当前位置:文档之家› 电动汽车用永磁同步电动机的退磁特性分析研究

电动汽车用永磁同步电动机的退磁特性分析研究

电动汽车用永磁同步电动机的退磁特性分析研究
电动汽车用永磁同步电动机的退磁特性分析研究

电动的汽车的地优缺点分析报告报告材料

1.环境污染小 这是电动汽车最突出的优点。电动汽车使用过程中不会 产生废气,与传统汽车相比根本不存在大气污染的问题。有 人说电动汽车使用的二次能源一一电能在火力发电厂产生时 污染了大气,它只是把污染从城市转移到了郊区。事实上, 电动汽车并不是简单地将空气污染改变了地方,相对传统汽 车,它确实做到了减小了污染。因为电力来源是多样化的, 许多能源像水能、风能、太阳能、潮汐能、核能都可以高效 地转化为电能,即使电动汽车的电能全部来自于火力发电厂, 其整体的能量利用效率也高于城市常规燃油汽车,也就是说使用电动汽车还是减小了绝大部分空气污染。此外,如果避 开用电高峰夜间充电,那还可以进一步减少能源的浪费。 2?无噪音,噪声低 这是电动汽车最直观的特点。现在大城市中汽车噪声已 经成为一种比较严重的污染,减少噪声污染也是对今后汽车 工业的考验。汽车发动机噪音是行驶过程中主要噪声来源, 与燃油车相比,电动汽车在这方面有绝对的优势。它在行驶 运行中基本是宁静的,特别适合在需要降低噪声污染的城市 道路行驶。 3?高效率 这是电动汽车能源利用方面最显著的特点。在城市中, 道路上车辆行驶较多,而且经常遇到红绿灯,车辆必须不断

的停车和启动。对于传统燃油汽车而言,这不仅意味着消耗大量能源,而且也意味着更多汽车尾气排出。而使用电动汽车,减速停车时,可以将车辆的动能通过磁电效应,“再生” 地转化为电能并贮存在蓄电池或其他储能器中。这样在停车时,就不必让电机空转,可以大大提高能源的使用效率,减少空气污染。 4. 结构简单,使用维修方便,经久耐用 这是电动汽车运行成本方面的最大亮点。与传统燃油汽车相比,电动汽车容易操纵、结构简单,运转传动部件相较对少,无需更换机油、油泵、消声装置等,也无需添加冷却水。维修保养工作量少。如果有好的蓄电池,它的使用寿命也比燃油车长。 5. 使用范围广,不受所处环境影响 这是电动汽车另一优势所在。在特殊场合,比如不通风、冬天低温场所,或者高海拔缺氧的地方,内燃机车要么不能工作,要么效率降低,而电动车则完全不受影响。 3 电动汽车优点多宁波为何一年只卖出30辆(图) 2012-03-09 07:27:00 来源:中国宁波网(宁波)有o人参与手机看新闻 (0)

电动汽车动力总成振动噪音问题的概念性认知.doc

电动汽车动力总成振动噪音问题的概念性认知 最近几周的文章将围绕一个主题展开,就是电动汽车和动力总成的振动噪音问题。这个问题几乎是电动汽车产业发展中面临的一个共性的头疼的问题。我在以往的工作中也花了大量的时间去解决这类问题,最近两周我将知识系统性的梳理了一遍,做成了一个个知识小晶体,容我慢慢道来。第一周的主要任务不是给出答案,而是将问题讲清楚,讲明白,建立大局观。这有个专有名词叫:概念性认知。这个概念性认知有几个问题构成,不如我们学着老中医的样子一起去诊断一番。第一问:病症--为什么动力总成振动噪音问题特别突出?我们这里定义的动力总成包括电机差速器减速器。在实际运行过程中,经常发出高频啸叫声、敲击声、有时还伴随振动抖动的现象。为什么这种现象越来越突出?大概有这么几种原因:无遮蔽效应:电动汽车没有了发动机这一最大噪音源头,其他的声音就会自然突出,矮个子中选高个,最明显的就是动力总成的声音了,NVH工程师们磨刀霍霍,不找它找谁。强瞬态冲击:电动机和发动机的转矩特性不一样,它的转矩能够瞬时给到最大值,这固然带来了无与伦比的加速体验,但是这么大的冲击给传动系统带来极大的考验,很容易就会出现振动抖动,并在加速过程中发出啸叫异响。电磁噪

音:这个是变频驱动电机娘胎里带来的毛病,和其他无关。一般是由控制电源PWM谐波引起或者是电机本身电磁谐波过多引起的。转速范围更宽:不像传统汽车有5档变速,电动汽车一般都是一档或者两档,也就是说电机、齿轮箱等转子系统的工作转速范围会更宽。我们知道任何旋转系统都是有其共振频率的,在共振时噪音和振动都会放大。我们都想让工作转速避开共振频率,可是转速范围很宽,总是会经过共振点,无处可避。轻量化:电动汽车为了追求续航里程或者低成本,总是要求配件供应商将产品做轻做小,如此带来的问题就是动力总成的刚度下降,同样的激励会激起更大的振动响应和噪音。 第二问:病理-- 振动噪音问题是怎么产生的?定子侧噪音振动机理要回到这个问题,先把振动噪音分成两类,一类是定子侧另一类是转子侧。定子侧噪音和振动的病理是这样的:定子侧振动噪音指的是在定子机壳、减速箱箱体上产生的振动和辐射出的噪音,这是和系统内存在的激励有关的。先说电磁激励电机存在交变的电磁场,在定子上产生两种力,一种是径向力,它会导致电机定子和机壳沿半径方向振动,我们常说的电磁噪音一般都是径向力引起的。电机在径向力作用下的变形模态另一类是切向力,它们的作用方向是沿旋转方向的。电机单独工作时,一般切向力是次要因素。可是在动力总成中,它却鲤鱼翻身,成

