当前位置:文档之家› 消能减震设计操作参考书

消能减震设计操作参考书

消能减震设计操作参考书
消能减震设计操作参考书

浅述建筑结构减震与消能减震设计

浅述建筑结构隔震与消能减震设计 崔XX XX理工大学XX学院XX学员大队江苏XX 02XXXX 内容摘要 摘要:本文对建筑结构“隔震”与“消能减震”设计的基本原理及其特点进行简要的介绍和说明,并对结构抗震设计、隔震设计和消能减震设计进行分析和对比,供初学者参考。 主题词:抗震设计隔震设计消能减震设计 1 引言 地震是一种突发性的破坏性极强的自然灾害,罕遇的大地震会给建筑物及构筑物造成极大的破坏,造成极大的人员伤亡和经济财产损失。回顾21世纪发生的几次大地震如尼泊尔大地震,汶川大地震,智利地震等无一不对人们和社会造成不可估量的破坏和损失。当前的科技水平尚无法预测地震的到来,未来相当长的一段时间内,地震也是无法预测的。而且即使做到了震前预报,如果工程设施的抗震性能薄弱,也难以避免经济损失。地震时不可控的,但工程结构是可控的,因此,实施有效的抗震设防是当前防震抗灾的关键性工作,而隔震和消能减震技术在建筑结构中应得到广泛应用。 传统的建筑结构抗震设计是依靠增加结构的强度、刚度和延性来增加结构各构件的承载力和变形能力来抵御地震作用,,来实现“大震不倒,中震可修,小震不坏”的防御目标,立足于“抗”,是一种消极的设计方法。随着科技水平的发展和传统抗震结构在地震中的表现,传统建筑结构抗震设计暴露出很多问题,不能满足现代建筑在抗震设防方面的需求。所以抗震减灾事业的发展,不能局限于传统的建筑结构抗震设计,更应该搭上科技创新的这辆快车,用新技术来提高和改善建筑物的抗震性能。在建筑物中设置隔震层和消能减震装置来减轻地震的破坏这种新型结构体系就是其中之一。本文就这一新结构体系做一简要阐述。 2 “隔震设计”与“消能减震设计”的基本设计原理 2.1 隔震设计 “隔震”即隔离地震,分为基础隔震和层间隔震。在建筑物适当部位设置隔离装置,切断或削弱地面运动向上部结构的传递,并提供适当的阻尼,从而使上部结构的地震作用大大降低,耗能能力加强,达到预期的防震要求。如叠层橡胶垫支座、高阻尼橡胶垫支座、滑移隔震支座和混合隔震装置等。 2.2 消能减震设计 消能减震技术是把结构物某些部位(如支撑、剪力墙、连接缝或连接件)设置耗能 阻尼器,通过该装置产生摩擦,弯曲(或剪切、扭转)弹塑性(或粘弹性)直回变形来耗散或吸收地震输入结构的能量,以减小主体结构的地震反应,从而避免结构产生破坏或倒塌,达到减震控制的目的。 在消能减震结构体系中,消能(阻尼)装置在主体结构进入非弹性状态前率先进入耗能工作状态,充分发挥耗能作用,消耗掉输入机构体系的大量地震能量,式结构本身需消耗的

建筑隔震与消能减震知识分享

第十五讲建筑隔震与消能减震设计规定 一、隔震与消能减震是减轻建 筑结构地震灾害的新技术 地震释放的能量以震动波为载体向地球表面传播。 通常的建筑物因和基础牢牢地连接在一起,地震波携带的能量通过基础传递到上部结构,进入到上部结构的能量被转化为结构的动能和变形能。在此过程中,当结构的总变形能超越了结构自身的某种承受极限时,建筑物便发生损坏甚至倒塌。 1、什么是房屋结构的“隔震设计” 《隔震》,即隔离地震。在建筑物基础与上部结构之间设置由隔震器、阻尼器等组成的隔震层,隔离地震能量向上部结构传递,减少输入到上部结构的地震能量,降低上部结构的地震反应,达到预期的防震要求。地震时,隔震结构的震动和变形均可只控制在较轻微的水平,从而使建筑物的安全得到更可靠的保证。表15.1列出了隔震设计和传统设计在设计理念上的区别。 表 15.1 隔震房屋和抗震房屋设计理念对比 隔震器的作用是支承建筑物重量、调频滤波,阻尼器的作用是消耗地震能量、控制隔震层变形。隔震器的类型很多。目前,在我国比较成熟的是“橡胶隔震支座”。因此,本《规范》所指隔震器系指橡胶隔震支座(规范12.1.1条注1)。在隔震设计中采用其他类型隔震器时,应作专门研究。 2、什么是房屋建筑的“消能减震设计” 在建筑物的抗侧力结构中设置消能部件(由阻尼器、连接支撑等组成),通过阻尼器局部变形提供附加阻尼,吸收与消耗地震能量。这样的房屋建筑设计称“消能减震设计”。 采用消能减震设计时,输入到建筑物的地震能量一部分被阻尼器所消耗,其余部分则转换为结构的动能和变形能。这样,也可以达到降低结构地震反应的目的。阻尼器有粘弹性阻尼器、粘滞阻尼器、金属阻尼器、电流变、磁流变阻尼器等。 3、隔震和消能减震设计的主要优点

结构消能减震技术

结构消能减震技术 1、结构消能减震的基本概念 地震发生时地面震动引起结构物的震动反应,地面地震能量向结构物输入。结构物接收了大量的地震能量,必然要进行能量转换或消耗才能最后终止震动反应。 消能减震技术是将结构的某些构件设计成消能构件,或在结构的某些部位装设消能装置。在风或小震作用时,这些消能构件或消能装置具有足够的初始刚度,处于弹性状态,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反

