当前位置:文档之家› 现代光学设计报告

现代光学设计报告

现代光学设计报告
现代光学设计报告

一、 绪论

本文利用Zmax 程序优化设计一个He-Ne 激光光束聚焦物镜,它在单色光波长下工作,成像质量要达到衍射受限水平。设计过程中,先用具体的计算结果初步讨论玻璃的选择和透镜片数的考虑,然后选择不同的评价函数,以及不同的初始结构,最终找到多个像质较优的解。

具体设计任务的要求如下:

①焦距f ’=60mm ; ②相对孔径2

1'=f D ; ③物距∞=l ,视场角 0=ω;

④工作波长m μλ6328.0=;

⑤此镜头只需要消球差,几何弥散圆直径小于0.002mm ;

⑥镜头结构尽量简单,争取用两块镜片达到要求。

二、 镜头片数及玻璃选择的考虑和初步分析

1、单片低折射率材料的情况

先看看单片低折射率材料物镜它的像质是什么样的, 选一个普通的K9,折射率n=1.51466 ,利用Zemax 程序设计一个焦距f ’=60mm ,相对孔径2

1'=f D ,视场角 0=ω的激光光束物镜,光阑放在透镜的第一面,入瞳直径为30mm ,物镜初始结构可以由公式)11)(1('12

1r r n f --=计算得出,可以取一个对称结构即21r r -=,可以得到物镜半径为61.7592mm 。取第一个面半径为变量,第二个面半径用来保证焦距为60mm (图2-1)。评价函数选用“TRAY ”,指定为0.3、0.5、0.7、0.85以及全孔径(图2-2)。

图2-1 低折射率材料物镜初始结构参数

图2-2 选用TRAY评价函数

2-3可以看出,初始像差很大,需要优化。

我们先看看初始像差数据,由图

优化后得到相应的结构数据、像差曲线和点列图分别由下面的图表示。

图2-5 低折射率材料物镜优化后的像差曲线

图 2-6 低折射率材料物镜优化后的点列图

可以看到低折射率单片优化后的球差和弥散圆直径依然在毫米级,这与要求相差太远,我们再考虑其他材料。

2、单片高折射率材料的情况

换用一种较高折射率的玻璃,看看它的像差情况,选用ZF14,这是一种高折射率材料,通过查找光学设计手册,可以查到He-Ne 激光在ZF14玻璃中的折射率为1.90914。依然利用公式)11)(1('12

1r r n f --=,可计算出对称结构的物镜球面的半径,此时,初始结构半径为109.0968mm ,依然采用第一个面半径为变量,第二个面半径来保证焦距为60mm (如图2-7

),不改变评价函数,看一下高折射率材料能不能通过优化得到一个理想的结果。

图2-7 高折射率材料初始结构数据

优化后结构参数如图2-8所示,再来看一下像质优化情况,由像差曲线(图2-9)和点列图(图2-10),可以看到最大像差减少到1000μm ,点列图直径也减少到

496μm ,相比于低折射率材料的物镜优化后的结果,要少了一倍,因此可以看出,高

折射率材料优化后的像质更好,但是依然离要求的结果相差太远。需要考虑其他结构,将一片改为双片结构再进行分析优化。

图2-8 高折射率材料物镜优化后的结构参数

图2-9 高折射率材料物镜优化后的像差曲线

图2-10 高折射率材料物镜优化后的点列图

3、结论

①高折射率玻璃单片镜头的像质比低折射率玻璃单片镜头的像质好很多。弥散圆

半径由1.1mm下降至0.49mm,横向球差由1.1mm下降至0.5mm,都减少了1/2多。

②高折射率单片镜头的曲率半径比低折射率单片镜头的曲率半径大了很多。

③无论是高折射率单片镜头还是低折射率单片镜头,经优化后,当球差处于极小时,它们的透镜形状都是半径较小(凸)的一段朝向远处的物体,而半径较大(平)

的一端朝向近距的像。

④像差距离设计要求相差甚远,要作进一步的改进。但单片只有一个变量,即只

有一个半径可用于校正像差,而另一个半径是用于保证镜头的焦距要求,所以改进的

方法只能是分裂透镜,用双片模型。从设计的角度看,分裂透镜增加了变量数目,因

而增加了自由度。从像差理论看,是将原先由一片负担的光线偏角现在变为由两片共

同负担,可以减小单独一片产生的像差。另外,两片间的空气间隔是减小高级球差的内因,因而也将它作为变量。

三、改为高折射率双片结构的优化设计

1、双片结构

由于通过前面的实验可以发现高折射率材料的物镜像质优化结果更好,所以这里我们继续使用高折射率的ZF14玻璃进行双片的优化设计,具体方法就是在单片的基础上,增加两个球面,球面半径可以取为-60mm,空气间隔可以初设为1mm。如图3-1所示。将前三个面以及空气间隔都作为变量,最后一个面用作保证焦距为

60mm。

图3-1 双片镜头的初始结构参数

2、优化设计

①先采用横向球差"TRAY"作为评价函数,进行优化设计,和前面一样,将

0.3、0.5、0.7、0.85以及全孔径的横向球差加入到评价函数中,先进行5次循环优化得到结构数据如图3-3,可以看到空气间隔变大了,结构形状也符合要求,观察一下像差曲线(图3-4)和点列图(图3-5),可以发现相比于单片,优化后的双片的像质明显更好一些,由毫米级变成微米级了,为了满足像质要求,下面我们继续优化,大致进行30次循环之后,就可以得到比较理想的像质情况了,如图3-7、图3-8,优化后球差减小到±2μm,弥散圆直径减小到1.296μm,满足小于

0.002mm的要求。

图3-3 5次循环后的结构数据

图3-5 5次循环后的点列图

图3-6 双片物镜优化后的结构参数

图3-7 双片物镜优化后的像差曲线

图3-8 双片物镜优化后的点列图

通过优化,我们已经得到一个比较理想的结构了,从结构图里也可以发现弥散圆变小了,很接近理想像质了,图3-9。下面我们还有两个尝试。

首先,我们进一步考察评价函数对于优化的影响,如果减少一个孔径带的要求,那么对于优化结果有何影响呢?为了解释这个问题,我们再做一次优化,将评价函数中的0.85孔径带球差要求去掉,在初始结构数据基础上进行优化,观察像差曲线(图3-10),可以发现球差变大了,最大的剩余球差可以达到5μm,而之前优化的结果是2μm,所以增加一个孔径带的要求可以使像质更优化,然而增加要求,又会增加优化时间,细心一点我们也可以发现要求优化的孔径带的越少,每个孔径带的优化结果比起多一个孔径带要求的优化结果优化的更好,这也是必然,要求更多,每一项的优化结果不可能都很完美。