电动汽车充电站运营管理制度

电动汽车充电站运营管 理制度 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电动汽车充电站运营管理制度 安全管理制度 1、坚持“安全第一、预防为主”的工作方针。 2、建立安全管理组织及安全管理的规章制度,明确安全负责人。 3、消防设施配备齐全,合理摆放,不得随意挪动。定期对消防设施进行检查, 保证完好有效,并做好记录。 4、消防设施配备齐全,合理摆放,不得随意挪动。定期对消防设施进行检查, 保证完好有效,并做好记录。 5、定期组织员工进行安全法规教育和安全规程与技能的培训,巩固和提高员工 的安全意识和能力。 6、员工上岗前必须经过公司安全教育培训。 7、充电设施维护人员必须经过专门培训并考核合格后方能上岗。 8、露天充电设施须有安全防护措施,保证雷雨等天气的充电安全。 9、配电房地面须保持干净,绝缘垫上无灰尘。 10、配电房内严禁吸烟,禁止将易燃易爆物带进配电房。 11、配电房应做好“防雷、防雨、防鼠、防小动物”等四防工作,注意随手关好门 窗,经常查看防护网、密封条是否完好有效。 运营管理制度 1、在明显位置设置公示牌,明示运营机构的名称、运营时间、服务范围、服务 项目、收费标准和计算方式、服务热线、站点地图指示、求援电话、监督举报电话以及当前站内充电设备可供使用情况等。

2、根据公示的电价核算收费金额,计价应准确,收费应向顾客明示。 3、充电站须对交流与直流充电区域进行标识引导。 4、充电站24小时服务热线应保持接线畅通,为顾客提供充电预约服务、充电 业务咨询、投诉、其它增值服务等。 5、充电站宜在明显位置显示已预约的充电桩,便于顾客选择可用的充电桩进行 充电。 6、车辆驶入充电站时,须询问顾客是否有预约,如有预约,充电作业人员应核 对预约人的信息。 7、充电服务宜由工作人员为顾客提供,如采用自助服务方式,应在操作区设置 明显的操作指南,顾客应按规定充电流程进行充电。 8、充电站设立客户意见蒲,供客户对站场服务及配套设施提出意见。电站管理 员须每周对意见蒲内容进行整理及上报公司。 9、充电站每日应做好站内日查,当班管理人员应对作业现场进行监督,发现违 章行为和不安全因素,有权制止并向上级反映情况。充电作业人员应定期或根据工作需要随时进行巡视。 检修管理制度 1、定期对充电设施外壳进行清洁,对内部进行除尘。保证充电设施无明显破 损、锈蚀。 2、定期按《充电桩例行检查项目表》对充电设施进行点检、维护和保养,并在 《充电桩例行检查登记表》做好记录。 3、充电设施故障后应停止运行并放置警示牌并及时维修。并按《充电桩技术维护规范》进行维修操作。 4、充电设施维修须由专业人员进行。非专业人员不应从事电气设备和电气装置 的维修。设备维修前应切断电源。

电动汽车不同充电方式优缺点分析

快充,慢充,换电三种加电方式各自优缺点下述文字将从多角度论述三种加电模式的优缺点。 ①交流慢充 蓄电池在放电终止后,应立即充电(在特殊情况下也不应超过24 h),充电电流相当低,约为15 A,这种充电叫做常规充电(普通充电)。常规蓄电池的充电方法都采用小电流的恒压或恒流充电,一般充电时间为5~8 h,甚至长达10~20 h。这种充电方式是利用车载充电器,接220V交流电即可,常规充电模式的优点为: ·尽管充电时间较长,但因为所用功率和电流的额定值并不关键,因此充电器和安装成本比较低;目前国内厂商提供的充电桩价格在每个2.5万人民币左右,一旦市场形成规模化,成本可以控制在每个5000人民币以内。 ·可充分利用电力低谷时段进行充电,降低充电成本; 目前,我国发电量和装机容量均已居世界第二位。2010年中国电力装机容量达到8亿千瓦,电网的高峰负荷增长很快,峰谷差逐年拉大,造成发电资源的很大闲置。电动汽车依靠充电桩可以夜间低谷充电电(北京电网峰谷差达40% ),有利于改善电网运行质量,减少电网为平衡峰谷差投入的费用,可以说基本上不增加电网的负荷,汽车和电网双赢。 ·可提高充电效率和延长电池的使用寿命。 常规充电模式的主要缺点为充电时间过长,当车辆有紧急运行需求时难以满足。而且中国城市的建筑密度也无法满足电动汽车对充电

桩的需求,中国城市建筑结构已高楼为主,地面停车场数量有限,这样会造成有车充不上电的情况。这种充电模式通常适用于设计电动汽车的续驶里程尽可能大,需满足车辆一天运营需要,仅仅利用晚间停运时间充电; ②直流快充 常规蓄电池的充电方法一般时间较长,给实际使用带来诸多不便。快速充电电池的出现,为纯电动汽车的商业化提供了技术支持。快速充电又称应急充电,是以较大电流短时间在电动汽车停车的20 分钟(min)至2 小时(h)内,为其提供短时间充电服务,一般充电电流为150~400 A。 快速充电模式的优点为: ·充电时间短; 但是,相对常规充电模式,快速充电也存在一定的缺点: ·“快充”并不快,而且降低电池使用寿命 由于受电池技术影响,目前电动汽车使用最多的就是锂电池。锂元素是比钠还要活跃的金属元素之一,快充易使锂元素太过活跃,从而使电池中的电解液发生沉淀,产生气泡现象,也就是平常人们所看到的电池身上易凸起“小包”,摸上去有手感发热等情况,严重的会导致电池爆炸等安全事故。因此充电电流不宜过大,目前市面上各大厂商都在鼓吹其电动汽车快速充电时间在10分钟左右,以目前技术来看都不现实,以BYD E6纯电动汽车为例,这款电动汽车采用磷酸铁锂电池,其快速安全充电模式充电时间仍然需要2个小时。

