用的要求之间的关系是:A A、矛盾的 B、一致的 C、反向的 D、互补的2在视频应用通信中,解决用户对视频质量要求和占用网络带宽要求之间矛盾的是:B A、提高视频质量 B、视频编解码技术 C、降低视频质量 D、增加带宽 3、图像和视频之所以能进行压缩,在于图像和视频中存在大量的:A A、冗余 B、相似性 C、平滑区 D、边缘区 4、在视频图像中,C 是相邻两帧的差值,体现了两帧之间的不同之处。 A、视觉冗余 B、运动估计 C、运动补偿 D、结构冗余 5、在视频图像中主要存在的是:B A、视觉冗余 B、时间冗余 C、空间冗余 D、结构冗余 6.视频图像的编码方法的基本思想是:第一帧和关键帧采用A方法进行压缩。 A.帧内编码B.帧间编码C.运动估计D.运动补偿

7.如果视频图像只传输第一帧和关键帧的完整帧,而其他帧只传输B,可以得到较高的圧缩比。 A.运动估计和补偿B.帧差信息 C.运动估计D.运动补偿8.下列D视频压缩系列标准主要用于视频通信应用中。 A.MPEG B.H.26x C.JPEG D.AVS 9.下列B视频压缩系列标准主要用于视频存储播放应用中。 A.MPEG B.H.26x C.JPEG D.AVS 10.基于LAN网络的视频压缩标准是:C。 A.MPEG B.H.324 C.H.323 D.H.320 11、基于ISDN网络的视频压缩框架标准是: D A、MPEG B、H.324 C、H.323 D、H.320 12、基于PSTN网络的视频压缩框架标准是: B A、MPEG B、H.324 C、H.323 D、H.320 13、视频压缩系列标准MPEG-x主要是应用于视频存储播放应用中,例如,DVD中的视频压缩标准为 B A、MPEG-1 B、MPEG-2 C、MPEG-3 D、MPEG-4 14、CIF图像格式的大小是 B A、176×144 B、352×288 C、704×576 D、1408×1152 15、当采用H.261标准编码时,亮度分量与颜色分量的比值为 A

第3章多媒体信息处理技术

第三章多媒体信息处理技术 通过本章学习,了解多媒体信息处理技术的基本问题,包括多媒体数据的分类、多媒体信息的计算机表示、多媒体数据压缩和编码技术、音频卡和视频卡的应用。重点掌握多媒体信息处理技术的基本概念,学会音频卡和视频卡的安装与使用,了解多媒体技术中数据的压缩与编码方法。 3.1 多媒体数据的分类 媒体是承载信息的载体,是信息的表示形式。信息媒体元素是指多媒体应用中可以显示给用户的媒体组成元素,目前主要包括文本、图形、图像、声音、动画和视频等媒体。 一、多媒体数据的特点 多媒体数据具有数据量巨大、数据类型多、数据类型间差别大、数据输入和输出复杂等特点。多媒体数据类型多,包括图形、图像、声音、文本和动画等多种形式,即使同属于图像一类,也还有黑白、彩色、高分辨率和低分辨率之分,由于不同类型的媒体内容和格式不同,其存储容量、信息组织方法等方面都有很大的差异。 二、多媒体数据的分类 1.文字 在计算机中,文字是人与计算机之间信息交换的主要媒体。文字用二进制编码表示,也就是使用不同的二进制编码来代表不同的文字。 文本是各种文字的集合,是人和计算机交互作用的主要形式。 文本数据可以在文本编辑软件里制作,如Word编写的文本文件大都可以直接应用到多媒体应用系统中。但多媒体文本大多直接在制作图形的软件或多媒体编辑软件时一起制作。 2.音频 音频泛指声音,除语音、音乐外,还包括各种音响效果。将音频信号集成到多媒体中,可提供其他任何媒体不能取代的效果,从而烘托气氛、增加活力。 3.图形、图像 凡是能被人类视觉系统所感知的信息形式或人们心目中的有形想象都称为图像。 图形文件基本上可以分为两大类:位图和向量图。 位图图像是一种最基本的形式。位图是在空间和亮度上已经离散化的图像,可以把一幅位图图像看成一个矩阵,矩阵中的任一元素对应于图像的一个点,而相应的值对应于该点的灰度等级。