应(位移、速度、加速 度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震的目的。消能部件(消能构件或消能装置及其连接件)按照不同“构件型式”分为消能支撑、消能剪力墙、消能支承或悬吊构件、消能节点、消能连接等。消能部件中的消能器(又称阻尼器)分为速度相关型如黏滞流体阻尼器、黏弹性阻尼器、黏滞阻尼墙、黏弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等,和其它类型如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。采用消能减震技术的结构体系与传统抗震结构体系相比,具有大震安全性、经济性和技术合理性。 技术指标:建筑结构消能减震设计方案,应根据建筑抗震设防类别、抗震设防

烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术、经济 可行性的对比分析后确定。采用消能减震技术结构体系的计算分析应依据《建筑抗震设计规范》GB50011 进行,设计安装做法应遵循国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合《建筑消能阻尼器》JG/T209 的规定。 适用范围:消能减震技术主要应用于高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善等。 传统抗震结构体系,容许结构及承重构件(柱、粱、节点等)在地震中出现损坏结构及承重构件地震中的损坏过程,就是

消能减震装置及其在工程中的应用

消能减震装置及其在工程中的应用 【摘要】针对传统结构抗震思路,详细介绍了结构的消能减震是结构抗震的新思路,以及目前常用的消能减震装置及其适用对象,阐述了工程结构中的应用并列举大量实例。分析表明,消能减震结构具有优良的抗震性能,具有广阔的应用前景。 【关键词】结构抗震;消能减震;耗能装置 1 引言 我国是一个多地震国家,地震灾害给我们带来巨大的伤害和损失,如唐山大地震、汶川大地震等。传统的抗震设计是利用结构本身的抗震性能抵御地震作用,以达到抗震的目的,是一种消极被动的抗震方法,不具备自我调节与自我控制的能力,因此在地震作用下,结构很可能不满足安全性的要求,而产生严重破坏。国内外开展了消能减震技术的研究,即在结构上安装消能装置,以减小结构的动力反应。本文就消能减震结构的思想及其在工程中的应用进行了研究。 2 消能减震结构的概念 消能减震结构的基本思想就是在结构中设置一些一般情况下不承担垂直接荷载作用的耗能部件,当结构受到水平荷载作用时,这些部件分担部分荷载,并通过部件内部的零部件之间的相互运动耗散外荷载作用的动能,减小结构对其作用的效应。 消能减震的力学原理就是在结构会产生相对运动的部位增设一些阻尼器之类的消能装置,当结构受到地震作用时,这些阻尼器在结构相对运动的强迫作用下,产生抵抗结构相对运动的阻力运动,这些阻尼力在运动过程中做功,通常以导致阻尼器发热而耗散掉部分结构相对运动的能量,从而减小结构的地震响应,即减小结构的损坏或保证结构的正常使用功能。 3 消能减震产品的种类 3.1金属屈服阻尼器 金属屈服阻尼器是用软钢或其它软金属材料做成的各种形式的阻尼器,机理是将结构振动的部分能量通过金属的屈服滞回耗能耗散掉,从而达到减小结构反应的目的,具有滞回特性稳定、耗能能力大、低周疲劳性能好、长期性能可靠、对环境和温度的适应性强等优点。 3.2摩擦阻尼器 摩擦阻尼器是由受有预紧力的金属或其它固体元件构成,这些元件之间能够相互滑动并且产生摩擦力。减震机理是通过摩擦耗能耗散结构的振动能量,耗能明显,可提供较大的阻尼,且造价低廉、取材容易、构造简单。 3.3铅挤压阻尼器 铅挤压阻尼器由外筒、可动轴和铅组成,当发生塑性变形时,铅的晶格被拉长并错动,一部分能量被转化为热能,而另一部分能量为促进再结晶而耗散使金属返回非变状态。当结构变位使外壁筒与可动轴产生相对位移时,铅发生塑性流动,起到耗能阻尼的作用。结晶易在常温下进行,所耗时间很短且无疲劳现象,具有稳定的耗能能力。 3.4黏弹性阻尼器 黏弹性阻尼器由黏弹性材料和约束钢板组成。它由2个T形约束钢板夹1块矩形钢板组成,T形约束钢板与中间钢板之间有一层黏弹性阻尼材料(常用有机硅或

弹簧减震器结构图解

弹簧减震器结构图解 独立悬架与非独立悬架示意图 a. 独立悬架 b. 非独立悬架 独立悬架如图所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。非独立悬架如图所示。其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。 钢板弹簧 1-卷耳2-弹簧夹3-钢板弹簧4-中心螺栓 钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车

架的振动衰减,起到减振器的作用。 扭杆弹簧 扭杆弹簧一般用铬钒合金弹簧钢制成。一端固定在车架上,另一端上的摆臂2与车轮相连。当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。 空气弹簧 空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种,工作气压为0.5~1Mpa。这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。 油气弹簧简图

油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的。 1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸 筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防 尘罩11-油封 横向稳定器的安装