图3-9 双片物镜优化后的结构图

图3-10 删掉0.85孔径带评价函数后的像差曲线

其次,教材里有第2

次优化,增加一个变量,将物镜最后一面至像面的距离作为变量,实际上是把离焦量作为变量了。那我们按照这样一个办法进行尝试继续优化。

图3-11 第2次优化后的像差曲线

从像差曲线上我们发现各级球差之间达到了更合理的平衡,点列图里也可以发现,弥散圆的直径减小了,第1次优化后是1.296μm ,第2次优化后是0.704μm 。达到了预定的要求,效果更好。这里我觉得是因为把离焦量作为变量,像面不在理想像面上,而是通过优化,确定一个像质最好的像面,所以改善了成像质量,对于结构上的影响不大。

图3-12 第2次优化后的点列图

②采用其他评价函数的优化

评价函数的构造并不唯一,下面仍从相同的初始结构出发,换一种评价函数进行优化,我们这里采用的是轴向球差“LONA ”,还是采用0.3、0.5、0.7、0.85孔径和全孔径进行优化(图3-13),取前3

个面的半径、两镜片的间隔以及像距作为变量,进行优化。优化后的结构参数、结构、像差曲线、点列图由下图所示。

图3-13 “LONA ”评价函数

图3-14 “

LONA ”优化出的结构

图3-15 “LONA ”优化出的结构参数

图3-16 “LONA”优化出的像差曲线

图3-17 “LONA ”优化出的点列图

通过对比发现两种评价函数所优化出的结果基本上相似,弥散圆半径小于1μm ,像质比较好,说明从同一个初始结构出发,利用不同的评价函数,也可以得到理想的结果。由于“TRAY ”和”LONA “性质相近,所以优化出来的结构实际上是一样的。 ③换一初始结构,之前讨论过的结构都是正光焦度的单片在前,负光焦度的单片在后,现采用前组光焦度为负,后组光焦度为正的结构,看一看优化结果。

我这里采用的是“负前凸”型,初始结构数据参数参考书上给出的数据(图3-

18

),结构简图如图3-19。

图3-18 负前凸型结构初始数据

图3-19 负前凸型结构初始结构简图

下面进行优化,依然采用前三个面半径作为变量,两镜片的间隔以及最后一个折

射面至像平面间的后工作距离为变量,总共5个变量进行优化。评价函数采用“TRAY”横向球差,还是选择0.3、0.5、0.7、0.85和全孔径,优化后的结构如图3-20、像差

曲线如图3-21、点列图3-22。

3-20 负前凸优化的结构

3-21 负前凸优化后的像差曲线

从图中可以发现,负前凸型结构依旧可以得到像质符合要求的结果,弥散圆的半径小于0.001mm。上述结果说明,从不同的初始结构出发,采用相同的评价函数,也可以得到像质理想的结果。

四、总结心得

通过对优化结果的对比分析,解决一些问题:

①为什么单片不行,而需要双片?

单片的话,通过ZeMax程序优化,无论是高折射率材料也好,还是低折射率材料也好,它的像差都是毫米级,太大了,离要求相差的太远。单片的话,从设计角度上看,只有一个变量,很难保证像质要求,所以改为双片,实际上是增加了可优化的自由度,从像差理论看,分裂透镜可以减小高级球差,也可以减少单独一片所产生的像差。

光学系统设计报告

《光学课程设计报告》姓名:郑宇婷 学号:U201114912 学院:光学与电子信息学院 专业:光信息科学与技术 年段班级:1104班 成绩: 授课教师:张学明

2013年4 月9 日 一光学课程设计任务 1、课程意义 (1)综合运用课程的基本理论知识,进一步培养理论联系实际的能力和独立工作的能力。(2)初步掌握简单的、典型的、与新型系统设计的基本技能,熟练掌握光线光路计算技能,了解并熟悉光学设计中所有例行工作,如数据结果处理、相差曲线绘制、相差优化,光学零件技术要求等。 (3)巩固和消化课程中所学的知识,初步了解新型光学系统的特点,为学习专业课与进行毕业设计打下好的基础。 (4)培养一种对待工作严谨的态度。 2、设计题目 双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为: 1、望远镜的放大率Γ=6倍; 2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D=30mm); 3、望远镜的视场角2ω=8°; 4、仪器总长度在110mm左右,视场边缘允许50%的渐晕; 5、棱镜最后一面到分划板的距离>=14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。 6、lz ′>8~10mm 二物镜外形尺寸计算 1、优化前的初始结构+计算过程 3、相差容限的计算 (1)所需校正的像差 望远镜的特点是:相对孔径小,视场角不大。结构较为简单,要校正的像差比较少,一般主要校正球差、轴向色差以及正弦差。 (2)像差容限 ①球差容限: 边光的球差容限:1倍焦深内 带光的球差容限:6倍焦深内 ②轴向色差的容限:1倍焦深内 ③正弦差的容限:0.0025——0.00025之间 三、目镜外形尺寸的计算 1、未优化前初始结构+计算过程 3、目镜像差容限计算 (1)所需校正的像差

微波光学实验 实验报告

近代物理实验报告 指导教师:得分: 实验时间:2009 年11 月23 日,第十三周,周一,第5-8 节 实验者:班级材料0705 学号200767025 姓名童凌炜 同组者:班级材料0705 学号200767007 姓名车宏龙 实验地点:综合楼503 实验条件:室内温度℃,相对湿度%,室内气压 实验题目:微波光学实验 实验仪器:(注明规格和型号) 微波分光仪,反射用金属板,玻璃板,单缝衍射板 实验目的: 1.了解微波分光仪的结构,学会调整并进行试验. 2.验证反射规律 3.利用迈克尔孙干涉仪方法测量微波的波长 4.测量并验证单缝衍射的规律 5.利用模拟晶体考察微波的布拉格衍射并测量晶格数 实验原理简述: 1.反射实验 电磁波在传播过程中如果遇到反射板,必定要发生反射.本实验室以一块金属板作为反射板,来研究当电磁波以某一入射角投射到此金属板上时所遵循的反射规律。 2.迈克尔孙干涉实验 在平面波前进的方向上放置一块45°的半透半反射版,在此板的作 用下,将入射波分成两束,一束向A传播,另一束向B传播.由于A,B 两板的全反射作用,两束波将再次回到半透半反板并达到接收装置 处,于是接收装置收到两束频率和振动方向相同而相位不同的相干 波,若两束波相位差为2π的整数倍,则干涉加强;若相位差为π的奇 数倍,则干涉减弱。 3.单缝衍射实验 如图,在狭缝后面出现的颜射波强度并不均匀,中央最强,同时也最 宽,在中央的两侧颜射波强度迅速减小,直至出现颜射波强度的最小 值,即一级极小值,此时衍射角为φ=arcsin(λ/a).然后随着衍射角的增