全景视频处理技术分析

龙源期刊网 https://www.doczj.com/doc/f71972973.html, 全景视频处理技术分析 作者:王永亮王晨余世水 来源:《传播力研究》2019年第22期 摘要:在21世纪,VR技术日益兴起,使全景视频更加清晰,进而给予用户更为良好的视觉体验。目前,全景视频是由多个镜头对物体进行悬拍、环拍、仰拍等,同时,用图像拼接技术对各种图形实施无缝拼接,并借助压缩编码与网络传输技术使之形成清晰、完整的全景视频。本文将简单分析全景视频处理技术,希望能为视频拍摄工作提供参考与借鉴。 关键词:VR技术;全景视频处理技术;摄像师 在VR技术的支持下,当前全景视频充分体现了其内容的审美理念与构思、情感等。其次,全景视频处理技巧已呈现出多样化特征,分类方式不同,视频拍摄技巧种类也不尽相同,按照所拍摄景物的距离及其视角来划分,全景视频拍摄技巧可分为近景、远景与特写;从摄像机运动方式来区分,拍摄技巧讲究360度环拍、移动、悬拍、推拉与仰拍等;按照画面处理方 式来划分,全景视频加工技巧有入画、定格和淡出等不同方式。此外,全景视频处理工作要求摄像师应结合视频艺术创作标准,树立最佳镜头意识,正确运用各种拍摄技巧,增加全景视频的深意,凸显出视频内容所包含的文化底蕴和审美理念,努力提高作品播放效果。本文将简单介绍全景视频处理技术的基本要素,并系统论述如何提高全景视频拍摄效果。 一、全景视频处理技术的基本要素 (一)图像采集技术 从整体结构来看,当前全景视频图像采集方式主要分为以下三种: 1.广角镜头采集方式。这种拍摄方式所选用的视角大多为180度的超广角或者用接近鱼眼的视角来采集全局场景,完成初步采集后予以精细化处理。 2.折反射方式。折反射方式与广角镜头采集方式具有相似性,会通过适当降低分辨率来扩大拍摄范围与视角,这样难免会使部分画面发生变形,对此,需要在完成画面采集之后予以精心加工和校正。 3.云台摄像机和多路摄像机方式。目前,云台摄像机和多路摄像机是最常见的图像采集设备,两种摄像机均能够运用图像拼接技术将所拍摄的图像合成一幅全景图像,只是结构各有差异。云台摄像机是通过高速旋转环绕拍摄景物,然后运行拼接技术合成全景。多路摄像机方式是由八个摄像机组构成360度的拍摄视角,使同一时刻所拍摄的景物经过拼接后构成全景。 (二)视频拼接技术

大型视频监控系统的技术要点分析

大型视频监控系统的技术要点分析 随着宽带网络的普及和行业管理部门对管理水平提高的需求增加,城市公安、交通、金融、环保、电力、医疗、教育等管理部门对城市范围内的大型联网安全与视频监控平台的需求也在这两年开始大量增加,其中尤其以城市公安和金融领域的需求最为突出。 在城市公安领域,公安部门正在大力进行科技强警示范城市的建设,首批22个城市的城市治安监控系统已经开始实施,2008年科技强警示范建设城市将达到180个,而最终我国660个城市和1642个县城都需要上基于网络的公共安全与图像监控系统。 而在金融领域,在过去的几年中,国内各大国有银行和商业银行根据中国人民银行总行和公安部关于银行图像监控系统的数字化改建要求,已经建设完成了大量基层网点的数字化监控系统建设改造工作,目前也已经开始进行各种联网监控管理系统的改造试点工作。 随着网络传输技术、图像编解码技术的成熟,实现这些新兴行业客户需求的已经取得了重大的突破,大型的视频监控系统正在全国各地迅速地建设起来。 大型监控系统的特点 随着城市治安系统、行业治安系统的建设,我们可以看到这些大型

