当前位置:文档之家› 实验二 矩阵基本运算

实验二 矩阵基本运算

实验二 矩阵基本运算
实验二 矩阵基本运算

实验二矩阵基本运算

一、实验目的

1.通过实验,进一步熟悉MATLAB编程环境

2.通过实验掌握建立矩阵的几种方法

3.通过实验理解常用的矩阵运算

二、实验环境

1.计算机

2.MATLAB7.0集成环境

三、实验说明

1.首先应熟悉MATLAB7.0运行环境,正确操作

2.自主编写程序,必要时参考相关资料

3.实验学时:2学时

四、实验内容和步骤

1.实验内容

(1)设A和B是两个同维同大小的矩阵,问:

1)A*B和A.*B的值是否相等?

2)A./B和B.\A的值是否相等?

3)A/B和B\A的值是否相等?

4)A/B和B\A所代表的数学含义是什么?

(2)写出完成下列操作的命令。

1)将矩阵A第2—5行中第1,3,5列元素赋给矩阵B。

2)删除矩阵A的第7号元素。

3)将矩阵A的每个元素值加30。

4)求矩阵A 的大小和维数。

5)将向量t 的0元素用机器零来代替。 6)将含有12个元素的向量x 转换成3*4矩阵。 7)求一个字符串的ASCII 码。 8)求一个ASCII 码所对应的字符。

(3)下列命令执行后,L1、L2、L3、L4的值分别是多少/ A=1:9;B=10-A; L1=A==B; L2=A<=5; L3=A>3&A<7; L4=find(A>3&A<7);

(4) 设2u =,3v =,计算:

1) 4

log uv

v

2) ()

2

2

e

u

v v u +-

3) 3u v uv -

(5)计算: 1)

()

sin 60

2) e3

3) 3cos 4??π ???

2.实验步骤

(1)分析实验内容,写出程序大致框架或完整的程序代码。 (2)进入MATLAB7.0集成环境。 (3)编辑程序并进行保存。

(4)运行程序,若有错误,修改错误后再次运行,如此反复进行到不显示出错为止。

(5)检查程序输出结果。

五、实验结果

(1):

1.学会了矩阵的输入:

2.A*B和A.*B的结果不一样:

3.A./B和B.\A的值一样

4.A/B和A\B的值不一样,而且可能出错(接近奇异或严重缩放)

(2)写出完成下列操作的命令。

1)将矩阵A第2—5行中第1,3,5列元素赋给矩阵B。

2)删除矩阵A的第7号元素。

3)将矩阵A的每个元素值加30。

4)求矩阵A的大小和维数。

5)将向量t的0元素用机器零来代替。

6)将含有12个元素的向量x转换成3*4矩阵

7)求一个字符串的ASCII码。

8)求一个ASCII码所对应的字符。

(3)下列命令执行后,L1、L2、L3、L4的值分别是多少/ >> L1 L1 =

0 0 0 0 1 0 0 0 0 >> L2 L2 =

1 1 1 1 1 0 0 0 0 >> L3 L3 =

0 0 0 1 1 1 0 0 0 >> L4 L4 =

4 5 6

设2u =,3v =,计算:

1) 4

log uv

v

2) ()2

2

e u v

v u

+

-:

3)

3 u v uv -

5)计算:

1)

() sin60

2)e3

3)

3 cos

4

??

π

?

??

六、实验小结

1掌握了如何输入一个矩阵,

2 A/B和B\A表示的数学含义都是A矩阵除以B矩阵或者A矩阵乘以B 矩阵的逆矩阵

3,学了如何连接数组(课本第45页)

4.将数组的一部分移入另一个数组中去

5.reshape的应用

6.对于矩阵中元素的增加,删除,改变;

7.ASCII和字符串的相互转化;(char,AS=a+0)

8.矩阵中的逻辑值判断

9.矩阵直接加减乘除一个常数就会在矩阵中的每一个元素都作用

10.掌握了class函数的用用法

>> x = uint8(300)

x =

255

>> class(8)

ans =

double

>> x = uint8(45)

x =

45

>> class(x)

ans =

uint8

>>

11、不同整数类型之间不允许进行运算

12.掌握了分号的用法;

