当前位置:文档之家› 选修2-2第一章1.7.1定积分在几何中的应用学案作业

选修2-2第一章1.7.1定积分在几何中的应用学案作业

选修2-2第一章1.7.1定积分在几何中的应用学案作业
选修2-2第一章1.7.1定积分在几何中的应用学案作业

1.7.1定积分在几何中的应用

【学习目标】1.让学生深刻理解定积分的几何意义以及微积分的基本定理;

2.初步掌握利用定积分求曲边梯形的几种常见题型及方法。

【学习重点】 运用定积分的几何意义求不规则图形的面积 【学习难点】 图形分割的技巧,较复杂图形的面积 【教学过程】

1、复习回顾

1、求曲边梯形的思想方法是什么?

2、定积分的几何意义是什么?

3、微积分基本定理是什么? 2、新知探究

(一)利用定积分求平面图形的面积

例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积.

【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

【点评】在直角坐标系下平面图形的面积的四个步骤:

1.作图象;

2.求交点;

3.用定积分表示所求的面积;

4.微积分基本定理求定积分。练习:计算由曲线3

6y x x =-和2

y x =所围成的图形的面积.

例2.计算由直线4y x =-

,曲线y =

x 轴所围图形的面积S.

分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-

与曲线y =

的交点的横坐标,直线

2

x

y =y x

A

B

C D O

4y x =-与 x 轴的交点.

例3.求曲线]3

2,0[sin π∈=x x y 与直线,,3

20π=

=x x x 轴所围成的图形面积。

五.归纳总结

总结:1、定积分的几何意义是:a x x f y b a ==与直线上的曲线在区间)(],[、x b x 以及=轴所围成的图形的面积的代数和,即轴下方轴上方-x x b

a S S dx x f =?)(.因此求一些曲边图形的

面积要可以利用定积分的几何意义以及微积分基本定理,但要特别注意图形面积与定积分不一定相等,如函数][0 π2,sin ∈=x x y 的图像与x 轴围成的图形的面积为4,而其定积分为0.

2、求曲边梯形面积的方法与步骤:

1.画图,并将图形分割为若干个曲边梯形;

2.对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;

3.确定被积函数;

4.求出各曲边梯形的面积和,即各积分的绝对值的和。

1.7.1定积分在几何中的应用作业

1、由0,2

,0,cos ====y x x x y π所围成的图形的面积表示为定积分的形式是___________

2、画出下列曲线围成的平面区域并用定积分表示其面积。 (1)5,2,0|,sin |====x x y x y (2)3

,2

1,0,log

2

1==

==x x y x y

3、由直线x

y x x 1,2,2

1===及x 轴所围图形的面积为( )

A.4

15 B. 4

17 C. 2ln 2

1 D. 2ln 2

4、由曲线0,4,2,====y x x e y x 所围成的图形的面积等于( ) A .24e e - . B. 4

e C. 23e e - D. 2e 5、求曲线2x y =与y=x 所围成图形的面积,其中正确的是( ) A.dx

x x S

)(2

10

-=

?

B. dx

x x S

)(2

10

-=

?

C. dy

y y S )(2

10

-=

?

D. dy

y y S

)(10

-=

?

6、用定积分的几何意义求下列各式的值: (1)?

--1

1

2

4dx

x (2)dx x ?-21

2 (3)

?

-

22

sin π

πxdx

7、求由曲线1-=x y 与

x 轴及直线x=0,x=4所围成的平面图形的面积。

8、求由抛物线42

-=x

y 与直线

y=-x+2所围成图形的面积。

9、求曲线x y =,x+y=2,x y 3

1-

=所围成的平面图形的面积。

10、求由抛物线342-+-=x x y 及其在点M (0,-3)和N (3,0)处的两条切线所围成的图形的面积。

11、在曲线)0(2≥=x x y 上的某点A 处作一切线使之与曲线以及x 轴所围成的面积为12

1.

试求:切点A 的坐标以及切线方程.

