当前位置:文档之家› 北邮红外通信收发系统的设计实验报告

北邮红外通信收发系统的设计实验报告

北邮红外通信收发系统的设计实验报告
北邮红外通信收发系统的设计实验报告

电子电路综合设计实验报告红外通信收发系统的设计与实现

院系:信息与通信工程学院

班级:

班内序号:

学号:

姓名:

指导老师:

【实验名称】红外通信收发系统的设计与实现

【摘要】

语音和音乐等低频电信号一般不适合直接远距离传输,而是通过调制加载到光或者高频信号上传输出去。本次试验的内容,就是设计一个合适的红外收发电路,实现多种信号的传输。红外通信系统的设计是光通信系统的一个重要分支,采用红外通信系统的设计方法来进行和目前世界上所采用的骨干通信网的光纤通信系统是有相同之处的,唯一重要的差别就是它们二者所采用的传输媒质不用,一个是大气,一个则是光纤。

【关键词】

关键词音频传输,调制,红外收发,自激,耦合。

【实验目的】

1、掌握简单的红外光通信系统的组成及设计原理;

2、掌握通信电子系统方案设计、电路设计的方法;

3、掌握红外发送、接收电路的设计原理和原则;

3、熟悉电路仿真软件的使用;

4、通过实验大家体会一下通信系统是一个怎样的工作模式,为今后更深层次的专业课的学习打下一个很好的基础。

【实验要求】

1、制定合理的实现方案,要求至少有两套红外设计的实现方法,理论计算出元件参数;

2、电路设计。根据自己的实现方案,提出元器件清单,确定元器件型号、数量,从可选方案中选出一套;

3、电路仿真和优化。运用Protel等工具软件对电路进行优化和仿真;

4、用面包板来搭建电路并进行调试;

5、测试电路完成的功能,记录测试数据,对于音乐电路,能得到清晰的音乐。

【设计任务要求】

1、基本要求:

1)设计的正弦波振荡器:f >=1kHz,Uopp>=3V;

2)所设计的正弦波振荡器的输出信号作为红外通信收发系统发送端的输入信号,在接收端可以接收到无明显失真的输入信号;

3)接收端LM386增益设计G>=200;

2. 提高要求:

利用音乐芯片产生乐曲,调制LED后发出,接收端接收到的信号利用喇叭可以将发送的乐曲无失真的播放出来,

【设计思路及分块和总体结构】

设计思路及总体结构框图如下:

红外设计的总体构架

上图是一个简单的红外通信系统的构造图,通过实验应该能进行模块化的设计,当然整个商用的红外光通信系统是相当复杂的,这里我们只考虑最基础和最必要的部分来完成整个红外光通信收发系统的设计。

1.信号产生:

这里利用了音乐芯片KD-9300或是LX9300来完成。

LX-9300的接法kd-9300的接法

信号产生也可以用RC振荡器构成,信号的幅度不宜过大。

2.红外光发送模块的设计

设计原则主要是考虑红外发送管的工作电流,电流过小,传输距离短,电流过大又容易毁坏发光管。

红外光发送电路

3.红外光接收模块的设计

红外光接收电路

4.高通滤波器

红外接收的二极管都是光敏二极管,这样普通灯光也对其都成一定程度的影响,为了获得更好的效果,还要在信号输出端加入高通滤波器,消除恒定的外接低频信号的干扰,这样接收效果和灵敏度将显著提高。

5.功率放大器

利用音频功率专用放大器LM386,可以得到50~200的增益,足以驱动0.8W的小喇叭。

放大器LM386

6.总体电路的设计(含电路图)

7.系统调制:

系统调制原则:根据电路原理先调制各单元电路,然后再整机调试。

(1)第一步是调制发送电路。记录红外发射驱动电路的输出波形和红外管中的电流;

(2)第二步调制接收电路。去掉红外接收管,加一个正弦小信号,调试输出放大倍数,要求50-200倍直至输出为正弦波,确保不是自激信号或干扰信号;

(3)第三步是整机调试。将发送电路和接收电路放到一起,在发送端送入正弦小信号,观察输出信号波形;

(4)按音乐芯片KD9300的接线方法焊好管脚,将芯片中音乐信号作为输入信号,能在喇叭中听到优美、无噪声的音乐。

一、所实现的功能说明:

本实验完成的基本功能为文氏桥RC振荡电路产生的振荡信号的传送和接收. 文氏桥RC振荡电路(前级)产生的一个频率为1.5kHz振荡信号,经具有分压式电流负反馈电路的共射放大电路(后级)的LED发射后由接收电路接收。

1.主要测试方法:

1)发射电路:

发射部分是为红外管提供驱动电流的,因此静态工作点的调试是必须的。所以要按照一般三极管放大电路的调试方法来调试静态工作点,保证红外管得到足够的驱动。用电压表测量射极电阻Re1两端的电压,由此求出Ieq,利用Ieq ≈Icq得到Icq的值。

然后进行交流调试,将信号发生器产生的正弦信号接入输入端,用示波器同时监测输入输出信号(输出信号取自发光管所在支路)。保证输出信号不失真无干扰。波形如下:

2)接收电路:

接收部分主要的功能是放大功率,所以必须进行增益调节。LM386有不同的接法,从而有不同的增益。实验中要调试使其实际能达到较大的增益。将接收管与LM386连接的电路断开,用函数信号发生器产生的信号代替接收管接收到的信号,分别测出输入和输出信号的幅

度,由此计算出LM386的增益。增益情况波形如下:

3)整体调试

在分级调试完成的基础上进行整体调试。接好直流偏置电源,用由信号发生器产生的单一频率正弦信号来测试。将1000Hz的正弦信号接到前级输入端,将光接收管朝向发光管的方向,用示波器监测后级输出端的信号,以输出信号无失真无干扰且有足够的幅度为标准,如果达不到此标准,则应仔细检查电路,重新调试。必要时要分级重调,更改元件规格或更换元件。直至达到标准为止。此过程为该实验的重点部分。

4)提高要求

实验的提高要求为传送声音信号。所以要焊接音乐芯片。按照电路图焊接并连接好芯片电路。现直接将芯片电路与小喇叭连接,看其能否正常发声。然后将芯片电路的信号输出接至前级输入端,小喇叭接至后级输出端,如果能听到清晰响亮的音乐声,则实验成功。否则要仔细检查电路重新调节。

通过两部分电路的配合,最终可以实现红外线的产生,发射,与接收显示等功能。而由于信号的强弱还与发射管,接受管所处位置(角度及距离)有关,所以实验时若角度选择不当,很有可能接收不到红外线,而当发射与接收电路相距较远时,接收到的信号会比较弱,不宜于进行实验观察,所以实验过程中要注意角度与距离的选取。所以需要由远及近的进行测试。

