当前位置:文档之家› 17.1古典概率(1)

17.1古典概率(1)

17.1古典概率(1)
17.1古典概率(1)

17.1古典概率(1)

上海市南洋模范中学徐宁

一、教学内容分析

本节课是高中数学古典概率的第一课时,是在学生学习了排列组合情况下的教学.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.

学好古典概率可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中常见的一些问题.

二、教学目标设计

1.理解随机事件和古典概率的概念 .

2.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.

三、教学重点及难点

重点是求随机事件的概率,难点是如何判断一个随机事件是否是古典概型,搞清随机事件所包含的基本事件的个数及其总数.

四、教学用具准备

多媒体设备

六、教学过程设计

一、课前准备

在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验,

试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成30次(最好是整十数),最后由课代表汇总.

试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成30次,最后由课代表汇总.

二、学习新课

1.引入:

课堂提问:

在我们所做的每个实验中,有几个结果,每个结果出现的概率是多少?

学生回答:

在试验一中结果只有两个,即“正面朝上”和“反面朝上”,并且他们都是相互独立的,由于硬币质地是均匀的,因此出现两种结果的可能性相等,即它们的概率都是1

.

2

在试验二中结果有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,并且他们都是相互独立的,由于骰子质

. 地是均匀的,因此出现六种结果可能性相等,即它们的概率都是1

6 2.引入新的概念:

基本事件:我们把试验可能出现的结果叫做基本事件.

古典概率:把具有以下两个特点的概率模型叫做古典概率.

(1)一次试验所有的基本事件只有有限个.

例如试验一中只有“正面朝上”和“反面朝上”两种结果,即有两个基本事件.试验二中结果有六个,即有六个基本事件.

(2)每个基本事件出现的可能性相等.

试验一和试验二其基本事件出现的可能性均相同.

随机现象:对于在一定条件下可能出现也可能不能出现,且有统计规律性的现象叫做随机现象.试验一抛掷硬币的游戏中,可能出现“正面朝上”也可能出现“反面朝上”,这就是随机现象.

随机事件:在概率论中,掷骰子、转硬币……都叫做试验,试验的结果叫做随机事件.例如掷骰子的结果中“是偶数”、“是奇数”、“大于2”等等都是随机事件.随机事件“是偶数”就是由基本事件“2点”、“4点”、“6点”构成.随机事件一般用大写英文字母A、B等来表示.

必然事件:试验后必定出现的事件叫做必然事件,记作Ω.例如掷骰子的结果中“都是整数”、“都大于0”等都是必然事件.

不可能事件:实验中不可能出现的事件叫做不可能事件,记作?.

例1:从字母a b c d

,,,中任意取出两个不同字母的试验中,有哪些基本事件?

分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.利用树状图可以将它们之间的关系列出来.

我们一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法,一般分布完成的结果(两步以上)可以用树状图进行列

举.

(树状图)

解:所求的基本事件共有6个:

{,}A a b =,{,}B a c =,{,}C a d =,

{,}D b c =,{,}E b d =,{,}F c d =

例2:(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概率吗?为什么?

答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概率的第一个条件.

(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概率吗?为什么?

答:不是古典概率,因为试验的所有可能结果只有7个,而命中10环、

命中9环……命中5环和不中环的出现不是等可能的,即不满足

古典概率的第二个条件.

3.概率公式推导:

随机事件A出现的概率记作P(A)

基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和.

例3:掷骰子试验中,结果为奇数的概率是多少?

问题1:掷骰子试验中,随机事件“结果是奇数”包含哪些基本事件?

随机事件“结果是奇数”包含基本事件“1点”、“3点”、“5点”.

问题2:掷骰子试验中,所有基本事件由哪些?

所有的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”、“6点”.

问题3:掷骰子试验中,随机事件“结果是奇数”记为事件A,事件A的概率是多少?

P(A)=31

62

例4:同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

分析:我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果,其中第一个数表示1号骰子的结果,第二个数表示2号骰子的

结果:

(1,1)、(1、2)、(1,3)、(1,4)、(1,5)、(1,6)、 (2,1)、(2、2)、(2,3)、(2,4)、(2,5)、(2,6)、 (3,1)、(3、2)、(3,3)、(3,4)、(3,5)、(3,6)、 (4,1)、(4、2)、(4,3)、(4,4)、(4,5)、(4,6)、 (5,1)、(5、2)、(5,3)、(5,4)、(5,5)、(5,6)、 (6,1)、(6、2)、(6,3)、(6,4)、(6,5)、(6,6), 共包含了36件基本事件.

解答:(1)有36种不同结果.

(2)点数之和为5可以记作随机事件A ,它所包含的基本事件有:(1,4)、(2、3)、(3,2)、(4,1),故共有4种结果.

(3)随即事件A 的概率是:41P A 369

==() 学生思考并推导概率计算公式:

A P A =事件所包含的基本事件数()试验中所有的基本事件数

用集合语言表示:设12n ωωω ,,,表示所有的基本事件,基本事件的

集合就是必然事件,记为12n {}ωωωΩ= ,,,,

所以随机事件A 看作Ω的某个子集,则

A P A ωω=Ω所包含的的个数()中元素的总个数

三、巩固练习

例5:一个袋中装有6只球,其中4只是白球,2只是红球.求下列事件的概率:

(1)摸出的两球都是白球;

(2)摸出的两球1只是白球、另1只是红球.

解:设4只白球的编号为1,2,3,4,两只红球的编号为5,6.从袋中的6只球中任意摸出两只,可能的结果(记“摸出1,2号球”为(1,2))有:

(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个结果,即共有15个基本事件.

(1)从袋中的6只球中任意摸出两只,有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种基本事件满足“两球都是白球”的条件,记随机事件“两球都是白球”为字母A,故62

P(A)=

=.