大衍射波强度也逐渐增大,直至出现一级衍射极大值,此时衍射角为 Φ=arcsin(3/2*λ/a ),随着衍射角度的不断增大会出现第二级衍射极小值,第二级衍射极大值,以此类推。 4. 微波布拉格衍射实验 当X 射线投射到晶体时,将发生晶体表面平面点阵散射和晶体内部平面点阵的散射,散射线相互干涉产生衍射条纹,对于同一层散射线,当满足散射线与晶面见尖叫等于掠射角θ时,在这个方向上的散射线,其光程差为0,于是相干结果产生极大,对于不同层散射线,当他们的光程差等于波长的整数倍时,则在这个方向上的散射线相互加强形成极大,设相邻晶面间距为d,则由他们散射出来的X 射线之间的光程差为CD+BD=2dsin θ,当满足 2dsin θ=K λ,K=1,2,3…时,就产生干涉极大.这就是布拉格公式,其中θ称为掠射角,λ为X 射线波长.利用此公式,可在d 已测时,测定晶面间距;也可在d 已知时,测量波长λ,由公式还可知,只有在 <2d 时,才会产生极大衍射 实验步骤简述: 1. 反射实验 1.1 将微波分光仪发射臂调在主分度盘180°位置,接收臂调为0°位置. 1.2 开启三厘米固态信号发射器电源,这时微安表上将有指示,调节衰减器使微安表指示满刻度. 1.3 将金属板放在分度小平台上,小分度盘调至0°位置,此时金属板法线应与发射臂在同一直线上, 1.4 转动分度小平台,每转动一个角度后,再转动接收臂,使接收臂和发射臂处于金属板的同义词,并使接收指示最大,记下此时接收臂的角度. 1.5 由此,确定反射角,验证反射定律,实验中入射角在允许范围内任取8个数值,测量微波的反射角并记录. 2. 迈克尔孙干涉实验 2.1 将发射臂和接收臂分别置于90°位置,玻璃反射板置于分度小平台上并调在45°位置,将两块金属板分别作为可动反射镜和固定反射镜. 2.2两金属板法线分别在与发射臂接收臂一致,实验时,将可动金属板B 移动到导轨左端,从这里开始使金属板缓慢向右移动,依次记录微安表出现的的极大值时金属板在标尺上的位置. 2.3 若金属板移动距离为L,极大值出现的次数为n+1则,L )2 ( λn ,λ=2L/n 这便是微波的波长,再令金属板反向移动,重复上面操作,最后求出两次所得微波波长的平均值. 3. 单缝衍射实验 3.1 预先调整好单缝衍射板的宽度(70mm),该板固定在支座上,并一起放到分度小平台上,单缝衍射板要和发射喇叭保持垂直, 3.2 然后从衍射角0°开始,在单缝的两侧使衍射角每改变1°,读一次表头读数,并记录.

扬大工程光学课程设计20140412

工程光学课程设计 班级 学号 姓名 一、目的 了解光学系统外形尺寸计算在光学系统设计中的作用,学习和掌握外形尺寸计算的内容和一般方法。根据使用要求确定光学系统整体结构尺寸的设计过程称为光学系统的外形尺寸计算。光学系统的外形尺寸计算要确定的结构内容包括系统的组成、各光组元的焦距、各光组元的相对位置和横向尺寸。 外形尺寸计算基本要求: 第一,系统的孔径、视场、分辨率、出瞳直径和位置; 第二,几何尺寸,即光学系统的轴向和径向尺寸,整体结构的布局; 第三,成像质量、视场、孔径的权重。 二、要求 对题中所涉及的光学系统 ⑴按照工作原理正确作出光路图并能正确描述; ⑵完整叙述及列举计算的过程,步骤要详细不能省略中间中程; ⑶完成设计报告 三、内容 (一)只包括物镜和目镜的望远系统 计算一个镜筒长L=f1′+f2′=200+(学号最后两位)mm,放大率Γ= -24+(学号最后一位),视场角2ω=1°40′的刻普勒望远镜的外形尺寸。 1、求物镜和目镜的焦距;

图1只包括物镜和目镜的望远系统结构图 2、求物镜的通光孔径D1。可根据望远系统的有效放大率求出D1。 3、求出瞳直径D1’; 4、视场光阑的直径D3; 5、目镜的视场角2ω′; 6、求出瞳距lz′; 7、求目镜的口径D2; 8、目镜的视度调节(目镜相对视场光阑的移动量x); 9、选取物镜和目镜的结构。 (二)带有棱镜转像系统的望远镜 双筒棱镜望远镜设计,采用普罗I型棱镜转像,系统要求为: 1、望远镜的放大率Γ=8倍; 2、物镜的相对孔径D/f′=1:4(D为入瞳直径,D=30mm); 3、望远镜的视场角2ω=10°; 4、仪器总长度在110mm左右,视场边缘允许50%的渐晕; 5、棱镜最后一面到分划板的距离 14mm,棱镜采用K9玻璃,两棱镜间隔为2~5mm。 6、lz′=8~10mm 要求计算棱镜转像望远镜的各类尺寸

光学计算机辅助设计报告

光学设计辅助报告 姓名:张雨辰 学号:1011100139

光学计算机辅助设计报告 内容一:已知参数双胶合望远物镜的像质评价 1)像质评价的意义: 任何一个光学系统不管用于何处,其作用都是把目标发出的光按仪器工作原理的要求改变它们的传播方向和位置,送入仪器的接收器,从而获得目标的各种信息,包括目标的几何形状、能量强弱等。因此,对光学系统成像性能的要求主要有两个方面:第一方面是光学特性,包括焦距、物距、像距、放大率、入瞳位置、入瞳距离等;第二方面是成像质量,光学系统所成的像应该足够清晰,并且物像相似,变形要小。第一方面的内容即满足光学特性方面的要求属于应用光学的讨论范畴,第二方面的内容即满足成像质量方面的要求,则属于光学设计的研究内容。 从物理光学或波动光学的角度出发,光是波长在400~760nm的电磁波,光的传播是一个波动问题。一个理想的光学系统应能使一个点物发出的球面波通过光学系统后仍然是一个球面波,从而理想地聚交于一点。但是实际上任何一个实际光学系统都不可能理想成像。所谓像差就是光学系统所成的实际像与理想像之间的差异。由于一个光学系统不可能理想成像,因此就存在一个光学系统成像质量优劣的评价问题,从不同的角度出发会得出不同的像质评价指标。从物理光学出发,推导出几何像差等像质评价指标。有了像质评价的方法和指标,设计人员在设计阶段,即在制造出实际的光学系统之前就能预先确定其成像质量的优劣,光学设计的任务就是根据对光学系统的光学特性和成像质量两方面的要求来确定系统的结构参数。 2)像质评价的方法与Zemax实现: 对于像质评价有两个阶段:1 设计完成后,加工前,对成像情况进行模拟仿真;2 加工装配后,批量生产前,要严格检测实际成像效果。当前我们所作的工作就是对第一阶段进行实际讨论。对于像质评价的方法有两种:1 不考虑衍射:光路追迹法(点列图,像差曲线); 2 考虑衍射:绘制成像波面,光学传递函数等;有: 瑞利判断:几何像差曲线进行图形积分得到波像差; 中心点亮度(斯托列尔准则):成像衍射斑的中心亮度和不存在像差时衍射斑的中心亮度之比S.D来表示成像质量; 分辨率:反映光学系统分辨物体细节的能力,可以评价成像质量; 点列图:由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同