本实验完成了至少4米以上的信号无失真无干扰传输。由于桌子长度限制,没有进行更进一步的测试。

2.主要功能:

接收电路在LM386的三管脚之前加一小电容,等于在功率放大之前先消除恒定的外接低频信号的干扰,提高接收效果和灵敏度。LM386的放大电路,得到80倍左右的增益,来驱动0.8W的小喇叭。(其中接收管LED2采用PIN光电二极管或者雪崩光电二极管APD,将接收到的光信号转换成电信号)

3.主要测试数据为:

1.红外发送端8050静态参数:

Vcc = 5.00V ;Ubq =2.949V;Ueq=2.200V;Ucq=2.510V;

2.红外发送端LED两端电流:

I = Ieq = Ueq/Re =31mA;

3.红外发送端LED输出幅度:0.10V

4.LM386 增益测量:

输入小信号峰峰值 :40mv

speaker两端峰峰值: 4V

增益A=4V/40mv=100;

【故障及问题分析】

1.一开始的时候经计算Icq约为40mA时应使用R2=1.1kΩ的电阻。但是当真正接入正弦信号时却发现非常严重的失真。于是我开始直流工作点,发现发送端三极管处于饱和状态,于是我立即将R2换为2kΩ的电阻,再次测量后发现8050处于正常的放大状态,输出信号也不再失真了。

2.最开始的接收电路我们并没有按照老版的电路来做,而是根据课本上的新版(即前端加了一个共射放大电路)的电路来做。结果当输入端加入正弦信号后,我们发现输出信号竟然是非常完美的方波!这说明信号出现了严重的失真,而且同时出现了饱和和截止失真。而无论是怎样增大Rb或者是减小Rc或者是减小输入信号都无法让输出信号不出现失真。于是在N次尝试无果后,我们换回了原来的老版电路图,最终出现的信号才不失真。LM386已经内置200倍增益了,也许是新版电路图加了共射放大放大倍数太大导致输出信号的失真。

3.最初我们要把音乐芯片接在发送端输入位置,但是听别的同学说要把音乐芯片接在发送管位置,我们很是奇怪,那么发送端电路又要做何用呢?难道只用来作为直流偏置吗?后来老师告诉我们音乐芯片确实应该加在输入端,但是我们这样尝试之后发现不行,无输出。最终,通过多方查找资料、同学经验交流得到应在原喇叭位置接一个发光管才行。而且有的同学接的是1kΩ电阻。我思考了一下觉得接1kΩ电阻更加安全不易烧管子,由此整个发送端电路才算正式完善。

4.电路搭好之后,将红外接收管拔掉,喇叭仍能够有音乐出来。将发射电路远离接受电路,声音强度没有丝毫降低。后来想可能是因为音乐芯片电路与接收电路用同一根电源线和地线,声音绕过发射电路而通过导线直接传给了接收电路所致。于是我将发射板和接收板的电源线和地线分开,最后得到了正确的结果:改变发射端与接收端的距离及方位,声音强度均随之而发生变化。这样的现象说明,电路的传输并没有经过红外收发管,出现了耦合现象。

5.在接收方面,经反复调试发现,信号的接收与两个管子之间的正对角度及之间障碍物的阻隔有很大关系。而老师也告诉我们说,管子应头对头信号才能接受得更好。想想家里电视的红外遥控器,确实应该是头对头才能换台,于是我便把发送、接收管的头弯下来,接收到的信号立马响亮了许多。

6. 信号接收端出现自激:在接收到音乐后,我们发现喇叭噪音非常大,即使不开发送端只开接收端喇叭仍然产生非常大的噪音,这说明电路产生了自激。为检查是否为接收电路出问题,首先去掉发射信号而从函数信号发生器引入一个频率为1kHz幅度为1v的正弦信号,从输出端得到了信号仍然有干扰,这说明接收电路出现了问题.最初怀疑是电路中含有的高频分量引起,于是按照课本在输出端并接两个旁路电容,以去除高频干扰,但是波形仍然有干扰。于是我们逐渐加大电容值,发现当加到1000uF时,接收端电路终于不再出现噪声,但是当我接入音乐信号后发现传输距离变短很多,这说明这些电容不仅滤掉了高频干扰,而且把一些声音信号滤掉了。看来课本上给的100uF和0.01uF是有道理的。后来我查了查网上,发

现他们是通过调节滑动变阻器去除的噪声。于是我开始慢慢调节滑动变阻器,再尝试了很多次后,终于消除了噪声干扰,在接收端听到了悦耳、无噪声的音乐。

【PROTEL绘制的原理图及PCB板】

Protel绘制的原理图见【设计思路及分块和总体结构】板块,下面给出由此生成的pcb板:红外收发系统发送端:

其 3D效果图如下:

红外收发系统接收端PCB板:

其3D效果图如下:

【所用元器件及测试仪表清单】

1、8050 2

2、红外发送管303 1

3、红外接收管302 1

4、LM386 1

5、可变电阻器(10k)1

6、电阻(2k,3.3k,51,1k)各1

7、电阻(10)3

8、电解电容(47u,0.047u,220u)各1

9、电解电容(10u)2

10、电解电容(100u)3

11、电容(0.01u)3

10、喇叭 1

12、kd9300 1

13、发光管 1

【实验所用仪器】

1.函数信号发生器

2.示波器

3.万用表

4.直流稳压电源

【总结和结论】

本实验实现了信号经过红外发送和接收完成较远距离的输送。信号有效传送距离大于两米。基本实现了红外收发系统的设计与实现。

这次的实验基本上是成功的,在规定的时间内将电路调试了出来。其实这个实验电路的搭建由于有电路图还是相当简单的,而且相对于其他实验电路图可以说是最简单的,但是调试电路却是相当的繁琐和困难,开始对调整电路参数没有经验,导致一段时间的无从下手。后来由于对电路分析得当,改变电路参数简单起来。

经过这次实验我基本解了简单的红外光通信系统的组成及设计原理,初步了解了通信电子系统方案设计、电路设计的方法,和红外发送、接收电路的设计原理和原则,较好地了解了系统的调试,深切体会到系统调试的重要性,了解了通信系统的工作模式,提供今后的专业课程学习一个很好的框架性的认识。这次实验让我熟悉了电路仿真软件Protel DXP2004的使用,也深刻地感受到只有灵活运用所学的电路分析理论知识才能与实践完美的结合起来。做实验之前首先应该熟悉各个器件的使用,以及检查各个器件是否是有问题,确保器件都正常地前提下再进行实验。这样可以提高实验效率,也可以提前排除由于器件不好引出的不合理的实验现象。在实验过程中出现意外现象的时候,应该仔细检查电路找到问题在哪里然后再着手解决,不可以遇到问题就直接盲目的导出乱改电路,这样反而降低了实验效率。