155

(2)从袋中的6只球中任意摸出两只,有:(1,5),(1,6),(2,5),(2,6), (3,5) ,(3,6),(4,5),(4,6),共8种可能的结果满足“1只是白球、1只是红球”的条件,记随机事件“1只是白球、一只是红球”为字母B,它包含8个基本事件,故8

=.

P(B)

15

例6:( 涂漆问题)把一个体积为64cm3的正方体木块表面涂上红漆,然后锯成64个体积均为1cm3的小正方体,并从中任取一块,试求:

(1)这一块没有涂红漆的概率;

(2)这一块恰有一面涂红漆的概率;

(3)这一块恰有两面涂红漆的概率;

(4)这一块恰有三面涂红漆的概率;

(5)这一块恰有四面涂红漆的概率.

解:把体积为64cm3的正方体木块锯成64块体积为1cm3的小正方体,其中没有涂红漆的有8块,恰有一面涂红漆的有24块(6个面,每面2?2块),恰有两面涂红漆的有24块(12条棱,每条棱2块),恰有三面涂红漆的有8块(8个顶点),恰有四面涂红漆的木块不存在,所以:

(1)“这一块没有涂红漆”记为随机事件A,则概率为81

=;

P(A)=

648(2)“这一块恰有一面涂红漆”记为随机事件B,则随机事件B的概率为243

==;

P(B)

648

(3)“这一块恰有两面涂红漆”记为随机事件C,则随机事件C的概率为243

==;

P(C)

648

(4)“这一块恰有三面涂红漆”记为随机事件D,则随机事件D的概率为81

=

P(D)=

648

(5)“这一块恰有四面涂红漆”是不可能事件,其概率为P()0

?=.

对于必然事件Ω、不可能事件?和随机事件,下面4个事实值得我们注意:

(1)不可能事件的概率为零,即P()0

?=;

(2)必然事件的概率为1,即P()1

Ω=;

(3)对任意随机事件E ,有0P(E)1≤≤;

(4)若12n {,,,}ωωωΩ= ,则12n P()P()P()1ωωω+++=

四、课堂小结

1.古典概型:

我们将具有:

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等.(等可能性)

这样两个特点的概率模型称为古典概率概型,简称古典概型.

2.古典概型计算任何事件的概率计算公式为:

3.求某个随机事件A 发生的概率,要先求出随机事件A 包含的基本事件的个数和试验中基本事件的总数,注意做到不重不漏.

五、作业布置

(略)

六、教学设计说明

本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式.这一过程能够培养学生发现问题、分析问题、解决问题的能力.

学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生A A P 所包含的基本事件的个数

()=基本事件的总数

由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神.

古典概率

第二课时 古典概率 2.理解古典概型; 3.了解几何概型; 4.了解互斥事件及其发生的概率。 二 复习要求 在具体情境中了解随机事件发生的不确定性和频率的稳定性,进而知道概率的统计定义的意义以及概率和频率的区别;了解互斥事件、对立事件的概念,能判断两个事件是否是互斥事件,是否是对立事件,了解互斥事件的概率加法公式,了解两对立事件概率之和为1的结论,会用相关公式进行简单概率计算;理解古典概型及其计算公式,会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率;体会几何概型的几何意义,理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。 在复习这一部分内容时,要能把这一章中所蕴含的主要思想方法贯穿于平常的教学实践中去,如利用树形图去确定基本事件数中的数形结合思想,利用互斥事件去求概率中的分类讨论思想,把实际问题转化为几何概型去求解中的转化与化归的思想,以达到培养学生数学思维的目的。 三 重难注意点 1.概率与频率,概率的频率定义是和一定的实验相联系的,频率反映了一个随机事件发生的频繁程度,频率是随机的,随着实验次数的改变而改变,而概率是确定的,是客观存在的,与实验的次数无关。概率是频率的稳定值,它从数量上反映了随机事件发生的可能性大小。 2.互斥事件与对立事件,判断事件是互斥还是对立,应主要抓住定义,不可能同时发生的事件称为互斥事件,必有一个要发生的两互斥事件称为对立事件,互斥事件是对立事件的必要而不充分条件,将所给事件转化为互斥事件和对立事件去处理,体现了化整为零,正难则反的思想。 3.古典概型,判断一个试验是否为古典概型,主要看试验结果的两个特征,一是有限 性,二是等可能性,在利用古典概型计算公式 ()n m A P =时,应首先完成古典概型的判断,而后进行相关计算,其中n 是试验所包含的所有基本事件数,m 是事件A 包含的基本事件数。 4.几何概型,判断一个概型是否为几何概型,主要看三个特征,一是试验结果的无限性,二是试验结果的等可能性,三是可以转化为求某个几何图形的测度的问题。在几何概型中,一个随机事件A 发生应理解为取到区域D 内的某个指定区域d 中的点,

