当前位置:文档之家› 三路频分复用系统设计

三路频分复用系统设计

三路频分复用系统设计
三路频分复用系统设计

*****************

实践教学

*******************

兰州理工大学

计算机与通信学院

2013年春季学期

信号处理课程设计

题目:三路频分复用系统的设计

专业班级:通信工程

姓名:刘旺春

学号:10250423

指导教师:王维芳

成绩:

摘要

频分复用是通信中广泛使用的一种通信方式。频分复用技术可以使不同的用户分配在时隙相同而频率不同的信道上传输。复用是一种将若干个彼此独立的信号,合并为一个可在同一信道上同时传输的复合信号的方法。可以把它们的频谱调制到不同的频段,合并在一起而不会相互影响,并能在接收端彼此分离开来。按频率区分信号的方法叫频分复用。在生活中,我们接触到的大部分都是模拟信号,而计算机只能对数字信号进行处理。通过FFT变换,通过对模拟信号采样,我们可以使其变成数字信号,本次设计是通过FFT来实现的。先产生三个信号,接着对其进行FFT变换,然后将三个叠加。接着设计三个滤波器进行滤波,还原出原始信号。本设计是用FFT实现对三个同频带信号的频分复用,就是通过Matlab语言来实现的。本设计报告分析了数字信号处理课程设计的过程。用Matlab进行数字信号处理课程设计的思路,并阐述了课程设计的具体方法、步骤和内容,以及在生活中的应用。

关键词:频分复用;FFT;Matlab;频谱分析

目录

一设计任务目的及要求 (1)

1.1设计目的及意义 (1)

1.2设计要求 (1)

二原理与模块介绍 (3)

2.1 频分复用通信系统模型建立 (3)

2.2 语音信号采样 (6)

2.3 语音信号的调制 (8)

2.4滤波器的设计 (9)

2.4.1 巴特沃斯滤波器 (9)

2.4.2 切比雪夫I型滤波器 (9)

2.4.3 椭圆滤波器 (11)

2.5 信道噪声 (12)

三设计内容 (15)

3.1 设计流程图 (15)

3.2 语音信号的时域和频域仿真 (15)

3.2.1 信号的时域仿真 (15)

3.2.2信号频域仿真 (16)

3.3 复用信号的频谱仿真 (16)

3.4传输信号的仿真 (17)

3.5 解调信号的频谱仿真 (18)

3.6恢复信号的时域与频域仿真 (19)

总结 (21)

参考文献 (23)

附录 (24)

一设计任务目的及要求

1.1设计目的及意义

要求学生独立应用所学知识,对通信系统中的典型部件电路进行方案设计、分析制作与调测电路。通过本专题设计,掌握频分复用的原理,熟悉简单复用系统的设计方法。

频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰。频分复用是通信中广泛使用的一种通信方式。频分复用技术可以使不同的用户分配在时隙相同而频率不同的信道上传输。本次课程设计要求设计三路频分复用系统。通过这次课程设计欲达到以下目的:巩固课程所学的有关理论知识;加深对频分复用系统的理解和掌握;掌握带通滤波器和低通滤波器的设计;掌握MATLAB软件的基本使用;学会使用MATLAB软件进行一些仿真和设计。

1.2设计要求

1.2.1课程设计的内容

根据频分复用的通信原理,运用Matlab软件采集两路以上的语音信号,选择合适的高频载波进行调制,得到复用信号。然后设计必要的带通滤波器、低通滤波器,从复用信号中恢复所采集的语音信号。整个过程运用Matlab进行仿真,并对各个信号进行时域和频域分析。

1.2.2课程设计的要求与数据

(1)根据频分复用原理,设计三路频分复用系统。

(2)使用MATLAB语言产生三个不同频段的信号,画出三个信号的时域波形。(3)对产生的三个信号进行频谱分析。

(4)将三路信号叠加为一路信号。

(5)根据三路信号的频谱特点设计三个合适的带通滤波器。

1

(6)用设计的滤波器对信号进行滤波。

(7)分析得到的信号的频谱,并画出滤波后的信号的时域波形和频谱图。

1.2.3课程设计应完成的工作

(1)利用MATLAB语言产生三个不同频段的信号。

(2)对产生的三个信号进行FFT变换。

(3)将三路信号叠加为一路信号。

(4)根据三路信号的频谱特点得到性能指标,由性能指标设计三个滤波器。(5)用设计的滤波器对信号进行滤波,并对其频谱图进行分析。

(6)分析得到信号的频谱,并画出滤波后信号的时域波形和频谱。

2

3 二 原理与模块介绍

2.1 频分复用通信系统模型建立

传统的频分复用典型的应用莫过于广电HFC 网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个频道(8MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。

频分多址(FDMA )是使用最早、目前使用较多的一种多址接入方式,广泛应用于卫星通信、移动通信、一点多址微波通信系统中。

FDMA 通信系统核心的思想是频分复用(FDM ),复用是一种将若干个彼此独立的信号合并为一个可在同一个信道上传送的复合信号的方法。例如,在电话通信系统中,语音信号频谱在300—3400Hz 内,而一条干线的通信资源往往远大于传送一路语音信号所需的带宽。这时,如果用一条干线只传一路语音信号会使资源大大的浪费,所以常用的方法是“复用”,使一条干线上同时传输几路电话信号,提高资源利用率。

频分复用(FDM )是信道复用按频率区分信号,即将信号资源划分为多个子频带,每个子频带占用不同的频率,如图(1)所示。然后把需要在同一信道上同时传输的多个信号的频谱调制到不同的频带上,合并在一起不会相互影响,并且能再接收端彼此分离开。

频分复用的关键技术是频谱搬移技术,该技术是用混频来实现的。混频的原理,如图(2)所示。

混频过程的时域表示式为: )2cos()()(0t f t x t s π?= (1)

图 1 频分复用的子频带划分

其双边带频谱结构如图(3)所示。其中,下边带也称为反转边带,从低到

高的频率分量是基带频率分量的翻转,双边带频谱经过低通滤波就可以得到下边带;上边带也称为正立边带,从低到高频率分量与基带频率分量一致,双边带频谱经过高通滤波就可以得到上边带。

图 2 混频原理

图 3 双边带频谱结构

从图(3)可以看出上、下边带所包含的信息相同,所以恢复原始数据信息

只要上边带和下边带的其中之一即可。另外,混频器本身不是线性设备。线性设

4

5 备的输出与输入信号具有相同的频率成分,只以幅度和相位的不同来区分。但是,混频器所对应的调制方式之所以称之为“线性调制”,主要是由于从频谱的角度只进行了简单的搬移。

在FDMA 通信系统中,首先把传输频带划分为若干个较窄的且互不重叠的子频带,每个用户分配带一个固定子频带,按频带区分用户,如图(4)所示。信号调制到该子频带内,各用户信号同时传送,接收时分别按频带提取信号,实现多址通信。所以FDMA 实现的是频率域上的正交性。其中FDMA 的正交分割条件为:

??