定积分在几何学上的应用(比赛课教案)

教学题目: 选修2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1. 探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体,PPT课件 教学方法: 引导法,探究法,启示法 教学过程

积分?b a f (x )dx 在几何上表示 x =a 、x =b 与x 轴所围成的曲边梯形 的面积。 当f (x )≤0时由y =f (x )、x =a 、x =b 与 x 轴所围成的曲边梯形面积的负值 类型1.求由一条曲线y=f(x)和直线x=a,x=b(a

定积分的几何应用例题与习题.doc

定积分的几何应用例题与习题 、曲线 的极坐标方程 1 cos ,(0 ), 求该曲线在 所对应的点处的切线 的 1 4 L 2 直角坐标方程,并求曲线 、切线 L 与x 轴所围图形的面积。 2、设直线 y ax 与抛物线 y x 2 所围成的面积为 S 1,它们与直线 x 1所围成的 面积为 S 2 ,并且 a 1 (1)试确定 a 的值,使 S 1 S 2达到最小,并求出最小值; (2)求该最小值所对应的平面图形绕 x 轴旋转一周所得旋转体的体积。 、设 平面上有正方形 D ( x, y) 0 x 1,0 y 1 及直线 L : x y t (t 0) 3 xoy x 若 S(t)表示正方形 D 位于直线 l 左下部分的面积 ,试求 S(t )dt (x 0) 4、 求由曲线 x sin ( 0) 与 轴所围图形绕 轴旋转所得旋转体的体积 y e x x x x V x 5、求由曲线 x a cos 3 t 与直线 y=x 及 y 轴所围成的图形 y asin 3 t ( a 0, 4 t 2 ) 绕 x 轴旋转所得立体的全表面积。 ( S=( 11 2 ) a 2 ) 5 40 6. 曲线 y e x e x 与直线 x 0, x t(t 0)及 y 0围成一曲边梯形,该曲边梯 2 形绕 x 轴旋转一周得一旋转体,其体积为 V (t), 侧面积为 S(t),在 x t 处的底面积为 F (t ) 求 S(t) 的值; 计算极限 S(t ) (1) (2) lim V (t) t F (t ) S(t ) 2, lim S(t ) 1 V (t ) F (t) t 7、求由摆线 x= a(t sin t) ,y= 的一拱 (0 t 2 ) 与横轴所围成的平面图形的面积, a(1 cost) 及该平面图形分别绕 x 轴、 y 轴旋转而成的旋转体的体积。 (1)A 3 a 2 , (2)V x 5 2 a 3 , (3)V y 6 3 a 3 8、设平面图形 由 x 2 y 2 2 x 及 y 所确定,求图形 绕直线 x 2 旋转一周所得 A x A 旋转体的体积。 2 V 2 2 3

(完整版)高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格, f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()

最新高中数学选修2-2-定积分的简单应用

[学习目标] 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积.2.掌握利用定积分求曲边梯形面积的几种常见题型及方法.3.通过具体实例了解定积分在物理中的应用,会求变速直线运动的路程和变力做功的问题. 知识点一 定积分在求几何图形面积方面的应用 1.求由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成的平面图形的面积S . (1)如图①,f (x )>0,??a b f (x )d x >0,所以S =??a b f (x )d x . (2)如图②,f (x )<0,??a b f (x )d x <0,所以S =??????a b f (x )d x =-??a b f (x )d x . (3)如图③,当a ≤x ≤c 时,f (x )≤0,??a c f (x )d x <0;当c ≤x ≤b 时,f (x )≥0,??a b f (x )d x >0.所以 S =???? ? ?a c f (x )d x +??c b f (x )d x =-??a c f (x ) d x +? ?c b f (x )d x . 2.求由两条曲线f (x )和g (x )(f (x )>g (x )),直线x =a ,x =b (a <b )所围成平面图形的面积S . (1)如图④,当f (x )>g (x )≥0时,S =??a b [f (x )-g (x )]d x .