概率与统计单元测试题

《概率与统计》单元测试题 时量:120分钟,总分:100分 一、选择题(本大题共12个小题,每小题 3分,满分36分。) 1?给出下列四对事件:①某人射击一次, “射中7环”与“射中8环”;②甲、乙两人各射击一次, “甲射中7环”与“乙射中8环”;③甲、乙两人各射击一次, 有射中目标”;④甲乙两人各射击一次,“至少有一人射中目标” 目标”。其中属于互斥事件的有 A.1对 B.2对 C.3对 2. 把三枚硬币一起抛出,出现两枚正面向上和一枚反面向上的概率是 A - B.丄 C.-3 D.丄 . 8 4 8 2 3. 如图所示的电路,有 A 、 B 、 C 三个开关,每个开关开与关的概率都是 0.5, 那么用电器能正常 工作的概率是 “两人均射中目标”与“两人均没 与"甲射中目标, 但乙没有射中 D.4对 B.4 C.8 D.2 8 2 4. 甲乙两人下棋,甲获胜的概率是 A.82 % B.41 % 5. 某人罚篮的命中率为 0.6,连续进行 A.0.432 B.0.288 6. (文)一个试验仅有四个互斥的结果: 且是相互独立的, 8.(文)某班有50名同学,现在采用逐一抽取的方法从中抽取 5名同学参加夏令营,学生甲最后 个去抽,则他被选中的概率为 A.0.1 B.0.02 C.0 或 1 (理)设~B(n,p),已知E = 3, D(2 +1) = 9,贝U n 与p 的值分别为 A.12 与 4 B.12 与三 C.24 与-1 4 4 4 D.以上都不对 D.24与弓 9.有4所学校共有20000名学生,且这4所学校的学生人数之比为 3 : 2.8 : 2.2 : 2,现用分层抽 样的方法抽取一个容量为 200的样本,则这4所学校分别应抽取的人数为: A.40、44、56、60 B.60、56、44、40 C.6000、5600、4400、400 D.50、50、50、50 10.标准正态总体在区间(一1.98,1.98)内取值的概率为 A.0.9762 B.0.9706 C.0.9412 11. 平均数为0的正态总 体的概率密度函数为 f (x ),则f (x ) 一 定是 A.奇函数 C.既是奇函数,又是偶函数 12. 一个电路如图所示, 关出故障的概率都是 B.偶函数 D.既不是奇函数,也不是偶函数 A 、 B 、 C 、 D 、 E 、 F 为六个开关,每个开 0.5,且是相互独立的,则线路正常的概率是 C.」 8 D.0.9524 E 18%,乙获胜的概率是 C.59 % 3次罚篮,则恰好有 C.0.144 23 %,则甲不输的概率是 D.77 % 2次命中的概率为 D.0.096 A 、 B 、 C 、 D ,检查下面各组概率允许的一组是 A. P (A) = 0.31 , P(B) = 0.27, P(C) = 0.28, P(D) = 0.35; B. P (A) = 0.32, P(B) = 0.27, P(C) = - 0.06, P(D) = 0.47; C. P (A) = 1 , P(B) = -1,P(C) = 1 , P(D)= 2 4 8 D. P (A) = , P(B) = 1 , P(C) = 1 , P(D) 18 6 3 (理)下面表示某个随机变量的分布列的是 丄. 16 ; 2。 9 7.大、中、小三个盒子中分别装有同种产品 个容量为25的样本,较为恰当的抽样方法是 A.分层抽样 B.简单随机抽样 120个、60个、20个,现在需从这三个盒子中抽取一 C.系统抽样 D.以上三种均可 A 」 B.戲 .64 64 二、填空题(本大题共 13.(文)若以连续掷两次骰子分别得到的点数 (m,n )作为点P 的坐标,则P 落在圆x 2 + y 2= 16内的概 率是 4个小题,每小题 3分,满分12分。) (理)随机变量是一个用来表示 ____________ 的变量;若对随机变量可能取的一切值,我们都 可以按一定次序一一列出,则这样的随机变量叫做 ______________ ;而连续型随机变量的取值 可以是 ___________________ 。 14.某中学要向一所大学保送一批学生, 条件是在数理化三科竞赛中均获得一等奖, 已知该校学生 获数学一等奖的概率是 0.02,获物理一等奖的概率是 0.03,获化学一等奖的概率是 0.04,则该中 学某学生能够保送的概率为 ______ 。 15. 从含有503个体的总体中,按系统抽样,抽取容量为 50的样本,则间隔为 _______ 。 16. 某县农民年均 收入服从 J = 500元,二=20元的正态分布,则此县农民年均收入在 500~520元 之间的人数的百分比为 ______ 。 三、解答题(本大题共6个小题,满分52分。) 17. (本题满分8分) 有一摆地摊的非法赌主把 8个白球和8个黑球放入一个袋中,并规定,凡愿摸彩者,每人次交费 1元就可以从袋中摸出 5个球,中奖情况为:摸出 5个白的中20元,摸出4个白的中2元;摸出 3个白的中价值5角的纪念品一件,其它无任何奖励。试计算: (1)中20元彩金的概率(精确到0.0001); ⑵中2元彩金的概率(精确到0.0001)。

中考数学统计与概率单元测试

统计与概率单元测试 1.将100个数据分成8个组,如下表: 则第六组的频数为() A.12 B.13 C.14 D.15 2.10位评委给一名歌手打分如下:9.73,9.66,9.83,9.89,9.76,9.86,9.79,9.85, 9.68,9.74,若去掉一个最高分和一个最低分,这名歌手的最后得分是() A.9.79 B.9.78 C.9.77 D.9.76 3.某班50名学生期末考试数学成绩(单位:分)的频率分布条形图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等;(2)成绩在79.5~89.5分段的人数占30%;(3)成绩在79.5分以上的学生有20人;(4)本次考试成绩的中位数落在69.5~79.5分段内,其中正确的判断有() A.4个B.3个C.2个D.1个 (第3题) (第4题) 4.如图是九年级(2)班同学的一次体检中每分钟心跳次数的频数分布条形图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察图,指出下列说法中错误的是() A.数据75落在第2小组 B.第4小组的频率为0.1

C .心跳为每分钟75次的人数占该班体检人数的 1 12 ; D .数据75一定是中位数 5.在转盘游戏的活动中,小颖根据试验数据绘制出如图所示的扇形统计图,则每转动一次转盘所获购物券金额的平均数是( ) A .22.5元 B .42.5元 C .2 56 3 元 D .以上都不对 (第5题) (第9题) 6.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是( ) A . 78 B . 67 C . 17 D . 18 7.某鞋厂为了了解初中学生穿鞋的鞋号情况,对某中学九(1)班的20名男生所穿鞋号统计如下: 那么这20名男生鞋号数据的平均数是 ,中位数是 ,在平均数、中位数和众数中,鞋厂最感兴趣的是 . 8.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有 人. 9.某班联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图所示),转盘可以自由转动.参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为 . 10.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查,