隔震和消能减震与常规抗震的对比分析

隔震和消能减震与常规抗震的对比分析 在实际的建筑行业发展中,為了有效避免地震对建筑以及人民生命财产安全带来的影响,要对相应的隔震、消能减震等情况进行分析,同时与常规的抗震进行有效对比,做好最佳的抗震预防。基于此,文章分别对三种防震方法进行分析,最后结合题目就隔震和消能减震与常规抗震之间进行对比分析,以期人们更好的开展防震工作。 标签:常规抗震;隔震;消能减震 随着经济的快速发展,建筑行业蒸蒸日上,且在国民经济的发展中也越来越重要。以此同时,随着建筑行业的发展,相关的安全预防措施也要予以充分的重视。在实际的生活当中,为了避免地震给人们以及建筑行业带来巨大的经济损失,要对相关的防震举措予以充分重视,如此才能将其更好的应用在实际的工程建筑当中,为人们提供更多的安全保障。 1、常规抗震分析 1.1原理 延性抗震设计主要是利用一些结构部件的塑性变形来对地震能量进行消耗,从而实现一定的抗震作用,该种抗震的能量表达为Ein =ER +ED +ES ,其中ES 是主体结构和承载构件的不变弹性所消耗的能量;Ein 是发生地震时输入的结构能量;ED 是阻尼消耗的能量;ER 地震反应能量。 1.2特点 (1)砌体结构。该种结构相对较脆,实际的抗拉、康佳能力相对较弱,实际地震中的抗震于延性能也不理想。砌体结构在地震中受到破坏的几率相对较大,具体因素主要与窗间承载力不足、施工不当、设计问题以及整体抗剪强度弱等有关。在5.12地震中,由于建筑物的抗震设防性能较差,致使其中的很多砌体结构出现了一定的倒塌。在海地的某些地区,由于实际砌体结构建筑并不具有一定的抗震措施,致使相关建筑出现了不同程度的坍塌。(2)钢结构。钢结构具有延性好、轻质高强以及环境污染小的特点,其缺点主要是很难确保实际施工质量,且有很多的节点。在5.12地震中由于钢结构而造成的危害相对较轻,很多的轻屋房建设由于实际的屋架与屋面之间没有明确的固定,进而使得屋面板出现脱落。 2、隔震与消能减震 2.1隔震 (1)隔震的基本原理。隔震是指隔离地震对实际建筑结构的影响,主要原

结构消能减震技术

结构消能减震技术 1、结构消能减震得基本概念 地震发生时地面震动引起结构物得震动反应,地面地震能量向结构物输入。结构物接收了大量得地震能量,必然要进行能量转换或消耗才能最后终止震动反应。 消能减震技术就是将结构得某些构件设计成消能构件,或在结构得某些部位装设消能装置。在风或小震作用时,这些消能构件或消能装置具有足够得初始刚度,处于弹性状态,结构具有足够得侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形得增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构得地震或风振能量,使主体结构避免出现明显得非弹性状态,且迅速衰减结构得地震或风振反应(位移、速度、加

速度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震得目得。消能部件(消能构件或消能装置及其连接件)按照不同“构件型式”分为消能支撑、消能剪力墙、消能支承或悬吊构件、消能节点、消能连接等。消能部件中得消能器(又称阻尼器)分为速度相关型如黏滞流体阻尼器、黏弹性阻尼器、黏滞阻尼墙、黏弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等,与其它类型如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。采用消能减震技术得结构体系与传统抗震结构体系相比,具有大震安全性、经济性与技术合理性。 技术指标:建筑结构消能减震设计方案,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案与建筑使用要求,

与采用抗震设计得设计方案进行技术、经济可行性得对比分析后确定。采用消能减震技术结构体系得计算分析应依据《建筑抗震设计规范》GB50011 进行,设计安装做法应遵循国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合《建筑消能阻尼器》JG/T209 得规定。 适用范围:消能减震技术主要应用于高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑得抗震(或抗风)性能得改善等。 传统抗震结构体系,容许结构及承重构件(柱、粱、节点等)在地震中出现损坏结构及承重构件地震中得损坏过程,就就是地震能量得“消能”过程。结构及构件得严重破坏或倒塌,就就是地震能量转换或消耗得最终完成。

简要分析建筑结构设计与减震设计

简要分析建筑结构设计与减震设计 随着建筑行业的快速发展,对建筑工程的质量和安全性有了更高的要求,所以建筑结构设计非常关键,直接关系到建筑整体结构的稳定性和安全性。在建筑结构设计中,减震设计是重要内容,地震会对建筑物造成严重的破坏,所以为了提高建筑的抗震性能,要加强减震设计水平,提高建筑的稳定性和安全性。文章对于建筑结构设计以及减震设计进行了简要的分析,对于提高建筑结构设计水平具有重要的意义。 标签:建筑;结构设计;减震设计 建筑结构设计是针对建筑各个受力部位的结构方式进行的设计,要最大限度的保证建筑结构的稳定性和安全性。建筑在建设过程中以及投入运营后,会受到各种应力的作用,从而对建筑结构的稳定性产生影响。如果建筑结构设计水平不达标,就会因为承受的荷载太大而发生变形、倾斜等现象,直接影响到建筑的安全。减震设计是建筑结构设计中的重要内容,所以在结构设计时,应该对当地的地质状况进行详细的勘察,然后在结构设计中采用适宜的减震技术措施,最大限度的提高建筑的抗震性能,确保建筑的安全使用,为维护社会稳定创造有利的基础。 1 结构设计概述 结构设计就是对建筑物中各受力部件进行合理的分析,计算各部件所承受的荷载极限,从而本着稳定性和安全性的原则,对各个结构进行合理的设计。结构设计的核心就是确保建筑整体结构的稳定性,在遇到各种应力干扰的情况下,能够承受应力的变化,保持建筑结构的原有状态。建筑结构设计中的主要元素包括:基础、墙、柱、梁、板、楼梯、大样细部等等,也就是构成建筑物的框架,是支撑整体建筑的重要受力构件。在建筑物内部构成体系中,这些构件之间的受力会相互传递,需要承受竖向或者水平方向的各种应力,所以对构件的抗力性有较高的要求。只有确保这些构件的稳定性,才能够最大限度的保证建筑物的安全。 2 建筑结构设计的过程 建筑结构设计主要可分三个步骤,首先是结构方案设计,根据建筑物的使用性质、地质结构、施工方式、层高、抗震设防烈度等,在对不同结构形式的受力特点分析后,确定结构设计中的受力构件和承重体系。其次是对结构进行计算,包括荷载计算、内力计算和构件的设计,以确保结构设计中各部件符合受力标准。最后是施工图设计,将建筑结构设计师的意图通过图纸表达出来,对于施工过程中每个环节的操作都有详细的说明,从而确保建筑结构设计的完整性。 3 建筑结构设计的要点 3.1 重视概念设计