傅里叶光学实验报告

实验原理:(略) 实验仪器: 光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、小透镜 实验内容与数据分析 1.测小透镜的焦距f 1 (付里叶透镜f 2=45.0CM ) 光路:激光器→望远镜(倒置)(出射应是平行光)→小透镜→屏 操作及测量方法:打开氦氖激光器,在光具座上依次放上扩束镜,小透镜和光屏,调节各光学元件的相对位置是激光沿其主轴方向射入,将小透镜固定,调节光屏的前后位置,观察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。 112.1913.2011.67 12.3533 f cm ++= = 0.7780cm σ= = 1.320.5929 p A p t t cm μ=== 0.68P = 0.0210.00673 B p B p t k cm C μ?==?= 0.68P = 0.59cm μ== 0.68P = 1(12.350.59)f cm =± 0.68P =

2.利用弗朗和费衍射测光栅的的光栅常数 光路:激光器→光栅→屏(此光路满足远场近似) 在屏上会观察到间距相等的k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距,再根据sin d k θλ=测出光栅常数d (1)利用夫琅和费衍射测一维光栅常数; 衍射图样见原始数据; 数据列表: sin || i k Lk d x λλ θ= ≈ 取第一组数据进行分析: 2105 13 43.0910******* 4.00106.810d m ----????==?? 210 523 43.0910******* 3.871014.110d m ----????==?? 2105 33 43.0910******* 3.95106.910d m ----????==?? 210 543 43.0910******* 4.191013.010 d m ----????==?? 554.00 3.87 3.95 4.19 10 4.0025104 d m m --+++= ?=? 61.3610d m σ-=? 忽略b 类不确定度:

工程光学课程设计

工程光学课程设计 设计名称:工程光学课程设计 院系名称: 专业班级: 学生姓名: 学号: 指导教师: XXX教务处制 20 13 年12 月

工程光学课程设计评分表 最后成绩的以优(90~100)、良(80~89)、中(70~79)、及格(60~69)和不及格(少于60分)五级给出。

第1章引言 1.1 简单介绍 对于实际的光学系统来说,它的成像往往是非完善成像,对于怎样来判断一个光学系统的性能的优劣,是光学设计中遇到的一个重要问题.在当前计算机辅助科研、教学的迅猛发展过程中,计算机辅助光学系统设计已成为光学设计不可缺少的一种重要手段.其中,由美国焦点软件公司所发展出的光学设计ZEMAX,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是可以运算Sequential及Non-Sequential的软件.其主要特色有分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG等,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 但是,这里必须强调一点的是,ZEMAX软件只是一个光学设计辅助软件,也就是说,该软件不能教你怎么去进行光学设计,而只是能对你设计的光学系统进行性能的优化以达最佳成像质量所以,在应用本教程进行光学辅助设计之前,您最好先学习一下光学设计的有关知识:首先是几何光学基础,几何光学是光学设计的基础,要做光学设计必须懂得各种光学仪器成像原理,外形尺寸计算方法,了解各种典型光学系统的设计方法和设计过程.实际光学系统大多由球面和平面构成。记住共轴球面系统光轴截面内光路计算的三角公式,了解公式中各参数的几何意义是必要的,具体公式可参考有关光学书籍,在此就不一一介绍了。对于平面零件有平面反射镜和棱镜,它们的主要作用多为改变光路方向,使倒像成为正像,或把白光分解为各种波长的单色光.在光学系统中造成光能损失的原因有三点:透射面的反射损失、反射面的吸收损失和光学材料内部的吸收损失。其次是像差理论知识,对于一个光学系统,一般存在7种几何像差,他们分别是球差、彗差、像散、场曲、畸变和位置色差以及倍率色差.另外,还必须了解一点材料的选择和公差的分配方面的知识,以及一些光学工艺的知识,包括切割,粗磨,精磨,抛光和磨边,最后还有镀膜和胶合等。

课程名称现代光学设计方法-北京理工大学研究生院

课程名称:现代光学设计方法 一、课程编码:0400013 课内学时:32学分:2 二、适用专业:仪器科学与技术各专业,光学工程专业,物理电子学专业 三、先修课程:应用光学,物理光学,光学测量,光学工艺等。 四、教学目的: 通过本课程的学习,使研究生: 1、了解现代光学系统像质评价所采用的方法,了解几何像差、垂轴像差、波像差、点列图、包围圆能量、光学传递函数等常用像质评价指标的概念和特点,掌握用Zemax软件中相应功能的使用方法; 2、了解光学自动设计的原理,了解适应法和阻尼最小二乘法两种自动优化方法的原理和特点,掌握用Zemax软件中自动优化功能的使用方法; 3、了解公差分析与计算的原理,掌握常用光学系统公差分析与计算的方法,掌握用Zemax软件中公差分析计算功能的使用方法; 4、学习经典光学系统的设计方法,了解变焦距系统的原理和设计方法,掌握用Zemax 软件中相应功能设计光学系统的方法; 5、学习空间光学系统、红外光学系统、非球面光学系统等现代典型光学系统的特点和设计方法。 五、教学方式: 课堂讲授,材料自学与课堂讨论,穿插设计实例分析。 六、教学主要内容及对学生的要求: 1光学系统像质评价方法4学时 1.1光学系统的坐标系统、结构参数和特性参数 1.2检测阶段的像质评价指标——星点检验 1.3检测阶段的像质评价指标——分辨率测量 1.4几何像差的定义及其计算 1.5垂轴像差的概念及其计算 1.6几何像差计算程序ABR的输入数据与输出结果 1.7几何像差及垂轴像差的图形输出 1.8用波像差评价光学系统的成像质量 1.9光学传递函数 1.10点列图 1.11包围圆能量 2光学自动设计方法4学时 2.1阻尼最小二乘法光学自动设计程序 2.2光学自动设计的全局优化 2.3适应法光学自动设计程序 2.4典型光学设计软件介绍 3公差分析与计算4学时 3.1公差设计中的评价函数 3.2光学公差的概率关系 3.3公差设计中的随机模拟检验

光学设计报告

湖北第二师范学院《光学系统设计》 题目:望远镜的设计 姓名:刘琦 学号:1050730017 班级:10应用物理学

目录 望远系统设计............................................................................................... 第一部分:外形尺寸计算 .......................................................................... 第二部分:PW法求初始结构参数(双胶合物镜设计) ....................... 第三部分:目镜的设计 .............................................................................. 第四部分:像质评价 .................................................................................. 第五部分心得体会 ..................................................................................