13.realmin realmax

算法分析_实验报告3

兰州交通大学 《算法设计与分析》 实验报告3 题目03-动态规划 专业计算机科学与技术 班级计算机科学与技术2016-02班学号201610333 姓名石博洋

第3章动态规划 1. 实验题目与环境 1.1实验题目及要求 (1) 用代码实现矩阵连乘问题。 给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。考察这n 个矩阵的连乘积A1A2…A n。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序,这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,则可以依此次序反复调用2个矩阵相乘的标准算法(有改进的方法,这里不考虑)计算出矩阵连乘积。 确定一个计算顺序,使得需要的乘的次数最少。 (2) 用代码实现最长公共子序列问题。 一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X= < x1, x2,…, xm>,则另一序列Z= < z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列< i1, i2,…, ik>,使得对于所有j=1,2,…,k有Xij=Zj 。例如,序列Z=是序列X=的子序列,相应的递增下标序列为<2,3,5,7>。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X= < A, B, C, B, D, A, B>和Y= < B, D, C, A, B, A>,则序列是X和Y的一个公共子序列,序列也是X和Y的一个公共子序列。而且,后者是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。 (3) 0-1背包问题。 现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数W i,价值为正整数V i,背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分) 使用动态规划使得装入背包的物品价值之和最大。 1.2实验环境: CPU:Intel(R) Core(TM) i3-2120 3.3GHZ 内存:12GB 操作系统:Windows 7.1 X64 编译环境:Mircosoft Visual C++ 6 2. 问题分析 (1) 分析。

实验二图像的代数运算

昆明理工大学信息工程与自动化学院学生实验报告 ( 2012 —2013 学年第二学期) 一、实验目的 1.了解图像的算术运算在数字图像处理中的初步应用。 2.体会图像算术运算处理的过程和处理前后图像的变化。 二、实验原理 图像的代数运算是图像的标准算术操作的实现方法,是两幅输入图像之间进行的点对点的加、减、乘、除运算后得到输出图像的过程。如果输入图像为A(x,y)和B(x,y),输出图像为C(x,y),则图像的代数运算有如下四种形式: C(x,y) = A(x,y) + B(x,y) C(x,y) = A(x,y) - B(x,y) C(x,y) = A(x,y) * B(x,y) C(x,y) = A(x,y) / B(x,y) 图像的代数运算在图像处理中有着广泛的应用,它除了可以实现自身所需的算术操作,还能为许多复杂的图像处理提供准备。例如,图像减法就可以用来检测同一场景或物体生产的两幅或多幅图像的误差。 使用MATLAB的基本算术符(+、-、*、/ 等)可以执行图像的算术操作,但是在此之前必须将图像转换为适合进行基本操作的双精度类型。为了更方便地对图像进行操作,MATLAB图像处理工具箱包含了一个能够实现所有非稀疏数值数据的算术操作的函数集合。下表列举了所有图像处理工具箱中的图像代数运算函数。

表2-1 图像处理工具箱中的代数运算函数 能够接受uint8和uint16数据,并返回相同格式的图像结果。虽然在函数执行过程中元素是以双精度进行计算的,但是MATLAB工作平台并不会将图像转换为双精度类型。 代数运算的结果很容易超出数据类型允许的范围。例如,uint8数据能够存储的最大数值是255,各种代数运算尤其是乘法运算的结果很容易超过这个数值,有时代数操作(主要是除法运算)也会产生不能用整数描述的分数结果。图像的代数运算函数使用以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。例如,如果数据类型是uint8,那么大于255的结果(包括无穷大inf)将被设置为255。 注意:无论进行哪一种代数运算都要保证两幅输入图像的大小相等,且类型相同。三、实验步骤 1.图像的加法运算 图像相加一般用于对同一场景的多幅图像求平均效果,以便有效地降低具有叠加性质的随机噪声。直接采集的图像品质一般都较好,不需要进行加法运算处理,但是对于那些经过长距离模拟通讯方式传送的图像(如卫星图像),这种处理是必不可少的。 在MATLAB中,如果要进行两幅图像的加法,或者给一幅图像加上一个常数,可以调用imadd函数来实现。imadd函数将某一幅输入图像的每一个像素值与另一幅图像相应的像素值相加,返回相应的像素值之和作为输出图像。imadd函数的调用格式如下:Z = imadd(X,Y) 其中,X和Y表示需要相加的两幅图像,返回值Z表示得到的加法操作结果。 图像加法在图像处理中应用非常广泛。例如,以下代码使用加法操作将图2.1中的(a)、(b)两幅图像叠加在一起: I = imread(‘rice.tif’); J = imread(‘cameraman.tif’); K = imadd(I,J); imshow(K); 叠加结果如图2.2所示。