消能减震技术

消能减震技术 9.1.1 技术内容 消能减震技术是将结构的某些构件设计成消能构件,或在结构的某些部位装设消能装置。在风或小震作用时,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反应(位移、速度、加速度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震的目的。 消能部件一般由消能器、连接支撑和其他连接构件等组成。 消能部件中的消能器(又称阻尼器)分为速度相关型如粘滞流体阻尼器、粘弹性阻尼器、粘滞阻尼墙、粘弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等和其它类型,如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。 采用消能减震技术的结构体系与传统抗震结构体系相比,具有更高安全性、经济性和技术合理性。 9.1.2 技术指标 建筑结构消能减震设计方案,应根据建筑抗震设防类

别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术和经济可行性的对比分析后确定。采用消能减震技术结构体系的设计、施工、验收和维护应按现行国家标准《建筑抗震设计规范》GB 50011和《建筑消能建筑技术规程》JGJ 297进行,设计安装做法可参考国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合现行行业标准《建筑消能阻尼器》JG/T 209的规定。 9.1.3 适用范围 消能减震技术主要应用于多高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善,文物建筑及有纪念意义的建(构)筑物的保护等。 9.1.4 工程案例 江苏省宿迁市建设大厦、北京威盛大厦等新建工程,以及北京火车站、北京展览馆、西安长乐苑招商局广场4号楼等加固改造工程。

12 隔震和消能减震设计

12 隔震和消能减震设计 12.1 一般规定 12.1.1本章适用于设置隔震层以隔离水平地震动的房屋隔震设计,以及设置消能部件吸收与消耗地震能量的房屋消能减震设计。 采用隔震和消能减震设计的建筑结构,应符合本规范第3.8.1条的规定,其抗震设防目标应符合本规范第3.8.2条的规定。 注:1,本章隔震设计指在房屋基础、底部或下部结构与上部结构之间设置由橡胶隔震支座和阻尼装置等部件组成具有整体复位功能的隔震层,以延长整个结构体系的自振周 期,减少输入上部结构的水平地震作用,达到预期防震要求。 2,消能减震设计指在房屋结构中设置消能器,通过消能器的相对变形和相对速度提供附加阻尼,以消耗输入结构的地震能量,达到预期防震减震要求。 12.1.2建筑结构隔震设计和消能减震设计确定设计方案时,除应符合本规范第3.5.1条的规定外,尚应与采用抗震设计的方案进行对比分析。 12.1.3建筑结构采用隔震设计时应符合下列各项要求: 1,结构高宽比宜小于4,且不应大于相关规范规程对非隔震结构的具体规定,其变形特征接近剪切变形,最大高度应满足本规范非隔震结构的要求;高宽比大于4或非隔震结构相关规定的结构采用隔震设计时,应进行专门研究。 2,建筑场地宜为I、Ⅱ、Ⅲ类,并应选用稳定性较好的基础类型。 3,风荷载和其他非地震作用的水平荷载标准值产生的总水平力不宜超过结构总重力的10%。 4,隔震层应提供必要的竖向承载力、侧向刚度和阻尼;穿过隔震层的设备配管、配线,应采用柔性连接或其他有效措施以适应隔震层的罕遇地震水平位移。 12.1.4消能减震设计可用于钢、钢筋混凝土、钢-混凝土混合等结构类型的房屋。 消能部件应对结构提供足够的附加阻尼,尚应根据其结构类型分别符合本规范相应章节的设计要求。 12.1.5隔震和消能减震设计时,隔震装置和消能部件应符合下列要求: 1,隔震装置和消能部件的性能参数应经试验确定。 2,隔震装置和消能部件的设置部位,应采取便于检查和替换的措施。 3,设计文件上应注明对隔震装置和消能部件的性能要求,安装前应按规定进行检测,确保性能符合要求。 12.1.6建筑结构的隔震设计和消能减震设计,尚应符合相关专门标准的规定;也可按抗震性能目标的要求进行性能化设计。 12.2 房屋隔震设计要点 12.2.1隔震设计应根据预期的竖向承载力、水平向减震系数和位移控制要求,选择适当的隔震装置及抗风装置组成结构的隔震层。 隔震支座应进行竖向承载力的验算和罕遇地震下水平位移的验算。 隔震层以上结构的水平地震作用应根据水平向减震系数确定;其竖向地震作用标准值,8度(0.20g)、8度(0.30g)和9庋时分别不应小于隔震层以上结构总重力荷载代表值的20%、30%和40%。 12.2.2建筑结构隔震设计的计算分析,应符合下列规定: 1,隔震体系的计算简图,应增加由隔震支座及其顶部梁板组成的质点;对变形特征为剪切型的结构可采用剪切模型(图12.2.2);当隔震层以上结构的质心与隔震层刚度中心不重合时,应计入扭转效应的影响。隔震层顶部的梁板结构,应作为其上

悬架用减振器设计指南

悬架用减振器设计指南 一、功用、结构: 1、功用 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。 汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的 振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。如 果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。但汽车是在连 续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧, 甚至发生共振,反而使车身的动负荷增加。所以悬架中的阻尼必须与弹性元 件特性相匹配。 2、产品结构定义 ①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。 ②奇瑞现有的减振器总成形式:

二、设计目的及要求: 1、相关术语 *减振器 利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。 *阻尼特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。在多种速度下所构成的曲线(F-S)称示功图。 *速度特性 减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。在多种速度下所构成的曲线(F-V)称速度特性图。 *温度特性 减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。其所构成的曲线(F-t)称温度特性图。 *耐久特性 减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。 *气体反弹力 对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。 *摩擦力

结构设计中的消能减震措施应用

结构设计中的消能减震措施应用 发表时间:2019-07-23T14:29:03.267Z 来源:《基层建设》2019年第13期作者:李武林[导读] 摘要:相比传统抗震结构体系,消能减震结构具有技术先进、经济合理、安全性好的优势,因此本文对结构设计中的消能减震措施应用进行了分析。 广东呈斯意特建筑设计有限公司 516000摘要:相比传统抗震结构体系,消能减震结构具有技术先进、经济合理、安全性好的优势,因此本文对结构设计中的消能减震措施应用进行了分析。 关键词:结构设计;消能减震;应用消能减震是指通过设置消能器吸收或耗散地震能量,以保护建筑主体结构不受到破坏。目前,消能减震技术在结构设计中已得到了不少应用,并收到明显效果。例如扇形铅粘弹性阻尼器(SLVD)用于钢筋混凝土框架结构的梁柱节点位置,不仅发挥良好的耗能作用,而且保护了核心节点区,有利于实现强节点、弱构件的抗震设计理念[1]。再如针对阻尼器价高劣势,采用与框架结构相结合的消能墙构建双层 抗震体系,小震可提高结构刚度,中震开始屈服但仍保持弹性,大震屈服耗能,从而有效保护主体结构[2]。为了用好消能减震技术,本文对结构设计中的消能减震措施应用进行了分析。 1 消能减震原理与消能器分类 1.1 消能减震原理 消能减震可从能量角度来分析,即结构振动的能量平衡原理。令地震输入系统能量为,系统地震反应的能量(包括动能与势能)为,系统阻尼能为,系统非弹性变形能为,于是有。对于传统抗震结构来说,只占5%左右,可忽略,就有。为了耗散地震能量,结构损坏或倒塌,即。最后,地震反应终止,即。对于消能减震结构而言,增加了消能器,令其消耗的能量为,于是能量平衡方程有。系统阻尼可忽略,于是有。消能器消耗地震能量,即。于是系统地震反应迅速衰减,即。使结构免遭破坏,即。 1.2 消能器分类 根据消能原理,消能器分为位移相关型消能器、速度相关型消能器和复合相关型消能器三类。位移相关型消能器是利用材料自身的塑性滞回耗能能力消耗地震能量,其又可细分为金属消能器和摩擦消能器,金属消能器又包括软钢剪切消能器、屈服约束支撑、铅消能器。速度相关型消能器利用粘滞材料将地震能量转化为热能消耗掉,其又可细分为粘滞流体消能器和粘滞阻尼墙,粘滞流体消能器包括单出杆粘滞阻尼器、双出杆粘滞阻尼器、孔隙式粘滞阻尼器、间隙式粘滞阻尼器等。复合相关型消能器可看作位移相关型消能器和速度相关型消能器的结合,同时具有这两类耗能器的特点,以粘弹性消能器为代表,典型结构是两块可相对移动的钢板之间充填粘弹性材料,地震时能量耗散在粘弹性材料的剪切变形中。 2 消能减震设计方法应用 2.1 设计流程 开始→明确结构消能减震要求→设定消能减震结构设计目标→主体结构初步设计→选择消能器并初步形成消能减震体系→选择分析方法→确定消能器参数并形成最终消能减震体系→计算地震反应并进行抗震验算→消能减震体系构造设计→结束。 2.2 适用体系 根据《建筑消能减震技术规程》(JGJ 297-2013)第1.0.2条,消能减震结构适用于抗震设防烈度6~9度地区新建与既有建筑结构。 2.3 设防目标 消能减震结构主要用于设防烈度较高或对使用功能有特殊要求的建筑,采用消能减震结构后抗震设防目标比无控结构应有所提高。JGJ 297-2013条文说明第3.1.3条指出,消能减震结构设防性能目标分为三个层次:(1)丙类建筑(如一般工民建、公共建筑等)采用“小震不坏,中震可修,大震不倒”的设防目标;(2)乙类建筑(如公安消防、医院、学校、通信、动力等)采用“中震不坏,大震可修”的设防目标;(3)甲类建筑(如人民大会堂、核武器储存室等)采用“大震不坏”的设防目标。 2.4 消能器的选择 选择消能器时,应根据各类消能器特点及建筑对消能减震要求两方面来考虑。速度相关型消能器在很小位移下就能达到一定阻尼值并发挥耗能作用,所以适合水平位移要求严格、设防目标较高的建筑。位移相关型消能器达到足够大的相对位移才能屈服耗能,并在耗散地震能量的同时提供一定的侧向刚度,适合水平位移要求不严、设防目标不高的建筑。例如某医院门诊楼(既有建筑)设定罕遇地震下轻微到中等损坏的性能目标,层间位移要求较严,但为了调整扭转已加入一定数量屈曲约束支撑(BRB),刚度已充足,所以选择粘滞阻尼器作为消能器。 2.5 消能器的布置 JGJ 297-2013第6.2.1条规定,消能器布置应使结构在两个主轴方向的动力特性相近,使结构在沿高度方向刚度均匀。为提高消能减震效率,应在相对位移或相对速度较大的楼层布置消能器,并采用合理技术措施增加消能器两端的相对变形或相对速度。布置消能器以后,不应在结构中产生薄弱构件或薄弱层。 2.6 消能减震结构分析方法 根据《建筑抗震设计规范》(GB 50011-2010)(2016年版)第12.3.3条规定,当主体结构基本处于弹性工作阶段时,可采用底部剪力法、振型分解反应谱法和时程分析法进行分析;当主体结构进入弹塑性阶段时,采用静力非线性分析法或非线性时程分析法。应用振型分解反应谱法时,先将阻尼器非线性恢复力以等效线性化处理,并忽略非正交阻尼矩阵中的非正交项,计算小震作用下的误差不超过5%。时程分析法分为线性时程分析法和非线性时程分析法,前者主要采用增量法(如加速度法、威尔逊-θ法),而后者将增量法与迭代法结合。对于速度型阻尼器来说,在结构为弹性状态时应采用线性时程分析法;而对于滞回型阻尼器,采用等效刚度或阻尼时采用线性时程分析法,而恢复力为非线性时应采用非线性时程分析法。但只要主体结构进入塑性状态都应采用非线性时程分析法。静力非线性分析法假定在地震作用下结构的动力反应受单一振型控制,不计高阶振型影响。 2.7构件设计