概率的古典定义及其计算

12.2.2 概率的古典定义及其计算 定义 如果随机试验具有如下特征: (1)事件的全集是由有限个基本事件组成的; (2)每一个基本事件在一次试验中发生的可能性是相同的; 则这类随机试验称为古典概型. 定义 在古典概型中,如果试验的基本事件总数为n ,事件A 包含的基本事件个数为m ,那么事件A 发生的概率为P (A )=n m 。 这个定义叫做概率的古典定义。它同样具备概率统计定义的三个性质。 例1 从1,2,3,4,5,6,7,8,9九个数字中,随机地取出一个数字,求这个数字是奇数的概率。 解 设A={取出的是一个奇数},则基本事件总数为n=9,事件A 包含了5个基本事件(抽到1,3,5,7,9),即m=5,所以,P (A )=9 5=n m 。 例2 在10个同样型号的晶体管中,有一等品7个,二等品2个,三等品1个,从这10个晶体管中任取2个,计算: (1)2个都是一等品的概率; (2)1个是一等品,1个是二等品的概率。 解 基本事件总数为从10个晶体管中任取2个的组合数,故n=210C =45。 (1)设A={取出2个都是一等品},它的种数m=27C =21,其概率为P (A )=15 74521==n m ; (2)设B={取出2个,1个是一等品,1个是二等品},它的种数m=1217C C =14,所以 P (B )=45 14=n m 。 例3 储蓄卡上的密码是一组四位数号码,每位上的数字可以在0到9这10个数字中选取,问: (1)使用储蓄卡时如果随意按下一组四位数字号码,正好按对这张储蓄卡的密码的概率是多少? (2)某人没记准储蓄卡的密码的最后一位数字,他在使用这张储蓄卡时如果随意按下密码的最后一位数字,正好按对密码的概率是多少? 解 (1)由于储蓄卡的密码是一组四位数字号码,且每位上的数字有从0到9这10中取法,这种号码共有410组。又由于是随意按下一组四位数字号码,按下其中哪一组号码的可能性都相等,可得正好按对这张储蓄卡的密码的概率1P =4 101。 (2)按四位数字号码的最后一位数字,有10中按法,由于最后一位数字是随意按的,按下其中各个数字的可能性相等,可得按下的正好是密码的最后一位数字的概率10 12=P 。 课堂练习:习题12.2 1—4 订正讲解 12.3.1 概率的加法公式 1.互斥事件概率的加法公式

概率论与数理统计第四章自测题

《概率论与数理统计》第四单元自测题 时间:120分钟,卷面分值:100分一、填空题:(每空2分,共12分)得分 1.设随机变量X与Y,方差D(X)=4,D(Y)=9,相关系数ρXY=0.6,则D(3X-2Y)= 。 2.已知随机变量X~N(0, σ2)(σ>0),Y 在区间]上服从均匀分布,如果D(X-Y)=σ2, 则X与Y的相关系数ρXY= 。 3.二维随机变量(X, Y)服从正态分布,且E(X)=E(Y)=0,D(X)=D(Y)=1,X与Y的相关系数ρXY=-1/2,则当a= 时,随机变量aX+Y与Y相互独立。 4.设随机变量X~N(0, 4),Y服从指数分布,其概率密度函数为 1 2 1 0 ()2 00 x e x f x x - ? > ? =? ?≤ ? ,, ,, 如果Cov(X, Y)=-1,Z=X-aY,Cov(X, Z)=Cov(Y, Z),则a= ,此时X与Z的相关系数为ρXZ= 。 5.设随机变量X在区间(-1, 2)上服从均匀分布,随机变量 -10 00 10 X Y X X > ? ? == ? ?< ? ,, ,, ,, 则方差D(Y)= 。 6.设随机变量X服从参数为2的泊松分布,用切比雪夫不等式估计P{∣X-2∣≥4}≤。 二、单选题:(每题2分,共12分)得分 1.随机变量X, Y和X+Y的方差满足D(X+Y)=D(X)+D(Y),该条件是X与Y( )。 (A)不相关的充分条件,但不是必要条件; (B)不相关的必要条件,但不是充分条件; (C)独立的必要条件,但不是充分条件; (D)独立的充分必要条件。 2.若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有( )。 (A) X与Y一定相互独立;(B) X与Y一定不相关; (C) D(XY)=D(X)D(Y);(D) D(X-Y)=D(X)-D(Y)。 3.设随机变量X与Y独立同分布,记随机变量U=X+Y,V=X-Y,且协方差Cov(U.V)存在,则U和V必然( )。 (A) 不相关;(B) 相互独立;(C) 不独立;(D) 无法判断。 4.若随机变量X与Y不相关,则与之等价的条件是( )。 (A) D(XY)=D(X)D(Y);(B) D(X+Y)=D(X-Y);(C) D(XY)≠D(X)D(Y);(D) D(X+Y)≠D(X-Y)。5.现有10张奖券,其中8张为2元,2张为5元,某人从中随机地无放回地抽取3张,则

《数理统计B》单元自测题(五)

《数理统计B》单元自测题(五)一、填空题 1)设X i,X2, ,X n,是独立同分布的随机变量序列,且均值为,方差为2,那 么当n 充分大时,近似有X?_________ 或 n X?_____________ 。特别是,当同为正态分布时,对于任意的n,都精确有X ?______________________________ 或存? ■ 2)设X1,X2,,X n,是独立同分布的随机变量序列且EX i , DX i 2(i 1,2,)

1 n 那么;i1 X:依概率收敛于 _________ . i 1

3)设X"2,X3,X4是来自正态总体 N(0,2 )的样本,令丫(X i X2)2(X3 X4)2, 则当C __________________ 时CY?2(2)o 4) 设容量n = 10的样本的观察值为 7, 6,9, ,7,5,9, 6),则样本均值 _______ ,样本方差= ______________ 5)设X1,X2,…X n为来自正态总体:N( , 2) 的一个简单随机样本,则样本均值

