当前位置:文档之家› 高考数学复习专题 平面向量的概念及其线性运算

高考数学复习专题 平面向量的概念及其线性运算

高考数学复习专题  平面向量的概念及其线性运算
高考数学复习专题  平面向量的概念及其线性运算

高考数学复习专题平面向量的概念及其线性运算

1.平面向量的实际背景及基本概念

(1)了解向量的实际背景.

(2)理解平面向量的概念,理解两个向量相等的含义.

(3)理解向量的几何表示.

2.向量的线性运算

(1)掌握向量加法、减法的运算,并理解其几何意义.

(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.

(3)了解向量线性运算的性质及其几何意义.

一、平面向量的相关概念

AB

|

二、向量的线性运算

1.向量的加法、减法、数乘运算及其几何意义、运算律

2.共线向量定理

向量a (a ≠0)与b 共线,当且仅当有唯一的一个实数λ,使得λ=b a . 【注】限定a ≠0的目的是保证实数λ的存在性和唯一性.

考点突破一 平面向量的基本概念

解决向量的概念问题应关注以下七点:

(1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即平行向量,它们均与起点无关.

(4)相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量. (5)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈. (6)非零向量a 与

||a a 的关系:||

a a 是a 方向上的单位向量. (7)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小. 典例1 下列命题正确的是 A .单位向量都相等

B .模为0的向量与任意向量共线

C .平行向量不一定是共线向量

D .任一向量与它的相反向量不相等

【答案】B

1.给出下列四个命题: ,则=a b ;

②若,,,A B C D 是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件; ③若=a b ,=b c ,则=a c ; ④=a b 的充要条件是且∥a b . 其中正确命题的序号是 A .①② B .②③ C .③④

D .②④

考点突破二 向量的线性运算

平面向量线性运算问题的求解策略:

(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.

(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.

(3)用几个基本向量表示某个向量问题的基本技巧: ①观察各向量的位置; ②寻找相应的三角形或多边形; ③运用法则找关系; ④化简结果.

典例2 若A 、B 、C 、D 是平面内任意四点,给出下列式子:

①AB CD BC DA +=+,②AC BD BC AD +=+,③AC BD DC AB -=+. 其中正确的有 A .3个 B .2个 C .1个

D .0个

【答案】B

【解析】①AB CD BC DA +=+的等价式是AB DA -=BC -CD ,左边=AB +AD ,右边=BC +DC ,不一定相等;

②AC BD BC AD +=+的等价式是AC -AD =BC -BD ,左边=右边=DC ,故正确; ③AC BD DC AB -=+的等价式是AC AB -=BD +DC ,左边=右边=BC ,故正确. 所以正确的有2个,故选B .

【名师点睛】熟练掌握向量的线性运算法则是解题的关键.

2.如图,在直角梯形

中,

,为

边上一点,

,为

的中点,则

A .

B .

C .

D .

典例3 如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则

λ=____________.

【答案】2

【解析】由平行四边形法则,得2AB AD AC AO +==,故λ=2.

3.已知ABC △中,D 为边BC 上靠近B 点的三等分点,连接AD ,E 为线段AD 的中点,若

CE mAB nAC =+,则m n +=

A .1

3-

B .12

- C .1

4

-

D .

12

考点突破三 共线向量定理的应用

共线向量定理的主要应用:

(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB AC λ=,则A ,B ,C 三点共线. 【注】证明三点共线时,需说明共线的两向量有公共点.学-科网

(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.

典例4 已知两个非零向量a 与b 不共线. (1)若

=a +b ,

=2a +8b ,

=3(a ?b ),求证:A ,B ,D 三点共线;

(2)试确定实数k ,使k a +b 和a +k b 共线. 【答案】(1)证明见解析;(2)k =1或?1. 【解析】(1)∵=a +b ,

=2a +8b ,

=3(a ?b ),

∴+=2a +8b +3(a ?b )=5(a +b )=5

,

,

共线,

又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线, ∴存在实数λ,使得k a +b =λ(a +k b ), ∴(k?λ)a =(λk?1)b .

∵a ,b 是两个不共线的非零向量, ∴k?λ=λk?1=0,

∴k 2

?1=0,

∴k =1或?1.

【名师点睛】利用向量证明三点共线时,一般是把问题转化为证明过同一点的两条有向线段所在的向量共线.对于第(2)问,解决此类问题的关键在于利用向量共线的条件得出k a +b =λ(a +k b ),再利用对应系数相等这一条件,列出方程组,解出参数.

4.已知O 为ABC △内一点,且()

1

2

AO OB OC =

+,AD t AC =,若B ,O ,D 三点共线,则t 的值为 A .