建筑结构设计与减震设计分析

建筑结构设计与减震设计分析 发表时间:2017-12-29T13:44:27.007Z 来源:《防护工程》2017年第22期作者:黄浩伟 [导读] 建筑设计之中重要环节是对建筑的结构进行设计,设计人员不仅需要保证建筑结构的整体合理性。 浙江省水利水电勘测设计院 摘要:建筑设计之中重要环节是对建筑的结构进行设计,设计人员不仅需要保证建筑结构的整体合理性,同时还需要提升建筑结构的减震能力,使建筑结构可以突显出一定的安全性,在对建筑的结构进行设计的时候,设计人员需要参考建筑的整体设计情况,并通过被优化的设计手段将建筑的更多使用功能通过建筑结果而展现出来,无论是减震设计还是结构设计都是一项难度比较高的设计工作,设计人员需要对能够影响到建筑的多种元素进行考虑,本文对建筑的减震设计与结构设计的基本情况进行分析。 关键词:建筑结构设计;减震设计;分析 建筑的结构设计是建筑设计方案之中的重点内容,为了能够设计出更为稳定的建筑结构,设计人员需要综合考虑各种可能会对建筑结构产生的影响的因素,将其进行排除或者控制,从建筑结构的角度来提升建筑的整体性能,在建筑结构这一部分之中,设计人员不仅需要进行常规设计,同时还需要进行防震设计,将减震、防震的元素添加到建筑之中。减震设计并不是一项简单的设计任务,设计人员需要对建筑的结构之中的各个部分的情况都有所了解,才能使减震的效果更好,本文根据对建筑结构设计的相关经验,对减震以及结构设计进行研究。 1 建筑结构设计基本情况 地震情况是一种比较常见的自然灾害,这种自然灾害对于人类社会的影响极大,会危及到人的生命安全,因此在设计建筑的时候,无论建筑是否处于地震频发的地区,设计人员都需要将建筑结构的减震工作做好,以备地震灾难发生时,建筑可以最大限度地保护居住者。在开展设计活动时,设计人员需要首先需要提升建筑主体结构的轻度,使其能够对地震灾难生成的强大重力进行承受,另外施工人员还需要对建设建筑结构过程中应用的材料进行控制,确定材料的可用性,在进行结构减震设计工作时,设计人员需要将抗震设计工作进行划分,分阶段开展减震设计工作,将弹性变化阶段与弹缩性阶段的减震设计工作都进行完善。 1.1 控制建筑结构 设计人员首先需要对建筑的主要结构进行整体性的控制,同时还需要分析引起抗震结构之中的墙体倒塌的原因,进一步确定结构控制的重点工作,设计人员需要控制破坏机制,对框架结构进行改善,使其即使在不良的建设环境之中,仍旧能够保持极高的可靠度。施工人员需要对框架结构的延展性与强度有效保持,在固定的结构位置之中,设计人员还需要将人工塑性铰进行有效应用,严格控制结构的塑性强度,使框架结构的使用性能可以被展现出来。 1.2 设计梁的延性 当连梁的跨高比为5时,延性和耗能很好,连梁两端相对竖向位移的延性系数都在8以上,滞回曲线也相当饱满。当连梁的跨高比降至1时,延性系数则降至3左右,滞回曲线严重捏扰,耗能很小,最后弯剪破坏。抗震墙的刚性连梁,其跨高比往往仅为1左右,若要使其工作在弹塑性阶段作耗能构件,则需要对它的构造采取一定措施,以适应延性和耗能的要求。措施之一是在1/2梁高的中性面上留一水平通缝,在缝的上下两侧各埋置钢板,钢板上开有椭圆形螺栓孔,用高强螺栓把两钢板联结。在竖载、风载和小震下,高强螺栓把水平通缝分开的两部分连梁联结成整体工作,使刚性连梁整体刚度不变,以保证其工作在弹性阶段;在强烈地震作用下,两钢板发生相对滑动,原来跨高比为1的刚性连梁将被分成两根跨高比为2的小梁协同工作。这样,不仅延性系数由原来3提高为10左右,而且由于钢板间的滑动摩擦,使其耗能能力也得到了一定程度的改善。 1.3 设计柱的延性 完成了结构之中的梁这一部分的实际之后,设计人员还需要对竖向的柱进行设计,当地震等地质灾害发生时,塑性铰部件并不会破坏柱的原有结构,然而设计人员还需要进一步提升柱的延展性,使柱这一结构部件的质量可以满足梁设计标准规范之中提出的要求,一种能够有效提升柱部件的延展性的方法是将螺旋型的箍筋添加到柱的位置,这种提升延展性的方法还能将柱部件的强度进一步提升。设计人员可以借助提升柱的强度的方法来将柱的减震性能进行有效提升。 2 建筑减震结构设计基本情况 对建筑的框架结构、梁以及柱几部分的设计工作有所了解之后,就可以对减震设计内容进行了解,减震设计工作可以被分为以下几个部分: 2.1 吸震设计 这种安装方式在对主体结构进行安装时,采用的是特殊的方式,而且还安装了附加的结构,这种结构能够在地震发生时靠吸震设备吸收震动过程中产生的巨大能量,从而很好地减轻了地震对建筑的损害,主要的方法是按照设计图纸在相应的地方预留下分隔缝,通过在震动时内外筒相互之间的吸引作用进一步对地震时产生的能量进行控制,从而更好地保证建筑的安全性。 2.2 阻震设计 所谓阻震设计是通过在建筑结构中的连接处部位安装上适量的阻尼器,通过利用阻尼器的阻尼作用力,降低建筑结构的振动响应。并且,在保证阻尼器使用性能可靠的同时,也使得建筑结果的抗震能力得到了有效的保障,通常会采用的设计方案是在高层框架结构中的重要部位,采用砂质减震器,并在易出现裂缝的部位放置扭转梁阻尼器。 2.3 隔震设计 除了前两种减震设计之外,设计人员还可以借助隔震的方法完成减震工作,设计人员可以在防震结构之中,添加隔震层,将地震传递来的能量有效降低,设计人员需要借助特殊的隔震材料来强化隔震的效果。 2.4 动力优化设计 结构设计和减震设计当中要注意结构的优化,比如:吸震器的相关参考数据以及相关的位置等都会是优化当中应该注意的重点,这样