总起来说,实验使我了解了一个真正的设计实验过程,虽然调试过程用了很多的时间,但是在这个实验中我学会了自主研究,学会了如何对一个电路进行调试,其中还包括如何焊接,如何在面包板上排线等一系列的技术细节。虽然实验历时近一个月,整个过程显得繁琐,但是实验原理清晰,简单明了,关键在于调试,一次次地解决线路搭接,系统设计缺陷,在试验中要敢于尝试,敢于该进,遇到不会的或者暂时不能解决的不能急躁,学会独立思考,提高自主实验能力,提高独立思考解决问题能力,实验的最终成功给与了我很大鼓舞。而且,通过实验,我真正触摸到了专业所学的东西,初步了解了通信系统的传输过程,有趣的实验燃起了我的探索兴趣,让我废寝忘食,不知疲倦地做:每周预约三次甚至三次以上的实验,就为解决一个小小的问题,有时做实验做到忘记喝水忘记饥饿忘记时间,我甚至为两个面包板买了个保鲜盒来保护它们。最终,我感到我辛勤努力的结果得到了回报!

实验中借鉴了同学的经验,向老师询问了问题,从网络上搜集资料。其实也锻炼了自己搜集信息的能力。总的来说,这次实验收获颇多。衷心感谢帮助过我的老师同学们!

【参考文献】

1.《电子测量与电子电路实验》张咏梅等北京邮电大学出版社

2.《电子电路基础》刘宝玲、胡春静主编北京邮电大学出版社

3.电路实验中心网站:https://www.doczj.com/doc/f61472401.html,

4.百度文库、豆丁网、道客巴巴

北邮 通信网实验报告

北京邮电大学实验报告通信网理论基础实验报告 学院:信息与通信工程学院 班级:2013211124 学号: 姓名:

实验一 ErlangB公式计算器 一实验内容 编写Erlang B公式的图形界面计算器,实现给定任意两个变量求解第三个变量的功能: 1)给定到达的呼叫量a和中继线的数目s,求解系统的时间阻塞率B; 2)给定系统的时间阻塞率的要求B和到达的呼叫量a,求解中继线的数目s,以实现网络规划; 3)给定系统的时间阻塞率要求B以及中继线的数目s,判断该系统能支持的最大的呼叫量a。 二实验描述 1 实验思路 使用MA TLAB GUITOOL设计图形界面,通过单选按钮确定计算的变量,同时通过可编辑文本框输入其他两个已知变量的值,对于不同的变量,通过调用相应的函数进行求解并显示最终的结果。 2程序界面 3流程图 4主要的函数 符号规定如下: b(Blocking):阻塞率; a(BHT):到达呼叫量;

s(Lines):中继线数量。 1)已知到达呼叫量a及中继线数量s求阻塞率b 使用迭代算法提高程序效率 B s,a= a?B s?1,a s+a?B(s?1,a) 代码如下: function b = ErlangB_b(a,s) b =1; for i =1:s b = a * b /(i + a * b); end end 2)已知到达呼叫量a及阻塞率b求中继线数量s 考虑到s为正整数,因此采用数值逼近的方法。采用循环的方式,在每次循环中增加s的值,同时调用B s,a函数计算阻塞率并与已知阻塞率比较,当本次误差小于上次误差时,结束循环,得到s值。 代码如下: function s = ErlangB_s(a,b) s =1; Bs = ErlangB_b(a,s); err = abs(b-Bs); err_s = err; while(err_s <= err) err = err_s; s = s +1; Bs = ErlangB_b(a,s); err_s = abs(b - Bs); end s = s -1; end 3)已知阻塞率b及中继线数量s求到达呼叫量a 考虑到a为有理数,因此采用变步长逼近的方法。采用循环的方式,在每次循环中增加a的值(步长为s/2),同时调用B s,a函数计算阻塞率并与已知阻塞率比较,当本次误差小于预设阈值时,结束循环,得到a值。 代码如下: function a = ErlangB_a(b,s)

课程设计实验报告 北邮

课程设计实验报告 -----物联网实验 学院:电子工程学院班级:2011211204 指导老师:赵同刚

一.物联网概念 物联网是新一代信息技术的重要组成部分。物联网的英文名称叫“The Internet of things”。顾名思义,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网的基础上延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物体与物体之间,进行信息交换和通信。因此,物联网的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络。 二.物联网作用 现有成熟的主要应用包括: —检测、捕捉和识别人脸,感知人的身份; —分析运动目标(人和物)的行为,防范周界入侵; —感知人的流动,用于客流统计和分析、娱乐场所等公共场合逗留人数预警; —感知人或者物的消失、出现,用于财产保全、可疑遗留物识别等; —感知和捕捉运动中的车牌,用于非法占用公交车道的车辆车牌捕捉; —感知人群聚集状态、驾驶疲劳状态、烟雾现象等各类信息。 三.物联网无线传感(ZigBee)感知系统 ZigBee是一种新兴的短距离、低功耗、低数据速率、低成本、低复杂度的无线网络技术。ZigBee在整个协议栈中处于网络层的位置,其下是由IEEE 802.15.4规范实现PHY(物理层)和MAC(媒体访问控制层),对上ZigBee提供了应用层接口。 ZigBee可以组成星形、网状、树形的网络拓扑,可用于无线传感器网络(WSN)的组网以及其他无线应用。ZigBee工作于2.4 GHz的免执照频段,可以容纳高达65 000个节点。这些节点的功耗很低,单靠2节5号电池就可以维持工作6~24个月。除此之外,它还具有很高的可靠性和安全性。这些优点使基于ZigBee的WSN广泛应用于工业控制、消费性电子设备、汽车自动化、家庭和楼宇自动化、医用设备控制等。 ZigBee的基础是IEEE802.15.4,这是IEEE无线个人区域网工作组的一项标准,被称作IEEE802.15.4(ZigBee)技术标准。ZigBee不仅只是802.15.4的名字。IEEE仅处理低级MAC

光通信实验报告

竭诚为您提供优质文档/双击可除 光通信实验报告 篇一:光通信实验报告 信息与通信工程学院 光纤通信实验报告 班姓学 级:名:号: 班内序号:17 日 期:20XX年5月 一、oTDR的使用与测量 1、实验原理 oTDR使用瑞利散射和菲涅尔反射来表征光纤的特性。瑞利散射是由于光信号沿着光纤产生无规律的散射而形成。oTDR就测量回到oTDR端口的一部分散射光。这些背向散射信号就表明了由光纤而导致的衰减(损耗/距离)程度。形成的轨迹是一条向下的曲线,它说明了背向散射的功率不断减小,这是由于经过一段距离的传输后发射和背向散射的信