?≠==?

m

n m

n df f x f x n f f m ,,01)()(21

(2)

如果用理想滤波器分割各用户信号,不需要保护间隔也能满足正交分割条件。但是,理想滤波器在工程上是不可能实现的,则各信号间总存在一定的相关性,总会有一定的干扰。因此各频带之间需留有一定的保护间隔以减少各频带之间的串扰。

FDMA 有采用模拟调制的,也有采用数字调制方式的,可以由一组模拟信号用频分复用方式(FDM/FDMA )或一组数字信号用时分复用方式(TDM/FDMA )占用一个较宽的频带,调制到相应的子频带后传送到同一个地址。

图 4 频分多址的子频带划分

通过前面的分析可以得出FDMA 通信系统之所以可以使不同的用户分配在时隙相同而频率不同的信道上传输,其核心的思想是频分复用。即不同的信号运用不同的载波进行调制,而载波带宽被划分为多种不同频带的子信道,每个子信道可以并行传送一路信号。而接收端通过不同的带通滤波器将各路不同的信号提取出来,再通过解调和低通滤波器,进而恢复原始信号。从

而可以得到如图(5)所示的简化FDMA通信模型。

2.2 语音信号采样

语音信号的采样即为信号的抽样过程,是把连续时间模拟信号转换成离散时间连续幅度的抽样信号,其实质就是用一固定频率的抽样信号周期性的读出或测量该连续时间模拟信号。设抽样信号的频率为

f,则抽样周期为s T。抽样以后

s

的信号仍为模拟量,只不过是时间上离散的脉冲调制信号。如图(6)所示,f(t)为输入的被抽样信号,p(t)为抽样信号,而f

(t)为抽样后输出信号。理想的抽

样应是冲激序列,但实际抽样通常是平顶抽样或自然抽样。

图5 频分复用通信系统模型

6

7

图 6 抽样过程波形

抽样的理论基础是抽烟定理,它说明在什么条件下能从抽样输出信号f 0(t)中恢复输入信号f(t)。根据频谱分析理论,只有抽样信号的频率不发生重叠现象时,抽样的频谱才能与信号频谱相一致。因此,抽样定理可表述为:为了使抽样信号f 0(t)能完全恢复连续信号f(t),抽样信号重复频率s

f 必须大于等于2倍

H

f ,

H

f 为包含任何干扰在内的信号f(t)的最高有效频率,即

H

s f f 2≥ (3)

其中,

H

s f f 2=为奈奎斯特频率。

由于实际滤波器特性的不理想,抽样频率s

f 通常都有高于

H

f ,一般取3到

5倍

H

f 。语音信号频谱在300—3400Hz 内,由(3)式可知语音采样频率s

f 必须

大于6.8KHz 。在MATLAB 数据采集箱中提供语音采集wavrecord 命令,wavrecord 命令利用Windows 音频输入设备记录声音,其调用形式为:wavrecord (n ,fs ,ch)。利用Windows 音频输入设备记录n 个音频采样, 频率为fs Hz ,通道数为ch 。采样值返回到一个大小为n*ch 的矩阵中。缺省时,fs = 11025 ,ch = 1。其中MATLAB 提供的标准音频采样频率有:8000、11025、22050 和44100Hz 。为了保证语音的质量,本次设计中取语音信号的采用频率为44100Hz ,该采样频率为语音信号CD 音质。语音信号采集后,可以用MATLAB 数据采集箱中wavwrite 命令保存采集的语音信号。

8 2.3 语音信号的调制

语音信号的调制即为频分复用的混频过程,该过程关键是对各路语音信号载波频率的选取。混频过程的时域表示式如前面的(1)式所示,为双边带信号(DSB ),它的带宽是基带信号带宽

H

f 的2倍,即调制后的带宽为:

H

f B 2= (4)

为了使各个信号不会相互干扰,各个载频的间隔既要大于调制后带宽B ,设各载波的频率间隔为

g

f ,由于

kHz

f H 4.3=,所以

kHz

kHz f B f H g 8.64.322=?==≥ (5)

另外,在选取各路信号载波频率时,还需要考虑混叠频率a

f 。所谓混叠频

率,就是当利用一个抽样频率为s

f 的离散时间系统进行信号处理时信号所允许

的最高频率。任何大于

a

f 的分量都将重叠起来而不能恢复,并使正规频带内的

信号也变得模糊起来。根据抽样定理可知: s a f f 2

1

= (6)

由于前面语音信号采样频率kHz f s

1.44=,所以混叠频率:

kHz

kHz f f s a 05.221.442

12

1=?=

=

(7)

综合上述考虑,由(5)式可取载波频率间隔g

f 为7000Hz ,由(7)式可知

最高载波频率要小于

a f 为

22050Hz ,如果本次设计取第1路语音信号的载波频率

1c f 为4000Hz ,则第2路信号的载波频率2

c f 为11000Hz ,第3路信号的载波频率

3c f 为

18000Hz 。同时满足最高载波频率

a c f f <3的要求。

根据前面的混频原理,可以得到如图(7)所示的频谱结构。

图 7 三路语音信号调制后频谱结构

2.4滤波器的设计

2.4.1 巴特沃斯滤波器

巴特沃斯滤波器是电子滤波器的一种。巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。

巴特沃斯低通滤波器可用如下振幅的平方对频率的公式表示:

(2.2)

=截止频率 =振幅下降为 -3分贝时的频率,其中,n = 滤波器的阶数,ω

c

ωp = 通频带边缘频率。

n 阶巴特沃斯低通滤波器的振幅和频率关系可用如下的公式表示:

(2.3)

G 表示滤波器的放大率, H 表示转移函数, j 是虚数单位, n 表示滤波器的级数,ω是信号的角频率,以弧度/秒为单位,ωc 是振幅下降3分贝时的截止频率。

MATLAB信号处理工具箱提供巴特沃斯滤波器设计函数buttord和butter。

[n,Wn]=butterd(Wp,Ws,Rp,Rs,’s’)——在给定滤波器性能的情况下(通带临界频率Wp、阻带临界频率Ws、通带内最大衰减Rp和阻带内最小衰减Rs),计算ButterWorth滤波器的阶数n和截止频率Wn。

[b,a]=butter(n,Wn,’s’)——根据阶数n和截止频率Wn计算ButterWorth滤波器分子分母系数(b为分子系数的矢量形式,a为分母系数的矢量形式)。

2.4.2 切比雪夫I型滤波器

切比雪夫滤波器(又译车比雪夫滤波器)是在通带或阻带上频率响应幅度等波纹波动的滤波器。在通带波动的为“I型切比雪夫滤波器”,在阻带波动的为“II型切比雪夫滤波器”。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅

9

10 度波动。

n 阶第一类切比雪夫滤波器的幅度与频率的关系可用下列公式表示:

(2.4)

其中:

| ε | < 1 ,而 (2.5)是滤波器在截止频

率ω0的放大率 ,是 n 阶切比雪夫多项式:

(2.6)

MATLAB 信号处理工具箱提供切比雪夫Ⅰ型滤波器设计函数有cheb1ap 、cheb1ord 和cheby1:

数字域:[b,a]=cheby1(n,Rp,Wn)可设计出n 阶chebyshevI 滤波器,其截止频率由Wn 确定,通带内的波纹由Rp 确定 [b,a]=cheby1(n,Rp,Wn,’ftype ’)

当ftype=high 时,可设计出截止频率为Wn 的高通滤波器; 当ftype =stop 时,可设计出带阻滤波器 [z,p,k]=cheby1(n,Rp,Wn)

[zp,k]= cheby1 (n,Rp,Wn,’ftype ’) [A,B,C,D]= cheby1 (n,Rp,Wn)

[A,B,C,D]= cheby1 (n,Rp,Wn,’ftype ’)

模拟域:[b,a]= cheby1 (n,Rp,Wn,’s ’)可设计出截止频率为Wn 的n 阶chebyshevI 型模拟滤波器,其余形式类似于数字域的。

2.4.3 椭圆滤波器

椭圆滤波器特点:幅值响应在通带和阻带内都是等波纹的,对于给定的阶数和给定的波纹要求,椭圆滤波器能获得较其它滤波器为窄的过渡带宽。椭圆滤波器可以获得对理想滤波器幅频响应的最好逼近。

低通椭圆滤波器的频率响应的幅度为:

(2.7)

MATLAB信号处理工具箱提供椭圆滤波器设计函数ellipap 、ellipord和ellip:

[z,p,k]=ellipap(N,Rp,As) ——用于计算N阶归一化中滤波器的零点向量z、极点向量p和增益因子k。Rp和As分别为通带最大衰减和阻带最小衰减。