常见的消能减震方法

近年来,许多专家学者都在寻求一种与地球自然规律不产生对抗和抗拒的隔震减震设计方法,去适应“地震”这一不可抗拒的自然规律。这是人类历史发展到现代,人类对客观规律地震释放地球内力正确认识的进步体现。从建筑死抗硬抗地震的打击,到建筑结构隔震减震,十分明确地反映了,人类自己设计和建造的建筑物,是不能与地震冲击力死抗对抗的,这是数十来人类在建筑结构设计埋论上的飞跃。 建筑结构隔震减震的设计的主要目的,是通过一种隔震和减震的装置(或构件),将不可抗拒的地震冲击力与建筑物隔离开来,从而达到隔离和减少地震冲击力的打击,而使建筑物安全使用. 当前有一种“橡胶垫”隔震减震器己经应用于某些建筑物的建造之中,这种“橡胶垫”在91年获美国发明专利,这种“橡胶垫”隔震减震器的力学性能: 根据其构造是一层橡胶一层钢板的多层反复重叠,并在其中心部钻孔安放铅芯棒所组合成装置的圆柱形特征,决定了这种隔震减震器是一种在受正向冲击力(竖向力)的情况下,能达到隔震减震的目的,其后”橡胶垫”恢复原状,准备着下次的冲击力发生后,又一次达到隔震减震的目的。 “橡胶垫”在地震冲击力下的反映: 从有关资料中了解到“橡胶垫”隔震减震器是安装在建筑物基础与上部建筑结构之间的,即在整个建筑的基础上安装数十个隔震减震器,然后再在隔震减震器上建造上部建筑物,实质上就是将过去传统的整体建筑,分离为基础,隔震减震器和上部建筑物三个物体重叠受垂直压力的结构。这种结构当受竖向冲击力时不管外力是从地基向上冲击,还是外力从上部建筑物向下冲击力,其冲击力都能在

其中的隔震减震器中消耗和减弱,从而达到隔震减震的目的。当外力停止时,隔震减震器就能恢复原状,而准备着随时能产生的,向下或向上的垂直竖向外力的冲击。另外值得高度注意的是一种名叫“阻尼器”的增加建筑结构硬抗地震的装置,这种装置的作用是减小上部建筑在地震中摆动,但不可能减小地震对基础的冲击力。当地震冲击破坏力与安装在建筑结构中的“阻尼器”的受力方向相同时, “阻尼器”能发挥一定的作用,然而“阻尼器”的设计安装是根据建筑结构的使用来安装的,根本不可能掌握地震冲击力的受力方向,来设计“阻尼器”与受地震冲击力方向一致。况且城市建筑物建造的规划和使用,都使大多数建筑物的排例不可能让地震冲击力,按照“阻尼器”的受力方向一来发生的。地震暴发时的冲击波只有两个方向(往覆),不可能按人的意志设计的“阻尼器”,在不同的建筑物中因“阻尼器”设计安装的方向不同,而发生改变的。这也说明了“阻尼器”的使用是有条件的,而这个条件就是在设计时,就要准确的了解: 地震冲击波在所城市的受力方向,来决定“阻尼器”的设计和安装。但是现在的科学手段是根本无发测定,地震爆发时地震冲击波的冲击方向,更不可能将地震冲击波的冲击方向,按“人为的意志”去适应不同的建筑物的“阻尼器”的阻尼方向的, 因此,可以确定“阻尼器”在地震爆发时,只有少数“阻尼器”设计和安装的方向与地震冲击波的冲击方向一致, 而大多数“阻尼器”是没有用的,因而仍然逃脱不了地震冲击波的打击,实质上根本就没起到对地震冲击波的“阻尼器”的作用