矩阵分析实验报告

矩 阵 分 析 实 验 报 告 学院:电气学院 专业:控制工程 姓名:XXXXXXXX 学号:211208010001

矩阵分析实验报告 实验题目 利用幂法求矩阵的谱半径 实验目的与要求 1、 熟悉matlab 矩阵实验室的功能和作用; 2、 利用幂法求矩阵的谱半径; 3、 会用matlab 对矩阵分析运算。 实验原理 理念 谱半径定义:设n n A C ?∈,1λ,2λ,3λ, ,j λ, n λ是A 的n 个特征值,称 ()max ||j j A ρλ= 为关于A 的谱半径。 关于矩阵的谱半径有如下结论: 设n n A C ?∈,则 (1)[]()()k k A A ρρ=; (2)2 2()()()H H A A AA A ρρ==。 由于谱半径就是矩阵的主特征值,所以实验换为求矩阵的主特征值。 算法介绍 定义:如果1λ是矩阵A 的特征值,并且其绝对值比A 的任何其他特征值的绝对值大,则称它为主特征值。相应于主特征值的特征向量1V 称为主特征向量。 定义:如果特征向量中最大值的绝对值等于单位值(例如最大绝对值为1),则称其为是归一化的。

通过形成新的向量' 12=c n V (1/)[v v v ],其中c=v 且1max {},j i n i ≤≤=v v 可将特 征向量 '12n [v v v ]进行归一化。 设矩阵A 有一主特征值λ,而且对应于λ有唯一的归一化特征向量V 。通过下面这个称为幂法(power method )的迭代过程可求出特征对λ,V ,从下列向量开始: []' 0=111X (1) 用下面递归公式递归地生成序列{}k X : k k Y AX = k+11 1 k k X Y c += (2) 其中1k c +是k Y 绝对值最大的分量。序列{}k X 和{}k c 将分别收敛到V 和λ: 1lim k X V =和lim k c λ= (3) 注:如果0X 是一个特征向量且0X V ≠,则必须选择其他的初始向量。 幂法定理:设n ×n 矩阵A 有n 个不同的特征值λ1,λ2,···,,λn ,而且它们按绝对 值大小排列,即: 123n λλλλ≥≥≥???≥ (4) 如果选择适当的X 0,则通过下列递推公式可生成序列{[() ()( ) ]}12k k k k n X x x x '=???和 {}k c : k k Y AX = (5) 和: 11 1k k k X Y c ++= (6) 其中: () 1k k j c x +=且{} ()()1max k k j i i n x x ≤≤= (7) 这两个序列分别收敛到特征向量V 1和特征值λ1。即: 1lim k k X V →∞ =和1lim k k c λ→∞ = (8) 算法收敛性证明 证明:由于A 有n 个特征值,所以有对应的特征向量V j ,j=1,2,···n 。而且它们是

实现稀疏矩阵(采用三元组表示)的基本运算实验报告

实现稀疏矩阵(采用三元组表示)的基本运算实验报告 一实验题目: 实现稀疏矩阵(采用三元组表示)的基本运算二实验要求: (1)生成如下两个稀疏矩阵的三元组a 和b;(上机实验指导P92 )(2)输出a 转置矩阵的三元组; (3)输出a + b 的三元组; (4)输出a * b 的三元组; 三实验内容: 3.1 稀疏矩阵的抽象数据类型: ADT SparseMatrix { 数据对象:D={aij| i = 1,2,3,….,m; j =1,2,3,……,n; ai,j∈ElemSet,m和n分别称为矩阵的行数和列数 } 数据关系 : R={ Row , Col } Row ={ | 1≤ i≤m , 1≤ j≤ n-1} Col ={| 1≤i≤m-1,1≤j≤n} 基本操作: CreateSMatrix(&M)

操作结果:创建稀疏矩阵M PrintSMatrix(M) 初始条件:稀疏矩阵M已经存在 操作结果:打印矩阵M DestroySMatrix(&M) 初始条件:稀疏矩阵M已经存在 操作结果:销毁矩阵M CopySMatrix(M, &T) 初始条件:稀疏矩阵M已经存在 操作结果:复制矩阵M到T AddSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的和Q=M+N SubSMatrix(M, N, &Q) 初始条件:稀疏矩阵M、N已经存在 操作结果:求矩阵的差Q=M-N TransposeSMatrix(M, & T) 初始条件:稀疏矩阵M已经存在

操作结果:求矩阵M的转置T MultSMatrix(M, N, &Q) 初始条件:稀疏矩阵M已经存在 操作结果:求矩阵的积Q=M*N }ADT SparseMatrix 3.2存储结构的定义 #define N 4 typedef int ElemType; #define MaxSize 100 //矩阵中非零元素最多个数typedef struct { int r; //行号 int c; //列号 ElemType d; //元素值 } TupNode; //三元组定义 typedef struct { int rows; //行数值 int cols; //列数值 int nums; //非零元素个数