的监控系统有着一些共同的特点: 1 以平台为核心,以网络为纽带 我们现在的安防系统的规模及规划,已经让人有点生畏,或者让使用者有点生畏。数量众多的摄像头采集的图像如何监看?数量众多的编解码设备如何管理?数量众多的后端服务器如何配合及管理?靠人力已经不能解决大规模监控系统出现的管理问题了,所以打造一个管理平台的需求就显得非常迫切。一个好的管理平台可以将所有的摄像头纳入管理,将所有的报警点纳入管理,将所有的编解码设备纳入管理,将所有的后台服务器纳入管理,从而使得整套系统能够顺畅运行。 而以平台作为核心来管理整个监控系统要有一个前提,就是要有一个足够带宽(或者说经过管理后可以满足要求的足够带宽)的网络来连接这些设备和服务器,没有网络一切就是空谈。 2 接入多家不同的设备,实现互联互通 由于安防行业的历史状况(独立的小规模应用为主),造成了设备的生产厂家非常众多,而且各个厂家都有自己的一套编解码和网络传输的做法。这个现状对于组成大型网络的非常不利的。但是也是因为

教学视频处理技术 学习心得

教学视频处理技术学习心得 相城实验中学方艳玲 这次网上培训,我选择学习教学视频处理技术,带着初学者的好奇,在接触之前以为很难,因为这是个一比较专业的软件处理技术。起初是为了完成任务的心态去学习它,但是深入学习了解之后,觉得教学视频处理技术是一个非常有意思、值得学习的软件。 通过这次视频处理技术的学习,弥补以往视频处理技术知识的空缺。过去只会通过QQ影音等软件对视频、音乐进行简单的剪辑,但对整个视频画面的剪辑还是第一次接触,经过这一段时间的学习,收获颇丰,希望接下来一段时间再接再厉,努力掌握好教学视频入门处理技术。 在学习的过程中,我按照老师的教学视频,从最基本的知识和最基础的操作开始,一步一步按部就班的学习,慢慢我开始入门了,开始掌握一些基本操作。对于比较复杂的知识块,我就反复看老师的视频资料,我会将比较复杂的地方做笔记,然后反复练习,最后在经过多次的实践后也就自然掌握了。在对视频教学处理技术不断深入的学习后,也逐渐感觉到了这个软件技术其实对我们的教学工作的帮助也挺大的。 教学视频处理技术能对现有的视频文件进行处理,使其满足自己的需要,通过学习,我掌握了几种小方法。它不仅可以将自己需要的的几种视频合并在一起,还能将自己不需要的视频部分删除掉,这样子可以节约活动中不必要的时间。运用电脑制作一些文件,可动可静,生动活泼,使教学过程更加生动、直观、形象,吸引学生的注意力,提升学生参加活动的兴趣。现在课堂教学以学生为主体视频教学技术可以调动学生的学习积极性,增加学生的学习兴趣.让学生被动学转化为主动学,愿意学。 现在,我已经掌握了一些视频的制作技巧,遇到困难,可以网上搜索教学视频,然后反复练习,熟能生巧。在今后的教学活动会中有效的利用现代化资源,不仅可以创设情境,还能把枯燥的活动变得生动、有趣。让孩子们在愉快的气氛中主动学习,使学习活动达到最佳的效果。