(2)如图⑤,当f (x )>0,g (x )<0时,S =? ?a b f (x )d x +??????a b g (x )d x =??a b [f (x )-g (x )]d x . 3.当g (x )<f (x )≤0时,同理得S =??a b [f (x )-g (x )]d x . 思考 (1)怎样利用定积分求不分割型图形的面积? (2)当f (x )<0时,f (x )与x 轴所围图形的面积怎样表示? 答案 (1)求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可. (2)如图,因为曲边梯形上边界函数为g (x )=0,下边界函数为f (x ),所以 S =??a b (0-f (x ))d x =-??a b f (x )d x . 4.利用定积分求平面图形面积的步骤: (1)画出图形:在平面直角坐标系中画出曲线或直线的大致图象; (2)确定图形范围,通过解方程组求出交点的横坐标(或纵坐标),确定积分上、下限; (3)确定被积函数; (4)写出平面图形面积的定积分表达式; (5)利用微积分基本定理计算定积分,求出平面图形的面积,写出答案. 知识点二 定积分在物理中的应用 1.在变速直线运动中求路程、位移 路程是位移的绝对值之和,从时刻t =a 到时刻t =b

定积分的几何应用例题与习题

定积分的几何应用例题与习题 11cos ,(0),2 4 L π π ρθθθΓ=+≤≤ = Γ、曲线的极坐标方程求该曲线在所对应的点处的切线的 直角坐标方程,并求曲线、切线L 与x 轴所围图形的面积。212122,1,1 (1)2y ax y x S x S a a S S x ===<+、设直线与抛物线所围成的面积为它们与直线所围成的 面积为并且试确定的值,使达到最小,并求出最小值; ()求该最小值所对应的平面图形绕轴旋转一周所得旋转体的体积。 {}0 3(,)01,01:(0) (),()(0) x xoy D x y x y L x y t t S t D l S t dt x =≤≤≤≤+=≥≥?、设平面上有正方形及直线若表示正方形位于直线左下部分的面积试求 4 、0)x y e x x -=≥求由曲线与轴所围图形绕x 轴旋转所得旋转体的体积V 3 3 2cos (0,)42sin 11)5x a t a t y a t a πππ?=?>≤≤?=??5、求由曲线与直线y=x 及y 轴所围成的图形绕x 轴旋转所得立体的全表面积。(S=( 6.0,(0)02 (),()() ()()(1)(2)lim () ()()() 2,lim 1 () ()x x t t e e y x x t t y x V t S t x t F t S t S t V t F t S t S t V t F t -→+∞→+∞+===>=====曲线与直线及围成一曲边梯形,该曲边梯 形绕轴旋转一周得一旋转体,其体积为侧面积为,在处的底面积为求的值;计算极限22333 (sin )(1cos )3, (2)5, (3)6x y a t t a t a V a V a ππππ--≤≤===7、求由摆线x=,y=的一拱(0t 2)与横轴所围成的平面图形的面积,及该平面图形分别绕x 轴、y 轴旋转而成的旋转体的体积。(1)A 222 222 23 A x y x y x A x V ππ+≤≥== -8、设平面图形由及所确定,求图形绕直线旋转一周所得旋转体的体积。

《定积分在几何中的应用》教学教案

1.7.1定积分在几何中的应用 学习目标: 1.体会“分割、以直代曲、求和、逼近”求曲边梯形面积的思想方法; 2.初步掌握利用定积分求曲边梯形的几种常见题型及方法; 3.理解定积分的几何意义以及微积分的基本定理。 学习方法: 情境一:展示精美的赵州桥图片,讲述古代数学家的故事及伟大发现:拱形的面积 问题1:桥拱与水面之间的切面的面积如何求解呢? 问题2:需要用到哪些知识?(定积分) 问题3:求曲边梯形的思想方法是什么? 问题4:定积分的几何意义是什么? 问题5:微积分基本定理是什么? 情境二:利用定积分求平面图形的面积 例1. 计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 问题1:你能在平面直角坐标系内画出两条抛物线吗? 问题2:能在图中找出所要求的图形吗?(用阴影部分表示出来) (如右图) 问题3:这个图形以前见过吗?有没有直接的公式求它的面积吗? 问题4:既然没有直接的公式求其面积,那能不能转化成我们学过的曲边梯形的面积来间接求解呢?(可看做两个曲边梯形的面积之差,进而可以用定积分来解决) 解:解方程组?????==2 2x y x y 得到交点横坐标为0=x 或1=x x y O A B C D 2 x y =x y =2 1 1 -1 -1 4 x y O 8 4 2 2