SAE J2380-2013电动汽车蓄电池的振动试验 中文

SAEJ2380-2013电动汽车蓄电池的振动试验 4.4试验过程 4.4.1根据SAEJ1798的规定,进行一系列参考性能试验,包括一次C/3恒定电流放电试验,一次使额定容量100%放电的动态容量试验,以及一次峰值功率放电试验。4.4.2使用制造商建议的充电方法使电池完全充电。 G值, (振动 (1):这些累计时间当且仅当三个轴分别进行试验时适用。 图2随机振动试验的振动频谱 4.4.5根据规定的时间进行振动,在对给定的电池进行振动试验期间,电池放电深度从0%(完全充电)变为80%(最小充电量)。可使用以下两种方法来完成:

a.若使用一轴或两轴的振动台,则大约三分之二的垂直轴试验需要在完全充电状态下完成,纵向轴和横向轴需要在40%的放电深度下振动,剩余的垂直轴需要在80%的放电深度下振动。 b.若使用能让各轴同时振动的三轴振动台,则总试验时间可以划分为三个时长大致相等的区间,第一个区间应在电池完全充电的状态下进行,第二个区间应在40%的放电深度下进行,第三个区间应在80%的放电深度下进行。 4.4.6在 量的40% 4.4.7使用一次 4.5 出现: a. 0.1mA b. c. d.异常温度,指示电池可能损坏,或者热管理系统元件可能损坏。 e.上文未列举制造商建议的量度。应包括正常限度和破坏限度。 一旦检测到上述a到e所列的状况,振动试验应立即中止,直至状况清除,再确定继续进行试验是安全的,或者应当终止试验。 4.6数据采集与报告

4.6.1上文4.4.1及4.4.7所述的参考性能试验中采集的数据应遵循标准性能试验数据采集的要求。如果试验过程中未出现异常,则试验中采集的数据(而不是总结的结果)应当保留下来。 4.6.2应准备一份报告,详细说明实际振动状况,同时列举并说明采集到的所有数据,以及详细的元件故障分析结果。此外,还应总结可确认电池设计足以承受振动环境的振动前和振动后电力性能数据。

考虑用户因素的电动汽车有序放电控制策略

考虑用户因素的电动汽车有序放电控制策略 作者:张纪龙 来源:《发明与创新(职业教育)》 2019年第6期 张纪龙 (四川信息职业技术学院,四川广元628017) 摘要:目前,市面上越来越多的电动汽车进入了我们的视野,相关的电网公司不仅要合理地控制好充电,而且在充电负荷的情况下,还要获取一定的收益,所以提出了考虑用户因素的电动汽车有序放电控制策略。根据一些相关的计算方法得出的结论是,在这样的策略实施的条件下,充电的高峰期和低谷期可以得到一个有效的平衡,并且运营商还能够获得一些额外的效益。 关键词:用户因素;电动汽车;有序放电;控制策略 随着我们科学技术的发展,汽油对于环境的污染过于严重,人类探索出了电动汽车这种新的汽车种类,所以电动汽车会逐渐成为出行行业的发展方向。从大数据的统计来看,用于私家车的电动汽车,在充电的时候时间的分布一般都是呈现正态分布,在给电动汽车进行充电的时候,往往会与电网的负荷高峰期进行一定的重合,并且大量的电动汽车在随意的充电情况下,会导致电网承担额外巨大的压力,严重的时候还可能造成电网瘫痪或者更加严重的安全事故。所以相关的研究学者表明,对于此类的大规模充电一定要制定合理的控制手段来加以调控[1]。 一、关于实现电动汽车有序充放电的主要方法 如果想要减轻电动汽车在充电的时候对于电网造成的负担,就要对他们的充电时间和持续性进行有效的调控。关于电动汽车有序充放电的控制方法,大概主要分为两大类。第一大类主要实施的是一种分层控制的方法,每个时间段内电动汽车的充电都会有所增加,然后通过我们的分层控制方法就会对下一个时间段的负荷进行一定的控制和预测,或者是根据每个用户自身的意愿以及电动汽车使用的状态来进行一定的充电分配,或者是采用一定的集中或者分布的方式来给电动汽车充电,以达到可以消除不利影响的效果。第二个方式就是通过电价的调控来引导用户有序进行电动汽车的充放电,对于这种方式很多大城市已经开始应用,如北京和深圳,他们对于不同的时间段,给电动汽车充电制定了不同的充电价格,这样就可以通过价格来对于他们的充电时间进行一定程度的引导,可以将所有原本在高峰时间段进行充电的电动汽车用户引导到用电低峰时期。但是这个方式也有一个缺陷,大部分的电动汽车用户都会偏向于在充电费用较低的情况下给家里的电动汽车进行充电,这个时候往往会创造另外一个充电高峰,导致电网出现其他的问题。 二、考虑用户因素的电动汽车有序充放电策略 如果我们站在用户的角度去考虑电动汽车有序充放电的策略,就可以在一定程度上保证电动汽车能够提供可靠稳定的反向供电。运营商会在对于用户综合指标的考虑和他们所用的电动车状态的考虑情况之下,来筛选出一些能够参与反向供电的电动汽车,在既满足了电网功率限制的情况下,又能够及时地实行有效的电动汽车有序放电计划。并且参与这些计划的电动车用户,他们是自愿响应反向供电计划,并且还申报了一些供电价格[2]。在参与反向供电的计划过程当中,是需要用户去主动申请加入的。如果用户申请的充电容量超过了他们所需要的充电容