算法分析与设计实验报告

算法设计与分析实验报告 班级:计科0902班 姓名:张华敏 学号:0909090814

矩阵连乘问题 一,实验内容: 二,写一个完整的代码来完整的实现矩阵连乘问题。 三,算法设计: 在矩阵连乘问题中,根据老师所讲和自己看书对动态规划方法的理解,通过最优子结构性质。再结合书上的算法,便可顺利的写出了代码 四,遇到的问题及解决方案: 只根据算法写出具体的实现过程刚开始觉得很难,觉得无从下手,不知道该用什么结构形式来存放各个参数,也不知道该怎样具体的实施算法的细节,但是课本上给出了一段实现代码给了我很大的启发,通过借鉴树上的代码实现再结合自己的努力,才终于完成了矩阵连乘全部的代码实现,包括最少连乘次数以及剖分方法。 五,源代码 package suanfa; public class Juzhen { public void matrixchain(int p[],int m[][],int s[][]){ i nt n=p.length-1; f or(int i=1;i<=n;i++){ m[i][i]=0; } f or(int r=2;r<=n;r++){ for(int i=1;i<=n-r+1;i++){ int j=i+r-1;

m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j]; s[i][j]=i; for(int k=i+1;k

实验二 图像的基本操作

实验二图像的基本操作 实验目的 1.熟悉Photoshop CS的基本操作 2.掌握常用工具的使用 3.掌握图层的简单应用 实验内容 1.立体相框的制作 2.移花接木 3.制作圆柱体等图案 4.修补照片 5.制作彩色文字 6.制作心形图案 1.立体相框的制作,请把结果文件保存为sy2-1.psd。 ①打开图片“牡丹花.jpg”,单击菜单“图像|图像大小”,观察图像现在的像素大小是多少MB?然后用计算器计算2048*1536*3/(1024*1024)是不是正好等于图像的像素大小,为什么? 将图片大小改为1024*768,分辨率为72pps(像素/英寸),观察现在的文档大小是多少? 请计算1024/(72/2.54)和768/(72/2.54)是否就是文档大小?(1英寸=2.54厘米),下面请将分辨率改为300pps,如果保持文档大小不变,请观察像素大小的变化,继续将像素大小改为1024*768,请观察文档大小是多少? 通过本实验请大家了解像素大小、文档大小和分辨率之间的关系。 ②打开“t1.jpg”图片,图像大小改为100*72,选取该照片定义为图案。 ③继续将“牡丹花.jpg”图片的画布四周扩大2厘米,然后将自己定义的图案填充到扩充的画布区域内。 ④在图层面板中双击背景图层将其转换为普通图层,然后添加斜面与浮雕的立体效果,样式自己定义。效果如图2-1所示。 图2-1 立体相框图2-2 一串红 2.移花接木,请把结果文件保存为sy2-2.psd。 ①打开“一串红.jpg”,将图像的大小改成800*600,图像顺时针旋转90度,如图2-2所示。 ②打开图像文件“蝴蝶.jpg”,将图像放大显示到300%,用钢笔工具描绘出蝴蝶的路径(注意工具选项栏中按下路径按钮),如图2-3所示,然后在如图2-4所示的路径面板中

矩阵乘法的并行化 实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称: 学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验内容与步骤 实验1,矩阵乘法的串行实验 (1)实验内容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

矩阵连乘问题算法分析与设计

矩阵连乘问题《算法分析与设计》

设计性实验报告 课程名称:《算法分析与设计》矩阵连乘问题实验题目:长:组员一:成 二:成员成员三:数学与计算机科学系别:系专业班级:指导教师:实验日期: 一、实验目的和要求

实验目的 熟悉动态规划算法设计思想和设计步骤,掌握基 本的程序设计方法,培养学生用计算机解决实际问题的能力。 实验要求 1、根据实验内容,认真编写源程序代码、上机调试程序,书写实验报告。 2、本实验项目考察学生对教材中核心知识的掌握程度和解决实际问题的能力。 3、实验项目可

以采用集中与分散实验相结合的方式进行,学生利用平时实验课时间和课外时间进行 实验,要求在学期末形成完整的项目程序设计报告。 二、实验内容提要 矩阵连乘问题给定n个矩阵{A,A,…,A}, 其中,Ai与Ai+1是可乘的,n21A,A,…,A。由于矩阵乘法满足结n-1。考查这n个矩阵的连乘积i=1,2,…,n12合律,故计算矩阵的连乘积可以有 许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反 复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可 递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 三、实验步骤下面考虑矩阵连乘积的最优计算次序问题的动态规划方法。(1)分析最优解的结构(最优子结构性质)设计求解具体问题的动态规划算法的第一步是刻画该问 题的最优解结构特征。对于矩阵乘积的最优计算次序问题也不例外。首先,为方便起见,降- 1 - 矩阵乘积Ai Ai+1…Aj简记为A[i:j]。