[N,wpo]=ellipord(wp,ws,Rp,As,‘s’)——。用于计算满足指标的椭圆模拟滤波器的最低阶数N和通带边界频率wpo,指标要求由参数(wp,ws,Rp,As)给定。

[b,a]=ellip(n,Rp,Rs,Wn,’ftype’,‘s‘)——计算椭圆滤波器系统函数系数向量b和a。当ftype=high时,可设计出截止频率为Wn的高通滤波器;当ftype =stop时,可设计出带阻滤波器

2.4.4 以上类型滤波器的比较

图2.6是各滤波器频域响应图:巴特沃斯滤波器(左上)和同阶第一类切比雪夫滤波器(右上)、第二类切比雪夫滤波器(左下)、椭圆函数滤波器(右下)的频率响应图。

巴特沃斯滤波器的衰减速度比其他类型滤波器缓慢,但十分平坦,没有幅度变化。

两类切比雪夫滤波器比巴特沃斯滤波器陡峭;但不如椭圆函数滤波器,然而后者幅度波动较大。

椭圆滤波器比其他滤波器更陡,因此在选择滤波器的时候,椭圆滤波器能够以较低的阶数获得较窄的过渡带宽,但是它在通带和阻带上都有波动。

11

12

2.5 信道噪声

信道中存在不需要的电信号统称为噪声。通信系统中的噪声是叠加在信号上的,没有传输信号时通信系统中也有噪声,噪声是永远存在于通信系统中的。噪声可以看成是信道中的一种干扰,也称为加性噪声,因为它是叠加在信号之上的。最基本的调制信道有一对输入端和一对输出端,其输入端信号电压)(t e i 和输出端电压)(t e o 间的关系可以用下式表示:

)

()]([)

(t n t e f t e i o += (11)

式中:)(t e i 为信道输入端信号电压;)(t e o 为信道输出端得信号电压;)(t n 为噪声电压。由于信道中的噪声)(t n 是叠加在信号上的,而且无论有无信号,噪声

)

(t n 是始终存在的。当没有信号输入时,信道输出端也有加性干扰输出。)]

([t e f i

表示信道输入和输出电压之间的函数关系。所以在信道数学分析时,可以假设

13 )()()]([t e t k t e f i i =,即信道的作用相当于对输入信号乘一个系数)(t k 。这样,式

(11)就可以改写为: )

()()()

(t n t e t k t e i o += (12)

式(12)就是调制信道的一般数学模型。其数学模型图可以图(8)所示。)(t k 是一个很复杂的函数,它反映信道的特征。一般说来,它是时间t 的函数。

图 8 调制信道数学模型

噪声又可以分为认为噪声和自然噪声两大类。其中以自然噪声最难处理,而自然噪声中最重要的噪声为热噪声。由于在一般通信系统的工作频率范围内热噪声的频谱是均匀分布的,所以热噪声又常称为白噪声。由于热噪声是由大量自由电子的运动产生的,其统计特性服从高斯分布,故常将热噪声称为高斯白噪声。所以本次设计中模拟信道噪声可以用MATLAB 软件加入一个随机的高斯白噪声在复用信号中。

14

三设计内容

3.1 设计流程图

开始

产生三个不同频段的信号

进行DFT变换

信号叠加

滤波器设计

还原出原始信号

结束

3.2 语音信号的时域和频域仿真

3.2.1 信号的时域仿真

使用MATLAB软件可以对采集的语音信号进行时域和频域分析。可以使用subplot(m,n,p)或者subplot(m n p)将多个图画到一个平面上的工具。其中,m表示是图排成m行,n表示图排成n列,也就是整个figure中有n个图是

15

排成一行的,一共m行,p则是指要把曲线画到figure中哪个图上。MATLAB中绘图命令plot(x,y),其含义是以x为横坐标,y为纵坐标,绘制图形。可得到如图(9)所示的时域分析图

图9 声音样本的时域分析

3.2.2信号频域仿真

频域分析主要是将3个声音样本信号sd1、sd2和sd3用MATLAB软件进行快速傅里叶变换后,再画出3个信号的频谱图。其中快速傅里叶变换可以直接用MATLAB中的fft命令,然后通过abs得到经过快速傅里叶变换后信号的振幅。最后用MATLAB中stem命令对于得到的离散序列实现其频谱图的绘制。可以得到如图(10)所示的声音信号频谱分析图。

3.3 复用信号的频谱仿真

在MATLAB软件中将采样的3路语音信号经过混频处理得到3路已调信号x1、x2和x3,再通过加法器将3路信号变为一路复用信号s,通过MATLAB软件中stem(t,abs(fft(s)),'.')命令对复用信号s进行了频谱分析,其频谱分析如图(11)所示。

16

17

图10 声音样本的频谱分析

图11 复用信号的频谱分析

3.4传输信号的仿真

我们都知道FDMA 通信系统的复用信号传输是通过空气介质传输的,复用信号在空气传输中会有很多的噪声,其中主要是以高斯白噪声为主,所以在信号传输的设计仿真中,主要对复用信号加入高斯白噪声。

三路频分复用系统设计

***************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2015年春季学期 数字信号处理课程设计 题目:频分多路复用系统的设计 专业班级: 姓名: 学号: 指导教师: 成绩:

摘要 频分复用是一种用频率来划分信道的复用方式。在FDM中,信道的带宽被划分成很多个互不重叠的频率段(子通道),每路信号占据其中一个字信道,并且各路之间必须留有未被占用的频段(防护频带)进行隔离,以防止信号重叠。在接收端,采用适当的带通滤波器将多路信号分开,从而恢复出来所需要的信号。 本次以“频分多路复用系统的防真设计”为题目的《数字信号处理》课程设计,在MATLAB仿真环境为基础,利用STMULINK仿真工具,根据频分复用的原理,仿真频分多路复用系统。并设计必要的带通滤波器。低通滤波器,从复用信号中恢复所采集的语音信号。最后通过系统的仿真波形图对系统进行分析。 通过本次《数字信号处理》课程设计,再次熟悉了频分复用的相关理论知识,对如何通过SIMULINK仿真工具进行系统仿真也有了更清晰的认识和掌握。 关键词:频分复用;FFT;Matlab;频谱分析

目录 一设计任务目的及要求 (1) 1.1设计目的及意义 (1) 1.2设计要求 (1) 二原理与模块介绍 (2) 2.1 频分复用通信系统模型建立 (2) 2.2 语音信号采样 (5) 2.3 语音信号的调制 (7) 2.4滤波器的设计 (8) 2.4.1 切比雪夫I型滤波器 (8) 2.5 信道噪声 (10) 三设计内容 (11) 3.1 设计流程图 (11) 3.2 语音信号的时域和频域仿真 (12) 3.2.1 信号的时域仿真 (12) 3.2.2信号频域仿真 (13) 3.3 复用信号的频谱仿真 (13) 3.4传输信号的仿真 (14) 3.5 解调信号的频谱仿真 (15) 3.6恢复信号的时域与频域仿真 (16) 总结 (18) 参考文献 (19) 附录 (20)