纯电动汽车优缺点

(一)纯电动汽车有以下优点:①零排放。纯电动汽车使用电能,在行驶中无废气排出,不污染环境。②电动汽车比汽油机驱动汽车的能源利用率要高。③因使用单一的电能源,省去了发动机、变速器、油箱、冷却和排气系统,所以结构较简单。④噪声小。⑤可在用电低峰时进行汽车充电,可以平抑电网的峰谷差,使发电设备得到充分利用。 (二)纯电动汽车有以下缺点:(1)续驶里程较短;(2)采用蓄电池及电机控制器使成本较高;(3)充电时间长;(4)目前没有授权服务站,维护成本较高;(5)蓄电池寿命短,几年就得更换。 纯电动汽车发展存在的问题(一)技术方面在技术能力方面国内的汽车制造商虽然纷纷表示涉足新能源汽车研发和生产,但由于具有高科技含量并且能够量产的车型有限,且随着电动汽车竞争的开始加剧,由于研发经费过低,创新动力不足,直接影响我国拥有自主知识产权的电动汽车技术的能力; 二)电池方面“电源”是新能源汽车发展的“技术瓶颈”,当前有两大主要的问题:一是电池成本较高,电池的能量密度较低,充电后的续驶里程较短等问题;二是未来电动汽车市场会否出现真正意义上的电池回收、租赁及二次制造产业链;三是电池接口不同,就像不同品牌的手机充电口不同一样,“标准”的不确定,会对电动车发展造成很大影响等等。(三)能源方面纯电动汽车本身投资比燃油汽车贵,其使用电力要建设发电厂,建设输电配电设施,还要建设充电站,还要建设蓄电池厂等, (四)配套设施方面费者不选择新能源汽车的重要因素还有配套服务的不健全,配套设施少,配套设施建设的滞后和维护保养不方便,充电站在国内如凤毛麟角,难寻其踪。 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持) 编辑版word

电动汽车文献综述复习过程

2.1概述 随着未来电动汽车的普及,电动汽车大规模接入电网充电,将对电力系统的运行与规划产生不可忽视的影响。目前,对于电动汽车接入电网的研究可归结为以下几个方面: 1)研究电动汽车充电负荷特性和负荷需求计算。 电动汽车充电负荷研究涉及动力电池的充电特性、电动汽车用户的用车行为、充电方式等多种因素,是研究电动汽车对电网的影响和进行充放电调控的基础。 2)研究电动汽车接入对电力系统的影响。 电动汽车大规模接入对电力系统的直接影响是导致负荷的增长。目前的研究,包括对电动汽车发展的不同场景,分析电动汽车接入对电源建设、配电网的影响,以及电动汽车充电设施规划和电网规划。 3)研究电动汽车作为储能单元的充放电控制与利用 电动汽车用动力电池可作为分布式储能单元,具有一定的可控性并能够向电网反向馈电[1]。文献主要包括电动汽车有序充电控制和电动汽车与电网互动(V2G,vehicle to grid)方面。其中,动汽车与电网互动(V2G,vehicle to grid)主要包括削峰填谷和调频等。 2.2电动汽车充电负荷 1)电动汽车动力电池特性 动力电池作为连接电动汽车和电网的元件,其建模是研究充电负荷的基础。对动力电池的建模,在研究不同问题时,做一定程度的近似或简化。 基于对电池比能量、效率、比功率等方面的对比得出结论,文献[2] 得出结论,锂离子电池具备最佳的综合性能。文献[3-4]研究了动力电池的几种常用的电路模型,各种模型在精确性和复杂性上各有优劣。动力电池一般采用“先恒流、再恒压”的方式进行充电,恒流充电时间相对较长,在此期间电池端电压变化幅度很小。在分析电动汽车队配网影响时,也有采用恒功率负荷模型,如文献[5]将充电负荷作为恒功率负荷。 2)电动汽车运动规律 国内对于电动汽车运动规律的研究一般结合中国电动汽车发展路线,将电动汽车分为公交车、公务车、出租车和私家车4类。不同种类电动汽车的用户用车行为和充电行为差别较大。文献[6] 结合中国国内的实际情况对上述4 类电动汽车的充电时间进行了调研,采用蒙特卡罗模拟的方法对电动汽车充电负荷分布特性进行了分析。并概括了中国电动汽车的发展规划,分为2010—2015年(公交车、出租车、公务车示范运营)、2016—2020年(公交车、出租车、公务车规模化发展,少量私家车)、2021—2030年(私家车大规模发展)三个阶段。文献[7]从充电汽车电池的初始荷电状态(initial state-of-charge ,SOC0)和车辆到达充电站时间的随机分布为出发点,提出2阶段泊松分布的电动汽车充电站集聚模型进行充电站集聚特性的模拟,并提出基于充电站的日充电负荷曲线的电动汽车充电站负荷集聚模型的建模方法。 国外对电动汽车运动规律的研究偏重于研究用户驾驶行为,一般基于用户用