实验2 Idrisi图像处理软件的基本操作

实习2 Idrisi图像处理软件的基本操作 实验目的:初步认识Idrisi的界面、功能和软件的基本操作方法 实习内容: 1.设置工作环境 2.察看各类图件的属性 3.显示各类栅格图、矢量图及叠加显示 4.了解调色板及符号库的使用 5.学习制作图例 6.DEM的立体显示 7.图像的直方图分析 实验步骤: 基本知识 1 Environ / list / describe 2 文件系统(img / doc, vec / dvc, val, smp / sm0 / sm1 / sm2) 3 display (Brazilfc 图像/ color composit 调色版) 注:TM432合成图 4 display (awrajas 矢量图/ idrpoly) 调色板及图例 5 overlay(dec88c图像/NDVI16调色板+ country矢量图) 6 显示dec88c(ndvi16及grey256) 7 显示etdem + etprov 并变换其调色板(idrisi256和grey256) 8 显示affaosol 图像(qual256) 9 显示dec88c(gray16)和affaosol图的图例(了解*.doc文件的图例标注) 10 图例设计(调色板/ 符号库/ 图例文字) 矢量图件的叠加显示 11 显示矢量图clarkblk / idrpoly 12 在图上叠加clarkbld / idr16 和clarkbd2 / idrpoly dem的三维显示及其与影像的叠加 13 ortho显示relief 14 ortho叠加显示njolodem和njolofc / grey256 (务必选中use drape image) 15 显示afsurf图像/grey16 16 histogram显示直方图(h87tm1/ h87tm2/ h87tm4) 思考题: 1 工作环境如何设定 2 调色板有何重要作用 3 矢量栅格的叠加显示方法 4 直方图\ 图例\ 1

矩阵连乘实验报告

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:软件12K1 学生姓名:吴旭 学号:121909020124 成绩: 指导老师:刘老师实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号 的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后将计

算结果相乘得到A[1:n]。 2、建立递归关系 设计动态规划算法的第二步是递归定义最优值。对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1i n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。 当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。 当i

数据结构实验报告稀疏矩阵运算

教学单位计算机科学与技术 学生学号 5 数据结构 课程设计报告书 题目稀疏矩阵运算器 学生豹 专业名称软件工程 指导教师志敏

实验目的:深入研究数组的存储表示和实现技术,熟悉广义表存储结构的特性。 需要分析:稀疏矩阵是指那些多数元素为零的矩阵。利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算效率。实现一个能进行稀疏矩阵基本运算的运算器。要求以带“行逻辑信息”的三元组顺序表存储稀疏矩阵,实现两矩阵的相加、相减、相乘等运算。输入以三元组表示,输出以通常的阵列形式列出。 软件平台:Windows 2000,Visual C++ 6.0或WINTC 概要设计:ADT Array { 数据对象: D = {aij | 0≤i≤b1-1, 0 ≤j≤b2-1} 数据关系: R = { ROW, COL } ROW = {| 0≤i≤b1-2, 0≤j≤b2-1} COL = {| 0≤i≤b1-1, 0≤ j≤b2-2} 基本操作: CreateSMatrix(&M); //操作结果:创建稀疏矩阵M. Print SMatrix(M); //初始化条件: 稀疏矩阵M存在. //操作结果:输出稀疏矩阵M. AddSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M与N的行数和列数对应相等. //操作结果:求稀疏矩阵的和Q=M+N. SubSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M与N的行数和列数对应相等. //操作结果:求稀疏矩阵的差Q=M-N. MultSMatrix(M,N,&Q); //初始化条件: 稀疏矩阵M的列数等于N的行数. //操作结果:求稀疏矩阵的乘积Q=M*N. } ADT Array