服从______________

二、选择题 1 )设X ?N( ,2)其中已知, 本,贝U 下列选项中不是统计量 的是 _ A )X i X 2 X 3 D ) X i 2)设X ?(1,p) ,X i ,X 2, ,X n ,是来自X 的样本,那 么下列选项中不正确的是 _ A ) 当n 充分大 时, 近似有X ?N p, p(1 p) B ) P{X k} C n k p k (1 n k P) , k 0,1,2, ,n C ) P{X k } n C p k (1 n k 1 P) , k 0,1,2, ,n D ) P{X i k} k k C n P (1 n k “ p) ,1 i n 3)若 X ? t(n) 那么 2 A ) F(1,n) B ) F(n,1) C ) 2(n) D ) t(n) 未知,X i ,X 2,X 3样 B ) max{X i ,X 2,X 3 }

古典概率中的摸球模型的解法及应用

古典概率中的摸球模型的解法及应用 摘要:摸球问题是古典概率中一类重要而常见的问题。本文通过对古典概型中 两种摸球模型的探讨,提供了一些有用的解题思路和方法,并试图以明确的公式 形式表达特定问题的解。 关键词:古典概型;摸球模型;事件;概率 一、引言 摸球问题是古典概率中一类重要而常见的问题。由于摸球的方式、球色的搭 配及最终考虑的问题不同,其内容可以说是形形色色、千差万别。历史上曾有人 把浩翰繁杂的古典概率问题归纳为摸球问题、占房问题及随机取数问题,又有人 把其归纳为摸球问题、投球问题及随机取数问题。可见,“球文化”确是古典概率 中的一朵奇葩。本文通过对古典概型中摸球模型的探讨,提供了些有用的解题思 路和方法。 二、古典概率定义 若把黑球作为废品,白球作为正品,则摸球可以描述产品抽样.假如产品分 为若干等级,一等品、二等品、三等品等,则可用有多种颜色的摸球模型来描述.产品抽样检奁技术,在各个生产部门中有着广泛的应用,大型工厂每天生产 的产品数以万计,对这些产品的质量进行全面的逐件检查是不可能的.在有些情 况下,产品的检验方法带有破坏性(如灯泡寿命检验,棉纱强度试验等),最适宜 的检验方法是采取不放回的抽样检查。当然有些产品检验无破坏可以采取有放回 的抽样检查,对此本文没有涉及,有兴趣的读者可以自行解决。 2.有放回地摸球模型 (1)摸球模型三 2.投球问题 例2.把4个球放到3个杯子中去,求第1、2个杯子中各有2个球的概率,其中 假设每个杯子可放任意多个球。 五、结束语 本文通过对古典概率中的两种摸球模型——有放回摸球、无放回摸球模型的 解题方法的探讨,并结合几种常见的实例,提供一些有用的解题思路和方法,并 试图以明确的公式形式表达特定问题的解。 参考文献: [1]梁之舜,邓集贤,杨维权,司徒荣,邓永录.概率论及数理统计[上].北京:高等教育出版社,2005. [2]刘长林.概率问题的两个摸球模型[J].数学教学研究,2003(3). [3]毛凤敏.古典概型中摸球模型的解法探讨[J].平顶山师专学报,2004(5). (作者单位:广西崇左市扶绥县龙华中学 543200)

第20讲 随机事件的概率与古典概型

普通高中课程标准实验教科书—数学 [人教版] 高三新数学第一轮复习教案(讲座20)—随机事件的概率与古典概型 一.课标要求: 1.在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别; 2.通过实例,了解两个互斥事件的概率加法公式; 3.通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。 二.要点精讲 1.随机事件的概念 在一定的条件下所出现的某种结果叫做事件。 (1)随机事件:在一定条件下可能发生也可能不发生的事件; (2)必然事件:在一定条件下必然要发生的事件; (3)不可能事件:在一定条件下不可能发生的事件。 2.随机事件的概率 事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率n m 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。 由定义可知0≤P (A )≤1,显然必然事件的概率是1,不可能事件的概率是0。 3.事件间的关系 (1)互斥事件:不能同时发生的两个事件叫做互斥事件; (2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件; (3)包含:事件A 发生时事件B 一定发生,称事件A 包含于事件B (或事件B 包含事件A ); 4.事件间的运算 (1)并事件(和事件) 若某事件的发生是事件A 发生或事件B 发生,则此事件称为事件A 与事件B 的并事件。 注:当A 和B 互斥时,事件A +B 的概率满足加法公式: P (A +B )=P (A )+P (B )(A 、B 互斥);且有P (A +A )=P (A )+P (A )=1。 (2)交事件(积事件) 若某事件的发生是事件A 发生和事件B 同时发生,则此事件称为事件A 与事件B 的交事件。 5.古典概型 (1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等; (2)古典概型的概率计算公式:P (A )=总的基本事件个数 包含的基本事件个数A ; 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1。如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m 。 三.典例解析 题型1:随机事件的定义 例1.判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)“抛一石块,下落”. (2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b ,那么a -b >0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”;

概率统计单元自测

《概率论与数理统计》单元自测题 第一章 随机事件与概率 专业 班级 姓名 学号 一、填空题: 1.设A ,B 是随机事件,7.0)(=A P ,5.0)(=B P ,3.0)(=-B A P ,则 =)(AB P _____________,=)(A B P _____________; 2.设A ,B 是随机事件,4.0)(=A P ,3.0)(=B P ,1.0)(=AB P ,则=)(B A P __________; 3.在区间)1,0(中随机地取两个数,则两数之和小于1的概率为___________; 4.三台机器相互独立运转,设第一、第二、第三台机器发生故障的概率依次为0.1,0.2,0.3,则这三台机器中至少有一台发生故障的概率为_____________; 5.设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于27 19,则事件A 在每次试验中出现的概率)(A P 为____________。 二、选择题: 1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则对立事件A 为( ) (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙产品均畅销”; (C )“甲种产品滞销或乙种产品畅销”; (D )“甲种产品滞销”。 2.设A ,B 为两个事件,则下面四个选项中正确的是( ) (A ) )()()(B P A P B A P +=?; (B ))()()(B P A P AB P =; (C ))()()(A P B P A B P -=-; (D ))((1)(AB P B A P -=?。 3.对于任意两事件A 与B ,与B B A =?不等价的是( ) (A ) B A ?; (B )A B ?; (C ) φ=B A ; (D )φ=B A 。 4.设6.0)(=A P ,8.0)(=B P ,8.0)|(=A B P ,则有( ) (A ) 事件A 与B 互不相容; (B ) 事件A 与B 互逆; (C )事件A 与B 相互独立; (D )A B ?。 三、计算题: 1.已知30件产品中有3件次品,从中随机地取出2件,求其中至少有1件次品的概率。