嵌入式系统实验报告

实验报告 课程名称:嵌入式系统 学院:信息工程 专业:电子信息工程 班级: 学生姓名: 学号: 指导教师: 开课时间:学年第一学期

实验名称:IO接口(跑马灯) 实验时间:11.16 实验成绩: 一、实验目的 1.掌握 STM32F4 基本IO口的使用。 2.使用STM32F4 IO口的推挽输出功能,利用GPIO_Set函数来设置完成对 IO 口的配置。 3.控制STM32F4的IO口输出,实现控制ALIENTEK 探索者STM32F4开发板上的两个LED实现一个类似跑马灯的效果。 二、实验原理 本次实验的关键在于如何控制STM32F4的IO口输出。IO主要由:MODER、OTYPER、OSPEEDR、PUPDR、ODR、IDR、AFRH和AFRL等8个寄存器的控制,并且本次实验主要用到IO口的推挽输出功能,利用GPIO_Set函数来设置,即可完成对IO口的配置。所以可以通过了开发板上的两个LED灯来实现一个类似跑马灯的效果。 三、实验资源 实验器材: 探索者STM32F4开发板 硬件资源: 1.DS0(连接在PF9) 2.DS1(连接在PF10) 四、实验内容及步骤 1.硬件设计 2.软件设计 (1)新建TEST工程,在该工程文件夹下面新建一个 HARDWARE文件夹,用来存储以后与硬件相关的代码。然后在 HARDWARE 文件夹下新建一个LED文件夹,用来存放与LED相关的代码。 (2)打开USER文件夹下的test.uvproj工程,新建一个文件,然后保存在 LED 文件夹下面,保存为 led.c,在led.c中输入相应的代码。

(3)采用 GPIO_Set 函数实现IO配置。LED_Init 调用 GPIO_Set 函数完成对 PF9 和 PF10 ALIENTEK 探索者 STM32F407 开发板教程 119 STM32F4 开发指南(寄存器版) 的模式配置,控制 LED0 和 LED1 输出 1(LED 灭),使两个 LED 的初始化。 (4)新建一个led.h文件,保存在 LED 文件夹下,在led.h中输入相应的代码。 3.下载验证 使用 flymcu 下载(也可以通过JLINK等仿真器下载),如图 1.2所示: 图1.2 运行结果如图1.3所示:

频分复用原理及其应用研究

2015届学士学位论文 频分复用原理及其应用研究

频分复用原理及其应用研究 摘要频分复用(FDM)是通信系统中信号多路复用方式中的一种,本质上是依据频率来分隔信道的。频分复用技术在当今通信领域有着很重要的地位。根据性质和特点的不同频分复用还可以被细分为传统的频分复用(FDM)和正交频分复用(OFDM)。 本论文主要由以下几个部分组成。第一部分介绍频分复用基本原理,系统实现以及其应用特点;第二部分介绍正交频分复用的基本原理及DFT的实现;第三部分主要介绍在实际应用中当载波频率接近时,频谱会发生重叠,传统的频分复用解调效果容易出现失真,正交频分复用由于其载波的正交性特点,在频谱发生重叠时可以保证解调效果;最后通过MATLAB程序中的SIMULINK仿真图来表现正交频分复用的优越之处。 关键词频分复用;正交频分复用;MA TLAB仿真

Frequency division multiplexing principle and its application research Abstract Frequency division multiplexing (FDM) is a kind of signal multiplexing mode in communication system, which is divided by frequency channel essentially. Frequency division multiplexing technology is very widely used in today's communication. Frequency division multiplexing can also be divided into the traditional frequency division multiple(FDM) and orthogonal frequency division multiplexing(OFDM) depending on the nature and characteristics. This paper consists of the following parts. The basic principle of frequency division multiplexing, system implementation and its application characteristics are introduced in the first part . The basic principle of orthogonal frequency division multiplexing and its realization of DFT are introduced in the second part .Due to its characteristics ,orthogonal frequency division multiplexing can guarantee the demodulation compare with the traditional frequency division multiplexing when the carrier frequency is close to in the practical application, spectrum overlap happens ,which is introduced in the third part .Finally by SIMULINK of MA TLAB simulation diagram to show the superiority of the orthogonal frequency division multiplexing. Keywords Frequency division multiplexing; Orthogonal frequency division Multiplexing ;MA TLAB simulation

现代电子实验报告 电子科技大学

基于FPGA的现代电子实验设计报告 ——数字式秒表设计(VHDL)学院:物理电子学院 专业: 学号: 学生姓名: 指导教师:刘曦 实验地点:科研楼303 实验时间:

摘要: 通过使用VHDL语言开发FPGA的一般流程,重点介绍了秒表的基本原理和相应的设计方案,最终采用了一种基于FPGA 的数字频率的实现方法。该设计采用硬件描述语言VHDL,在软件开发平台ISE上完成。该设计的秒表能准确地完成启动,停止,分段,复位功能。使用ModelSim 仿真软件对VHDL 程序做了仿真,并完成了综合布局布线,最终下载到EEC-FPGA实验板上取得良好测试效果。 关键词:FPGA,VHDL,ISE,ModelSim

目录 绪论 (4) 第一章实验任务 (5) 第二章系统需求和解决方案计划 (5) 第三章设计思路 (6) 第四章系统组成和解决方案 (6) 第五章各分模块原理 (8) 第六章仿真结果与分析 (11) 第七章分配引脚和下载实现 (13) 第八章实验结论 (14)

绪论: 1.1课程介绍: 《现代电子技术综合实验》课程通过引入模拟电子技术和数字逻辑设计的综合应用、基于MCU/FPGA/EDA技术的系统设计等综合型设计型实验,对学生进行电子系统综合设计与实践能力的训练与培养。 通过《现代电子技术综合实验》课程的学习,使学生对系统设计原理、主要性能参数的选择原则、单元电路和系统电路设计方法及仿真技术、测试方案拟定及调测技术有所了解;使学生初步掌握电子技术中应用开发的一般流程,初步建立起有关系统设计的基本概念,掌握其基本设计方法,为将来从事电子技术应用和研究工作打下基础。 本文介绍了基于FPGA的数字式秒表的设计方法,设计采用硬件描述语言VHDL ,在软件开发平台ISE上完成,可以在较高速时钟频率(48MHz)下正常工作。该数字频率计采用测频的方法,能准确的测量频率在10Hz到100MHz之间的信号。使用ModelSim仿真软件对VHDL程序做了仿真,并完成了综合布局布线,最终下载到芯片Spartan3A上取得良好测试效果。 1.2VHDL语言简介:

频分复用系统设计报告

《信息处理课群综合训练与设计》任务书学生姓名:黄在勇专业班级:通信1104班 指导教师:周建新工作单位:信息工程学院 题目: 频分复用 初始条件: Matlab软件、信号与系统、通信处理等。 要求完成的主要任务: 根据频分复用的通信原理,用matlab采集两路以上的信号(如语音信号),选择合适的高频载波进行调制,得到复用信号。然后设计合适的带通滤波器、低通滤波器,从复用信号中恢复出所采集的语音信号。设计中各个信号均需进行时域和频域的分析。 参考书: [1]陈慧慧、郑宾. 频分多址接入模型设计及MATLAB仿真计算(第三版). 高等教育出版社,北京: 2000 [2]李建新、刘乃安、刘继平. 现代通信系统分析与仿真MATLAB通信工 具箱. 西安电子科技大学出版社,西安: 2000 [3]邓华等. MATLAB通信仿真及应用实例详. 人民邮电出版社,北京: 2003 时间安排: 1、理论讲解,老师布置课程设计题目,学生根据选题开始查找资料; 2、课程设计时间为2周。 (1)理解相关技术原理,确定技术方案,时间2天; (2)选择仿真工具,进行仿真设计与分析,时间6天; (3)总结结果,完成课程设计报告,时间2天。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................................................................ I Abstract ................................................................................................................. II 1绪论 (1) 1.1设计目的 (1) 1.2设计内容 (2) 1.3设计要求 (2) 2频分复用通信系统模型 (3) 3频分复用系统方案设计 (6) 3.1语音信号采样 (6) 3.2语音调制信号 (7) 3.3 系统的滤波器设计 (8) 3.4信道噪声 (9) 4频分复用原理实现与仿真 (11) 4.1 语音信号的时域和频域仿真 (11) 4.2 复用信号的频谱仿真 (12) 4.3 传输信号的仿真 (13) 4.4 解调信号的频谱仿真 (14) 4.5恢复信号的时域与频域仿真 (16) 5 心得体会 (18) 附录I 源程序 (19) 附录II 参考文献 (24)