1

4 B .1

3

C .1

2

D .2

3

1.下列说法正确的是

A .向量A

B 与向量CD 是共线向量,则点,,,A B

C

D 必在同一条直线上

B .两个有共同终点的向量,一定是共线向量

C .长度相等的向量叫做相等向量

D .两个有共同起点而且相等的向量,其终点必相同

2.已知O 是正六边形ABCDEF 的中心,则与向量OA 平行的向量为 A .AB AC +

B .AB B

C C

D ++ C .AB AF CD ++

D .AB CD D

E ++

3.设D 为△ABC 所在平面内一点,4BC CD =,则

A .1433AD A

B A

C =-

+ B .1544AD AB AC =-+ C .1455AD AB AC =+ D .41

33

AD AB AC =-

4.已知,a b 为两非零向量,若+=-a b a b ,则a 与b 的夹角的大小是 A .90 B .60

C .45

D .30

5.已知非零向量,a b ,且2,56,72AB BC CD =+=-+=-a b a b a b ,则一定共线的三点是 A .A 、B 、D B .A 、B 、C C .B 、C 、D

D .A 、C 、D

6.如图,O 在ABC △的内部,D 为AB 的中点,且2OA OB OC ++=0,则ABC △的面积与AOC △的面积的比值为

A .3

B .4

C .5

D .6

7.已知a ,b 为平面向量,若+a b 与a 的夹角为π3,+a b 与b 的夹角为π

4

,则=a b

A B

C D 8.在ABC △中,点P 满足2BP PC =,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若

AM mAB =,(0,0)AN nAC m n =>>,则2m n +的最小值为

A .3

B .4

C .

8

3

D .

103

9.已知正方形ABCD 的边长为1,设AB =a ,BC =b ,AC =c ,则-+=a b c _______.

10.设a ,b 是不共线的两个非零向量,若12OA k =+a b ,45OB =+a b ,10OC k =-+a b ,且点A ,

B ,

C 在同一直线上,则k =__________.

1.(2018年高考新课标Ⅰ卷文科)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =

A .

31

44AB AC - B .

13

44AB AC - C .31

44

AB AC +

D .13

44

AB AC +

2.(2017年高考新课标Ⅱ卷文科)设非零向量a ,b 满足+=-a b a b ,则 A .a ⊥b B .=a b C .a ∥b

D .>a b

1.【答案】B

,即,a b 的模的大小相等,但方向不一定相同,故两个向量不一定相等,故①错误; ②若,,,A B C D 是不共线的四点,则AB DC AB CD =?∥且AB CD =?四边形ABCD 为平行四边形,故②正确;

③若=a b ,则,a b 的模的大小相等,方向相同,若=b c ,则,b c 的模的大小相等,方向相同,故,a c

的模的大小相等,方向相同,即=a c ,故③正确; ④=a b 的充要条件是且,a b 同向,故④错误. 故正确命题的序号是②③,故选B. 2.【答案】D

【解析】由题意得,

那么

【名师点睛】高考对向量加法、减法运算的考查,重在对加法法则、减法法则的理解,要特别注意首尾顺次相接的若干向量的和为0的情况.一般将向量放在具体的几何图形中,常见的有三角形、四边形(平行四边形、矩形、菱形、梯形)、正六边形等.

在解决这类问题时,要注意向量加法、减法和共线(相等)向量的应用.当运用三角形加法法则时,要注意两个向量首尾顺次相接,当两个向量共起点时,可以考虑用减法. 3.【答案】B

【解析】如图,ABC △中,D 为边BC 上靠近B 点的三等分点,E 为线段AD 的中点,则

CB AB AC =-,222

333

CD CB AB AC ==-,

()

111115

233236

CE CD CA AB AC AC AB AC =+=--=-,

CE mAB nAC

=+,15,36m n ∴==-,12

m n ∴+=-. 故选B .

【名师点睛】本题考查了平面向量的线性运算的应用,考查了学生的推理与运算能力.解本题时,根据题意画出图形,结合图形利用平面向量的线性运算的三角形法则和平行四边形法则,用AB 、AC 表示CE ,求出,m n 的值即可.

【名师点睛】利用平面向量判定三点共线往往有以下两种方法: ①,,A B C 三点共线AB AC λ?=;

②O 为平面上任一点,,,A B C 三点共线OA OB OC λμ?=+,且1λμ+=.