铅酸电池、锂电池等各种电动车电池优缺点分析

目前市场上电动自行车使用的电池品种很多。除了使用量最大的阀控密封式铅酸蓄电池以外,还有镍氢电池、镍镉电池、锂离子电池、锌空电池等等。这些蓄电池都具有各自独特的优点,以下我们就来分别认识一下各电池的特性与功用。 铅酸电池 其中,以铅酸蓄电池为数量最多。铅酸蓄电池的价格最低,也最常用,中国是全世界铅酸蓄电池最大的生产国。其含污染的成分比较少,可回收性好。缺点是比容小。也就是说,在同样的容量下,电池重量和体积都大。目前的铅酸蓄电池基本上是由浮充类型的电池发展而来的。浮充电池不适应快速充电和大电流放电,虽然技术人员的花费了大量的心血进行了卓有成效的改进,可以进入实用了,但是其寿命还是非常不理想的。胶体电池 胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。广义而言,胶体电池与常规铅酸电池的区别不仅仅在于电液改为胶凝状。例如非凝固态的水性胶体,从电化学分类结构和特性看同属胶体电池。又如在板栅中结附高分子材料,俗称陶瓷板栅,亦可视作胶体电池的应用特色。近期已有实验室在极板配方中添加一种靶向偶联剂,大大提高了极板活性物质的反应利用率,据非公开资料表明可达到70wh/kg的重量比能量水平,这些都是现阶段工业实践及有待工业化的胶体电池的应用范例。 胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。 镍氢电池 镍氢电池的比容比铅酸蓄电池好很多,单体电池的寿命也比较好,其大电流充放电特性也比铅酸蓄电池好。问题是镍氢电池串连电池组的管理问题比较多,一旦发生过充电以后,就会形成单体电池隔板熔化的问题,导致整组电池迅速失效。所以,国产的镍氢电池的关键技术问题还是充电器和电池管理系统的问题,而这个问题还没有引起各个电池制造商和车厂足够的重视。所以,镍氢电池的发展收到很大的制约。镍镉电池镍镉电池的大电流特性比镍氢电池好,其抗过充电特性也比镍氢电池好,中国又是世界上镍镉电池的生产大国。一些人提出镉污染的问题,中国现在还在大量的向欧洲出口镍镉电池及其应用产品,欧洲到2006年才开始限制。据中央电视台播放的消息,神州五号还是采用镍镉电池的。这是其相对比较高的可靠性的优点使该品种电池还在应用与宇航设备上。这样看,电动自行车方面过早的使镍镉电池退出应用是否有一些过激?而镍镉电池的成本和充电器的成本都明显低于镍氢电池,只要回收处理好了,还是应该保留这个电池品种的。

SAEJ电动汽车蓄电池的振动试验中文

S A E J电动汽车蓄电池的振动试验中文 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

S A E J2380-2013电动汽车蓄电池的振动试验4.4试验过程 4.4.1根据SAEJ1798的规定,进行一系列参考性能试验,包括一次C/3恒定电流放电试验,一次使额定容量100%放电的动态容量试验,以及一次峰值功率放电试验。 4.4.2使用制造商建议的充电方法使电池完全充电。 4.4.3为电池的每个垂直、纵向和横向轴选定常规G值或者表1中给出的替换G 值,并合理设置振动台。G值的选择将决定电池每个轴的振动时间,如表1所示。(振动频谱如图2所示,表示为G2/Hz,可计量任何一组G值。) 表1随机振动试验的振动设置 (1):这些累计时间当且仅当三个轴分别进行试验时适用。 图2随机振动试验的振动频谱 4.4.5根据规定的时间进行振动,在对给定的电池进行振动试验期间,电池放电深度从0%(完全充电)变为80%(最小充电量)。可使用以下两种方法来完成:

a.若使用一轴或两轴的振动台,则大约三分之二的垂直轴试验需要在完全充电状态下完成,纵向轴和横向轴需要在40%的放电深度下振动,剩余的垂直轴需要在80%的放电深度下振动。 b.若使用能让各轴同时振动的三轴振动台,则总试验时间可以划分为三个时长大致相等的区间,第一个区间应在电池完全充电的状态下进行,第二个区间应在40%的放电深度下进行,第三个区间应在80%的放电深度下进行。 4.4.6在4.4.5规定的每两个振动区间之间,电池应在C/3恒定电流下放出电池额定容量的40%的电。待第三个区间结束后,电池应完全再充电。 4.4.7使用SAEJ1798重复参考性能试验。其中包括一次C/3恒定电流放电试验,一次使额定容量100%放电的动态容量试验,以及一次峰值功率放电试验。 4.5试验预防措施 在进行振动试验的整个过程中,测试单位都必须连接仪器,以随时报告以下状况的出现: a.电池正极与电池箱和/或试验设备接地之间的电绝缘缺失。在振动期间,绝缘程 度应定期检查,比如每日检查,须达到0.5MΩ或更高(在500V直流电压下漏电 0.1mA或更少)。 b.指示存在开路或短路状况的异常电池电压。 c.电池内出现未预计到的谐振状况,指示机械拴系元件的故障。 d.异常温度,指示电池可能损坏,或者热管理系统元件可能损坏。 e.上文未列举制造商建议的量度。应包括正常限度和破坏限度。 一旦检测到上述a到e所列的状况,振动试验应立即中止,直至状况清除,再确定继续进行试验是安全的,或者应当终止试验。 4.6数据采集与报告

电动汽车四种充电方式简述

四种电动汽车充电方式的区别 车载充电 常规充电即是采用随车配备的便携式充电设备进行充电,可使用家用电源或专用的充电桩电源。充电电流较小一般在16-32A左右,电流可直流或者两相交流电和三相交流电,因此视乎电池组容量大小充电时间为5至8小时。 常规充电模式缺点非常明显,充电时间较长,但其对充电的要求并不高,充电器和安装成本较低;可充分利用电力低谷时段进行充电,降低充电成本;更为重要的优点是可对电池深度充电,提升电池充放电效率,延长电池寿命。因充电时间较长,可大大满足白天运作,晚上休息的车辆 地面充电(快速充电) 顾名思义为能快速充满电的充电方法,通过非车载充电机采用大电流给电池直接充电,使电池在短时间内可充至80%左右的电量,因此也称为应急充电。快速充电模式的代表为特斯拉超级充电站。快速充电模式的电流和电压一般在150~400A和200~750V,充电功率大于50kW。此种方式多为直流供电方式,地面的充电机功率大,输出电流和电压变化范围宽。 快速充电的充电速度非常高,其充电时间接近内燃机注入燃油的时间。可是其充电方法是采用脉冲快速充电。脉冲快速充电的最大优点为充电时间大为缩短;且可增加适当电池容量,提高启动性能。可是脉冲充电电流较大充电设备安装要求和成本非常高。并且快速充电的电流电压较高,短时间内对电池的冲击较大,容易令电池的活性物质脱落和电池发热,因此对电池保护散热方面要求有所更高的要求,并不是每款车型都可快速充电。无论电池再完美,长期快速充电终究影响电池的使用寿命。 快速充电模式实质上为应急充电模式,其目的是短时间内给电动汽车充电。总体使用层面来说,并不建议常使用快速充电模式进行充电。而且快速充电模式仅部分车型支持。 机械充电 除了常规的直接给车辆充电外,还可以采用更换动力电池的方式给电池充电。即在动力电池电量耗尽时,用充满电的电池组更换电量过低的电池组。将电池组从车上更换下来的方式有:纯手动形式、半自动形式和机械人更换三种模式。