望远镜设计 第一部分:外形尺寸计算 一、各类尺寸计算 1、计算'f o 和'f e 由技术要求有:1 '4 o D f = ,又30D mm =,所以'120o f mm =。 又放大率Γ=6倍,所以' '206o e f f mm ==。 2、计算D 出 30 3056 D D D mm =∴= = =Γ物出物 3、计算D 视场 2'2120416.7824o o D f tg tg mm ω==??=视场 4、计算'ω(目镜视场) ''45o tg tg ωωωΓ?=?≈ 5、计算棱镜通光口径D 棱 (将棱镜展开为平行平板,理论略) 该望远系统采用普罗I 型棱镜转像,普罗I 型棱镜如下图: 将普罗I 型棱镜展开,等效为两块平板,如下图:

光学课设报告

光学课设报告

燕山大学 光学系统设计课程 设计说明书 题目:基于Zemax的潜望镜的设计 学院(系): 年级专业:电子科学与技术 学号: 学生姓名: 指导教师: 共12页第2页

1.课程设计目的与意义 目的:让学生从书面理论知识,转接到实践解决具体的问题,理解潜望镜的设计原理,以及对即将继续深造考研的同学提前了解和熟悉光学设计的流程和相关应用软件的使用。 意义:纸上得来终觉浅,绝知此事要躬行,真理是实践出来的。课程设计教学是把理论和实践相互结合,如此可让学生真正理解所学学科之作用,激发学生向更深层次追求的动力,知行合一,教学才真正完整。 2.课程设计的内容简介 课程设计内容分为三个任务,第一个任务是设计单透镜并研究其球差特性,及优化双胶合结构的球差和轴向色差。第二个 共12页第3页

任务是人眼的几何光学仿真及远视校正。第三个任务就是潜望镜的设计。 3. 课程设计步骤 (1)熟悉和理解设计题目的要求。(2)熟悉如何使用ZEMAX软件。(3)掌握各种操作数的使用,以及分析窗口的使用。 (4)设计结构以及优化参数。 3.1潜望镜的设计 设计要求:EFL=200mm,前透镜到光阑的距离为90mm,光阑到后透镜的距离也为90mm。透镜材料为SF2,波长为0.55um。前后透镜厚度均为15mm,视场角分别设ο0、ο5.10、ο15。选择近轴工作F数为10(既数值孔径为20mm),物距800mm。 共12页第4页

共12页 第5页 图1.1 初始的LDE 表图 其中,曲径半径关系为面4“pick up ”面2值做-1值,面5“pick up ”面1做+1值跟随。厚度是STO 面对面2做+1值跟随。 此时打开3D Layout 如图: 图1.2 潜望镜的初始结构图 然后设置MFE 操作数,如图所示:

工程光学课程设计.

实习报告 实习名称:工程光学课程设计院系名称:电气与信息工程专业班级:测控12-1 学生姓名:张佳文 学号:20120461 指导教师:李静

黑龙江工程学院教务处制2014 年 2 月

工程光学课程设计任务书

目录 1摘要 ...................................................................... 错误!未定义书签。2物镜设计方案 . (1) 3物镜设计与相关参数 (2) 3.1物镜的数值孔径 (2) 3.2物镜的分辨率 (3) 3.3物镜的放大倍数 (4) 3.4物镜的鉴别能力 (4) 3.5设计要求参数确定 (4) 4 显微镜物镜光学系统仿真过程 (5) 4.1选择初始结构并设置参数 (5) 4.2自动优化 (5) 4.3物镜的光线像差(R AY A BERRATION)分析 (6) 4.4物镜的波像均方差(OPD)分析 (7) 4.5物镜的光学传递函数(MTF)分析 (8) 4.6物镜的几何点列图(Stop Diagrams)分析 (10) 4.7仿真参数分析 (11) 5心得体会 (11) 6参考文献 (12)

1摘要 ZEMAX是Focus Software 公司推出的一个综合性光学设计软件。这一软件集成了包括光学系统建模、光线追迹计算、像差分析、优化、公差分析等诸多功能,并通过直观的用户界面,为光学系统设计者提供了一个方便快捷的设计工具。十几年来,研发人员对软件不断开发和完善,每年都对软件进行更新,赋予ZEMAX更为强大的功能,因而被广泛用在透镜设计、照明、激光束传播、光纤和其他光学技术领域中。 ZEMAX采用序列和非序列两种模式模拟折射、反射、衍射的光线追迹。序列光线追迹主要用于传统的成像系统设计,如照相系统、望远系统、显微系统等。这一模式下,ZEMAX 以面作为对象来构建一个光学系统模型,每一表面的位置由它相对于前一表面的坐标来确定。光线从物平面开始,按照表面的先后顺序进行追迹,追迹速度很快。许多复杂的棱镜系统、照明系统、微反射镜、导光管、非成像系统或复杂形状的物体则需采用非序列模式来进行系统建模。这种模式下,ZEMAX以物体作为对象,光线按照物理规则,沿着自然可实现的路径进行追迹,可按任意顺序入射到任意一组物体上,也可以重复入射到同一物体上,直到被物体拦截。与序列模式相比,非序列光线追迹能够对光线传播进行更为细节的分析。但此模式下,由于分析的光线多,计算速度较慢。 ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,与其它软件不同的是ZEMAX 的CAD 转文件程序都是双向的,如IGES 、STEP 、SAT 等格式都可转入及转出。而且ZEMAX可仿真Sequential 和Non-Sequential 的成像系统和非成像系统。 ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户光学设计程界面中。而且工作界面简单,快捷,很方便的就能找到我们想哟实现的功能,ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。ZEMAX能够模拟连续和非连续成像系统及非成像系统。 2物镜设计方案 消色差物镜(Achromatic)是较常见的一种物镜,由若干组曲面半径不同的一正一负胶合透镜组成,只能矫正光谱线中红光和蓝光的轴向色差。同时校正了轴上点球差和近轴点慧差,这种物镜不能消除二级光谱,只校正黄、绿波区的球差、色差,未消除剩余色差和其他波区的球差、色差,并且像场弯曲仍很大,也就是说,只能得到视场中间范围清晰的像。使用时宜以黄绿光作照明光源,或在光程中插入黄绿色滤光片。此类物镜结构简单,经济实用,常和福根目镜、校正目镜配合使用,被广泛地应用在中、低倍显微镜上。在黑白照相时,可采用绿色滤色片减少残余的轴向色差,获得对比度好的相片。消色差通常由两个分离的双胶组合透镜组成,这类物镜也称为里斯特物镜,它的倍率一般在6×至30×