1.【答案】D

【解析】对于A ,若向量AB 与向量CD 是共线向量,则AB CD ∥或点A B C D ,,,在同一条直线上,故A 错误;

对于B ,共线向量是指方向相同或相反的向量,两个有共同终点的向量,其方向可能既不相同又不相反,故B 错误;

对于C ,长度相等的向量不一定是相等向量,还需要方向相同,故C 错误;

对于D ,相等向量是大小相等、方向相同的向量,故两个有共同起点而且相等的向量,其终点必相同,故D 正确. 故选D .

【名师点睛】本题考查向量的基本定义,关键是理解向量有关概念的定义.解题时,根据题意,结合向量的定义依次分析四个命题,综合即可得答案. 2.【答案】B

【解析】因为22AB BC CD AD AO OA ++===-,

故选B .

【名师点睛】该题考查的是有关向量共线的条件,在正六边形中,首先利用向量的加法运算法则,结合向量共线的条件,对选项逐个分析,求得正确结果. 3.【答案】B

【解析】()

5515

4444

AD AB BD AB BC AB AC AB AB AC =+=+=+-=-+,故选B . 4.【答案】A

【解析】因为+=-a b a b ,即所围成的平行四边形的对角线长度相等,所以该平行四边形为正方形或长方形,由此可得,a b 的夹角为90°,故选A .

【名师点睛】根据向量的加减法则,结合几何图象特征即可. 5.【答案】A

【解析】由向量的加法法则可得5672BD BC CD =+=-++-a b a b 242AB =+=a b , 所以AB 与BD 共线,又两线段过同点B ,所以,,A B D 三点一定共线.故选A .

【名师点睛】本题考查平面向量共线定理的应用,向量的加法法则,考查利用向量的共线来证明三点共线,意在考查灵活运用所学知识解决问题的能力.解本题时,由向量加法的“三角形”法则,可得

2BD AB =,从而可得结果.

6.【答案】B

【解析】∵D 为AB 的中点,∴2OA OB OD +=,∵2OA OB OC ++=0,∴OC OD =-,∴O 是CD 的中点,∴S △AOC =S △AOD =

12S △AOB =1

4

S △ABC .故选B . 【名师点睛】本题考查了平面向量的几何运算,属于中档题.解决向量小题的常用方法有:数形结合,向量的三角形法则、平行四边形法则等;建系将向量坐标化;向量基底化,选基底时一般选择已知大小

和方向的向量为基底.解决本题时,根据平面向量的几何运算可知O 为CD 的中点,从而得出答案. 7.【答案】D

【解析】如图所示:

在平行四边形ABCD 中,,,AB AD AC ===+a b a b ,ππ,34

BAC DAC ∠=

∠=, 在ABC △

中,由正弦定理可得,

πsin

4πsin 3===a b D . 【名师点睛】本题主要考查平面向量的运算法则、几何意义以及正弦定理在解三角形中的应用,属于中档题. 8.【答案】A

【解析】如图,

()

21212,33333AP AB BP AB AC AB AB AC AM AN m n

=+=+

-=+=+ ,,M P N 三点共线,121,,3332

n

m m n n ∴+=∴=-

则()()2

2

25232326333322323232

n n n n n m n n n n n -+-+-+=+==--- ()()21525

3223,332333n n ??=

-++≥?+=??

-????

当且仅当()()13232n n -=-,即1m n ==时等号成立. 故选A .

【名师点睛】考查向量减法的几何意义,共线向量基本定理,以及基本不等式的应用,属中档题.解本题时,用AM ,AN 表示出AP ,根据三点共线得出,m n 的关系,最后利用基本不等式得出2m n +的最小值.

高考数学平面向量专题卷(附答案)

高考数学平面向量专题卷(附答案) 一、单选题(共10题;共20分) 1.已知向量,则=() A. B. C. 4 D. 5 2.若向量,,若,则 A. B. 12 C. D. 3 3.已知平面向量,,且,则=() A. B. C. D. 4.已知平面向量、,满足,若,则向量、的夹角为() A. B. C. D. 5.在中,的中点为,的中点为,则() A. B. C. D. 6.已知平面向量不共线,且,,记与的夹角是,则最大时, () A. B. C. D. 7.在中,,AD是BC边上的高,则等于() A. 0 B. C. 2 D. 1 8.已知,则的取值范围是() A. [0,1] B. C. [1,2] D. [0,2] 9.已知向量,的夹角为,且,则的最小值为() A. B. C. 5 D. 10.已知椭圆:上的三点,,,斜率为负数的直线与轴交于,若原点是的重心,且与的面积之比为,则直线的斜率为()