电动车基本知识讲解1

电动车基本知识讲解 银河汽车网 2008-11-23 阅读:3755次 【字体:大中小】 第一章电动车基本知识 一、电动自行车的定义 它是以蓄电池作为辅助能源,具有两个车轮,能实现人力骑行,电动或电助动功能的特 种自行车. 二、电动车的基本构造和功能 1、充电器,它是给电池补充电能的装置,一般分二阶段和三阶段充电模式两种. 2、电池,主要采用铅酸电池组合,另外镍氢电池与锂离子电池也在一些轻便折叠电动车上开始使用了. 3、控制器,它是控制电机转速的部件,也是电动车电气系统的核心,具有欠压、限流、过流保护功能. 4、转把、闸把、助力传感器,这些部件都是控制器的信号输入部件,转把信号是电动车速度的控制信号,闸把信号是电动车刹车时,闸把内部电子电路输出给控制器的一个电信号,控制器接收到这个信号,就会切断对电机的供电,从而实现刹车断电功能,助力

电压的单位,符号是V,一千伏特称为1KV 六、安时是什么意思 它是安培乘以小时的意思,英文代号Ah,是电池电能容量的单位,电动车常用电池为12安时容量,它的高低直接影响电动车续行里程的长短,电池经多次使用或不正常使用后其容量下降,就是指这一数值。 七、安培是什么意思 电流的单位,符号是A 八、欧姆是什么意思 电阻的单位,符号是Ω 九、集成电路是什么意思 为完成某些特定的电路功能,将很多的电子元器件高度集中起来,并用特定的形式进行组装起来的电子器件,集成电路的型号不同,其功能也不一样,多采用集成电路,有利于减小体积,提高可*性,英文简称IC 十、电动车的基本性能 电动车的基本性能目前尚未见到完整的统一规定,但电动车应当和必须具备以下性能: 1、车速,电动自行车的车速20㎞/h(国家规定) 2、载重,车体自身及其配件应符合国家质量标准,总载重量不少于75㎏。 3、加速性能,电池电量充足,在平直的道路上,电动自行车起步至最高车速20㎞/h,最大行车距离不超过8米。 4、爬坡能力,电动车爬坡能力不少于7度。 5、充一次电行驶能力不少于25㎞。 6、电机寿命,无刷电机不少于30万㎞,有刷电机不少于6万㎞。 7、电池寿命,在完全充放电的情况下,铅酸电池使用时间不少于300次。 8、无极变速。 9、控制器和充电器应该的智能型的,控制器面板有电池剩余电量和速度显示,还应当具有基本的保护功能,如欠压保护,过流保护,刹车断电等。 十一、如何区分电机的类型?有刷和无刷。 想区分电机的类型,必须查看电机轴端的引出线路,用手捏摸电机轴端引出套管中有

某电动汽车动力电池箱随机振动仿真与试验

141 中国设备 工程 Engineer ing hina C P l ant 中国设备工程 2017.01 (上)动力电池是新能源汽车“三电”系统的核心组成部分,动力电池的使用安全直接影响着整车的性能安全和使用寿命。其中,结构安全和电气安全构成了动力电池安全的两个重要方向,而结构强度是保证结构安全的首要保障。为保证动力电池工作状态下的安全性和可靠性,对动力电池系统进行振动分析测试具有非常重要的意义。由于动力电池的内部模组结构比较复杂,并且车辆行驶工况的存在多样化和不确定性等特点,对其进行相关道路测试需要消耗大量的人工和时间成本等,因此,利用传统的试验方法对车载动力电池进行结构强度测试比较困难,而借助有限单元方法(FEM),通过计算机仿真模拟的手段,可以得到和真实情况相近的结果。 本文针对一种应用于新能源汽车的车载动力电池箱,基于有限元分析软件ANSYS WORKBENCH 对其结构强度进行随机振动仿真分析,研究该电池箱能否满足规范的运行要求,进而对该电池箱体进行振动试验,对仿真结果进行验证和分析。 1?电池箱体有限元模型的建立 使用SOLIDWORK 建立该车载动力电池箱三维结构如图1 所示,其长×宽×高尺寸为:990mm×570mm×243mm,该电池由上壳体、下壳体、外部支架、内部支架、插件转接铝板、MSD 以及箱体内部的电池模组、BMS 等部分构成。 在满足计算精度的前提下,对该车载动力电池箱作如下简化:通过Space Claim 完成对箱体的几何修复和中面抽取,对箱内的锰酸 锂电池模组通过质量点 的方法施加到箱体中,电池箱体与其支架构件的焊 接采用点焊模拟,见图2。 为动力电池箱的箱体和电池模组单元赋予材料属性,完成前处理设置。电池箱整体划分为239738 个单元,所建立的网格模型如图3所示。 图3?电池箱全网格模型 2?电池箱模态分析 进行随机振动前,首先要得到电池箱体的模态,本文中模态提取方法选择Block Lanczos 法,此方法计算精确,收敛性较快,在工程应用中常用此法来提取结构的模态。结构的振动是由各阶固有振型线性组合而成,其中,在整个模态分布中占主要地位的是低阶模态,而高阶模态对整个结构的响应贡献很小,因此本文仅考虑低阶模态的频率和振型,对高阶模态忽略不计。 进入ANSYS WORKBENCH 求解器,进行模态(Modal)分析,首先,计算电池箱的固有频率和振型。所得的前6阶低阶固有频率如表1所示。 某电动汽车动力电池箱随机振动仿真与试验 章丽1,2,邹湘2,匡绍龙1 (1.苏州大学机电工程学院,江苏?苏州?215000;2.江苏兴云新能源有限公司,江苏?无锡?214200) 摘要:为保证装载在新能源汽车上的动力电池包在实际道路上运行的可靠性及安全性,需对电池包进行随机振动工况的可靠性验证。本文基于通用有限元软件ANSYS?,对某动力电池汽车的动力电池箱进行随机振动工况下的仿真计算。最后通过随机振动试验对仿真分析结果进行了对比验证,保证有限元方法的正确性,得出了基于仿真分析的随机振动工况动力电池强度评估标准。 关键词:动力电池;功率谱密度;随机振动;ANSYS 中图分类号:U469.72 ?文献标识码:A 文章编号:1671-0711(2018)01(上)-0141-02 图1?车载动力电池箱结构外形 图2?电池箱体有限元模型