实验1_基于MATLAB的图像基本操作

第1次实验基于MATLAB的图像基本操作 二、实验内容和要求: 1.实现图像Baboon.bmp(MATLAB自带)的读入(可使用imread)和显示(可使用imshow)操作,代码加上足够的注释,需要建立一个M文件实现。 I=imread('F:\标准图像\Baboon.bmp');//读入图像 imshow(I);//显示图像 2.编程实现将一幅RGB图像转换为二值图像,并在一个窗口同时显示处理过程中得到的每一个图像和原图像,同时需要给图像加上标题。(原始数据可以是任意的RGB图像)。需要新建一个M文件实现。 figure,subplot(1,3,1),imshow(I(:,:,1)),title('R'); subplot(1,3,2),imshow(I(:,:,2)),title('G'); subplot(1,3,3),imshow(I(:,:,3)),title('B'); 3.计算图象统计参数: 读取图像(文件名为‘cameraman.tif’); 最大值 最小值 均值 K=imread('cameraman.tif'); d_max=max(K(:)) d_min=min(K(:)) d_mean=mean(K(:)) 4.利用帮助系统了解im2double,imresize,image函数的作用和语法,并利用这些函数处理已知图像pout.tif(MATLAB自带)并显示处理前后效果。 J=imread('pout.tif'); J1=im2double(J); figure,subplot(1,2,1),imshow(J),title('Before') subplot(1,2,2),imshow(J1),title('After') J2=imresize(J,0.3); figure,subplot(1,2,1),imshow(J),title('Before') subplot(1,2,2),imshow(J2),title('After') figure,subplot(1,2,1),imshow(J),title('Before') subplot(1,2,2),image(J);title('After') 1

数学实验矩阵的运算

数学实验报告 学院: 班级: 学号: 姓名: 完成日期:

实验四矩阵的运算 (一)投入产出分析 一.实验目的 1.理解投入产出分析中的基本概念和模型; 2.从数学和投入产出理论的角度,理解矩阵乘法、逆矩 阵等的含义。 二.问题描述 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、部需求、初始投入等如表1-1所示 表1-1国民经济三产部门之间的投入产出表 根据表回答下列问题: (1)如果农业、制造业、服务业外部需求为50,150,100,问三个部门总产出分别为多少? (2)如果三个部门的外部需求分别增加一个单位,问

他们的总产出分别为多少? 三.实验过程 1.问题(1)的求解 (1)求直接消耗矩阵A 根据直接消耗的计算公式 a ij=x ij/x j 和各部门中间需求; x n a n 运行如下代码可得直接消耗系数表。 X=[15 20 30;30 10 45;20 60 0]; X_colsum=[100 200 150]; X_rep=repmat(X_colsum,3,1) A=X./ X_rep 运行结果为: A = 0.1500 0.1000 0.2000 0.3000 0.0500 0.3000 0.2000 0.3000 0 (2)求解 根据公式 X=(I-A)-1y 在运行如下代码

y=[50;150;100]; n=size(y,1); W=eye(n)-A; X=W\y 运行结果为 X = 139.2801 267.6056 208.1377 即三个部门的总产出分别为139.2801,267.6056, 208.1377亿元。 2.问题2求解 设外部需求由y增加至y+Δy,则产出x的增量为 Δx=(I-A)-1(y+Δy)- (I-A)-1y=(I-A)-1Δy 利用问题(1)求得的I-A矩阵,再运行如下的MATLAB 代码可得问题的结果: dx=inv(W) 运行结果: dx = 1.3459 0.2504 0.3443 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167

数据结构稀疏矩阵基本运算实验报告

课程设计 课程:数据结构 题目:稀疏矩阵4 三元组单链表结构体(行数、列数、头) 矩阵运算重载运算符优 班级: 姓名: 学号: 设计时间:2010年1月17日——2010年5月XX日 成绩: 指导教师:楼建华

一、题目 二、概要设计 1.存储结构 typedef struct{ int row,col;//行,列 datatype v;//非0数值 }Node; typedef struct{ Node data[max];//稀疏矩阵 int m,n,t;//m 行,n 列,t 非0数个数 … … 2.基本操作 ⑴istream& operator >>(istream& input,Matrix *A)//输入 ⑵ostream& operator <<(ostream& output,Matrix *A){//输出 ⑶Matrix operator ~(Matrix a,Matrix b)//转置 ⑷Matrix operator +(Matrix a,Matrix b)//加法 ⑸Matrix operator -(Matrix a,Matrix b)//减法 ⑹Matrix operator *(Matrix a,Matrix b)//乘法 ⑺Matrix operator !(Matrix a,Matrix b)//求逆 三、详细设计 (1)存储要点 position[col]=position[col-1]+num[col-1]; 三元组表(row ,col ,v) 稀疏矩阵((行数m ,列数n ,非零元素个数t ),三元组,...,三元组) 1 2 3 4 max-1

算法分析实验三报告

《算法设计与分析》实验报告

目录 一、实验内容描述和功能分析. 二、算法过程设计. 三、程序调试及结果(附截图). 四、源代码(附源代码).