号都有所损耗。 给定了光纤参数后,瑞利散射的功率就可以标明出来,如果波长已知,它就与信号的脉冲宽度成比例:脉冲宽度越长,背向散射功率就越强。瑞利散射的功率还与发射信号的波长有关,波长较短则功率较强。也就是说用1310nm信号产生的轨迹会比1550nm信号所产生的轨迹的瑞利背向散射要高。 在高波长区(超过1500nm),瑞利散射会持续减小,但另外一个叫红外线衰减(或吸收)的现象会出现,增加并导致了全部衰减值的增大。因此,1550nm是最低的衰减波长;这也说明了为什么它是作为长距离通信的波长。很自然,这些现象也会影响到oTDR。作为1550nm波长的oTDR,它也具有低的衰减性能,因此可以进行长距离的测试。而作为高衰减的1310nm或1625nm波长,oTDR的测试距离就必然受到限制,因为测试设备需要在oTDR轨迹中测出一个尖锋,而且这个尖锋的尾端会快速地落入到噪音中。 菲涅尔反射是离散的反射,它是由整条光纤中的个别点而引起的,这些点是由造成反向系数改变的因素组成,例如玻璃与空气的间隙。在这些点上,会有很强的背向散射光被反射回来。因此,oTDR就是利用菲涅尔反射的信息来定位连接点,光纤终端或断点。 oTDR的工作原理就类似于一个雷达。它先对光纤发出一

北邮通电实验报告

实验3 集成乘法器幅度调制电路 信息与通信工程学院 2016211112班 苏晓玥杨宇宁 2016210349 2016210350

一.实验目的 1.通过实验了解振幅调制的工作原理。 2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。3.掌握用示波器测量调幅系数的方法。 二.实验准备 1.本实验时应具备的知识点 (1)幅度调制 (2)用模拟乘法器实现幅度调制 (3)MC1496四象限模拟相乘器 2.本实验时所用到的仪器 (1)③号实验板《调幅与功率放大器电路》 (2)示波器 (3)万用表 (4)直流稳压电源 (5)高频信号源 三.实验内容 1.模拟相乘调幅器的输入失调电压调节。 2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。 3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。 四.实验波形记录、说明 1.DSB信号波形观察

2.DSB信号反相点观察 3.DSB信号波形与载波波形的相位比较 结论:在调制信号正半周期间,两者同相;负半周期间,两者反相。

4.AM正常波形观测 5.过调制时的AM波形观察(1)调制度为100%

(2)调制度大于100% (3)调制度为30% A=260.0mv B=140.0mv

五.实验结论 我们通过实验了解振幅调制的工作原理是:调幅调制就是用低频调制信号去控制高频振荡(载波)的幅度,使其成为带有低频信息的调幅波。目前由于集成电路的发展,集成模拟相乘器得到广泛的应用,为此本实验采用价格较低廉的MC1496集成模拟相乘器来实现调幅之功能。 DSB信号波形与载波波形的相位关系是:在调制信号正半周期间,两者同相;负半周期间,两者反相。 通过实验了解到了调制度的计算方法 六.课程心得体会 通过本次实验,我们了解了振幅调制的工作原理并掌握了实现AM和DSB的方法,学会计算调制度,具体见实验结论。我们对集成乘法器幅度调制电路有了更好的了解,对他有了更深入的认识,提高了对通信电子电路的兴趣。 和模电实验的单独进行,通电实验增强了团队配合的能力,两个人的有效分工提高了实验的效率,减少了一个人的独自苦恼。

北邮通信原理实验 基于SYSTEMVIEW通信原理实验报告

北京邮电大学实验报告 题目:基于SYSTEMVIEW通信原理实验报告 班级:2013211124 专业:信息工程 姓名:曹爽 成绩:

目录 实验一:抽样定理 (3) 一、实验目的 (3) 二、实验要求 (3) 三、实验原理 (3) 四、实验步骤和结果 (3) 五、实验总结和讨论 (9) 实验二:验证奈奎斯特第一准则 (10) 一、实验目的 (10) 二、实验要求 (10) 三、实验原理 (10) 四、实验步骤和结果 (10) 五、实验总结和讨论 (19) 实验三:16QAM的调制与解调 (20) 一、实验目的 (20) 二、实验要求 (20) 三、实验原理 (20) 四、实验步骤和结果 (21) 五、实验总结和讨论 (33) 心得体会和实验建议 (34)

实验一:抽样定理 一、 实验目的 1. 掌握抽样定理。 2. 通过时域频域波形分析系统性能。 二、 实验要求 改变抽样速率观察信号波形的变化。 三、 实验原理 一个频率限制在0f 的时间连续信号()m t ,如果以0 12S T f 的间隔进行等间隔均匀抽样,则()m t 将被所得到的抽样值完全还原确定。 四、 实验步骤和结果 1. 按照图1.4.1所示连接电路,其中三个信号源设置频率值分别为10Hz 、15Hz 、20Hz ,如图1.4.2所示。 图1.4.1 连接框图

图1.4.2 信号源设置,其余两个频率值设置分别为15和20 2.由于三个信号源最高频率为20Hz,根据奈奎斯特抽样定理,最低抽样频率应 为40Hz,才能恢复出原信号,所以设置抽样脉冲为40Hz,如图1.4.3。 图1.4.3 抽样脉冲设置 3.之后设置低通滤波器,设置数字低通滤波器为巴特沃斯滤波器(其他类型的 低通滤波器也可以,影响不大),截止频率设置为信号源最高频率值20Hz,如图1.4.4。

计算机网络课程设计实验报告

校园网的组建与应用 摘要: 本文针对实验室的设备环境,对校园网的组网方式进行了研究和模拟,并最终提出了一套完整的校园网组网方案。 实验中我们对路由器、交换机等组网基础设备进行了认真的研究。关于路由器,我们实现了本地基本配置,并分别使用路由器的串口和以太网口实现了不同网段的网络互联,对路由器静态及动态路由机制进行了探究。关于交换机,我们实现了VLAN的划分以及不同VLAN间的相互通信,对广播风暴现象的产生原理及解决方案进行了特定的实验。综合两者的功能,我们对多种网络拓扑结构进行了分析,讨论和改进。最后通过实验和模拟提出了一套完整的校园网组建方案。 在此方案中,我们在实现了网络互通的情况下,我们进行了IP地址的划分,IP地址利用DHCP进行自动分配。并根据模拟实际,对不同的主机进行VLAN划分,同时保证不同VLAN间的相互访问与特定VLAN的保护与单向访问。同时构建内部防火墙保证校园网与外部的安全访问。构建了完整可靠的网络之后,依据校园网的功能和服务需求,我们搭建了FTP服务器,用于提供基础的网络服务。 限于实验室条件的限制,我们的方案并不是完全能够适用于现实的。但是,通过实验使我们对校园网乃至更大的网络有了更加深刻的了解。