计算机网络应用 频分多路复用

计算机网络应用频分多路复用 频分多路复用(Frequency Division Multiplexing,FDM)是指一种在信道上同时发送多个模拟信号的方法。它将具有一定带宽的信道划分成多条具有较窄带宽的子信道,各个子信道之间都保留一定宽度的隔离频带,每条子信道供一个用户使用。每条子信道具有各自的载波信号频率,各个子信道的中心频率互不重合,其模型如图2-30所示。 96KHz 图2-30 频分多路复用模型 频分多路复用技术最早是由电话公司在20世纪30年代开发的。它用来在一条电话线上传输多个语音信号。它可以用于语音、视频或数据信号,其常应用于无线电广播传输系统和有线电视系统中。例如,电话线的带宽达250kHz,而音频信号的有效带宽范围为300Hz~3400Hz,4000Hz的带宽就足够用来传输音频信号。为了使各信道之间保留一定的距离减少相互干扰,在CCITT(国际电报电话咨询委员会)标准中,60kHz~108kHz的带宽可以划分为12条载波电话的信道,每对电话用户都可以使用其中的一条信道进行通信。如图2-31所示,为6路频分多路复用的示意图。 D E F ’’’’’’ 图2-31 6路频分多路复用示意图 另外,ADSL(Asymmetric Digital Subscriber Line ,非对称数字用户环路)也是使用频分多路复用技术。它利用频分多路复用的方法,将PSTN(Public Switched Telephone Network,公共交换电话网络)使用的双绞线划分为3个频段,它们分别是0KHz~4KHz频段、20KHz~50KHz频段、150KHz~500KHz频段或140KHz~1100KHz频段。其中,0KHz~4KHz频段用来传送传统的语音信号;20KHz~50KHz频段用来传送计算机上载的数据信息;150KHz~500KHz频段或140KHz~1100KHz用来传送从服务器上下载的数据信息。

组合逻辑电路设计实验报告

组合逻辑电路设计实验 报告 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

组合逻辑电路设计实验报告1.实验题目 组合电路逻辑设计一: ①用卡诺图设计8421码转换为格雷码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③记录输入输出所有信号的波形。 组合电路逻辑设计二: ①用卡诺图设计BCD码转换为显示七段码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③把转换后的七段码送入共阴极数码管,记录显示的效果。 2.实验目的 (1)学习熟练运用卡诺图由真值表化简得出表达式 (2)熟悉了解74LS197元件的性质及其使用 3.程序设计 格雷码转化: 真值表如下: 卡诺图: 电路原理图如下: 七段码显示: 真值表如下: 卡诺图: 电路原理图如下: 4.程序运行与测试 格雷码转化: 逻辑分析仪显示波形: 七段数码管显示:

5.实验总结与心得 相关知识: 异步二进制加法计数器 满足二进制加法原则:逢二进一(1+1=10,即Q由1→0时有进位。) 组成二进制加法计数器时,各触发器应当满足: ①每输入一个计数脉冲,触发器应当翻转一次; ②当低位触发器由1变为0时,应输出一个进位信号加到相邻 高位触发器的计数输入端。 集成4位二进制异步加法计数器:74LS197 MR是异步清零端;PL是计数和置数控制端;CLK1和CLK2是两组时钟脉冲输入端。D0~D3是并行输入数据端;Q0~Q3是计数器状态输出 端。本实验中,把CP加在CLK1处,将CLK2与Q0连接起来, 实现了内部两个计数器的级联构成4位二进制即十六进制异步加法计数 器。 74LS197具有以下功能: (1)清零功能 当MR=0时,计数器异步清零。 本实验中将Q1、Q3的输出连接与非门后到MR,就是为了当计数器输出10时(即1010),使得MR=0,实现清零,使得计 数器重新从零开始。 (2)置数功能 当MR=1,PL=0,计数器异步置数。 (3)二进制异步加法计数功能

FDM频分复用实验分析报告

FDM频分复用实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验课程名称现代通信原理 专业班级 13级通信工程本科班 学生姓名陈勇 学号 134090201048 指导教师曹老师 2015至2016学年第1学期第12至13周

《FDM频分复用》实验报告 2015至2016学年第一学期 姓名陈勇系别计科系实验地点综合楼401教室 13级通信工程 实验时间2015年11月24日学号134090201048 年级、班 本科班 实验项目FDM频分复用实验 一、实验目的 1、掌握FDM复用的基本原理。 2、掌握FDM解复用的常用方法。 二、实验环境(条件) 1、信号与系统实验箱一台(主板)。 2、FDM频分复用传输系统实验模块一块。 3、20M双踪示波器一台。 三、实验内容及步骤: (一) 实验内容 1、观察复用信号的波形。 2、观察解复用信号的波形。 3、观察调制信号与解调信号的波形。 (二)实验原理 在信道上(例如无线信道)将若干路信号以某种方式汇合,统一在同一信道中进行传输称之为多路复用。在近代通信系统中普遍采用多路复用技术,如频分复用技术。 频繁复用要求设备在发送端将各路信号频谱搬移到各个不相同的频率范围内,使它们互不重叠,这样就可复用同一信道传输。

(三)实验步骤 1、打开20M双踪示波器,校正示波器。 2、把FDM频分复用传输系统实验模块插在主板上,用导线接通此模块“电源接 入”和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的 电源开关。 3、载波信号和调制信号的产生:(其频率均可用主板上的频率计进行测量) 载波:在主板上,分别产生16K、31K的正弦信号(具体操作见实验一和实验四),作载波信号,调节其幅度(用“幅度调节”电位器进行调节),使两载波信号 的峰峰值均为3V。 调制信号:FDM频分复用传输系统模块的“200Hz调制信号”输出一峰峰值为2V左右,频率为200Hz作业的正弦信号;FDM频分复用传输系统模块的“500Hz 调制信号”输出一峰峰值为2V左右,频率为500Hz作业的正弦信号。 4、调制单元: 第一路调制波形的产生(调制单元上部分):y(t)=s(t)*x(t),调制在31KHz 的载频上。 (1)将31KHz的正弦信号作为发送载波,通过连接线将其与第一路调制单元的 “载波2”端相连。 (2)将“调制信号”接地,然后观察“已调信号”输出端,观察输出端是否有 信号输出,如果有,然后再调节“FDM频分复用传输系统模块”第一路调制信号的 “调制深度调节”电位器,使“已调信号”输出信号为0。 (3)通过连接线将“FDM频分复用传输系统模块”的“500Hz调制信号”输出端 (500Hz正弦信号),连接到第一路调制单元的“调制信号”端,观察“已调信号” 输出端波形,即为第一路调制波形。 第二路调制波形的产生(调制单元下部分):y(t)=s(t)*x(t),调制在16KHz 的载频上。 (1)将16KHz的正弦信号作为发送载波,通过连接线将其与第二路调制单元的 “载波1”端相连。 (2)将“调制信号”接地,然后观察“已调信号”输出端,观察输出端是否有信号输 出,如果有,然后在调节“FDM频分复用传输系统模块”第二路调制信号的“调制深 度调节”电位器,使“已调信号”输出信号为0。 (3)通过连接线将“FDM频分复用传输系统模块”的“200Hz调制信号”输出 端(200Hz正弦信号),连接到第二路调制单元的“调制信号”端,观察“已调信 号”输出端波形,即为第二路调制的波形。 5、两路已调信号的复用: 将第一路“已调信号”用连接导线接入到上端的“复用输入”,将第二路“已调信号”用连接导线接入到上端的“复用输入”,观察“复用”端测试钩的波形, 即两路已调信号的复用到信道中。 6、复用信号的解复用: 将实验步骤5所获得的复用信号(“复用”输出端),用连接线同时连接到上下端的“解复用输入”端,并观察解复用输出端“X”和“Y”的波形,其应分别和两 路“已调信号”波形基本一致。 其中“X”“Y”分别代表第一路和第二路解复用信号。 7、解调单元:

计算机网络 多路复用技术

计算机网络 多路复用技术 在计算机网络或数据通信系统中,传输介质的传输能力往往会超过传输单一信号的要求。为了提高通信线路的利用率,实现在一条通信线路上同时发送多个信号,使得一条通信线路可以由多个数据终端设备同时使用而互不影响,这就是多路复用技术。 常见的多路复用技术主要由两大类:一种是将带宽较大的信道分割成为多个子信道,即频分多路复用技术;另一种是将多个带宽较窄的信道组合成一个频率较大的信道,即时分多路复用技术。 1.频分多路复用技术 频分多路复用技术(Frequency Division Multiplexing ,FDM )是一种在信道上同时发送多个模拟信号的方法。它将传输频带划分为若干个较窄的频带,每个频带构成一个子信道,每个子信道都有各自的载波信号,而且其载波信号的频率是唯一的。一个具有一定带宽的通信线路可以划分为若干个频率范围,互相之间没有重叠,且在每个频率范围的中心频率之间保留一段距离。这样,一条通信线路被划分成多个带宽较小的信道,每个信道能够为一对通信终端提供服务。 频分多路复用技术是在20世纪30年代由电话公司开发的,用来在一条电话线上传输多个语音信号。它可以用于语音、视频或数据信号,但是最常见的应用是无线电广播传输和有线电视。例如电话线的带宽达250kHz ,而音频信号的有效范围为300Hz~3400Hz ,4000Hz 的带宽就足够用来传输音频信号。为了使各信道之间保留一定的距离减少相互干扰,60kHz~108kHz 的带宽可以划分为12条载波电话的信道(此为CCITT 标准),每对电话用户都可以使用其中的一条信道进行通信。如图3-17所示,为6路频分多路复用的示意图。 D E F ’’’’’’ 图3-17 6路频分多路复用示意图 2.时分多路复 用技术 时分多路复用技术(Time Division Multiplexing ,TDM )是一种多路传输数字信号的方法,它已经在现代数据网络中替代了频分多路复用技术。在通信序列中,时分多路复用技术将为在网络上交换信号的每一个设备分配一段时间或时间片。在这个时间片中,信道只能传输来自该交换信号设备的数据。 例如,在多台计算机连接在同一条公共传输通道上,多路复用器在通道信道中将会按一定的次序轮流为每台计算机分配一个时间片,当轮到某台计算机时,这台计算机与通信通道接通,进行数据交换。而其他计算机与通信通道的联系均被切断,待分配时间片用完后,则 提 示 由于频分多路复用技术是多路传输的一种较早、效率较低的形式。因此,该技术 在现代数据网络中的使用是有限的。

时分复用和频分复用

时分复用和频分复用

时分复用频分复用 简介 数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过 传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信号,这就是所谓的多路复用技术(MultiplexiI1g)。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大 大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision MultiplexiIIg)是两种最常用的多路复用技术。 举个例最简单的例子: 从A地到B地 坐公交2块。打车要20块 为什么坐公交便宜呢 这里所讲的就是“多路复用”的原理。 频分复用 (FDM) 频分复用按频谱划分信道,多路基带信号被调制在不同的频谱上。因此它们在频谱上不会重叠,即在频率上正交,但在时间上是重叠的,可以同时在一个信道内传输。在频分复用系统中,发送端的各路信号m1(t),m2(t),…,mn(t)经各自的低通滤波器分别对各路载波f1(t),f2(t),…,fn(t)进行调制,再由各路带通滤波器滤出相应的边带(载波电话通常采用单边带调制),相加后便形成频分多路信号。在接收端,各路的带通滤波器将各路信号分开,并分别与各路的载波f1(t),f2(t),…,fn(t)相乘,实现相干解调,便可恢复各路信号,实现频分多路通信。为了构造大容量的频分复用设备,现代大容量载波系列的频谱是按模块结构由各种基础群组合而成。根据国际电报电话咨询委员会(CCITT)建议,基础群分为前群、基群、超群和主群。①前群,又称3路群。它由3个话路经变频后组成。各话路变频的载频分别为12,16,20千赫。取上边带,得到频谱为12~24千赫的前群信号。②基群,又称12路群。它由4个前群经变频后组成。各前群变频的载频分别为84,96,108,120千赫。取下边带,得到频谱为 60~108千赫的基群信号。基群也可由12个话路经一次变频后组成。③超群, 又称60路群。它由5个基群经变频后组成。各基群变频的载频分别为420,468,516,564,612千赫。取下边带,得到频谱为312~552千赫的超群信号。④主群,又称300路群。它由5个超群经变频后组成。各超群变频的载频分别为1364,1612,1860,2108,2356千赫。取下边带,得到频谱为812~2044千赫的主群信号。3个主群可组成 900路的超主群。4个超主群可组

电子秤课程设计实验报告

电 子 设 计 实 验 报 告 电子科技大学 设计题目:电子称姓名:

学生姓名 任务与要求 一、任务 使用电阻应变片称重传感器,实现电子秤。用砝码作称重比对。 二、要求 准确、稳定称重; 称重传感器的非线性校正,提高称重精度; 实现“去皮”、计价功能; 具备“休眠”与“唤醒”功能,以降低功耗。

电子秤 第一节绪论 摘要:随着科技的进步,在日常生活以及工业运用上,对电子秤的要求越来越高。常规的测试仪器仪表和控制装置被更先进的智能仪器所取代,使得传统的电子测量仪器在远离、功能、精度及自动化水平定方面发生了巨大变化,并相应的出现了各种各样的智能仪器控制系统,使得科学实验和应用工程的自动化程度得以显著提高。影响其精度的因素主要有:机械结构、传感器和数显仪表。在机械结构方面,因材料结构强度和刚度的限制,会使力的传递出现误差,而传感器输出特性存在非线性,加上信号放大、模数转换等环节存在的非线性,使得整个系统的非线性误差变得不容忽视。因此,在高精度的称重场合,迫切需要电子秤能自动校正系统的非线性。此外,为了保证准确、稳定地显示,要求所采用的ADC具有足够的转换位数,而采用高精度的ADC,自然增加了系统的成本。基于电子秤的现状,本文提出了一种简单实用并且精度高的智能电子秤设计方案。通过运用很好的集成电路,使测量精度得到了大大提高,由于采用数字滤波技术,使稳态测量的稳定性和动态测量的跟随性都相当好。并取得了令人满意的效果。 关键词:压力传感器,AD620N放大电路,ADC模数转换,STM32单片机,OLED 显示屏,矩阵键盘,电子秤。 1.1引言 本课程设计的电子秤以单片机为主要部件,利用全桥测量原理,通过对电路输出电压和标准重量的线性关系,建立具体的数学模型,将电压量纲(V)改为重量纲(g)即成为一台原始电子秤。其中测量电路中最主要的元器件就是电阻应变式传感器。电阻应变式传感器是传感器中应用最多的一种,本设计采用全桥测量电路,是系统产生的误差更小。输出的数据更精确。而AD620N放大电路的作用就是把传感器输出的微弱的模拟信号进行一定倍数的放大,以满足A/D