A. B. C. D. 二、填空题(共8题;共8分) 11.在平面直角坐标系xOy中,已知A(0,﹣1),B(﹣3,﹣4)两点,若点C在∠AOB的平分线上,且 ,则点C的坐标是________. 12.已知单位圆上两点满足,点是单位圆上的动点,且,则 的取值范围为________. 13.已知正方形的边长为1,,,,则________. 14.在平面直角坐标系中,设是函数()的图象上任意一点,过点向直线 和轴作垂线,垂足分别是,,则________. 15.已知为锐角三角形,满足,外接圆的圆心为,半径为1,则的取值范围是________. 16.设是边长为的正六边形的边上的任意一点,长度为的线段是该正六边形外接圆的一条动弦,则的取值范围为________. 17.设的外接圆的圆心为,半径为2,且满足,则 的最小值为________. 18.如图,在中,,点,分别为的中点,若,,则 ________. 三、解答题(共6题;共60分) 19.的内角,,所对的边分别为,,.向量与平行.(Ⅰ)求; (Ⅱ)若,求的面积. 20.在平面直角坐标系中,曲线的参数方程为(为参数),已知点,点是曲线上任意一点,点为的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

高考数学三角函数与平面向量复习精选

高考数学三角函数与平面向量复习 三角函数、平面向量是高中数学两个有机结合的部分,它们既是高考必考内容又是十分有用的解题工具. 学好这部分内容,除了要较好的把握知识体系之外,更要把握有关题型、易错点. 一、三角函数问题 1.三角函数的图像和性质 (1)具体要求: ①了解任意角的概念和弧度制,能进行弧度与角度的互化; ②借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; ③借助单位圆中的三角函数线推导出诱导公式(2π ±α,π±α的正弦、余弦、正切),能画出 y=sinx ,y=cosx ,y=tanx 图像,了解三角函数的周期性; ④借助图像理解正弦函数、余弦函数在[0,2π],正切函数在(-2π,2π )上的性质(如单调性、最大 和最小值、图象与轴交点等); ⑤理解同角三角函数的基本关系式: sin 2x+cos 2 x=1,x x cos sin =tanx. ⑥结合具体实例,了解y=Asin(ωx+?)的实际意义;能借助计算器或计算机画出y=Asin(ωx+?)的图 像,观察参数A ,ω,?对函数图像变化的影响; ⑦会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型. (2)题型示例:这里的问题主要是三角函数的图像和性质及其应用,与向量进行综合命题是近年来的发展趋势. 例1.已知函数f (x)= Asin(ωx+?)( A >0,ω>0,∣?∣<2π )的图像在y 轴上的截距为1,它在y 轴右侧的第一个最大值点和最小值点分别为(x 0,2),( x 0+3π,-2). (1)求f (x)的解析式; (2)用五点作图法画出函数f (x)在长度为一个闭区间上的简图; (3)写出函数f (x)的单调区间;

2019高考数学真题汇编平面向量

考点1 平面向量的概念及其线性运算 1.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹 角,则m =( ) A .-2 B .-1 C . 1 D .2 2. 在下列向量组中,能够把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3) 考点2 平面向量基本定理及向量坐标运算 3.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 D.152 4.设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________. 考点3 平面向量的数量积及应用 5.已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=___. 6.设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=___. 7.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的 夹角为β,则cos β=________. 8.若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=______. 9.设向量a ,b 满足|a +b |=10,|a -b |=6,则=______. 10.在△ABC 中,已知AB →·AC →=tan A ,当A =π6 时,△ABC 的面积为______. 考点4 单元综合 11.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足 |CD →|=1,则|OA →+OB →+OD →|的最大值是________. 练习: 1.已知A ,B ,C 是圆O 上的三点,若1()2 AO AB AC =+,则AB 与AC 的夹角为 .

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

高三数学精准培优专题练习8:平面向量

培优点八 平面向量 1.代数法 例1:已知向量a ,b 满足=3a ,b 且()⊥+a a b ,则b 在a 方向上的投影为( ) A .3 B .3- C . D 【答案】C 【解析】考虑b 在a 上的投影为 ?a b b ,所以只需求出a ,b 即可. 由()⊥+a a b 可得:()2 0?+=+?=a a b a a b , 所以9?=-a b .进而?==a b b .故选C . 2.几何法 例2:设a ,b 是两个非零向量,且2==+=a b a b ,则=-a b _______. 【答案】【解析】可知a ,b ,+a b 为平行四边形的一组邻边和一条对角线, 由2==+=a b a b 可知满足条件的只能是底角为60o ,边长2a =的菱形, =. 3.建立直角坐标系 例3:在边长为1的正三角形ABC 中,设2BC BD =uu u v uu u v ,3CA CE =uu v uu u v ,则AD BE ?=u u u v u u u v __________. 【答案】14 AD BE ?=-uuu v uu u v 【解析】上周是用合适的基底表示所求向量,从而解决问题,本周仍以此题为例,从另一个角度解题,