一、实验内容描述和功能分析. 1.矩阵连乘问题 内容描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。 功能分析:输入包含多组测试数据。第一行为一个整数C,表示有C 组测试数据,接下来有2*C行数据,每组测试数据占2行,每组测试数据第一行是1个整数n,表示有n个矩阵连乘,接下来一行有n+1 个数,表示是n个矩阵的行及第n个矩阵的列,它们之间用空格隔开。输出应该有C行,即每组测试数据的输出占一行,它是计算出的矩阵最少连乘积次数。 例如:输入:1输出:7500 3 10 100 5 50 2.Pebble Merging 内容描述:在一个圆形操场的四周摆放着n 堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。 编程任务: 对于给定n堆石子,编程计算合并成一堆的最小得分和最大得分。 功能分析:输入由多组测试数据组成。每组测试数据输入的第1 行是正整数n,1≤n≤100,表示有n堆石子。第二行有n个数,分别表示每堆石子的个数。 对应每组输入,输出的第1 行中的数是最小得分;第2 行中的数是最大得分。 例如:输入:4 输出:43 4 4 5 9 54

二、算法过程设计. 1.矩阵连乘问题 矩阵连乘问题是通过设置数组,利用数组的横竖坐标来进行矩阵对应行与列的计算。 2.Pebble Merging 这个问题也是跟数组相关,通过寻找数组中的最大和最小值来进行计算。 三、程序调试及结果(附截图). 1.矩阵连乘问题 2.Pebble Merging

实验一图像处理基本操作

实验一图像处理基本操作 一、 实验目的 1、熟悉并掌握在MATLAB中进行图像类型转换及图像处理的基本操作。 2、熟练掌握图像处理中的常用数学变换。 二、实验设备 1、计算机1台 2、MATLAB软件1套 3、实验图片 三、实验原理 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f在坐标(x,y)处的幅度称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由若干个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术也适用于彩色图像处理,方法是分别处理三幅独立的分量图像即可。 图像关于x和y坐标以及幅度连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和幅度。将坐标值数字化称为取样,将幅度数字化称为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和幅度都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数组十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 图1 采样和量化的过程 根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类: ?亮度图像(Intensity images) ?二值图像(Binary images) ?索引图像(Indexed images) ? RGB图像(RGB images) (1) 亮度图像 一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。若亮度图像的像素都是uint8类型或uint16类型,则它们的整数值范围分别是[0,255]和[0,65536]。若图像是double 类型,则像素取值就是浮点数。规定双精度double型归一化亮度图像的取值范围是[0 1]。 (2) 二值图像 一幅二值图像是一个取值只有0和1的逻辑数组。而一幅取值只包含0和1的uint8

MATLAB矩阵实验报告

MATLAB 程序设计实验 班级:电信1104班 姓名:龙刚 学号:1404110427 实验内容:了解MA TLAB 基本使用方法和矩阵的操作 一.实验目的 1.了解MA TLAB 的基本使用方法。 2.掌握MA TLAB 数据对象的特点和运算规则。 3.掌握MA TLAB 中建立矩阵的方法和矩阵的处理方法。 二.实验内容 1. 浏览MATLAB 的start 菜单,了解所安装的模块和功能。 2. 建立自己的工作目录,使用MA TLAB 将其设置为当前工作目录。使用path 命令和工作区浏览两种方法。 3. 使用Help 帮助功能,查询inv 、plot 、max 、round 等函数的用法和功能。使用help 命令和help 菜单。 4. 建立一组变量,如x=0:pi/10:2*pi ,y=sin(x),在命令窗口显示这些变量;在变量窗口打开这些变量,观察其值并使用绘图菜单绘制y 。 5. 分多行输入一个MA TLAB 命令。 6. 求表达式的值 ()6210.3424510w -=+? ()22tan b c a e abc x b c a ππ++ -+=++,a=3.5,b=5,c=-9.8 ()220.5ln 1t z e t t =++,21350.65i t -??=??-?? 7.已知 1540783617A --????=??????,831253320B -????=????-?? 求 A+6B ,A 2-B+I A*B ,A.*B ,B*A A/B ,B/A [A,B],[A([1,3], :); B^2]

8.已知 23100.7780414565532503269.5454 3.14A -????-??=????-?? 输出A 在[10,25]范围内的全部元素 取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 分别求表达式E