目录

一、前言 随着信息的调整膨胀,全球信息已经进入以计算机网络为核心的时代。作为科技先导的教育行业,计算机校园网已是教育进行科研和现代化管理的重要手段。近几年、校园网已经取得很大的发展,中国教育科研网投入运营,全国多所高校校园网络开通联网。 随着学校教育手段的现代化,很多学校已经逐渐开始将学校的管理和教学过程向电子化方向发展,校园网的有无以及水平的高低也将成为评价学校及学生选择学校的新的标准之一,此时,校园网上的应用系统就显得尤为重要。一方面,学生可以通过它在促进学习的同时掌握丰富的计算机及网络信息知识,毫无疑问,这是学生综合素质中极为重要的一部分;另一方面,基于先进的网络平台和其上的应用系统,将极大的促进学校教育的现代化进程,实现高水平的教学和管理。 学校目前正加紧对信息化教育的规划和建设。开展的校园网络建设,旨在推动学校信息化建设,其最终建设目标是将建设成为一个借助信息化教育和管理手段的高水平的智能化、数字化的教学园区网络,最终完成统一软件资源平台的构建,实现统一网络管理、统一软件资源系统,并保证将来可扩展骨干网络节点互联带宽为10G,为用户提供高速接入网络,并实现网络远程教学、在线服务、教育资源共享等各种应用;利用现代信息技术从事管理、教学和科学研究等工作。最终达到在网络方面,更好的对众多网络使用及数据资源的安全控制,同时具有高性能,高效率,不间断的服务,方便的对网络中所有设备和应用进行有效的时事控制和管理。 二、综述 2.1 概述 从物理意义上来说,校园网就是一种局域网。校园网是各类型网络中一大分支,有着非常广泛的应用及代表性。作为新技术的发祥地,学校、尤其是高等院校,和网络的关系是密不可分的。作为“高新技术孵化器”的高校,是知识、人才的高地,资源十分丰富,比其他行业更渴求网络新技术、网络新应用,

光纤基本特性测试实验报告

实验报告 课程名称: 光通信技术实验 指导老师: 成绩:__________________ 实验名称:光纤基本特性测试(一)实验类型: 基础型 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验1-2 光纤数值孔径性质和测量 一、实验目的和要求 1、熟悉光纤数值孔径的定义和物理意义 2、掌握测量光纤数值孔径的基本方法 二、实验内容和原理 光纤数值孔径(NA )是光纤能接收光辐射角度范围的参数,同时它也是表征光纤和光源、光检测器及其它光纤耦合时的耦合效率的重要参数。图一表示阶梯多模光纤可接收的光锥范围。因此光纤数值孔径就代表光纤能传输光能的大小,光纤的NA 大,传输能量本领大。 NA 的定义式是: 式中n0 为光纤周围介质的折射率,θ为最大接受角。n1和n2分别为光纤纤芯和包层的折射率。光纤在均匀光场下,其远场功率角分布与理论数值孔径NAm 有如下关系: 其中θ是远场辐射角,Ka 是比例因子,由下式给出: 专业: 姓名: 学号: 日期: 地点: 装 订 线

式中P(0)与P(θ)分别为θ= 0和θ=θ处远场辐射功率,g 为光纤折射率分布参数。计算结果表明,若取P(θ) / P(0) = 5%,在g≥2时Ka的值大于0.975。因此可将P(θ)曲线上光功率下降到 θ的正弦值定义为光纤的数值孔径,称之为有效数值孔径: 中心值的5%处所对应的角度 e 本实验正是根据上述原理和光路可逆原理来进行的。 三、主要仪器设备 He-Ne 激光器、读数旋转台、塑料光纤、光纤微调架、毫米尺、白屏、短波长光功率计一套(功率显示仪1件、短波光探测器1只)。 四、实验步骤 方法一:光斑法测量(如图2) 1、实验系统调整; a.调整He-Ne激光管,使激光束平行于实验平台面; b.调整旋转台,使He-Ne激光束通过旋转轴线; c.放置待测光纤在光纤微调架上,使光纤一端与激光束耦合,另一端与短波光探测器正确连接; d.仔细调节光纤微调架,使光纤端面准确位于旋转台的旋转轴心线上,并辅助调节旋转台使光纤的输出功率最大。 2、测输出数值孔径角θo。 a. 移开光探测器,固定光纤输出端; b. 分别置观察屏于距光纤端面L1、L2 距离处,测量观察屏上的光纤输出圆光斑直径D1、D2,计算两次读数差ΔL和ΔD,得输出孔径角为:θo=arctan[ΔD/(2ΔL)]; c. 多次测量求平均值。(注:如果圆光斑边界不清晰,一般是由于出射光功率太强引起的,适当旋转读数台减小耦合效率,直至得到一个清晰圆光斑为止。)

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

北邮电路综合实验报告——串行口数据传输的仿真及硬件实现

北京邮电大学 信息与通信工程学院 电路综合实验报告 串行口数据传输的仿真及硬件实现 姓名: 学号: 班内序号: 班级: 指导老师: 日期:2014年10月10日

摘要: 本实验模拟了现代数字逻辑电路中的数据传输过程。使用连续的代表0、1的高低电平作为数字信号,将该数字信号从输出端发送到接收端,并分别用串行、并行两种方式进行锁存,检测。本实验模拟了序列信号的发生装置、串并转换装置、串行并行两种方式的检测装置、锁存输出和控制电路,实现了一个简单的串行口数据传输模型。在此试验中,通过对常见芯片的组合实现功能,将一串由0、1组成的数字信号进行传输、转换、检测,使之显示在数码管上成为可读信息。并且,还实现了对此电路显示的控制,使数码管在满足条件的情况下才点亮。在实验中,还使用了Qua rtusⅡ对设计的电路进行了仿真模拟。 关键字: 数据传输、串并转换、数据检测、QuartusII Abstract: This experiment simulated data transfer in modern digital logic circuit. Digital signal was transferred from the output terminal to the receiving end, which was consisted of

continuous high or low level represent 0 and 1 as digital signal, and latch, test it through serial or parallel mode. Our experiment simulated the producing equipment of sequence signal, the signal conversion module, testing module of serial and parallel mode, latch output and control circuit. It implements a simple serial port data communication model. In the experiment, we use the combination of simple chips to realize the function that transport, transfer and test a sequence of the digital signal consisting of 0 and 1, and display it on LED Segment Displays. In addition, we realize the control of display. The LED Segment Displays works only in specific conditions. We also conduct simulations on QuartusⅡ. Keywords: Data transmission, String conversion, Data detection, Quartus II 目录 一、实验目的 (4)