减震器结构分析讲解

减震器结构分析 一、设计背景 随着科技的进步,机器人逐渐的进入了我们的生活,机器人节省了很多人力,成为了非常方便的家庭助手。机器人是一种可以输入编程控制其运动和多功能的,机器人可以用来搬运材料、一些零件、使用工具的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门执行系统。它是人工智能控制技术的综合试验机器,可以全面地考察人工智能各个领域的技术,研究机器人它们相互之间的关系。还可以在有害环境中代替人从事危险工作、上天下海、战场作业等方面大显身手。不过机器人毕竟是机器,运动过程中会出现一些颠簸的状态,长时间会影响其工作效率。所以在机器人运动会的对话要考虑到在其运动过程中在利用机器人的时候要考虑它的减震效果,在考虑减震效果的同时,还要保证不能影响机器人的正常运动,不能给机器人增加载荷,通过对现在科技的考虑,并且还有机器人运动过程中所会产生的一些不定性因素,系统错误,外观损坏等,考虑这些因素,本次设计了一种减震机构,可以减少机器运动时的损坏,很好的保护机器人的运动状态,降低维修成本。本文设计了一种避震机构,可以有效的减少机器人工作时的颠簸状况,节省下维修机器人的人力与物力。 二、设计思路 机器人是一个可以通过输入程序自主运动的机器,机器人的运动具有很大的灵活性,并且机器人的运动有时可以像人一样自由,对

于一些情况下非常方便使用,不过机器人结构比较复杂,如果损坏维修也比较困难,机器人的损坏包括内在因素和外部与因素,内在因素无非就是一些系统出错,外部因素是摔倒,颠簸等。对于外部因素,可以考虑让机器人运动更加稳定和减少颠簸,所以就想出了设计一种假期人减震器。在本次的避震器结构设计中,同时设计避震器时要考虑到不能干涉机器人的正常工作,所以对于机器人的驱动装置的选择尤为重要。现代机器人普遍使用和人类一样的过不来的方式,两手两脚。但是人类的灵活性是机器人模仿不来的,机器人的关节多,控制系统就越复杂,运动反应就会相对来说迟缓一点,并且损坏率也大一点。通过这些因素,可以想到轮子的来代替机器人的双脚,现在社会轮子产品很流行,因为轮子运动相对来说平稳,即使受到大的颠簸也可以保持正常的运动状态。通过搜索资料,可以发现全向轮适合机器人,所以本次的运动机构选择全向轮。接下来分析全向轮的一些特性及选择依据,全向轮不仅能够在愈多不同的地方移动和许多不同的方向移动,可以发现左右车轮的小光盘将全力推出,但也将极大的方便横向滑动。全方位轮移动距离和旋转方向,这种方法是很容易的方向控制和跟踪,并尽可能快地转动。全方位轮有种好处,它的优势就是无需润滑或现场维护和安装选项是非常简单和稳定,在避震机构中加入万向轮可以保证机器人运动的灵活性和平稳性。全向轮的材料为钢材,其减震效果需要进行改善,所以要在全向轮的机构处增加一个减震机构,减震机构的回弹效果不能太明显,要尽量在小范围的伸缩回弹范围内实现减震效果。减震少不了弹簧,同时也要考虑到弹簧的压

建筑消能减震-阻尼器

一、消能减震结构的发展与应用: 利用阻尼器来消能减震并不是什么新技术,在航天航空、军工枪炮等行业中早已得到应用。从20世纪70年代后,人们开始逐步地把这些技术专用到建筑、桥梁、铁路等工程中。 在美国,20世纪80年代开始,美国东西两个地震研究中心等单位做了大量试验研究,发表了几十篇有关论文。90年代美国科学基金会和土木工程协会组织了两次大型联合,给出了权威性的试验报告,供工程师参考。 在我国,1997年,沈阳市政府大楼的抗震加固中首次采用了摩擦耗能装置,其后北京饭店、北京火车站和北京展览馆等多座建筑中应用消能减震技术。 在日本,目前已有超过100多栋的建筑物采用消能减震技术。 现代高层建筑日益增多,结构受地震和风振影响十分明显,减小结构所受的地震和风振反应,成为结构设计的一个重要方面。消能减震阻尼器,通过增加结构阻尼,耗散结构的振动能量来达到减小结构所受振动。 (1)“阻尼”是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以此一特性的 量化表征。 (2)《高层建筑混凝土结构技术规程》JGJ3-2010中: 2.1.1 高层建筑:10层及10层以上或房屋高度大于28m的住宅 建筑和房屋高度大于24米的其他高层民用建筑。

(3)《民用建筑设计通则》GB50352-2005中: 3.1.2建筑高度大于1OOm的民用建筑为超高层建筑。 二、阻尼器耗能减震原理: 耗能减震的原理可以从能量的角度来描述。 传统结构:Ei =Er+Ed+Es 耗能结构:Ei =Er+Ed+Es+Ea Ei为地震时输入结构的总能量; Er为结构在地震过程中存储的动能和弹性应变能; Ed为结构本身阻尼消耗的能量; Es为结构产生弹塑性变形吸收的能量; Ea为耗能装置消耗的能量; (其中Er为能量转换,并不是能量的消耗。) (1)传统结构中: 构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏。 (2)在消能减震结构中: 耗能(阻尼)装置在主体结构进入耗能状态前率先进入耗能工作状态,耗散大量输入结构体系的地震、风振能量,则结构本身需消耗的能量很少,主体结构反应将大大减小,从而有效地保护了主体结构,使其不再受到损伤或破坏。 三、阻尼器的种类: 阻尼器种类繁多,我国将其分为位移相关型和速度相关型。

相关主题
文本预览
相关文档 最新文档