数据结构三元组表存储结构实现稀疏矩阵应用课程方案实验报告

高二《数系的扩充与复数的概念》说课稿 高二《数系的扩充与复数的概念》说稿 《数系的扩充与复数的概念》是北师大版普通高中程标准数学实验教材选修1-2第四第一节的内容,大纲时安排一时。主要包括数系概念的发展简介,数系的扩充,复数相关概念、分类、相等条,代数表示和几何意义。 复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认识,也为进一步学习数学打下了基础。通过本节学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。 在学习了这节以后,学生首先能知道数系是怎么扩充的,并且这种扩充是必要的,虚数单位公开《数系的扩充与复数的概念》说稿在数系扩充过程中的作用,而复数就是一个实数加上一个实数乘以公开《数系的扩充与复数的概念》说稿。学生能清楚的知道一个复数什么时候是虚数,什么时候是纯虚数,两个复数相等的充要条是什么。让学生在经历一系列的活动后,完成对知识的探索,变被动地“接受问题”为主动地“发现问题”,加强学生对知识应用的灵活性,深化学生对复数的认识,从而提高分析问题和解决问题的能力。 教学目标为:1.在问题情境中了解数系的扩充过程。体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的

作用,感受人类理性思维的作用以及数与现实世界的联系。. 2.理解复数的有关概念、数系间的关系、和几何表示。 3.掌握复数的分类和复数相等的条。 4体会类比、转化、数形结合思想在数学发现和解决数学问题中的作用。 教学重点为认识i的意义、复数的有关概念以及复数相等的条. 教学难点为复数相关概念的理解和复数的几何意义的理解 复数的概念是整个复数内容的基础,复数的有关概念都是围绕复数的代数表示形式展开的。虚数单位、实部、虚部的命名,复数想等的充要条,以及虚数、纯虚数等概念的理解,都应促进对复数实质的理解,即复数实际上是一有序实数对。类比实数可以用数轴表示,把复数在直角坐标系中表示出,就得到了复数的几何表示,这就把数和形有机的结合了起。 在学习本节的过程中,复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,采用讲解已学过的数集的扩充的历史,让学生体会到数系的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类。由于学生对数系扩充的知识不熟悉,对了解实数系扩充到复数系的过程有困难,也就是对虚数单位公开《数系的扩充与复数的概念》说稿的引入难以理解。另外虚数单位公开《数系的扩充与复数的概念》说

实验二、PhotoShop的基本操作

实验二、PhotoShop的基本操作 【实验主要内容】 掌握PhotoShop图像大小的修改和图像的裁切,掌握标尺、参考线、网格等视图辅助工具的使用。 【本实验主要知识点】 修改图像;裁切图像;使用辅助工具。 【主要实验步骤】 一、修改图像 1、修改图像大小 (1)从菜单中选择【图像】│【图像大小】命令,会弹出“图像大小”对话框,如图2-1所示。练习在其中改变图像大小。 图2-1 “图像大小”对话框 (2)像素大小:可以通过修改图像的宽度和高度像素值和百分比来改变图像的 大小,并可随时看出图像改变前后的大小变化。 (3)文档大小:可以通过修改图像的宽度和高度厘米、英寸、点等以及图像的 分辨率来改变图像的大小。 (4)缩放样式:该选项用于在调整图像大小时是否按比例缩放。 (5)约束比例:该选项用于在设置图像宽度和高度时进行等比例调整。 (6)重定图像像素:该选项用于在调整图像大小时像素数目是否随图像大小协 调变化。 (7)设置完毕后单击“好”按钮即可确定图像大小的改变。 2、修改画布大小 (1)从菜单中选【图像】│【画布大小】,打开“画布大小”对话框,如图2-2 所示,练习在其中改变画布大小。 图2-2 “画布大小”对话框

(2)当前大小:其中显示了当前图像画布的实际大小。 (3)新大小:可以通过修改宽度和高度厘米、像素、英寸、百分比来改变图像画布的大小,其中“相对”选项可以改变以上是绝对值还是相对值,“定位”选项区可以调整画布修改后图像位于画布的新具体位置。 (4)画布扩展颜色:设置画布多余部分的色彩。 二、裁切图像 1、在工具箱中使用裁切工具。 2、移动鼠标指针到图像窗口中,按下左键并进行拖曳,释放左键后,会出现一个四周有8个控制点的裁切范围。如图2-3所示。 图2-3 选择裁切范围 3、选定裁切范围后,使用控制点对裁切区域进行平移、缩放、旋转等操作。如图2-4所示。 图2-4 变换裁切范围 4、最后在裁切区内双击鼠标左键,或在工具栏中单击按钮,即可完成裁切工作。 三、使用辅助工具 1、标尺 (1)从菜单中选择【视图】│【标尺】命令,可以在图像窗口的顶部和左 边显示标尺,如图2-5所示。

相关主题
文本预览
相关文档 最新文档