∴ OABD OABC S S S 曲边梯形曲边梯形-=dx x ? = 1 dx x ?-1 2 1031 0233132x x -=313132=-= 情境三 学生探究: 例2.计算由直线4y x =-,曲线y =x 轴所围图形的面积S. 分析:模仿例1,先画出草图(左图),并设法把所求图形的面积问题转化为求曲边梯形的面积问题. 问题1:阴影部分图形是曲边梯形吗? 问题2:不是曲边梯形怎么办?能否构造出曲边梯形来呢? 问题3:如果转化成两部分的面积和,应该怎样作辅助线?(过点(4,0)作x 轴的垂线将阴影部分分为两部分) 问题4:两部分面积用定积分分别应该怎样表示?(注意积分上下限的确定) 问题5:做辅助线时应该注意什么?(尽量将曲边图形转化成我们熟悉的平面图形,如三角形、矩形、梯形和曲边梯形组合成的图形.) 规范的解题过程此处略去 思考:1.本题还有没有其它的解决方案?(可以将此阴影部分看做一个曲边梯形和一个三角形的面积之差) 2.上面的解法是将x 看作积分变量,能不能将y 看作积分变量?尝试解决之。 情境四:结合以上两个例题,总结利用定积分求平面图形面积的基本步骤。 解由曲线所围的平面图形面积的解题步骤: 1.画草图,求出曲线的交点坐标 2.将曲边形面积转化为曲边梯形面积 3.根据图形特点选择适当的积分变量 4.确定被积函数和积分区间 5.计算定积分,求出面积.

高中数学选修2-2 定积分的简单应用

[学习目标] 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积.2.掌握利用定积分求曲边梯形面积的几种常见题型及方法.3.通过具体实例了解定积分在物理中的应用,会求变速直线运动的路程和变力做功的问题. 知识点一 定积分在求几何图形面积方面的应用 1.求由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成的平面图形的面积S . (1)如图①,f (x )>0,??a b f (x )d x >0,所以S =??a b f (x )d x . (2)如图②,f (x )<0,??a b f (x )d x <0,所以S =???? ? ?a b f (x )d x =-??a b f (x )d x . (3)如图③,当a ≤x ≤c 时,f (x )≤0,??a c f (x )d x <0;当c ≤x ≤b 时,f (x )≥0,??a b f (x )d x >0.所以 S =???? ? ?a c f (x )d x +??c b f (x )d x =-??a c f (x ) d x +? ?c b f (x )d x . 2.求由两条曲线f (x )和g (x )(f (x )>g (x )),直线x =a ,x =b (a <b )所围成平面图形的面积S . (1)如图④,当f (x )>g (x )≥0时,S =??a b [f (x )-g (x )]d x . (2)如图⑤,当f (x )>0,g (x )<0时,S =??a b f (x )d x +???? ? ?a b g (x )d x =? ?a b [f (x )-g (x )]d x .

高中数学人教版选修2-2导数及其应用(定积分)知识点总结

数学选修2-2导数及其应用(定积分)知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高中数学选修2-2 定积分复习题(附答案)

定积分复习题 1、求下列定积分 (1)dx x x )cos sin 2(2 0+?π 2、dx b ax x M 2 311)(+-?=-,b a ,为何值时,M 最小。 3、 已知0))(13(10=++?dx b x ax ,R b a ∈,,试求b a ?的取值范围。 4、求抛物线x y =2 与直线032=--y x 所围成的图形的面积。 5、求由抛物线52x y = ,12 -=x y 所围成图形的面积。 6、由抛物线 342 -+-=x x y 及其在点A (0,-3),B (3,0)处两切线所围成图形的面积。 7、曲线C :12322 3+--=x x x y ,点)0,21(P ,求过P 的切线l 与C 围成的图形的面积。 8、抛物线 bx ax y +=2在第一象限内与直线4=+y x 相切。此抛物线与x 轴所围成的图形的面积记为S 。求使S 达到最大值的a ,b 值,并求max S 。 课外练习: 1. 将和式的极限)0(321lim 1>+++++∞→p n n p p p p p n 表示成定积分( ) A. dx x 110? B. dx x p 10? C. dx x p )1(10? D. dx n x p )(10? 2. 下列等于1的积分是( ) A. xdx 10? B. dx x )1(10+? C. dx 11 0? D. dx 21 10 ? 3. = -?dx x 4210( )