光学设计报告

光学设计课程报告 班级: 学号: 姓名: 日期:

目录 双胶合望远物镜的设计 (02) 摄远物镜的设计 (12) 对称式目镜的设计与双胶合物镜的配合 (20) 艾尔弗目镜的设计 (30) 低倍消色差物镜的设计 (38) 无限筒长的高倍显微物镜的设计 (47) 双高斯照相物镜的设计 (52) 反摄远物镜的设计 (62) 课程总结 (70)

双胶合望远物镜的设计 1、设计指标: 设计一个周视瞄准镜的双胶合望远物镜(加棱镜),技术要求如下:视放大率: 3.7?;出瞳直径:4mm ;出瞳距离:大于等于20mm ;全视场角:210w =?;物 镜焦距: ' =85f mm 物;棱镜折射率:n=(K9);棱镜展开长:31mm ;棱镜与物镜的 距离40mm ;孔径光阑为在物镜前35mm 。 2、初始结构计算 (1) 求 J h h z ,, 根据光学特性的要求4.728.142=== D h : 44.75tan 85tan ''=?=?=οωf y 0871 .0''==f h u 648.0'''==y u n J (2)计算平行玻璃板的像差和数 C S S S I I I I ,, 平行玻璃板入射光束的有关参数为 0871.0=u 0875.0)5tan(-=-=οz u 005 .1-=u u z 平行玻璃板本身的参数为 d=31mm ; n=; 1.64=ν 带入平行玻璃板的初级像差公式可得: 000665.01.51631-1.5163×0.0871×-3113 24 432-==--=I du n n S 0.0006682=(-1.005)×-0.000665=u u × =z I I I S S 000824.0087.05163.11.6415163.131122 22-=??-?-=--=I u n n d S C υ

光学课程设计大纲

《光学软件课程设计》教学大纲 适用专业:光电、通信工程、电子信息工程专业 (学分:1学分,学时:20学时) 一、课程的性质和任务 光学软件课程设计是在学习工程光学,光学等基础课程的基础上,基于光学软件进行光学系统的设计,让学生了解光学设计中的主要环节,掌握光学系统的设计、开发的基本方法,以便今后从事光学仪器的设计、研发工作。 通过光学软件课程设计,以求达到如下目的: 1)要求综合运用工程光学课程中所学到的理论知识,独立完成一个设计课题。 2)通过查阅手册和文献资料,培养学生独立分析和解决实际问题的能力。 3)培养学生严肃认真的工作作风和严谨的科学态度。 二、课程的教学内容 题目1:双高斯物镜的优化设计 设计一组双高斯物镜镜头,镜头的技术指标要求如下: 1、焦距:f’=40mm; 2、相对孔径D/f’不小于1/2 ; 3、视场 5、在可见光波段设计(取d、F、C三种色光,d为主波长); 6、成像质量,MTF 轴上>35% @100 lp/mm,轴外0.707 >25%@100 lp/mm。 7、校正球差、色差、场曲、像散。 在满足前面要求的前提下,尽可能减少镜头的片数,在相同的结构情况下,MTF值越高越好。 题目2:摄影物镜的优化设计 镜头的技术指标要求如下 1、焦距:f’=12mm; 2、相对孔径D/f’不小于1/2.8; 3、图像传感器为1/2.5英寸的CCD,成像面大小为4.29mm×5.76mm; 4、后工作距>6mm

5、在可见光波段设计(取d、F、C三种色光,d为主波长); 6、成像质量,MTF 轴上>40% @100 lp/mm,轴外0.707 >35%@100 lp/mm。 7、最大畸变<1% 在满足前面要求的前提下,尽可能减少镜头的片数,在相同的结构情况下,MTF值越高越好。 三、课程的教学基本要求 1)要独立完成设计任务,通过课程设计,锻炼自己综合运用所学知识的能力,并 初步掌握镜头优化设计的方法和步骤。 2)学会查阅资料和手册,根据我们的设计目标,选择合适的初始结构。 3)ZEMAX是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、 分析、公差以及报表集中在一起,学生可以运用是ZEMAX进行镜头的优化设计,并对设计的镜头系统进行像质评价。 4)学会进行镜头优化设计及像差分析,并得出像质评价报告。 5)能够写出完整的课程设计总结报告。 四、课程的学时分配 教学内容进度 布置任务,仿真软件介绍第一周 学习ZEMAX像差控制和优化方法第一周 查询资料,确定初始结构,并进行优化设计第二周 验收设计结果第三周 验收课程设计报告第四周 五、实践性教学环节(含实验、设计、实习等)的内容安排及要求 (1)设计报告需包含:设计要求、初始结构选择与分析、像差校正、评价函数的设置、优化方法的选择、像差结果分析与评价报告、总结与体会、参考文献和辅助软件。 ①说明设计题目及要求。 ②对题目进行剖析并选择合适的初始结构。 ③对初始结构的像差结果进行分析,与我们设计目标进行比较。 ④根据选择的初始结构,进行像差控制和优化设计 ⑤对设计优化结果给出像质评价报告并与我们的设计目标进行比较。 ⑥写出自己在仿真的过程中遇到的问题、如何排除故障以及仿真结果。

现代光学设计作业

现代光学设计——结课总结 光学工程一班陈江坤 学号2120100556

一、掌握采用常用评价指标评价光学系统成像质量的方法,对几何像差和垂轴像差进行分类和总结。 像质评价方法 一、几何像差曲线 1、球差曲线: 球差曲线纵坐标是孔径,横坐标是球差(色球差),使用这个曲线图,一要注意球 差的大小,二要注意曲线的形状特别是代表几种色光的几条曲线之间的分开程度,如果单 根曲线还可以,但是曲线间距离很大,说明系统的位置色差很严重。 2、轴外细光束像差曲线 这一般是由两个曲线图构成。图中左边的是像散场曲曲线,右边的是畸变,不同颜色 表示不同色光,T和S分别表示子午和弧矢量,同色的T和S间的距离表示像散的大小,纵坐标为视场,左图横坐标是场曲,右图是畸变的百分比值,左图中几种不同色曲线间距 是放大色差值。