多媒体技术的发展趋势

多媒体技术的发展趋势 多媒体技术是当今信息技术领域发展最快、最活跃的技术,是新一代电子技术发展和竞争的焦点。它的出现使得我们的计算机世界丰富多彩起来,也使得计算机世界充满了人性的气息。多媒体技术从问世起即引起人们的广泛关注,并迅速由科学研究走向应用、走向市场,其应用领域遍及人类社会的各个方面。 一、多媒体技术的应用领域 (一)多媒体教学 随着教学改革的不断深入,应试教育正在逐步向素质教育转轨,传统的教学手段已跟不上教育前进的步伐。现代多媒体技术以迷人的风采走进了校门,进入了课堂。实现教学手段的现代化已是课堂教学改革的当务之急,势在必行。只有充分发挥多媒体技术优势进行课堂教学,才能实现课堂教学的最优化。多媒体教学的作用主要有:利用多媒体技术设置情境可激发学习爱好,发挥学生的主体作用;利用多媒体技术发挥演示实验的作用,优化实验教学;利用多媒体技术可控制教学节奏,提高教学效果;利用多媒体技术创设学习氛围可有效激发学生的求知欲望,培养学生的能力;利用多媒体技术让学生“亲历”科学探索过程,激活创新意识;利用多媒体技术与德育的无缝融合,全面提高学生素质。 (二)网络及通信 多媒体计算机技术的一个重要应用领域就是多媒体通信系统。多

媒体网络是网络技术未来的发展方向。随着这些技术的发展,可视电话、视屏会议、家庭间的网上聚会交谈等日渐普及和完善。 多媒体技术应用到通信商,将把电话、电视、图文传真、音响、卡拉ok机、摄像机等电子产品与计算机融为一体,由计算机完成音频、视频信号采集、压缩和解压缩,音频、视频的特技处理,多媒体信息的网络传输,音频播放和视频显示,形成新一代的家电类消费,也就是建立了提供全新信息服务的多媒体个人通信中心。 1.可视电话 多媒体通信的初级形式主要是可视电话,相距遥远的用户能够在通话的同时看到对方的形象,并传输所需的各种媒体信息。 2.支持的协同工作 多媒体通信技术不仅能让处于不同地点的多个用户通过屏幕看到对方的形象,自由地交谈,而且还能在双方的屏幕上同时显示同一文件,对同一文件或图表展开讨论,进行修改,在达成协议后再存储或打印出来。一切复杂的、需要面对面讨论的问题,都可以在短短的十几分钟内解决。这样,人们就可以在家中办公,不用为上下班花费时间,从而可大大地减少交通负担,进一步提高工作效率。 3.视频会议 视频会议系统是多媒体通信的重要应用之一。其基本功能是利用多媒体计算机系统,将反映各个会场的场景、人物、图片、图像以及讲话的相关信息,同时进行数字化压缩,根据视频会议的控制模式,经过数字通信系统,向指定方向传输。与此同时,在各个会议场点的

《微电影视频处理技术》课程实施方案

《微电影视频处理技术》 课程实施方案 课程开发背景 我们之所以选择《微电影视频处理技术》作为校本课程开发研究的内容,是出于以下几点的考虑:一、立足于时代,让课程具有鲜明的时代性,贴近中职生的心灵。 微博、微信、微小说、微电影如雨后春笋般发展起来,成为快节奏社会中人们的生活方式和特有符号。不得不说,“微博”“微信”“微电影”大行其道的今天,早已经被打上了“微时代”的标签。《微电影视频处理技术》是我校计算机专业教师整合学校资源以及网络资源,针对学生的兴趣、能力和实际水平自主研发的一门综合专业校本课程,也是一门具有开创意义的综合性课程,微电影整合了文学、音乐、舞美、传媒等艺术,融合了摄像、录音、剪辑等多项现代技术,融入了身边最动人的社会生活元素,迅速成为广大青少年的最爱。让学校的课程与中职生的心灵共振,与时代共舞,无疑是开发校本课程的首选因素。 二、着眼于创新,走在课程改革的前沿,打造学校的品牌特色。 即墨市第二职业中专是一所有着几十年悠久历史的老校,人文气息浓厚,计算机专业一直是学校的龙头专业之一,具有鲜明的办学特色。本课程的开发不仅能满足本校学生发展自己兴趣、特长愿望,而且也有助于学校彰显品牌特色,发挥对其他学校的示范效应。 三、提高学生的技能水平,为教师的专业发展提供新的可能。 我校影视动漫专业教学中,学生学习了影视后期处理技术的基础知识,学生对此类知识的学习较感兴趣,学习热情较高,但由于原教材本身知识面所限,教师在教学中、学生在学习中,很难有综合性知识的提高。而在视频技术发展日新月异的今天,学生在走上工作岗位后就会面临所学知识太少,不适应工作需求的问题。 《微电影视频处理技术》正是在学生有了视频处理的基础知识的前提下,加强学生深入、综合学习视频处理技术,并与全国职业院校中职组“数字影视后期制作技术”技能大赛的比赛训练接轨,促进教师学习新知识,提高专业技能,现在,经过艰难的学习、研讨,我们课程小组教师的专业技术,已经较自己原来进步了一大截。