观察到本题图形为等边三角形,所以考虑利用建系解决数量积问题, 如图建系: 3 0, A ?? ? ? ?? , 1 ,0 2 B ?? - ? ?? , 1 ,0 2 C ?? ? ?? , 下面求E坐标:令() , E x y,∴ 1 , 2 CE x y ?? =- ? ?? uu u v , 13 2 CA ? =- ?? uu v , 由3 CA CE = uu v uu u v 可得: 111 3 223 3 3 3 x x y y ???? -=-= ? ?? ?? ?? ? ?? ??= = ??? ? 13 3 E ? ?? , ∴ 3 0, AD ? = ?? uuu v , 53 6 BE ? = ?? uu u v ,∴ 1 4 AD BE ?=- uuu v uu u v . 一、单选题 1.已知向量a,b满足1 = a,2 = b,且向量a,b的夹角为 4 π ,若λ - a b与b垂直,则实数λ的值为() A. 1 2 -B. 1 2 C. 2 D 2 【答案】D 【解析】因为12cos2 4 π ?? ?= a b()2 240 λλλ -?=?=?= a b b,故选D.2.已知向量a,b满足1 = a,2 = b,7 += a b?= a b() A.1 B2C3D.2 【答案】A 对点增分集训

高中数学平面向量复习题及答案

向量 1、在△ABC 中,AB =AC ,D 、E 分别是AB 、AC 的中点,则( ) A 、A B u u u r 与A C u u u r 共线 B 、DE u u u r 与CB u u u r 共线C 、1sin A D θ-u u u r 与A E u u u r 相等 D 、AD u u u r 与BD u u u r 相等 2、下列命题正确的是( ) A 、向量A B u u u r 与BA u u u r 是两平行向量 B 、若a r 、b r 都是单位向量,则a r =b r C 、若AB u u u r =DC u u u r ,则A 、B 、C 、 D 四点构成平行四边形 D 、两向量相等的充要条件是它们的始点、终点相同 3、在下列结论中,正确的结论为( ) (1)a r ∥b r 且|a r |=|b r |是a r =b r 的必要不充分条件;(2)a r ∥b r 且|a r |=|b r |是a r =b r 的既不充分也不必要条件;(3)a r 与b r 方向相同且|a r |=|b r |是a r =b r 的充要条件;(4)a r 与b r 方向相反或|a r |≠|b r |是a r ≠b r 的充分不必要条件A 、(1)(3) B 、(2)(4) C 、(3)(4) D 、(1)(3)(4) 4、把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是 。 5、已知|AB u u u r |=1,|AC u u u r |=2,若∠BAC =60°,则|BC uuu r |= 。 6、在四边形ABCD 中, AB u u u r =DC u u u r ,且|AB u u u r |=|AD u u u r |,则四边形ABCD 是 。 7、设在平面上给定了一个四边形ABCD ,点K 、L 、M 、N 分别是AB 、BC 、CD 、DA 的中点,求证:KL u u u r =NM u u u u r 。 8、某人从A 点出发向西走了200m 到达B 点,然后改变方向向西偏北60°走了450m 到达C 点,最后又改变方向,向东走了200m 到达D 点。 (1)作出向量AB u u u r 、BC uuu r 、CD uuu r (1 cm 表示200 m )。 (2)求DA u u u r 的模。 T ={PQ uuu r 、 9、如图,已知四边形ABCD 是矩形,设点集M ={A 、B 、C 、D },求集合 Q ∈M ,且P 、Q 不重合}。 向量的加法 1、下列四式不能化简为AD 的是 ( ) A 、(A B +CD )+B C B 、(A D +MB )+(BC +CM ) C 、MB +-A D BM D 、OC OA -+CD 2、M 是△ABC 的重心,则下列各向量中与AB 共线的是 ( ) 第9题图

高考数学压轴专题(易错题)备战高考《平面向量》全集汇编附解析

新数学《平面向量》试卷含答案 一、选择题 1.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r ( ) A .2133BA AC +u u u r u u u r B .2133BA A C -u u u r u u u r C .1233BA AC +u u u r u u u r D .4233BA AC +u u u r u u u r 【答案】A 【解析】 【分析】 连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】 解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E , 则()() 221121332333 OD BO BE BA BC BA BA AC BA AC ===?+= ++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A. 【点睛】 本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题. 2.已知正ABC ?的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ?u u u r u u u r 的值为( ) A .8 3 - B .1- C .1 D .3 【答案】B 【解析】 【分析】 由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】