光通信技术实验报告

光通信技术实验报告 实验一光通讯系统WDM系统设计 实验目的 1.熟悉Optisystem实验环境,练习使用元件库中的常用元件组建光纤通信系统。 2.使用OptiSystem模拟仿真WDM系统的各项性能参数,并进行分析。 实验原理 光波分复用系统简介 光波分复用是指将两种或多种各自携带有大量信息的不同波长的光载波信号,在发射端经复用器汇合,并将其耦合到同一根光纤中进行传输,在接收端通过解复用器对各种波长的光载波信号进行分离,然后由光接收机做进一步的处理,使原信号复原,这种复用技术不仅适用于单模或多模光纤通信系统,同时也适用于单向或双向传输。 波分复用系统的工作波长可以从0.8μm到1.7μm,由此可见,它可以适用于所有低衰减、低色散窗口,这样可以充分利用现有的光纤通信线路,提高通信能力,满足急剧增长的业务需求。 WDM光通信结构组成 1)滤波器:在WDM系统中进行信道选择,只让特定波长的光通过,并组织其他光波长 通过。可调谐光滤波器能从众多的波长中选出某个波长让其通过。在WDM系统的光接收机中,为了选择所需的波长,一般都需依赖于其前端的可调谐滤波器。要求其有宽的谱宽以传输需要的全部信号谱成分,且带宽要窄以减小信道间隔。 2)复用器/解复用器(MUX/DEMUX):将多个光波长信号耦合到一路信道中,或使混合 的信号分离成单个波长供光接收机处理。一般,复用/解复用器都可以进行互易,其结构基本是相同的。实际上即是一种波长路由器,使某个波长从指定的输入端口到一个指定的输出端口。 实验软件介绍 OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS和MANS都使用。一个基于实际光纤通讯系统模型的系统级模拟器,OptiSystem具有强大的模拟环境和真实的

北邮《现代通信技术》实验报告一

现代通信技术实验报告 班级: 2012211110 学号: 2012210299 姓名:未可知

在学习现代通信技术实验课上,老师提到的一个词“通信人”警醒了我,尽管当初填报志愿时选择了通信工程最终也如愿以偿,进入大三,身边的同学忙着保研、考研、出国、找工作,似乎大家都为了分数在不懈奋斗。作为一个北邮通信工程的大三学生,我也不断地问自己想要学习的是什么,找寻真正感兴趣的是什么,通信这个行业如此之大,我到底适合什么。本学期,现代通信技术这本书让我了解到各种通信技术的发展和规划,也让我对“通信人”的工作有了更深刻的认识。 一、通信知识的储备 《现代通信技术》第一页指出,人与人之间通过听觉、视觉、嗅觉、触觉等感官,感知现实世界而获取信息,并通过通信来传递信息。所谓信息,是客观事物状态和运动特征的一种普遍形式,客观世界中大量地存在、产生和传递着以这些方式表示出来的各种各样的信息。信息的目的是用来“消除不可靠的因素”,它是物质运动规律总和。因此,我们通信人的任务就是利用有线、无线等形式来将信息从信源传递到信宿,在传输过程中保证通信的有效性和可靠性。 而具体来讲,要实现信息传递,通信网是必需的通信体系,其中通信网分层的结构形式需要不同的支撑技术,包括业务网技术,向用户提供电话、电报、数据、图像等各种电信业务的网络;介入与传送网技术,实现信息由一个点传递到另一个点或一些点的功能。对此,我们通信工程专业学习课程的安排让我们一步步打下基础,建立起知识储备。 知识树如下: 如知识树所述,通信工程课程体系可以大致分为一下6类基础:

数学基础:工科数学分析,线性代数,复变函数,概率论基础,随机过程; 电路基础:电路分析,模拟电子技术,数字逻辑电路,通信电子电路; 场与波基础:电磁场与电磁波,微波技术,射频与天线; 计算机应用能力:C 语言程序设计,微机原理与接口技术,计算机网络,数据结构,面向对象程序设计,实时嵌入式系统 信号处理类课程:信号与系统,信号处理,图像处理,DSP 原理及应用; 通信类课程:通信原理,现代通信技术,信息论基础,移动通信,光纤通信等。 从大一开始学习的工科数学分析,大学物理,大学计算机基础等课程为基础类课程,旨在培养我们的语言能力,数学基础,物理基础,计算机能力,然后逐步加大难度,细化课程,方向逐渐明朗详细。同时,课程中加入了各种实验,锻炼了我们的动手能力。 二、通信知识的小小应用 实验课上老师说过,以我们所学的知识已经可以制作简单通信的手机的草图了,我对此跃跃欲试。经过思考和调研,以下是我对于简单手机设计的原理框图和思考结果。 一部手机的结构包括接收机、发射机、中央控制模块、电源和人机界面部分,如下图 手机结构设计图 电路部分包括射频和逻辑音频电路部分,射频电路包括从天线到接收机的解调输出,与发射的I/O 调制到功率放大器输出的电路。其中,射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路完成语音基带信号的调制、变频、功率放大等功能。要用到的超外差接收机、混频器、鉴相器等在《通信电子电路》书本中的知识。逻辑音频包括从接收解调到接收音频输出、送话器电路到发射I/O 调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路。由核心控制模块CPU 、EEPROM 、 FLASH 、SRAM 等部分组成,一个基本 天线 接收机 发射机 频率合成 电源 逻 辑 音 频 人 机 交 互

北邮移动通信实验报告

信息与通信工程学院移动通信实验报告 班级: 姓名: 学号: 序号: 日期:

一、实验目的 1移动通信设备观察实验 1.1RNC设备观察实验 a) 了解机柜结构 b) 了解RNC机框结构及单板布局 c) 了解RNC各种类型以及连接方式 1.2基站设备硬件观察实验 a) 初步了解嵌入式通信设备组成 b) 认知大唐移动基站设备EMB5116的基本结构 c) 初步分析硬件功能设计 2网管操作实验 a) 了解OMC系统的基本功能和操作 b) 掌握OMT如何创建基站 二、实验设备 TD‐SCDMA移动通信设备一套(EMB5116基站+TDR3000+展示用板卡)、电脑。 三、实验内容 1TD-SCDMA系统认识 TD-SCDMA是英文Time Division-Synchronous Code Division Multiple Access(时分同步码分多址)的简称,TD-SDMA是由中国提出的第三代移动通信标准(简称3G),也是ITU批准的三个3G标准中的一个,以我国知识产权为主的、被国际上广泛接受和认可的无线通信国际标准。是我国电信史上重要的里程碑。 TD-SCDMA在频谱利用率、业务支持灵活性、频率灵活性及成本等方面有独特优势。TD-SCDMA由于采用时分双工,上行和下行信道特性基本一致,因此,基站根据接收信号估计上行和下行信道特性比较容易。TD-SCDMA使用智能天线技术有先天的优势,而智能天线技术的使用又引入了SDMA的优点,可以减少用户间干扰,从而提高频谱利用率。TD-SCDMA还具有TDMA的优点,可以灵活设置