3、横向特性曲线(子午垂轴像差曲线): 不同视场的子午垂轴像差曲线,纵坐标EY代表像差大小,横坐标PY代表入瞳大小,每一条曲线代表一个视场的子午光束在像面上的聚交情况。理想的成像效果应当是曲线和横轴重合,所有孔径的光线对都在一点成像。纵坐标上对应的区间就是子午光束在理想像面上的最大弥散斑范围。这个数值和点列图中的GEO尺寸一致,GEO尺寸就是横向特性曲线中该视场三个光波中弥散最大的那个半径。其中主光线用于描述单色像差情况;三个波长曲线用于描述垂轴色差情况。横向像差特性曲线图表示了视场角由小到大时垂轴像差曲线的变化,从中可以看出子午垂轴像差随视场变化规律。子午垂轴像差曲线的形状当然是子午像差:细光束子午场曲、子午球差和子午彗差决定的,因此曲线形状和像差数量的对应关系经常在像差校正中用到。根据像差曲线可以判断出要改善系统的成像质量,就必须改变曲线的形状和位置,即改变三种子午像差的数量。 将子午光线对a、b作连线,该连线的斜率m = (Ya-Yb)/2h 与宽光束子午场曲X’T 成正比。口径改变时,连线斜率变化表示宽光束子午场曲也随着变化。当口径减小趋于0时,连线成了坐标原点(对应主光线)的切线,切线的斜率和细光束子午场曲x’t相对应。子午光线对连线的斜率与原点切线斜率之间的差和子午球差(X’T –x’t)成正比,两个斜率夹角越大,子午球差越大。即:宽光束子午场曲与细光束子午场曲的差和子午球差成正比。当宽光束子午场曲与细光束子午场曲的符号由同号变成异号时表明子午球差加大。子午光线对连线和纵坐标交点的高度等于(Ya +Yb)/2,是子午彗差K’T。不同波长子午光线对连线和纵坐标交点之差表示两种不同波长光之间的“色彗差”。彗差是与孔径和视场都有关的一个像差,主要反映了经过光学系统后与主光线原对称的光线对不再与主光线对称的情形,能量上反映了对于中心点的不对称,也就是“彗尾现象”。 至于色差情况,三个波长的横向特性曲线差值就反映了轴外点垂轴色差的情况。横向特性曲线充分反映了轴外像点的成像质量和随入瞳孔径、视场大小的变化规律。在光学设计过程中,我们需要仔细的分析这些像差中那一个占据主要地位以及采取相应的措施,达到像差校正和像差平衡的目的。 弧矢像差的分析方法与子午像差分析方法相同。 对应轴上点,只有两种像差需要分析,即:轴向球差和轴向色差。“轴上点像差特性曲线(longitudinal aberration)”,通过对于轴上点球差、轴向色差的描述,综合的反映了轴上点成像质量;“场曲和畸变特性曲线”,描述了系统的子午场曲、弧矢场曲、色散、畸变等像差参数;“横向色差特性曲线”,描述了系统垂轴色差随着视场变化的规律。 二、点列图 由一点发出的许多光线经光学系统后,因像差使其与像面的交点不再集中于同一点,而形成了一个散布在一定范围的弥散图形,称为点列图。,点列图是在现代光学设计中最常用的评价方法之一。

光学课程设计报告

光学课程设计报告 姓名: 班级: 学号:

一.设计目的 (1)重点掌握设计光学系统的思路。初步掌握简单的、典型的系统设计的基本技能,熟练掌握光线光路计算技能,了解并熟悉光学设计中所有例行工作,如数据结果处理、像差曲线绘制、光学零件技术要求等。 (2)在熟练掌握基本理论知识的基础上,通过上机实训,锻炼自己的动手能力。在摸索的过程中,进一步培养优化数据的能力和理论联系实际的能力。 (3)巩固和消化应用光学和本课程中所学的知识,牢固掌握典型光学系统的特点,并初步接触以后可能用到的光学系统,为学习专业课打下好的基础。 二.设计题目 双筒棱镜望远镜设计(望远镜的物镜和目镜的选型和设计) 三.技术要求 双筒棱镜望远镜设计,采用普罗I 型棱镜转像,系统要求为: (1)望远镜的放大率Γ=6 倍; (2)物镜的相对孔径D/f′=1:4(D 为入瞳直径,D=30mm); (3)望远镜的视场角2ω=8°; (4)仪器总长度在110mm 左右,视场边缘允许50%的渐晕; (5)棱镜最后一面到分划板的距离>=14mm,棱镜采用K9 玻璃,两棱 镜间隔为2~5mm; (6)lz′=8~10mm。

七.上机结果 1.物镜 (1)优化前数据 程序注释: 设计时间:2013年4月10日星期三 08:59:50 下午 -------输入数据-------- 1.初始参数 物距半视场角(°) 入瞳半径 0 4 15 系统面数色光数实际入瞳上光渐晕下光渐晕 7 3 0 1 -1 理想面焦距理想面距离 0 0 面序号半径厚度玻璃 STO 84.5460 5.741 1 2 -44.9920 2.652 K9 3 -134.9690 56.800 F5 4 0.0000 33.500 1 5 0.0000 4.000 K9 6 0.0000 33.500 1 7 0.0000 12.630 K9 ☆定义了下列玻璃:

华中科技大学光学课程设计报告

光学课程设计报告 姓名:罗风光 学号:U201013534 班级:光电1005

一、课程设计要求 (3) 二、设计步骤 (3) 1. 外形尺寸计算 (3) 2. 选型 (5) 3. 物镜设计 (5) (1)初始结构计算 (5) i. 求h、hz、J (5) ii. 平板的像差 (5) iii. 物镜像差要求 (6) ?求P、W (6) ?归一化处理 (6) ?选玻璃 (7) ?求Q (7) ?求归一化条件下透镜各面的曲率及曲率半径 (7) ?玻璃厚度 (8) (2)像差容限计算 (8) (3)像差校正 (9) (4)物镜像差曲线 (11) 4. 目镜设计 (12) (1)初始结构计算 (12) i. 确定接眼镜结构 (12) ii. 确定场镜结构 (14) (2)像差容限计算 (15) (3)像差校正 (16) 三、光瞳衔接 (19) 四、像差评价 (20) 五、总体评价 (20) 六、零件图、系统图 (20) 七、设计体会 (23) 八、参考资料 (24)

一、 课程设计要求 设计要求:双筒棱镜望远镜设计,采用普罗I 型棱镜转像。 1、望远镜的放大率Γ=6倍; 2、物镜的相对孔径D/f ′=1:4(D 为入瞳直径,D =30mm ); 3、望远镜的视场角2ω=8°; 4、仪器总长度在110mm 左右,视场边缘允许50%的渐晕; 5、棱镜最后一面到分划板的距离>=14mm ,棱镜采用K9玻璃,两棱镜间隔为2~5mm 。 6、l z ′>8~10mm 二、 设计步骤 1. 外形尺寸计算 物镜焦距' 14120f D mm =?= 出瞳直径' 5D D mm = =Γ 目镜焦距'' 12120206 f f mm ===Γ 分划板直径' 21216.7824D f tg mm =ω= 分划板半径2 8.39122 D = 由设计要求:视场边缘允许50%的渐晕,可利用分划板拦去透镜下部25%的光,利用平板拦去透镜上部的25%的光,这样仅有透镜中间的50%的光能通过望远系统。 7.51208.39127.5120 h a --= -