音视频处理技术

音视频处理技术 资成本201016019张海华 摘要:信息技术是一门日新月异的学科,每天都有不同的软件被开发、被改进、被运用。本文探讨了“音视频获取与编辑”技术及其在初中英语教学中的运用。本文对此进行了一定的反思和探讨。 关键词:音视频;编辑;软件;教学方法;教学效果 本单元是学生比较感兴趣的一个单元,由于互联网的普及与发展,目前网络上的一些供网友自唱自秀的翻唱网站(如https://www.doczj.com/doc/f71972973.html,/)以及一些播客网站(如https://www.doczj.com/doc/f71972973.html,/)正在蓬勃地发展,使得网络成为一个体现个人价值的理想场所。而现在的初中生刚好处于一个需要张扬自我个性但却又很容易迷失自我的时期,笔者认为学习本单元的内容对我们的学生有很现实的指导意义。 原教材对于本单元内容的定位在于让学生作为一个了解,所以内容编排上较为松散,知识点基本属于“东打一榔头,西敲一棒槌”,就软件这部分内容来讲对教师的实际教学造成了一定的困难。针对这些问题笔者做了一些相关的研究整理工作。 一、教材内容分析 1.音频处理 (1)在音频处理的这一讲里笔者统计了课堂内容实际涉及的相关软件有三款(千千静听、GOLDWA VE、豪杰音频通),上课的时候这些软件时不时地跳来跳去本身就容易让学生造成学习障碍和困扰。 (2)本节内容的知识点为:声音的类型和播放;获取声音;声音的编辑。 第一:声音的类型和播放 从体系看是逻辑完整的,而且具体编排:类型和播放作为单独的一个内容也没有问题。 第二:获取声音 这里讲了五种方式:一是从因特网上下载;二是录制语音;三是从CD中录取曲目;四是从视频文件中录取背景音乐;五是声音格式的转换。 ①声音下载。课本提供了一个探究学习,其实这个内容在前面的有效获取信息一节内容里已经完全解决了,而这里学生需要知道的是下载的什么文件是声音文件就可以,而这个问题在声音的类型中是已经解决的。 ②语音的录制。课本提出了利用GOLDWA VE来录制一段声音作为实践内容,实际上目前网上大部分翻唱者使用较多的软件为COOLEDIT PRO。COOLEDIT PRO对声音的编辑操作和界面设置确实要比GOLDWA VE专业些(当然这是个见仁见智的问题)。但是这个活动明显没有考虑机房设施问题(倒不是经济问题,而是很多学校以前配置机房根本就没想过要麦克风)。 ③从CD中录取曲目。 ④从视频文件中录取背景音乐。 ⑤声音格式的转换。 后三个内容倒是没有安排实践操作,看起来是可以给教师发挥的一个内容,但是笔者认为第④种方式和第⑤种方式尤其是后者,学生还是比较有掌握的必要(同一曲目的不同音频格式会导致大小不同,并且可用的场合、音质也不同,这点比较重要)。 第三:声音的编辑。 这里讲了4个内容:一是删除片段;二是连接声音;三是混合声音;四是添加特殊效果。

相关主题
文本预览
相关文档 最新文档