【免费下载】1古典概率典型题解

概率论与数理统计典型题解第一章 随机事件与概率典型题解 1.个人随机地围一圆桌而坐,求甲、乙两人相邻而坐的概率.n 解 令{甲、乙两人相邻而坐},设想圆桌周围有这个位置,A =1,2,,n n 由于该问题属于圆排列问题,所以不妨认为甲坐1号位置,那么发生当且仅A 当乙坐2号或号位置,从而n 1,2,()2, 2.1n P A n n =??=?>?-?2.甲、乙两人掷均匀硬币,其中甲掷次,乙掷次,求甲掷出正面的1n +n 次数大于乙掷出正面次数的概率.解 令{甲掷出正面的次数大于乙掷出正面次数},A ={甲掷出反面的次数大于乙掷出反面次数},B =由硬币的均匀性知,,容易看出,,由此可知()()P A P B =,A B S AB ==? .1()2P A =3.某班有个学生,上体育课时老师发给每人一根绳子进行跳绳练习,N 跳了10分钟后把绳子放在一堆,进行别的练习,后来每人又随机拿了一根绳子进行练习,问至少有一个学生拿到自己原先使用的绳子的概率. 解 令{第个学生拿到自己原先使用的绳子}(), i A =i 1,2,,i N = {至少有一个学生拿到自己原先使用的绳子},A =则111()()()()N N i i i j i i j N i P A P A P A P A A =≤<≤===-+∑∑ 1121()(1)()N i j k N i j k N P A A A P A A A -≤<<≤-+-∑ 12311111(1)(1)(1)(2)!N N N N N N C C C C N N N N N N N -=-+-+---- .11111(1)2!3!!N N -=-+-+- 4.若事件与互不相容,且,证明:.A B ()0P B ≠(|)()/()P A B P A P B =设备高中资料试卷布置情况置。

7.第七讲 概率与统计——古典概型与概率可乘

第七讲概率与统计——古典概型与概率可乘 知识点汇总: 例题练习: 1、一枚硬币连抛4次,求恰有2次正面的概率。 【举一反三】 一枚硬币连抛3次,至少有一次正面向上的概率______。 2、某列车有4节车厢,现有6个人准备乘坐。设每一位乘客进入每节车厢的可能性是相等的,则这6位乘客进入各节车厢的人数恰好为0、1、2、3的概率为多少 3、某小学六年级有6个班,每个班各有40名学生。现要在6个班中随机选出2个班参加电视台的现场娱乐活动,活动中有1次抽奖活动,抽取4名幸运观众。那么六年级学生小宝成为幸运观众的概率为________。 【举一反三】 学校门口经常有小贩搞摸奖活动。某小贩在一只黑色口袋里装有颜色不同的50只小球,其中红球1只,黄球2只,绿球10只,其余为白球。搅拌均匀后,每2元摸1个球,奖品的情况标注在球上(如图)。如果花4元钱,同时摸2个球,那么获10元奖品的概率为______。 4、A、B、C、D、E、F六人抽签推选代表,公正人一共制作了六枚外表一样的签,其中只有一枚刻着“中”,六人照字母顺序先后抽签,抽完不放回,谁抽到“中”字,即被选为代表。那么这六人被抽中的概率分别为多少?

5、甲、乙、丙三人投篮,投进的概率分别是: ⑴现三人各投篮一次,求三人都没进的概率; ⑵现三人各投篮一次,求至少两人投进的概率; 小试牛刀 1.阿奇一次掷出了6枚硬币,结果恰有3枚硬币正面朝上的概率是多少? 2.三个人乘同一辆火车,火车有十节车厢,则至少有两个人上同一节车厢的概率是多少? 3.中关村小学五年级有6个班,每个班各有30名学生。现要在6个班中随机选出2个班参加植树活动,活动中发现树苗不够,抽取4名去取树苗。那么五年级学生中小李被抽中的概率为多少? 4.有编号为1、2、3、4的四个人准备抽签决定谁参加公益活动,公证人制作了外表一样的四枚签,其中一枚刻着“去”,四人照字母顺序先后抽签,抽完不放回,谁抽到“去” 字,即可以参加。那么这四人谁被抽中的概率最大?

古典概率综合测试卷 (1)

2014届高一数学期末复习概率专题 、、三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产例1:一汽车厂生产A B C 量如下表(单位:辆): 按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆. (1)求z的值 (2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率; (3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从 中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率. 例2:甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的. (1)如果甲船和乙船的停泊时间都是4小时,求它们中的任何一条船不需要等等码头空出的概率; (2)如果甲船的停泊时间为4小时,乙船的停泊时间是2小时,求它们中的任何一条船不需要等待码头空出的概率.