通信原理综设实验报告汇总

通信系统原理综合性、设计性实验报告 基于MATLAB的CDMA系统 仿真 学院:物理与电信工程学院 年级: 指导老师: 时间:2014年6月

一、实验目的 MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,本次实验利用MATLAB 平台功能,并结合CDMA 的实际通信情况,利用MATLAB 组建出完整的CDMA 通信系统,完成整体设计方案,实现完整的发送到接收的端到端的CDMA 无线通信系统的建模、仿真和分析。 关键字: MATLAB CDMA 仿真 二、实验原理 2.1 CDMA 的基本原理 CDMA 是指在各发送端使用不相同、相互(准)正交的地址码调制所传送的信息,而在接收端在利用码型的(准)正交性,通过相关检测,从混合信号中选出相应的信号的一种技术。实现CDMA 的理论基础是扩频通信,即在发送端将待发送的数据用伪随机码进行调制,实现频谱扩展,然后进行传输,而在接收端则采用同样的编码进行解扩及相关处理,恢复原始的数据信息。扩频通信有直接序列(DS )、跳频(FH )、线性调频(chrip )、跳时(TH )等方式。采用扩频通信的优点很多,如抗干扰、抗噪声、抗多径衰落的能力强,能在低功率谱密度下工作,保密性好、可多址复用和任意选址及进行高度测量等等。 2.2 CDMA 的系统框图 2.3 交织编码的原理

交织编码的目的是把一个较长的突发差错离散成随机差错,再用纠正随机差错的编码(FEC)技术消除随机差错。交织深度越大,则离散度越大,抗突发差错能力也就越强。但交织深度越大,交织编码处理时间越长,从而造成数据传输时延增大,也就是说,交织编码是以时间为代价的。因此,交织编码属于时间隐分集。在实际移动通信环境下的衰落,将造成数字信号传输的突发性差错。利用交织编码技术可离散并纠正这种突发性差错,改善移动通信的传输特性。 2.4 卷积编码的原理 卷积码编码的当前输出v(l)不仅与当前输入消息u(l)相关,还与此去前输入的m个消息u(l-1),…,u(l-m)相关,即 v(l)=f(u(l),u(l-1),…,u(l-m)),l=0,1,2… 卷积编码电路中移位寄存器初态可设定为全0,电路为按段工作方式,即对每段k比特输出入,产生一段n比特输出。任意一输入段u(l-h)与输出v(l)的关系都是一个特殊的(n,k)线性分组码的编码关系,即存在k n的二元矩阵Gh,使得v(l)=u(l-h)Gh,h=0,1,2,…,m 因此对于消息段序列u=(u(0),u(1),…,u(m),u(m+1),…),相应的输出端序列为v=(v(0),v(1),…,v(m),v(m+1),…),并满足v(0)=u(0)G0 卷积编码电路在按段工作方式下只需存储或者记忆m段的消息输入,电路中输入移位寄存器最多只有km 转换作用。因此称参量m为卷积码的记忆长度,下图为原理图

频分两路复用系统设计

目录 一、设计原理 (2) 2.1 频分复用的概述 (2) 2.2 频分复用原理 (2) 2.3频分复用的的特点与优点: (5) 二、设计流程图 (6) 三、单元电路设计 (7) 1、调制电路 (7) 2、解调电路 (7) 3、加法器电路 (8) 4、滤波电路 (9) 5、电源电路 (10) 四、System View仿真及仿真原理结果分析 (11) 五、总结及实习心得 (15) 总原理图 (16) 参考文献: (17)

一、设计原理 2.1 频分复用的概述 频分复用(FDM,Frequency Division Multiplexing)就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号。频分复用要求总频率宽度大于各个子信道频率之和,同时为了保证各子信道中所传输的信号互不干扰,应在各子信道之间设立隔离带,这样就保证了各路信号互不干扰(条件之一)。频分复用技术的特点是所有子信道传输的信号以并行的方式工作,每一路信号传输时可不考虑传输时延,因而频分复用技术取得了非常广泛的应用。频分复用技术除传统意义上的频分复用(FDM)外,还有一种是正交频分复用(OFDM)。 频分复用是利用各路信号在频率域不相互重叠来区分的。若相邻信号之间产生相互干扰,将会使输出信号产生失真。为了防止相邻信号之间产生相互干扰,应合理选择载波频率fc1, fc2, …, fcn,并使各路已调信号频谱之间留有一定的保护间隔。若基带信号是模拟信号,则调制方式可以是DSB、 AM、SSB、VSB或FM等,其中SSB方式频带利用率最高。若基带信号是数字信号,则调制方式可以是ASK、FSK、PSK 等各种数字调制。 2.2 频分复用原理 在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽宽得多。如果一个信道只传送一路信号是非常浪费的,

UML实验报告

《面向对象分析与设计UML》 实验报告 学号:180108213 姓名:庞志伟 班级:08级软件2班 指导老师:姚宇峰

实验及作业一 一、实验目的 了解软件工程等基础知识,为后续的统一建模语言UML知识的学习做好准备工作。 二、实验设备与环境 装有Visio、RathionalRose的计算机。 三、实验内容 1、复习阐述“软件工程开发模型”的相关概念,并分析各种模型的优缺点,写成实验报告。 2、熟悉UML软件设计工具Visio、Rational Rose的安装及环境 四、实验过程及结果 1、软件工程开发模型有(1)瀑布模型,(2)原型模型,(3)螺旋模型,(4)喷泉模型(1)瀑布模型 将功能的实现与设计分开,便于分工协作,即采用结构化的分析与设计方法将逻辑实现与物理实现分开。将软件生命周期划分为制定计划、需求分析、软件设计、程序编写、软件测试和运行维护等六个基本活动,并且规定了它们自上而下、相互衔接的固定次序,如同瀑布流水,逐级下落。 优点: 1)为项目提供了按阶段划分的检瀑布模型查点。 2)当前一阶段完成后,您只需要去关注后续阶段。 3)可在迭代模型中应用瀑布模型。 缺点: 1)在项目各个阶段之间极少有反馈。 2)只有在项目生命周期的后期才能看到结果。 3)通过过多的强制完成日期和里程碑来跟踪各个项目阶段。 (2)原型模型 原型模型又称快速原型,它是增量模型的另一种形式;它是在开发真实系统之前,构造一个原型,在该原型的基础上,逐渐完成整个系统的开发工作。快速原型模型的第一步是建造一个快速原型,实现客户或未来的用户与系统的交互,用户或客户对原型进行评价,进一步细化待开发软件的需求。通过逐步调整原型使其满足客户的要求,开发人员可以确定客户的真正需求是什么;第二步则在第一步的基础上开发客户满意的软件产品。 优点:克服瀑布模型的缺点,减少由于软件需求不明确带来的开发风险。

传输专题设计(频分复用)

电子科技大学通信学院97 《综合课程设计实验报告》 传输专题设计(频分复用) 一、设计名称 传输专题设计(频分复用) 二、设计目的 通过本次课程设计,掌握频分复用的原理,学习简单复用系统的设计方法,并学习对通信系统中的典型部件电路进行方案设计、分析制作与调试。 三、设计原理 数据通信系统或计算机网络系统中,传输媒体的带宽或容量往往超过传输单一信号的需求,为了有效地利用通信线路,希望一个信道同时传输多路信