A. 321 B. 322 C. 323 D. 325 4. 已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为( ) A. 320gt B. 20gt C. 220gt D. 620 gt 5. 曲线 ] 23 ,0[,cos π∈=x x y 与坐标所围成的面积( ) A. 4 B. 2 C. 25 D. 3 6. =+?-dx e e x x )(10( ) A. e e 1+ B. e 2 C. e 2 D. e e 1 - 7. 求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x 为积分变量,则积分区间 为( ) A. ],0[2 e B. [0,2] C. [1,2] D. [0,1] 8. 由直线1,+-==x y x y ,及x 轴围成平面图形的面积为( ) A. dy y y ])1[(1 0--? B. dx x x ])1[(210 -+-? C. dy y y ])1[(210--? D. dx x x )]1([1 0+--? 9. 如果1N 力能拉长弹簧cm 1,为将弹簧拉长6cm ,所耗费的功是( ) A. 0.18 B. 0.26 C. 0.12 D. 0.28 10. 将边长为1米的正方形薄片垂直放于比彼一时为ρ的液体中,使其上距液面距离为2米,则该正方形薄片所受液压力为( ) A. dx x ρ32? B. dx x ρ)2(21+? C. dx x ρ1 0? D. dx x ρ)1(3 2+? 11. 将和式)212111( lim n n n n +++++∞ → 表示为定积分 。 12. 曲线 1,0,2 ===y x x y ,所围成的图形的面积可用定积分表示为 。 13. 由x y cos =及x 轴围成的介于0与π2之间的平面图形的面积,利用定积分应表达为 。 14. 计算下列定积分的值。 (1)dx x x )4(2 31-?- (2)dx x 5 21)1(-? (3)dx x x )sin (2 0+?π (4) xdx 222 cos ππ-? 15. 求曲线x x x y 22 3++-=与x 轴所围成的图形的面积。 16. 设)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f 。 (1)求)(x f y =的表达式; (2)求)(x f y =的图象与两坐标轴所围成图形的面积; (3)若直线t x -=(10<

定积分在几何学上的应用(比赛课教案).doc

定积分在几何学上的应用 ( 比赛课教案 )

教学题目: 选修 2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微 积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1.探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的 价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时:

新课,一课时 教学工具: 常用教具,多媒体, PPT课件 教学方法: 引导法,探究法,启示法 教学过程 当 f(x) 0 时,积分 b y=f (x)、 f (x)dx 在几何上表示由x a a、x b 与 x 轴所围成的曲边梯形的面积。 y f (x) O a b x O a b x y f (x) 当 f ( x) b f (x)dx 在几何上表示y f ( x)、x a、x b 与 x 轴 0时由积分 a b f ( x ) dx c f ( x ) dx b f ( x ) dx 。 所围成的曲边梯形面积的负值 a S a c 类型 1. 求由一条曲线 y=f(x) 和直线 x=a,x=b(a

高中数学选修系列2选修22《微积分基本定理与定积分计算》 教案

§3 微积分基本定理与定积分计算 一、目标预览 1.理解并能熟练运用微积分基本定理. 2.掌握定积分的常用计算方法. 3.了解定积分与不等式的常用证明方法. 4.了解定积分相关知识的综合应用. 二、概念入门 设],[b a R f ∈,称函数? = Φx a dt t f x )()(]),[(b a x ∈为函数 )(x f 在],[b a 上的变上限定积分;类似地可定义变下限定积分: ?=ψb x dt t f x )()(. 注(i )由)(R 积分的性质,)(x Φ的定义有意义. (ii )由)(R 积分的性质易证],[)(b a C x ∈Φ. 三、主要事实 1.微积分基本定理 若],[b a C f ∈,则)()(x f x =Φ']),[(b a x ∈,即 ?=x a x f dt t f dx d )()(,],[b a x ∈. 注(i )证明由导数的定义及第一积分中值定理即得. (ii )通过微分中值定理(推论),可获得微积分基本定理如下的等价表述: 若],[b a C f ∈,而且)()(x f x F =']),[(b a x ∈,则 ? -=x a a F x F dt t f )()()(]),[( b a x ∈. (iii)微积分基本定理及其等价表述沟通了不定积分与定积 分、微分与积分的内在联系. (iv )利用微积分基本定理及复合函数微分法可得下述的变限