由已知可得:7 , 又23 tan BED 3 BD ED ∠= == 所以22 1tan 1 cos 1tan 7 BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ?? ?=∠=-=- ??? u u u r u u u r u u u r u u u r ‖ 故选B . 【点睛】 本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题. 3.若向量a b r r ,的夹角为3 π ,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .1 2 - B . 12 C 3 D .3 【答案】A 【解析】 【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =?r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ?+?=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -?+=+?+r r r r r r r r . 即22b a b =?r r r ,也即22cos 3 b a b π =r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ?+=r r r ,即20t a a b ?+?=r r r . 所以222 1122b a b t a b ?=-=-=-r r r r r 故选:A

高考数学平面向量试题汇编

高考数学平面向量试题汇编 已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r ,那么 ( A ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r (辽宁3) 若向量a 与b 不共线,0≠g a b ,且?? ??? g g a a c =a -b a b ,则向量a 与c 的夹角为( D ) A .0 B . π6 C . π3 D . π2 (辽宁6) 若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--, B .(12)-, C .(12)-, D .(12), (宁夏,海南4) 已知平面向量(11) (11)==-,,,a b ,则向量13 22 -=a b ( D ) A.(21)--, B.(21)-, C.(10)-, D.(12), (福建4) 对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0g a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若2 2 =a b ,则=a b 或-a =b D .若g g a b =a c ,则b =c (湖北2)

将π2cos 36x y ??=+ ???的图象按向量π24?? =-- ??? ,a 平移,则平移后所得图象的解析式为 ( A ) A.π2cos 234x y ?? =+- ??? B.π2cos 234x y ?? =-+ ??? C.π2cos 2312x y ?? =-- ??? D.π2cos 2312x y ?? =++ ??? (湖北文9) 设(43)=,a , a 在 b 上的投影为2 ,b 在x 轴上的投影为2,且||14≤b ,则b 为( B ) A .(214), B .227? ?- ???, C .227??- ??? , D .(28), (湖南4) 设,a b 是非零向量,若函数()()()f x x x =+-g a b a b 的图象是一条直线,则必有( A ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b (湖南文2) 若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+u u u r u u u r u u u r B .EF OF OE =-u u u r u u u r u u u r C .EF OF OE =-+u u u r u u u r u u u r D .EF OF O E =--u u u r u u u r u u u r (四川7) 设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向 在与→ →→OC OB OA 上的投影相同,则a 与b 满足的关系式为 ( A ) (A)354=-b a (B)345=-b a (C)1454=+b a (D)1445=+b a (天津10) 设两个向量22 (2cos )λλα=+-,a 和sin 2 m m α? ?=+ ?? ? ,b ,其中m λα,,为实数.若2=a b ,则 m λ 的取值范围是( A ) A.[-6,1] B.[48], C.(-6,1] D.[-1,6] (浙江7)

(完整版)平面向量的线性运算测试题

平面向量的线性运算 一、选择题 1.若a 是任一非零向量,b 是单位向量,下列各式①|a |>|b |;②a ∥b ; ③|a |>0;④|b |=±1;⑤a =b ,其中正确的有( ) A .①④⑤ B .③ C .①②③⑤ D .②③⑤ 2. O 是ABC ?所在平面内一点,D 为BC 边上中点,02=++OC OB OA ,则() A .OD AO = B .OD AO 2= C .OD AO 3= D .OD AO =2 3.把平面上所有单位向量归结到共同的始点,那么这些向量的终点所构成的图形是( ) A .一条线段 B .一个圆面 C .圆上的一群弧立点 D .一个圆 4.向量(AB +MB )+(BO +BC )+OM 化简后等于( ) A . BC B . AB C . AC D .AM 5.在四边形ABCD 中,AC =AB +AD ,则( ) A .ABCD 是矩形 B .ABCD 是菱形 C .ABC D 是正方形 D .ABCD 是平行四边形 6.已知正方形ABCD 的边长为1,AB =a ,AC =c , BC =b ,则|a +b +c |为( ) A .0 B .3 C . 2 D .22 7.如图,正六边形ABCDEF 中,BA uur +CD u u u r +EF uuu r =( ) A .0 B.BE uu u r C.AD uuu r D.CF u u u r 8.如果两非零向量a 、b 满足:|a |>|b |,那么a 与b 反向,则( ) A .|a +b |=|a |-|b | B .|a -b |=|a |-|b | C .|a -b |=|b |-|a | D .|a +b |=|a |+|b | 二、填空题

53.高考数学专题26 平面向量(知识梳理)(理)(原卷版)