号,这就是多路复用技术。采用多路复用技术能把多个信号组合起来在一条物理信道上进行传输,在远距离传输时可大大节省电缆的安装和维护费用。频分多路复用FDM (Frequency Division Multiplexing)和时分多路复用TDM (Time Di-vision Multiplexing)是两种最常用的多路复用技术。 在通信系统中,信道所能提供的带宽通常比传送一路信号所需的带宽宽得多。如果一个信道只传送一路信号是非常浪费的,为了能够充分利用信道的带宽,就可以采用频分复用的方法。在频分复用系统中,信道的可用频带被分成若干个互不交叠的频段,每路信号用其中一个频段传输,因而可以用滤波器将它们分别滤出来,然后分别解调接收。 按频率分割信号的方法叫频分复用,按时间分割信号的方法叫时分复用。 在频分复用中,信道的可用频带被分割成若干互不交叠的频段,每路信号占据其中一个频段,因而可以用适当的滤波器把它们分割开来,分别解调接收。 多路复用原理框图如图一: 图一:多路复用原理框图 四、设计指标 设计一个频分复用调制系统,将12路语音信号调制到电缆上进行传输,其传输技术指标如下: (一)语音信号频带:300Hz~3400Hz。 (二)电缆传输频带:60KHz~156KHz。 (三)传输中满载条件下信号功率不低于总功率的90%。 (四)电缆传输端阻抗600Ω,电缆上信号总功率(传输频带内的最大功率) 不大于1mW。 (五)语音通信接口采用4线制全双工。 (六)音频端接口阻抗600Ω,标称输入输出功率为0.1mW。 (七)滤波器指标:规一化过渡带1%,特征阻抗600Ω,通带衰耗1dB, 阻带衰耗40dB(功率衰耗),截止频率(设计者定)。 (八)系统电源:直流24V单电源。 五、设计思路和过程 (一)频分复用的优点: 信道复用率高,分路方便,因此,频分多路复用是目前模拟通信中常采用的一种复用方式,特别是在有线和微波通信系统中应用十分广泛。 (二)频分复用中的主要问题: 串扰,即各路信号之间的相互干扰。

FDMA通信系统设计

移动通信中频分复用技术的分析和研究频分多路复用系统的信道复用率高,分路方便,因此目前模拟通信中常采用这种复用方式,特别是在有线和微波通信系统中应用广泛。 一、原理研究和分析 1、频分复用的原理 复用是指将若干个彼此独立的信号合并成可在同一信道上传输的复合信号的方法,常见的信号复用采用按频率区分与按时间区分的方式,前者称为频分复用,后者称为时分复用。 通常在通信系统中,信道所提供的带宽往往比传输一路信号所需要的带宽宽得多,这样就可以将信道的带宽分割成不同的频段,每频段传输一路信号,这就是频分复用(frequency division multiple access)(FDMA)。为此,在发送端首先要对各路信号进行调制将其频谱函数搬移到相应的频段内,使之互不重叠。再送入信道一并传输。在接收端则采用不同通带的带通滤波器将各路信号分隔,然后再分别解调,恢复各路信号。调制的方式可以任意选择,但常用的是单边带调制。因为每一路信号占据的频段小,最节省频带,在同一信道中传送的路数可以增加。 图1 频分复用系统的示意图 图1给出了频分复用系统的示意图。如图所示,其中f1(t),f2(t),…,fn(t)为n路低频信号,通过调制器形成各路处于不同频段上的边带信号。频分复用的理论基础仍然是调制和解调。通常为防止邻路信号的相互干扰,相邻两路间还要留有防护频带,因此各路载频之间的间隔应为每路信号的频带与保护频带之和。以语音信号为例,其频谱一般在0.3~3.4kHz范围内,防护频带标准为900Hz,则每路信号占据频带为4.3kHz,以此来选择相应的各路载频频

率,在接收端则用带通滤波器将各路信号分离再经同步检波即可恢复各路信号,为减少载波频率的类型,有时也用二次调制。 频分复用技术除传统意义上的频分复用(FDMA)外,还有一种是正交频分复用(OFDM)。 (1)传统的频分复用 传统的频分复用典型的应用莫过于广电HFC网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个频道(8 MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。 (2)正交频分复用 OFDM(Orthogonal Frequency Division Multiplexing)实际是一种多载波数字调制技术。OFDM全部载波频率有相等的频率间隔,它们是一个基本振荡频率的整数倍,正交指各个载波的信号频谱是正交的。 OFDM系统比FDMA系统要求的带宽要小得多。由于OFDM使用无干扰正交载波技术,单个载波间无需保护频带,这样使得可用频谱的使用效率更高。另外,OFDM技术可动态分配在子信道中的数据,为获得最大的数据吞吐量,多载波调制器可以智能地分配更多的数据到噪声小的子信道上。目前OFDM技术已被广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环线(ADSL)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)和第4代(4G)移动通信系统等。 频分复用系统最大的优点是信道复用率高,允许的复用路数较多,同时分路也很方便,是模拟通信中主要的一种复用方式,在有线和微波通信中应用十分广泛。频分复用的缺点是设备生产较为复杂,同时因滤波性能不够理想,及信道内存在的非线性容易产生路间干扰。 2、FDMA通信系统的原理 FDMA通信系统模型如图8-2所示。WDMA和FDMA基本上都基于相同原理,所不同的是,WDMA 应用于光纤信道上的数字化光波传输过程,而FDMA应用于模拟传输,诸如双绞线话路传输、电缆接入、峰窝、无线电以及 TV 通信等。一直以来, TDMA 、CDMA 也是结合 FDMA 共同作用的。

频分复用

摘要 《信号与系统》课程是一门理论和技术发展十分迅速、应用非常广泛的前沿性学科,它的理论性和实践性都很强。复用是一种将若干个彼此独立的信号,合并为一个可在同一信道上同时传输的复合信号的方法。可以把它们的频谱调制到不同的频段,合并在一起而不致相互影响,并能在接收端彼此分离开来。按频率区分信号的方法叫频分复用。我们在生活中接触到得大部分都是模拟信号,而计算机只能对数字信号进行处理。我们可以通过FFT变换,通过对模拟信号采样,使其变成数字信号,本设计就是通过FFT来实现的。Matlab语言是一种广泛应用于工程计算及数值分析领域的新型高级语言,Matlab功能强大、简单易学、编程效率高。它的工具箱里有很多函数可以方便的对信号进行分析与处理。本设计是用FFT实现对三个同频带信号的频分复用,就是通过Matlab语言来实现的。本设计报告分析了数字信号处理课程设计的过程。用Matlab进行数字信号处理课程设计的思路,并阐述了课程设计的具体方法、步骤和内容。 关键词:数字信号处理;滤波器设计;MATLAB;频谱分析 1 设计任务目的及要求 1.1设计目的 巩固已经学过的知识,加深对知识的理解和应用,加强学科间的横向联系,学会应用MATLAB对实际问题进行仿真,并设计MUI界面。 1.2设计要求 一、课程设计的内容 选择三个不同频段的信号对其进行频谱分析,根据信号的频谱特征设计三个不同的数字

滤波器,将三路信号合成一路信号,分析合成信号的时域和频域特点,然后将合成信号 分别通过设计好的三个数字滤波器,分离出原来的三路信号,分析得到的三路信号的时 域波形和频谱,与原始信号进行比较,说明频分复用的特点。 二、课程设计的要求与数据 (1)熟悉离散信号和系统的时域特性。 (2)掌握数字信号处理的基本概念,基本理论和基本方法。 (3)掌握序列傅里叶变换的计算机实现方法,利用序列傅里叶变换对离散间可以分别调整。 (4)学会MATLAB的使用,掌握MATLAB的程序设计方法。 (5)掌握MATLAB设计FIR和IIR数字滤波器的方法。 (6)掌握GUI界面的设计方法 三、课程设计应完成的工作 (1)利用MATLAB语言产生三个不同频段的信号。 (2)对产生的三个信号进行FFT变换。 (3)将三路信号叠加为一路信号。 (4)根据三路信号的频谱特点得到性能指标,由性能指标设计三个滤波器。 (5)用设计的滤波器对信号进行滤波,并对其频谱图进行分析。 (6)分析得到信号的频谱,并画出滤波后信号的时域波形和频谱。 2 原理与模块介绍 2.1 快速傅里叶变换FFT原理 快速傅立叶变换(FFT)算法 长度为N的序列的离散傅立叶变换为:

相关主题
文本预览
相关文档 最新文档