上行和下行时隙的比例而调整上行和下行的数据速率的比例,特别适合因特网业务中上行数据少而下行数据多的场合。但是这种上行下行转换点的可变性给同频组网增加了一定的复杂性。TD-SCDMA是时分双工,不需要成对的频带。因此,和另外两种频分双工的3G标准相比,在频率资源的划分上更加灵活。 图1 3G网络架构 2硬件认知 2.1 RNC设备认知 TDR3000整套移动通信设备机框外形结构如图2所示。

红外通信收发系统的设计和实现实验报告

红外通信收发系统的设计和实现实验报告学院:信息与通信工程学院 姓名: 班级: 学号:

红外通信收发系统的设计和实现实验报告 1、课题名称 红外通信收发系统的设计与实现 2、摘要 红外通信系统的设计是光通信系统的一个重要分支,红外数据传输,使用传输介质――红外线。红外线是波长在750nm~1mm之间的电磁波,是人眼看不到的光线。红外数据传输一般采用红外波段内的近红外线,波长在0.75~25um之间。本实protel软件辅助设计,分析并设计了红外通信系统的发射电路与接收电路,实现了红外信号的无线传输功能和音乐信号的收发功能。 3、关键词 红外线、收发系统、音乐芯片 3、设计任务要求; 1、基本要求: (1)设计一个正弦波振荡器,f≥1kHz,Uopp≥3v; (2)所设计的正弦波振荡器的输出信号作为红外光通信收发系统发送端的输入信号,在接收端可收到无明显失真的输入信号; (3)要求接收端LM386增益设计G=200; (4)设计该电路的电源电路(不要求实际搭建),用软件绘制完整的电路原理图(PROTEL)及印制电路板图(PCB) 2、提高要求: 利用音乐芯片产生乐曲,调制LED后发出,接收端接收信号利用喇叭将发送的乐曲无失真的播放出来。 3、探究环节: 探索其它红外光通信收发系统的应用实例,数字调制的解决的方案,给出应用方案。 4、设计思路、总体结构框图;

1、设计思路 系统主要由信号产生电路,红外光发射系统,红外光接收系统三个模块完成基本实验要求,其中信号产生电路分别由信号发生器和音乐芯片代替,电信号经过发生系统转化为红外光信号,经接收系统接受后,光信号转化为电信号,再通过喇叭将其转化为语音信号,实现红外光通信的全过程。 首先主要用信号发生器发出电信号,微弱的电信号经过一个分压式共射电路适当放大,并通过LED红外发送管转化为光信号发送。 信号经接收管接收后,通过运放电路得到较高的输出功率,驱动喇叭发出声音。利用放大器LM386,调节电位器改变其增益,驱动喇叭得到所需功率。再将音乐芯片替代信号发生器重复上述过程即可驱动喇叭发出音乐芯片的声音(此实验为三声门铃声) 2.总体框架图 1、信号的产生 实验中使用了音乐芯片KD-9300或者LX-9300来完成。信号产生也可以使用RC振荡器构成,但信号的幅度不宜过大。 2、红外光发送模块的设计 设计原则主要是考虑红外发送管的工作电流,电流过小,传输距离短,电流过大容易毁坏发光管。(要注意芯片的接法以及发送电路的连接。) 3、红外光接收模块的设计 1)高通滤波器:红外接收的二极管都是光敏二极管,这样普通光对其都成一定程度的影响,为了获得更好的效果,还要在信号输出端加入高通滤波器,消除恒定的外接低频信号的干扰,这样接收效果和灵敏度将显著提高。 2)功率放大器:利用音频功率专用放大器LM386,可以得到50~200的增益,确保驱动喇叭。 所以设计框图如下 光通信收发系统原理图

北邮arduino实验报告

电子电路综合实验设计 实验名称: 基于 Arduino 的电压有效值测量电路设计与实现 学院: 班级: 学号: 姓名: 班内序号:

实验 基于Arduino 的电压有效值测量电路设计与实现 一. 摘要 Arduino是一个基于开放原始码的软硬件平台,可用来开发独立运作、并具互动性的电子产品,也可以开发与PC 相连的周边装置,同时能在运行时与PC 上的软件进行交互。为了测量正弦波电压有效值,首先我们设计了单电源供电的半波整流电路,并进行整流滤波输出,然后选择了通过Arduino设计了读取电压有效值的程序,并实现使用此最小系统来测量和显示电压有效值。在频率和直流电压幅度限定在小范围的情况下,最小系统的示数基本和毫伏表测量的值相同。根据交流电压有效值的定义,运用集成运放和设计的Arduino最小系统的结合,实现了运用少量元器件对交流电压有效值的测量。 关键字:半波整流整流滤波 Arduino最小系统读取电压有效值 二. 实验目的 1、熟悉Arduino 最小系统的构建和使用方法; 2、掌握峰值半波整流电路的工作原理; 3、根据技术指标通过分析计算确定电路形式和元器件参数; 4、画出电路原理图(元器件标准化,电路图规范化); 5、熟悉计算机仿真方法; 6、熟悉Arduino 系统编程方法。 三. 实验任务及设计要求 设计实现 Arduino 最小系统,并基于该系统实现对正弦波电压有效值的测量和显示。 1、基本要求 (1)实现Arduino 最小系统,并能下载完成Blink 测试程序,驱动Arduino 数字13 口LED 闪烁; (2)电源部分稳定输出5V 工作电压,用于系统供电; (3)设计峰值半波整流电路,技术指标要求如下:

北邮通信原理实验报告

北京邮电大学通信原理实验报告 学院:信息与通信工程学院班级: 姓名: 姓名:

实验一:双边带抑制载波调幅(DSB-SC AM ) 一、实验目的 1、了解DSB-SC AM 信号的产生以及相干解调的原理和实现方法。 2、了解DSB-SC AM 信号波形以及振幅频谱特点,并掌握其测量方法。 3、了解在发送DSB-SC AM 信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。 4、掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的调试方法。 二、实验原理 DSB 信号的时域表达式为 ()()cos DSB c s t m t t ω= 频域表达式为 1 ()[()()]2 DSB c c S M M ωωωωω=-++ 其波形和频谱如下图所示 DSB-SC AM 信号的产生及相干解调原理框图如下图所示