电动汽车用永磁同步电机浅析

电动汽车用永磁同步电机浅析 摘要:本文首先介绍了目前常用的电动机类型;然后着重介绍电动汽车用永磁同步电机在设计制造过程中可能会遇到的关键技术问题,还介绍了一些目前应用比较广泛的永磁同步电机的控制策略。 关键词:电动汽车;永磁同步电机;关键技术;控制策略 Superficial Analysis of Permanent Magnet Synchronous Motor in Electric Vehicle Abstract:The article first introduces the type of motors used commonly now,then introduce the key technology problem in the design and manufacture of permanent magnet synchronous motors,and also describes some control strategies of the permanent magnet synchronous motors. Key words:electric vehicle; permanent magnet synchronous motor;key technology;control strategy 0引言 当今环保和能源问题备受关注,为解决这些问题,电动汽车呈现加速发展的趋势;同时电动汽车容易实现智能化,有助于改进和提高车辆的安全和使用性能。电动汽车对其驱动系统的要求是转矩控制能力良好,转矩密度高,运行可靠性及在整个调速范围内的效率尽可能高,从而保证车辆具有良好的动力性能和操控性,同时在车载动力电池未能取得突破的情况下,延长车辆的续驶里程。研究并开发出高水平的电机驱动控制系统,对提高我国电动汽车驱动系统水平及电动汽车的产业化具有重要意义[1]。 随着永磁材料性能的提高和成本的降低,永磁同步电动机以其高效率、高功率因数和高功率密度等优点,正逐渐成为电动汽车驱动系统的主流电机之一。 1概述 永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点,又具有直流电动机的调速性能好的优点,且无需励磁绕组,可以做到体积小、控制效率高,是当前电动汽车电动机研发与应用的热点。永磁电动机驱动系统可以分为无刷直流电动机(BLD-CM)系统和永磁同步电动机(PMSM)系统[2]。永磁同步电动机(PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点,通过合理设计永磁磁路结构能获得较高的弱磁性能,提高电动机的调速范围,因此在电动汽车驱动

新能源汽车基础知识

新能源汽车介绍

目录 CONTENTS 新能源汽车概论纯电动汽车初探纯电动汽车部件介绍123

新能源汽车的定义 广义定义 广义新能源汽车,又称代用燃料汽车,包括纯电动汽车、燃料 电池电动汽车这类全部使用非石油燃料的汽车,也包括混合动 力电动车、乙醇汽油汽车等部分使用非石油燃料的汽车。 狭义定义 《新能源汽车生产企业及产品准入管理规则》的规定:新能 源汽车是指是指采用非常规的车用燃料作为动力来源,综合 车辆的动力控制和驱动方面的先进技术,形成的具有新技术、 新结构、技术原理先进的汽车。 目前存在的所有新能源汽车都包括在广义概念里,具体分为六大类:混合动力汽车、纯电动汽车、燃料电池汽车、醇醚燃料汽车、天然气汽车等。

新能源汽车发展的因素

环保 无污染噪音小 结构简单 使用维修方便 能源效率高 多样化 用车成本低 可使用低价电简单省钱 96%40% 高效

19世纪中期1881年,法国工程师古斯塔夫·特鲁夫发明了世界上第一辆电动三轮车,这是一辆用铅酸电池为动力的三轮车。 20世纪70年代 第二个黄金时代: 20世纪70年代的石 油危机,使人们重 新审视纯电动汽车 受到资本的推动, 在那十几年里,电 动汽车的驱动技术 有了较大的发展。 20世纪初期 电动汽车的第一个 黄金时代:蒸汽汽 车占40%,电动汽 车占38%,内燃机 汽车只占22%。 20世纪90年代 由于电池技术发展 滞后,汽车制造商 在市场压力下,开 始研发混合动力汽 车,以克服电池和 续航里程短的问题 21世纪初期 电动汽车里程碑: 2008年特斯拉电动 汽车交付客户,这 是第一辆合法生产 的锂离子电池的全 电动汽车,也是全 球首辆一次充满电 行驶320公里以上 的全电动汽车。