?'-'=) ( ) ( )())(()())(())((x x x x f x x f dt t f dx d ψ???ψψ? ? =ξ )() ()()(a b a dx x f a g dx x g x f ?=b dx x g b f )()(ξ 积分求导公式: 若],[b a C f ∈,)(x ?、)(x ψ在],[d c 上可微而且]),([d c ?、 ],[]),([b a d c ?ψ,则 2.第二积分中值定理 (1)(旁内(Bonnet ,1819-1892[法])型第二积分中值定理)若],[b a R f ∈,而且)(x g 是],[b a 上非负递减(相应地递增)函数,则存在],[b a ∈ξ使得 (相应地) (2)(Werierstrass 型第二积分中值定理)若],[b a R f ∈, )(x g 是],[b a 上的单调函数,则存在],[b a ∈ξ使得 ??? +=b a b a dx x f b g dx x f a g dx x g x f )()()()()()(ξ ξ. 证(1)令? = x a dt t f x F )()(]),[(b a x ∈,利用g 的可积性得 ? ? --=→∑=i i x x i n i T b a dx x f x g dx x g x f 11 0|||| 1 )()(lim )()( ))()()((lim 111 0||||--=→-∑=i i i n i T x F x F x g 再由 ))()()((111 --=-∑i i i n i x F x F x g )()()]()()[(1111 ---=+-∑=n i i i n i x g b F x g x g x F

高中数学选修2-2 同步练习 定积分的概念+微积分基本定理+定积分的简单应用(解析版)

第一章 导数及其应用 1.5 定积分的概念 1.6 微积分基本定理 1.7 定积分的简单应用 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.当n 的值很大时,函数2()f x x =在区间,[ ]1i i n n -上的值可以用下列函数值近似代替的是 A .()1f n B .()2 f n C .()f i n D .()0f 【答案】C 【解析】用区间,[]1i i n n -内的任意一个函数值都可近似代替这个区间对应的函数值.故选C . 2. π20 (sin )d x x x -=? A .2 π14- B .2π18- C .2π8 D .2 π18 + 【答案】B 【解析】 ππ2 222 00 1π(sin )(cos )|128 d x x x x x +=-=-? .故选B . 3.若2 2 11 d s x x = ? ,1 22 d 1 s x x =? ,132d e x s x =?,则123s s s ,,的大小关系为 A .123s s s << B .213s s s << C .231s s s << D .321s s s << 【答案】B

4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲 和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是 A .在t 1时刻,甲车在乙车前面 B .t 1时刻后,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 【答案】A 5.物体A 以231(m /s)v t =+的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5m 处,同时以10(m /s)v t =的速度与A 同向运动,出发后物体A 追上物体B 所用时间(s)t 为 A .3s B .4s C .5s D .6s 【答案】C 【解析】物体A 经过s t 行驶的路程为2 (31)d t t t +?,物体B 经过s t 行驶的路程为0 10d t t t ?, 则有 2323200 (3110)(d 5)|55t t t t t t t t t t t +-=++-=-=? ,解得5t =.故选C . 6.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25 ()731v t t +t =-+(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是 A .1+25ln 5 B .8+25ln 113 C .4+25ln 5 D .4+50ln 2 【答案】C