将均值为零的模拟基带信号m(t)与正弦载波c(t)相乘得到DSB—SC AM信号,其频谱不包含离散的载波分量。 DSB—SC AM信号的解调只能采用相干解调。为了能在接收端获取载波,一种方法是在发送端加导频,如上图所示。收端可用锁相环来提取导频信号作为恢复载波。此锁相环必须是窄带锁相,仅用来跟踪导频信号。 在锁相环锁定时,VCO输出信号sin2πf c t+φ与输入的导频信号cos2πf c t 的频率相同,但二者的相位差为φ+90°,其中很小。锁相环中乘法器的两个 输入信号分别为发来的信号s(t)(已调信号加导频)与锁相环中VCO的输出信号,二者相乘得到 A C m t cos2πf c t+A p cos2πf c t?sin2πf c t+φ =A c 2 m t sinφ+sin4πf c t+φ+ A p 2 sinφ+sin4πf c t+φ 在锁相环中的LPF带宽窄,能通过A p 2 sinφ分量,滤除m(t)的频率分量及四倍频载频分量,因为很小,所以约等于。LPF的输出以负反馈的方式控制VCO,使其保持在锁相状态。锁定后的VCO输出信号sin2πf c t+φ经90度移相后,以cos2πf c t+φ作为相干解调的恢复载波,它与输入的导频信号cos2πf c t 同频,几乎同相。 相干解调是将发来的信号s(t)与恢复载波相乘,再经过低通滤波后输出模拟基带信号 A C m t cos2πf c t+A p cos2πf c t?cos2πf c t+φ =A c 2 m t cosφ+cos4πf c t+φ+ A p 2 cosφ+cos4πf c t+φ 经过低通滤波可以滤除四倍载频分量,而A p 2 cosφ是直流分量,可以通过隔直

数据结构 哈夫曼编码 实验报告

数据结构实验报告 实验名称:实验3——树(哈夫曼编/解码器) 学生姓名: 班级: 班内序号: 学号: 日期:2011年12月5日 1.实验要求 利用二叉树结构实现哈夫曼编/解码器。 基本要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频 度,并建立哈夫曼树 2、建立编码表(CreateTable):利用已经建好的哈夫曼树进行编码,并将每个字符的 编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输 出。 4、译码(Decoding):利用已经建好的哈夫曼树对编码后的字符串进行译码,并输出 译码结果。 5、打印(Print):以直观的方式打印哈夫曼树(选作) 计算输入的字符串编码前和编码后的长度,并进行分析,讨论哈夫曼编码的压缩效果。 并用I love data Structure, I love Computer。I will try my best to study data Structure.进行测试。 2. 程序分析 哈夫曼树结点的存储结构包括双亲域parent,左子树lchild,右子树rchild,还有字符word,权重weight,编码code 对用户输入的信息进行统计,将每个字符作为哈夫曼树的叶子结点。统计每个字符出现的次数作为叶子的权重,统计次数可以根据每个字符不同的ASCII码,根据叶子结点的权重建立一个哈夫曼树。 建立每个叶子的编码从根结点开始,规定通往左子树路径记为0,通往右子树路径记为1。由于编码要求从根结点开始,所以需要前序遍历哈夫曼树,故编码过程是以前序遍历二叉树为基础的。同时注意递归函数中能否直接对结点的编码域进行操作。 编码信息只要遍历字符串中每个字符,从哈夫曼树中找到相应的叶子结点,取得相应的编码。最后再将所有找到的编码连接起来即可。 译码则是将编码串从左到右逐位判别,直到确定一个字符。这就是哈夫曼树的逆过程。

光纤通信实验报告

光纤通信实验报告 班级:14050Z01 姓名:李傲 学号:1405024239

实验一光发射机的设计 一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD。 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,分为光源的内调制(图1.1)和光源的外调制(图1.2)。 采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。图1.2的结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,经过一个NRZ脉冲发生器(None-Return-to-Zero Generator)转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1.1内调制光发射机图1.2外调制光发射机 对于直接强度调制状态下的单纵模激光器,其载流子浓度的变化是随注入电流的变化而变化。这样使有源区的折射率指数发生变化,从而导致激光器谐振腔的光通路长度相应变化,结果致使振荡波长随时间偏移,导致所谓的啁啾现象。啁啾是高速光通讯系统中一个十分重要的物理量,因为它对整个系统的传输距离和传输质量都有关键的影响。 内容:铌酸锂(LiNbO3)型Mach-Zehnder调制器中的啁啾(Chirp)分析 1设计目的 对铌酸锂Mach-Zehnder调制器中的外加电压和调制器输出信号啁啾量的关系进行模拟和分析,从而决定具体应用中MZ调制器的外置偏压的分布和大小。 2设计布局图 外调制器由于激光光源处于窄带稳频模式,可以降低或者消除系统的啁啾量。典型的外调制器是由铌酸锂(LiNO3)晶体构成。本设计中,通过对该晶体外加电压的分析调整而最终减少该光发送机中的啁啾量,其模型的设计布局图如图1.3所示。

电子琴的实验报告

单片机课程设计 设计题目电子琴 指导老师:苏 参与实验者:moxiaoxiao 专业:统本电信0801 地点:3#楼北楼605 电子琴 一.设计目的: (1).培养综合运用知识的能力 (2).朋友查阅资料,使用工程设计标准及编写设计文档的能力. (3).掌握单片机应用系统的设计方法. (4).提高计算机绘图能力 二.设计任务: 利用DP51PROC实验系统上的定时器/计数器,按键和蜂鸣器单元。用单片机I/O 口线控制蜂鸣器发出不同的音调,程序检测按键状态,7个按键中某一键按下时,蜂鸣器对应标称音阶. 三.设计与调试环境 KEIL uVision2 是众多单片机应用开发软件中优秀的软件之一,它支持众多不同公司的MCS51 架构的芯片,它集编辑,编译,仿真等于一体,同时还支持,PLM ,汇编和 C 语言的程序设计,它的界面和常用的微软VC++的界面相似,界面友好,易学易用,在调试程序,软件仿真方面也有很强大的功能。 1:按下面的步骤建立一个项目: 图1-4 选取芯片 图1-5 新建程序文件 (1)点击图1-5 中的 3 保存新建的程序,也可以用菜单File-Save 或快捷键Ctrl+S 进行保存。因是新文件所以保存时会弹出类似图1-3 的文件操作窗口,我们把第一个程序命名为,保存在项目所在的目录中,这时程序单词有了不同的颜色,说明KEIL 的 C 语法检查生效了。如图1-6 鼠标在屏幕左边的Source Group1 文件夹图标上右击弹出菜单,在这里可以做项目中增加减少文件等操作。我们选“Add File t o Group ‘SourceGroup 1’”弹出文件窗口,选择刚刚保存的文件,按ADD 按钮,关闭文件窗,程序文件已加到项目中了。这时在Source Group1 文件夹图标左边出现了一个小+号说明,文件组中有了文件,点击它可以展开查看。 图1-6 把文件加入到项目文件组中 编译程序 (2)进入调试模式,软件窗口样式大致如图1-8 所示。图中1 为运行,当程序处于停止状态时才有效,2 为停止,程序处于运行状态时才有效。3 是复位,模拟芯片的复位,程序回到最开头处执行。按

相关主题
文本预览
相关文档 最新文档