一、选择题 1.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A .至少有一个黒球与都是黒球 B .至少有一个黒球与都是黒球 C .至少有一个黒球与至少有1个红球 D .恰有1个黒球与恰有2个黒球 2.在长为1的线段上任取两点,则这两点之间的距离小于 12的概率为( ) A .14 B .12 C .34 D .78 3.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A .310 B .15 C .110 D .112 4.(2012广东高考)从个位数和十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) 4 . 9A 1.3B 2.9C 1.9 D 5.(2012湖北高考)如图,在圆心角为直角的扇形OAB 中,分别 以OA OB 、为直径做两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( ) 2 .1A π- 11.2B π- 2.C π 1.D π 6.(2012北京高考)设不等式组0202 x y ≤≤??≤≤?表示的平面区域为D .在区域D 内随机取一个 点,则此点到坐标原点的距离大于2的概率为( ) .4A π 2.2B π- .6C π 4.4 D π- 7.(2011海南高考)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) 1.3A 1.2B 2.3 C 3.4 D 8.(09山东)在区间[,]22ππ- 上随机取一个数x ,cos x 的值介于0到21之间的概率为( ). A.31 B.π2 C.21 D.32 9.(2007湖北理)连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量 (11)=-,b 的夹角为θ,则0θπ??∈ ?2?? ,的概率是( ) A .512 B .12 C .712 D .56

古典概率的四种解法

例 袋中有3只白球2只黑球,从中随意取出2个球,求事件A:“取出两球是一个白球一个黑球”的概率. 解: 方法一(有序法):将5只球编号为1,2,3,4,5. 如果两球是依次取出,那么基本事件是一有序的结果,每两个有序数组(编号)构成一个基本事件,所以样本空间 S={12,13,14,15,23,24,25,34,35,45, 21,31,41,51,32,42,52,43,53,54} 由乘法原理可知:||. 5420S =×=事件A 所含的基本事件是:先从3个白球中任取一个,而后在2个黑球中取一个;和先从2个黑球中取一个,而后在3个白球中任取一个. 所以事件 A={14,15,24,25,34,35, 41,51,42,52,43,53} 由乘法原理、加法原理可知||322312A =×+×=. 由古典概率的定义可知:||123()||205 A P A S ===. 方法二(无序法):将5只球仍编号为1,2,3,4,5. 如果两球是一次取出,那么基本事件是一个无序的结果,每两个数(两个号码)就构成一个基本事件,基本事件相当于从5个不同数中任取2个的一个组合,所以样本空间 S={12,13,14,15,23,24,25,34,35,45} 由组合的定义可知:2554||102 S C ×===. 事件A 包含的基本事件是:相当于有两只手同时取球(一只手在3个白球堆里取,一只手在2个黑球堆里取)放在一起的结果,所以事件 A={14,15,24,25,34,35} 由乘法原理可知. 1132||326A C C ==×=由古典概率的定义可知:||63()||105 A P A S ===. 方法三(全排列法): 题目中所叙述的取球方法是从5个有区别的球中任取2个,考虑2个球的颜色,它等价于:将5个有区别的球随意排成一行,考虑前2个位置的颜色. 把每一个全排列结果作为一个基本事件,那么基本事件发生的可能性都一样. 此时样本空间 S={12345,13245,14235,",54321 } 由排列的定义可知:. 55||5!S P ==

随机事件的概率与古典概型(解析版)

随机事件的概率与古典概型 1.下列事件中,不可能事件是( ) A.三角形内角和为180° B.在同一个三角形中大边对大角 C.锐角三角形中两个内角的和小于90° D.三角形中任意两边的和大于第三边 【答案】 C. 【解析】“三角形内角和为180°”、“在同一个三角形中大边对大角”、“三角形中任意两边的和大于第三边”都为为必然事件,锐角三角形中两个内角的和大于90°,小于90°为不可能事件. 2.下列说法中不正确的是( ). A .不可能事件的概率为0,必然事件的概率为1 B .某人射击9次,击中靶3次,则他击中靶的概率为13 C .“直线y=k(x+1)过定点(-1,0)”是必然事件 D .“将一个骰子抛掷两次,所得点数之和大于7”是随机事件 【答案】B 3. 某人将一枚硬币连掷了10次,正面朝上的情形出现了6次,若用A 表示正面朝上这一事件,则A 的( ) A.概率为53 B.频率为 5 3 C.频率为6 D.概率接近0.6 【答案】B. 4.某战士在打靶中,连续射击两次,事件“至少有一次中靶”的对立事件是( ) (A)至多有一次中靶 (B)两次都中靶 (C)两次都不中靶 (D)只有一次中靶 【答案】C 5.把标号为1,2,3,4的四个小球随机地分发给甲、乙、丙、丁四个人,每人分得一个.事件“甲分得1号球”与事件“乙分得1号球”是( ) (A)互斥但非对立事件 (B)对立事件 (C)相互独立事件 (D)以上都不对 【答案】A 6.从1,2,3,4,5这5个数中任取两数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( ) A .① B .②④ C .③ D .①③ 【思路点拨】分析四组事件:①中表示的是同一个事件,②前者包含后者,④中两个事件都含有同一个事件,只有第三所包含的事件是对立事件. 【答案】C 【解析】∵在①恰有一个是偶数和恰有一个是奇数中,这两个事件是同一个事件, 在②至少有一个是奇数和两个都是奇数中,至少有一个是奇数包括两个都是奇数, 在③至少有一个是奇数和两个都是偶数中,至少有一个是奇数包括有一个奇数和有两个奇数,同两个都是偶数是对立事件,