成才之路北师大数学选修22习题 第4章 定积分§1 含解析

第四章 §1 一、选择题 1.一辆汽车作变速直线运动,汽车的速度v (单位:m/s)与时间t (单位:s)之间具有如下函数关系:v (t )=t 2 2+6t .求汽车在0≤t ≤2这段时间内行驶的路程s 时,将行驶时间等分成n 段, 下列关于n 的取值中,所得估计值最精确的是( ) A .5 B .10 C .20 D .50 [答案] D [解析] 将行驶时间等分得越细,得到的估计值越精确,故选D. 2.已知曲线y =f (x )在x 轴下方,则由y =f (x ),y =0,x =-1和x =3所围成的曲线梯形的面积S 可表示为( ) A .??-13f (x )d x B .??-31f (x )d x C .-??-13f (x )d x D .-??-31f (x )d x [答案] C [解析] 因为f (x )位于x 轴下方,故f (x )<0, ∴??-13f (x )d x <0,故上述曲边梯形的面积为-??-13f (x )d x . 3.设f (x )=x 2+x 6,则与??-a a f (x )d x 的值一定相等的是( ) A .0 B .2??-a a f (x )d x C .??-a 0 f (x )d x D .??0 a f (x )d x [答案] B [解析] f (x )为偶函数,故它在[-a,0]上和[0,a ]上的图像关于y 轴对称,由定积分的几何意义可知??-a a f (x )d x =??0a f (x )d x . 4.??1 4x d x 表示平面区域的面积,则该平面区域用阴影表示为( )

[答案] B [解析] 由定积分的几何意义可得. 5.(2014·黄冈检测)如图所示,图中曲线方程为y =x 2-1,用定积分表达围成封闭图形(阴影部分)的面积是( ) A .|??0 2(x 2-1)d x | B.??0 2(x 2-1)d x C .??0 2|x 2-1|d x D.??01(x 2-1)d x +??1 2(x 2-1)d x [答案] C [解析] 面积S =??01(1-x 2)d x +??12(x 2-1)d x =??0 2|x 2-1|d x ,故选C . 二、填空题 6.利用定积分的几何意义在??0 39-x 2d x =________. [答案] 94 π [解析] 被积函数y = 9-x 2表示的曲线是圆心在原点,半径为3的圆的上半圆周,积分 区间[0,3]由定积分的几何意义可知此积分计算的是1 4 圆的面积. 所以有?? 3 9-x 2d x = π×324=9 4 π.

选修2-2教案定积分

§1.5.1曲边梯形的面积 一、教学目标: 理解求曲边图形面积的过程:分割、以直代曲、逼近,感受在其过程中渗透的思想方法. 二、教学重难点 重点:掌握过程步骤:分割、以直代曲、求和、逼近(取极限). 难点: 对过程中所包含的基本的微积分“以直代曲”的思想的理解. 三、教学过程: 1、创设情景 我们学过如何求正方形、长方形、三角形等的面积,这些图形都是由直线段围成的。那么,如何求曲线围成的平面图形的面积呢 这就是定积分要解决的问题。 定积分在科学研究和实际生活中都有非常广泛的应用。本节我们将学习定积分的基本概念以及定积分的简单应用,初步体会定积分的思想及其应用价值。 一个概念:如果函数() y f x =在某一区间I上的图像是一条连续不断的曲线,那么就把函数() y f x =称为区间I上的连续函数.(不加说明,下面研究的都是连续函数) 2、新课讲授 问题:如图,阴影部分类似于一个梯形,但有一边是曲线() y f x =的一段,我们把由直线,(),0 x a x b a b y ==≠=和曲线() y f x =所围成的图形称为曲边梯形.如何计算这个曲边梯形的面积 例1:求图中阴影部分是由抛物线2 y x =,直线1 = x以及x轴所围成的平面图形的面积S。 思考:(1)曲边梯形与“直边图形”的区别 (2)能否将求这个曲边梯形面积S的问题转化为求“直边图形”面积的问题分析:曲边梯形与“直边图形”的主要区别:曲边梯形有一边是曲线段,“直边图形”的所有边都是直线段.“以直代曲”的思想的应用. x x x 1 1 y y y

0.1 把区间[]0,1分成许多个小区间,进而把区边梯形拆为一些小曲边梯形,对每个小曲边梯形“以直代取”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值.分割越细,面积的近似值就越精确。当分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积S .也即:用划归为计算矩形面积和逼近的思想方法求出曲边梯形的面积. 解: (1).分割 在区间[]0,1上等间隔地插入1n -个点,将区间[]0,1等分成n 10, n ? ?????,12,n n ??????,…,1,1n n -?? ???? 记第i 个区间为1,(1,2,,)i i i n n n -?? =? ?? ?,其长度为 11 i i x n n n -?= -= 分别过上述1n -个分点作x 轴的垂线,从而得到n 个小曲边梯形,他们的面积分别记作: 1S ?,2S ?,…,n S ? 显然,1 n i i S S == ?∑ (2)近似代替 记()2 f x x =,如图所示,当n 很大,即x ?很小时,在区间1,i i n n -????? ?上,可以认为函数()2 f x x =的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点 1 i n -处的函数值1i f n -?? ??? ,从图形上看,就是用平行于x 轴的直线段近似的代替小曲边梯形的曲边