光学系统设计

光学系统设计报告 一.设计要求: 1.物镜的有效焦距f=4mm; 2.光谱范围:400nm-700nm,其中要求400nm,550nm,650nm复消色差; 3.放大倍率-40; 4.物方数值孔径NA=0.65; 5.工作距离不小于0.6mm; 6.后焦距146mm。 二.设计过程: 由于像方焦距设计起来会相对容易,因此把物镜倒过来进行设计,此时物方焦距变成了新光路的像方焦距。倒过来设计以后,系统的相关参数也相应变化,物镜的放大倍率变为-0.025,物方数值孔径变为0.01625,镜组的第一个面到物平面的距离为146mm。 通过网络及相关教材,我找到类似的结构,初始设计参数如下 系统2D结构图: (最右侧的镜片是盖玻片) 仿真结果:

传递函数图(FFT MTF) 色焦移曲线(Focal Shift)

相差图(Ray Fan) 点列图(Spot Diagram)System/Prescription Data File : E:\光学系统设计\光学系统设计.ZMX Title: Lens has no title.

Date : MON DEC 3 2012 LENS NOTES: GENERAL LENS DA TA: Surfaces : 12 Stop : 7 System Aperture : Object Space NA = 0.01625 Glass Catalogs : CHINA Ray Aiming : Off Apodization : Uniform, factor = 0.00000E+000 Effective Focal Length : 3.854214 (in air at system temperature and pressure) Effective Focal Length : 3.854214 (in image space) Back Focal Length : -0.182259 Total Track : 18.25 Image Space F/# : 0.7451534 Paraxial Working F/# : 0.7726446 Working F/# : 0.7759774 Image Space NA : 0.5432923 Object Space NA : 0.01625 Stop Radius : 1.756853 Paraxial Image Height : 0.02511427 Paraxial Magnification : -0.02511427 Entrance Pupil Diameter : 5.172376 Entrance Pupil Position : 13.12902 Exit Pupil Diameter : 3.520975 Exit Pupil Position : -2.805925 Field Type : Object height in Millimeters Maximum Field : 1 Primary Wave : 0.55 Lens Units : Millimeters Angular Magnification : 1.469018 Fields : 3 Field Type: Object height in Millimeters # X-Value Y-Value Weight 1 0.000000 0.000000 1.000000 2 0.000000 1.000000 1.000000 3 0.000000 1.000000 1.000000 Vignetting Factors # VDX VDY VCX VCY VAN 1 0.000000 0.000000 0.000000 0.000000 0.000000 2 0.000000 0.000000 0.000000 0.000000 0.000000

浙江大学物理光学实验报告

本科实验报告 课程名称:姓名:系:专业:学号:指导教师: 物理光学实验郭天翱 光电信息工程学系信息工程(光电系) 3100101228 蒋凌颖 2012年1 月7日 实验报告 实验名称:夫琅和弗衍射光强分布记录实验类型:_________ 课程名称:__物理光学实验_指导老师:_蒋凌颖__成绩: 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得 一、实验目的和要求 1.掌握单缝和多缝的夫琅和费衍射光路的布置和光强分布特点。 2.掌握一种测量单缝宽度的方法。 3.了解光强分布自动记录的方法。 二、实验内容 一束单色平面光波垂直入射到单狭缝平面上,在其后透镜焦平面上得到单狭缝的夫琅禾费衍射花样,其光强分布为: i?i0( 装 式中 sin? ? ) 2 (1) 订 ?? 线 ??sin?? (2) ?为单缝宽度,?为入射光波长,?为考察点相应的衍射角。i0为衍射场中心点(??0处)的光强。如图一所示。 由(1)式可见,随着?的增大,i有一系列极大值和极小值。极小值条件 asin??n?(n?1,n?2) (3) 是: 如果测得某一级极值的位置,即可求得单缝的宽度。 如果将上述单缝换成若干宽度相等,等距平行排列的单缝组合——多缝,则透镜焦面上得到的多缝夫琅禾费衍射花样,其光强分布: n? sin?2 )2 i?i0()( ?

2 (4) sin 式中 ?? sin??2???dsin? ? ?? (5) ?为单缝宽度,d为相邻单缝间的间距,n为被照明的单缝数,?为考察点相应的衍射角;i0为衍射中心点(??0处)的光强。 n? )2 (sin?2() 2称?为单缝衍射因子,为多缝干涉因子。前者决定了衍射花 sin (干涉)极大的条件是dsin??m?(m?0,?1,?2......)。 dsin??(m? m )?(m?0,?1,?2......;m?1,2,.......,n?1)n 样主极大的相对强度,后者决定了主极大的位置。 (干涉)极小的条件是 当某一考虑点的衍射角满足干涉主极大条件而同时又满足单缝衍射极小值条件,该点的光强度实际为0/,主极大并不出现,称该机主极大缺级。显然当d/??m/n为整数时,相应的m 级主极大为缺级。 不难理解,在每个相邻干涉主极大之间有n-1个干涉极小;两个相邻干涉极小之间有一个干涉次级大,而两个相邻干涉主级之间共有n-2个次级大。 三、主要仪器设备 激光器、扩束镜、准直镜、衍射屏、会聚镜、光电接收扫描器、自动平衡记录仪。 四、操作方法和实验步骤 1.调整实验系统 (1)按上图所示安排系统。 (2)开启激光器电源,调整光学元件等高同轴,光斑均匀,亮度合适。(3)选择衍射板中的任一图形,使产生衍射花样,在白屏上清晰显示。 (4)将ccd的输出视频电缆接入电脑主机视频输出端,将白屏更换为焦距为100mm的透镜。 (5)调整透镜位置,使衍射光强能完全进入ccd。 (6)开启电脑电源,点击“光强分布测定仪分析系统”便进入本软件的主界面,进入系统的主界面后,点击“视频卡”下的“连接视频卡”项,打开一个实时采集窗口,调整透镜与ccd的距离,使电脑显示屏能清晰显示衍射图样,并调整起偏/检偏器件组,使光强达到适当的强度,将采集的图像保存为bmp、jpg两种格式的图片。 2.测量单缝夫琅和费衍射的光强分布(1)选定一条单狭缝作为衍射元件(2)运用光强分布智能分析软件在屏幕上显示衍射图像,并绘制出光强分布曲线。 (3)对实验曲线进行测量,计算狭缝的宽度。 3.观察衍射图样 将衍射板上的图形一次移入光路,观察光强分布的水平、垂直坐标图或三维图形。

相关主题
文本预览
相关文档 最新文档