专题26 平面向量(知识梳理) 一、向量的概念及表示 1、向量的概念:具有大小和方向的量称为向量。 (1)数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 (2)向量的表示方法: ①具有方向的线段,叫做有向线段,以A 为始点,B 为终点的有向线段记作AB ,AB 的长度记作||AB 。用有向线段AB 表示向量,读作向量AB ; ②用小写字母表示:a 、。 (3)向量与有向线段的区别和联系: ①向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; ②有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段; ③向量可以用有向线段表示,但向量不是有向线段。向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段。 2、向量的模:向量AB 的大小――长度称为向量的模,记作||。 3、零向量:长度等于零、方向是任意的向量,记作。 4、单位向量:长度为一个单位长度的向量。与非零向量共线的单位向量0a =。 5、平行向量:(1)若非零向量a 、的方向相同或相反,则b a //,又叫共线向量; (2)规定与任一向量平行。 6、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)。 7、相等向量:若非零向量a 、方向相同且模相等,则向量a 、是相等向量。 (1)相等向量:=?模相等,方向相同; (2)相反向量:b a -=?模相等,方向相反。 二、向量的加法 1、三角形法则

图示 2、平行四边形法则 原理 已知两个不共线向量a 、b ,作a AB =,b BC =,则A 、B 、D 三点不共线,以AB 、AD 为邻边 作平行四边形,则对角线上的向量b a AC +=,这个法则叫做两个向量求和的平行四边形法则。 图示 3、多边形法则 原理 已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的始点为始点,第n 个向量的终点为终点 的向量叫做这n 个向量的和向量,这个法则叫做向量求和的多边形法则。 图示 运算律 交换律 a b b a +=+ 结合律 )()(c b a c b a ++=++ 1、相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量,记作a -。 (1)规定:零向量的相反向量仍是零向量; (2)a a =--)(; (3)0)()(=+-=-+a a a a ; (4)若a 与b 互为相反向量,则b a -=,a b -=,0=+b a 。 2、向量的减法:已知向量a 与b (如图),作a OA =,b OB =,则a BA b =+,向量BA 叫做向量a 与b 的差,并记作b a -,即OB OA b a BA -=-=,由定义可知: (1)如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点,被减向量的终点为终点的向量; (2)一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ,或简记为“终点向量减始点向量”;

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

[高二数学]平面向量的概念及运算知识总结

平面向量的概念及运算 一.【课标要求】 (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示; (2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件 二.【命题走向】 本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。 预测2010年高考: (1)题型可能为1道选择题或1道填空题; (2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。 三.【要点精讲】 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点 的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a | =0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量) 方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相

(完整版)高一数学必修4平面向量练习题及答案(完整版)

平面向量练习题 一、选择题 1、若向量a = (1,1), b = (1,-1), c =(-1,2),则 c 等于( ) A 、21 a +23b B 、21a 23 b C 、23a 2 1 b D 、2 3 a + 21b 2、已知,A (2,3),B (-4,5),则与AB 共线的单位向量是 ( ) A 、)10 10 ,10103( e B 、)10 10 ,10103()1010,10103( 或e C 、)2,6( e D 、)2,6()2,6(或 e 3、已知b a b a k b a 3),2,3(),2,1( 与垂直时k 值为 ( ) A 、17 B 、18 C 、19 D 、20 4、已知向量OP =(2,1),OA =(1,7),OB =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么XB XA 的最小值是 ( ) A 、-16 B 、-8 C 、0 D 、4 5、若向量)1,2(),2,1( n m 分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a, b 的值分别可以是 ( ) A 、 -1 ,2 B 、 -2 ,1 C 、 1 ,2 D 、 2,1 6、若向量a =(cos ,sin ),b =(cos ,sin ),则a 与b 一定满足 ( ) A 、a 与b 的夹角等于 - B 、(a +b )⊥(a -b ) C 、a ∥b D 、a ⊥b 7、设j i ,分别是x 轴,y 轴正方向上的单位向量,j i OP sin 3cos 3 ,i OQ ),2 ,0( 。若用来表示OP 与OQ 的夹角,则等于 ( ) A 、 B 、 2 C 、 2 D 、 8、设 20 ,已知两个向量 sin ,cos 1 OP , cos 2,sin 22 OP ,则向量21P P 长度的最大值是( ) A 、2 B 、3 C 、23 D 、 二、填空题 9、已知点A(2,0),B(4,0),动点P 在抛物线y 2=-4x 运动,则使BP AP 取得最小值的点P 的坐标

20高考数学平面向量的解题技巧

20高考数学平面向量 的解题技巧 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件.