电动汽车充电方式有那几种

电动汽车充电方式有那几种? ?家庭充电方式 直接从低压照明电路取电,充电功率较小,由220V/16A规格的标准电网电源供电。典型的充电时间为8~10h。这种充电方式对电网没有特殊要求,只要能够满足照明要求的供电质量就能够使用。 ?小型充电站 小型充电站是电动汽车的一种最重要的充电方式,充电桩设置在街边、超市、办公楼、停车场等处。电动汽车驾驶员只需将车停靠在充电站指定的位置上,接上电线即可开始充电,计费方式一般是刷卡,充电功率一般在5~10kW,其典型的充电时间是:补电1~2h,充满5~8h。 ?快速充电 直流电动汽车充电站,俗称就是“快充”,它是固定安装在电动汽车外,与交流电网连接,可以为非车载电动汽车动力电池提供直流电源的供电装置。直流充电桩的输入电压采用三相四线 AC380V±15%,频率50Hz,输出为可调直流电,直接为电动汽车的动力电池充电。由于直流充电桩采用三相四线制供电,可以提供足够的功率,输出的电压和电流调整范围大,可以实现快充的要求 ?无线充电方式方式 电动汽车无线充电方式是近几年国外的研究成果,其原理就像在车里使用的移动电话———将电能转换成一种符合现行技术标准要求的特殊的激光或微波束,在汽车顶上安装一个专用天线接收即可。 有了无线充电技术,公路上行驶的电动汽车或双能源汽车可通过安装在电线杆或其它高层建筑上的发射器快速补充电能。电费将从汽车上安装的预付卡中扣除。 ?移动式充电方式 索瑞德直流便携移动式充电机由智能高效模块,主控单元,人机交互界面,充电接口,计量与计费单元,通讯接口等部分组成小型便携并多功能直流充电机;友好的人机交界面方便用户的操作使用,模块化设计方便对设备进行的扩容和维护;支持全自动充电模式;便携移动式直流充电机抗震能力强,保护功能齐全,适用恶劣的户外移动环境与应急需求;方便客户快速应急与测试补充电能的场所,同时有效弥补因为与各类充电桩软件兼容问题而引起的无法充电问题。

SAEJ范文电动汽车蓄电池的振动试验中文

S A E J范文电动汽车蓄电池的振动试验中文集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

SAE J2380-2013电动汽车蓄电池的振动试验试验过程 进行一系列参考性能试验,包括一次C/3恒定电流放电试验,一次使额定容量100%放电的动态容量试验,以及一次峰值功率放电试验。 使用制造商建议的充电方法使电池完全充电。 为电池的每个垂直、纵向和横向轴选定常规G值或者表1中给出的替换G值,并合理设置振动台。G值的选择将决定电池每个轴的振动时间,如表1所示。(振动频谱如图2所示,表示为G2/Hz,可计量任何一组G 值。) 表1 随机振动试验的振动设置 (1):这些累计时间当且仅当三个轴分别进行试验时适用。 图2 随机振动试验的振动频谱 根据规定的时间进行振动,在对给定的电池进行振动试验期间,电池放电深度从0%(完全充电)变为80%(最小充电量)。可使用以下两种方法来完成:

a.若使用一轴或两轴的振动台,则大约三分之二的垂直轴试验需要在完全充电状态下完成,纵向轴和横向轴需要在40%的放电深度下振动,剩余的垂直轴需要在80%的放电深度下振动。 b.若使用能让各轴同时振动的三轴振动台,则总试验时间可以划分为三个时长大致相等的区间,第一个区间应在电池完全充电的状态下进行,第二个区间应在40%的放电深度下进行,第三个区间应在80%的放电深度下进行。 电池应在C/3恒定电流下放出电池额定容量的40%的电。待第三个区间结束后,电池应完全再充电。 使用SAE J1798重复参考性能试验。其中包括一次C/3恒定电流放电试验,一次使额定容量100%放电的动态容量试验,以及一次峰值功率放电试验。 试验预防措施 在进行振动试验的整个过程中,测试单位都必须连接仪器,以随时报告以下状况的出现: a.电池正极与电池箱和/或试验设备接地之间的电绝缘缺失。在振动期 间,绝缘程度应定期检查,比如每日检查,须达到Ω或更高(在500V 直流电压下漏电或更少)。 b.指示存在开路或短路状况的异常电池电压。 c.电池内出现未预计到的谐振状况,指示机械拴系元件的故障。 d.异常温度,指示电池可能损坏,或者热管理系统元件可能损坏。 e.上文未列举制造商建议的量度。应包括正常限度和破坏限度。

电动汽车用永磁同步电机控制系统设计

硕士学位论文 二0一五 年 六 月 作者姓名 指导教师 学科专业 控制工程

摘要 本文在开始先介绍了研究电动汽车的背景及其意义,并介绍了电动汽车在国内外的发展现状,然后从电动汽车的燃油经济性,驱动性,安全性及舒适度,三个方面分析了电动汽车比其他燃料汽车存在的优越性。电动机是电动汽车的核心部件,本文中从其驱动方式把电动机分为四大类,直流有刷电动机,永磁同步电动机,永磁无刷直流电动机和开关磁阻电动机。本章从工作原理与性能方面分析了,这四种电动机各存在的优点和不足。从中得出永磁同步电动机是电动汽车比较理想的选择。本文刚开始介绍了永磁同步电动机PMSM的三种不同的控制方式,恒压频比控制,矢量控制,直接转矩控制,并从三者之间比较得出,PMSM采用直接转矩控制DTC的方式有着比其他两者更好的稳定性。 随后从永磁同步电动机PMSM的结构及其特点,分析了其优越性,并建立数学模型,根据空间矢量坐标关系推导出PMSM的在各坐标系下DTC的原理。本章分析了定子磁链与电磁转矩的估算和滞环控制,通过其原理研究了开关表控制的方式,并对PMSM的直接转矩控制DTC的Matlab/Simulink仿真,最终得出了DTC 较其它控制方式的稳定性。 其次分析了永磁同步电机PMSM的直接转矩控制DTC存在的诸多缺点,并提出基于SVM技术的SVPWM的控制方式,即空间矢量调制DTC控制策略,通过Matlab/Simulink仿真,得出SVPWM比PMSM DTC有着更好的稳定性。 TI公司推出的TMS320F2812 DSP芯片的控制系统设计,从硬件电路的设计和软件的设计,两个方面研究了该芯片。DSP硬件方面包含了智能模块的自保护特性,并设计了检测电路,保护电路,驱动电路和CAN通信等模块,软件系统方面分析了,其初始化流程图,接收流程图等。 关键词:永磁同步电机;直接转矩控制;DSP;SVPWM

相关主题
文本预览
相关文档 最新文档