高二数学选修2-2定积分试题

高二数学(理科)定积分练习 高二数学组:张党光 一、选择题: 1.下列等于1的积分是 ( ) A . dx x ? 1 B .dx x ?+10 )1( C .dx ? 1 01 D .dx ?1 021 2.dx x |4|1 02 ? -= ( ) A . 321 B .322 C .323 D .3 25 3.已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为 ( ) A .320gt B .2 0gt C .2 2 0gt D .6 2 0gt 4.曲线]2 3 ,0[,cos π∈=x x y 与坐标周围成的面积 ( ) A .4 B .2 C .2 5 D .3 5.dx e e x x ?-+1 )(= ( ) A .e e 1 + B .2e C . e 2 D .e e 1- 6.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( ) A .[0,2e ] B .[0,2] C .[1,2] D .[0,1] 7.由直线1,+-==x y x y ,及x轴围成平面图形的面积为 ( ) A .()[]dy y y ?--1 1 B . ()[]dx x x ?-+-210 1 C . ()[]dy y y ?--210 1 D .()[]dx x x ? +--10 1 8.如果1N 力能拉长弹簧1cm ,为将弹簧拉长6cm ,所耗费的功是 ( ) A .0.18 B .0.26 C .0.12 D .0.28 二、解答题: 9.计算下列定积分的值 (1)? --3 1 2)4(dx x x ; (2)?-2 1 5)1(dx x ;

定积分在几何学上的应用比赛课教学教案.docx

教学题目: 选修 2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1.探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思 路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体, PPT课件 教学方法: 引导法,探究法,启示法 教学过程

— b y=f (x) 、 x a 、 x b 与 x 轴所围成的曲边梯形 当 f(x) 0 时,积分 a f (x)dx 在几何上表示由 的面积。 y f (x) O a b x O a b x y f (x) 当 f ( x ) 0 时由 积分 b y f ( x ) 、x a 、x b 与 x 轴 f (x)dx 在几何上表示 a b c b f ( x ) dx 。 所围成的曲边梯形面积的负值 f ( x ) dx f ( x ) dx c a S a 类型 1. 求由一条曲线 y=f(x) 和直线 x=a,x=b(a

定积分的几何应用

定积分的几何应用

定积分的几何应用 内容摘要 自十七世纪下半叶牛顿和莱布尼茨确定了微积分的基础以来,微积分已经经历了近四百年的发展,微积分不仅在数学领域,在现代科学各个领域都发挥了巨大的作用,微积分的思想更是达到了哲学的高度。可以预见,微积分在将来的应用会越来越广泛,越来越深入,但微积分由于其思想的复杂性、系统性,给使用者带来了不便,本文就微积分在数学几何领域的应用做了一些总结和创新,得出了在直角坐标系和极坐标系情况下,平面图形的面积、旋转体体积、光滑曲线的弧长和旋转曲面的面积的求解方法,以方便相关领域的人士在工作和学习中参考使用。。 【关键词】定积分几何坐标系面积体积弧长

The application of definite integral geometry Abstract Since the second half of the seventeenth Century the Newtonian and Leibniz to determine the basis of calculus, calculus has experienced nearly four hundred years of development, not only in the field of mathematics calculus, in modern scientific fields have played an important role, the calculus idea is to achieve a high degree of philosophy. Can foreknow, calculus in the future will be more widely used, more and more deeply, but due to the complexity of ideas of calculus, system, users have inconvenience, the calculus in mathematics geometry application some summary and innovation, derived in Cartesian coordinate and polar coordinate conditions, planar graph area, the volume of body of rotation, smooth arc length of a curve and a rotating surface area method, so as to facilitate the related people in the working and learning reference. 【Key words】Integral geometry coordinates area volume arc length

相关主题
文本预览
相关文档 最新文档