(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(2006年安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12 AM a b =+,所 以,3111()()4 2 4 4 MN a b a b a b =+-+=-+. 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=CD ( ) (A )BA BC 2 1+- (B ) BA BC 21-- (C ) BA BC 21- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a =71,,22b ? ?= ??? ? ? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ???- ??53,54 (B) ???- ??53,54或?? ? ??-53,54 (C )???- ??31,322 (D )???- ??31,322或??? ? ?-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问 题. 解:设所求平面向量为,c 由433,,, 1. 555c c ???? =-= ? ?????4或-时5

平面向量的线性运算随堂练习(答案)

§平面向量的线性运算 重难点:灵活运用向量加法的三角形法则和平行四边形法则解决向量加法的问题,利用交换律和结合律进行向量运算;灵活运用三角形法则和平行四边形法则作两个向量的差,以及求两个向量的差的问题;理解实数与向量的积的定义掌握实数与向量的积的运算律体会两向量共线的充要条件. 考纲要求:①掌握向量加法,减法的运算,并理解其几何意义. ②掌握向量数乘的运算及其意义。理解两个向量共线的含义. ③了解向量线性运算的性质及其几何意义. 经典例题:如图,已知点,,D E F 分别是ABC ?三边,,AB BC CA 的中点, 求证:0EA FB DC ++=. 当堂练习: 1.a 、b 为非零向量,且+=+||||||a b a b ,则 ( ) A .a 与b 方向相同 B .a =b C .a =-b D .a 与b 方向相反 2.设+++=()()AB CD BC DA a ,而b 是一非零向量,则下列各结论:①//a b ;② +=a b a ;③+=a b b ;④+<+a b a b ,其中正确的是 ( ) A .①② B .③④ C .②④ D .①③ 3.3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于 ( ) A .O B .MD 4 C .MF 4 D .M E 4 4.已知向量b a 与反向,下列等式中成立的是 ( ) A .||||||b a b a -=- B .||||b a b a -=+ C .||||||b a b a -=+ D .||||||b a b a +=+ 5.若a b c =+化简3(2)2(3)2()a b b c a b +-+-+ ( ) A .a B .b C .c D . 以上都不对 6.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A 、C ),则AP =( ) A .().(0,1)AB AD λλ+∈ B .2 ().(0, )AB BC λλ+∈ C . ().(0,1)AB AD λλ-∈ D . 2().(0, )2 AB BC λλ-∈ 7.已知==||||3OA a ,==||||3OB b ,∠AOB=60?,则+=||a b __________。

高考数学-平面向量专题复习

平面向量 【考点例题解析】 考点1.共线定理应用 例一:平面向量→ →b a ,共线的充要条件是( ) A.→ →b a ,方向相同 B. → →b a ,两向量中至少有一个为零向量 C.存在,R ∈λ→ → =a b λ D.存在不全为零的实数0,,2121=+→ → b a λλλλ 变式一:对于非零向量→ →b a ,,“→→ →=+0b a ”是“→ →b a //”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 变式二:设→ →b a ,是两个非零向量( ) A.若→ → → → =+b a b a _则→→ ⊥b a B. 若→→⊥b a ,则→→→→=+b a b a _ C. 若→ →→→=+b a b a _,则存在实数λ,使得 → → =a b λ D 若存在实数λ,使得→ → =a b λ,则→ → → → =+b a b a _ 例二:设两个非零向量→ → 21e e 与,不共线, (1)如果三点共线;求证:D C A e e CD e e BC e e AB ,,,28,23,212121--=+=-= (2)如果三点共线, 且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。

变式一:设→ →21e e 与两个不共线向量,,2,3,2212121e e e e e k e -=+=+=若三点A,B,D 共线,求实数 k 的值。 变式二:已知向量→ →b a ,,且,27,25,2+=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D 考点2.线段定比分点的向量形式在向量线性表示中的应用 例一:设P 是三角形ABC 所在平面内的一点,,2BA BC BP += 则( ) A. PB PA +=0 B. PA PC +=0 C. PC PB +=0 D. PB PA PC ++=0 变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且OC OB OA ++=20,那么( )A. OD A =0 B. OD A 20= C. OD A 30= D. OD A =02 变式二:在平行四边形ABCD 中a AB =,b AD =,NC AN 3=,M 为BC 的中点,则=MN ( 用b a ,表示) 例二:在三角形ABC 中,c AB =,b AC =,若点D 满足DC BD 2=,则=AD ( ) A. ,3132+ B. ,3235- C. ,3132- D. ,3 2 31+

相关主题
文本预览
相关文档 最新文档