古典概率模型习题

3.2.1 古典概型(第一课时) [自我认知]: 1.在所有的两位数(10-99)中,任取一个数,则这个数能被2或3整除的概率是 ( ) A.1 3 B. 2 3 C. 1 2 D. 5 6 2.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为 ( ) A. 60% B. 30% C. 10% D. 50% 3.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为 ( ) A. 0.65 B. 0.55 C. 0.35 D. 0.75 4.某射手射击一次,命中的环数可能为0,1,2,…10共11种,设事件A:“命中环数大于8”,事件B:“命中环数大于5”,事件C:“命中环数小于4”,事件D:“命中环数小于6”,由事件A、B、C、D中,互斥事件有 ( ) A. 1对 B. 2对 C. 3对 D.4对 5.产品中有正品4件,次品3件,从中任取2件,其中事件:①恰有一件次品和恰有2件次品; ②至少有1件次品和全都是次品;③至少有1件正品和至少有一件次品;④至少有1件 次品和全是正品.4组中互斥事件的组数是 ( ) A. 1组 B. 2组 C. 3组 D. 4组 6.某人在打靶中连续射击2次,事件“至少有一次中靶”的互斥事件是 ( ) A.至多有一次中靶 B. 两次都中靶 C.两次都不中靶 D.只有一次中靶 7.对飞机连续射击两次,每次发射一枚炮弹,设A=﹛两次都击中﹜,B=﹛两次都没击中﹜,C=﹛恰有一次击中﹜,D=﹛至少有一次击中﹜,其中彼此互斥的事_____________________,互为对立事件的是__________________。 8.从甲口袋中摸出1个白球的概率是1 2 ,从乙口袋中摸出一个白球的概率是 1 3 ,那么从两个 口袋中各摸1个球,2个球都不是白球的概率是___________。 9.袋中装有100个大小相同的红球、白球和黑球,从中任取一球,摸出红球、白球的概率各是0.40和0.35,那么黑球共有______________个 [课后练习] 10.在下列试验中,哪些试验给出的随机事件是等可能的? ①投掷一枚均匀的硬币,“出现正面”与“出现反面”。 ②一个盘子中有三个大小完全相同的球,其中红球、黄球、黑球各一个,从中任取一个球,“取 出的是红球”,“取出的是黄球”,“取出的是黑球”。 ③一个盒子中有四个大小完全相同的球,其中红球、黄球各一个,黑球两个,从中任取一球, “取出的是红球”,“取出的是黄球”,“取出的是黑球”。 班次姓名

古典概率模型练习题

12. 古 典 概 型 1.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A.13 B.12 C.23 D.34 2.有5条线段,长度分别为1、3、5、7、9从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率是( ) A. 110 B. 310 C.12 D.25 3.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之差的绝对值为2或4的概率是( ) A.110 B.310 C.25 D. 710 4.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A.110 B.310 C.35 D.910 5.从正六边形的6个顶点中随机选择4个顶点,则以它们作为 顶点的四边形是矩形的概率等于( ) A.110 B.18 C.16 D.15 6.先后抛掷硬币三次,则至少一次正面向上的概率是( ) A. 18 B. 38 C. 58 D. 78 7.从装有2个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是( ) A.至少有1个是黑球与都是黑球; B.至少有1个是红球与都是黑球 C.至少有1个黑球与至少有1个红球 D.恰有1个黑球与恰有2个黑球 8.从甲、乙、丙、丁4人中选3人当代表,则甲选中的概率是( ) A. 14 B. 12 C. 13 D. 34 9.同时掷3枚均匀的硬币,下列互为对立事件的是( ) A.至少有1枚正面和最多有1枚正面 B.最多1枚正面和恰有1枚正面 C.至多1枚正面和至少有2枚正面 D.至少有2枚正面和恰有1枚正面 10.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A. 23 B. 910 C. 35 D. 25

考研概率论复习古典概型中几种研究模型

古典概型中研究的几类基本问题: 抛硬币、掷骰(t óu)子、摸球、取数等随机试验,在概率问题的研究中,有着十分重要的意义.一方面,这些随机试验,是人们从大量的随机现象中筛选出来的理想化的概率模型.它们的内容生动形象,结构清楚明确,富有直观性和典型性,便于深入浅出地反映事物的本质,揭示事物的规律.另一方面,这种模型化的处理方法,思想活泼,应用广泛,具有极大的普遍性,不少复杂问题的解决,常常可以归结为某种简单的模型.因此,有目的地考察并掌握若干常见的概率模型,有助于我们举一反三,触类旁通,丰富解题的技能和技巧,从根本上提高解答概率题的能力. 本部分主要讨论古典概率中的四类基本问题(摸球问题、分球入盒问题、随机取数问题和选票问题),给出它们的一般解法,指出它们的典型意义,介绍它们的常见应用. 一、摸球问题 [例1]袋中有α个白球,β个黑球: (1)从中任取出a +b 个(a,b ∈N,α≤a,b ≤β,试求所取出的球恰有a 个白球和b 个黑球的概率; (2)从中陆续取出3个球(不返回),求3个球依次为“黑白黑”概率; (3)逐一把球取出(不返回),直至留在袋中的球都是同一种颜色为止,求最后是白球留在袋中的概率. 思考方法 这里的三个小题,摸球的方式各不相同,必须在各自的样本空间中分别进行处理.(1)中的每一个样本点,对应着从α+β个球中任取a+b 个球的一种取法,无需考虑顺序,属于组合问题.(2)中的每一个样本点,对应着从α+β个球中依次取出三个球的一种取法,需要考虑先后次序,属于排列问题.(3)中事件的有利场合(摸剩白球)包含了α种不同情形:摸剩α个白球,α-1个白球,…,1个白球.因此,必须对各种情形分别加以考虑. [解](1)设A 1表示事件“所取的a+b 个球中恰有a 个白球和b 个黑球”.从α+β个球中 任意摸出a+b 个,有???? ??++=++b a C b a βαβα种不同取法,此即样本空间所包含的样本点总数.而事 件A 1所包含的样本点数,相当于从α个白球中任取a 个,从β个黑球中任取b 个的取法种数, 共???? ?????? ??=b a C C b a βαβα种.所以 P(A 1)=??? ? ??++???? ?????? ??=++b a b a C C C b a b a βαβαβαβα (2)设A 2表示事件“取出的3个球依次为黑白黑”.从α+β个球中依次任取3个,有3βα+A 种取法,此即样本点总数.对于有利场合,第一个和第三个黑球可在β个黑球中依次取 得,有2 βA 种取法,第二个白球可在α个白球中任取,有1αA 种取法.因此,A 2所包含的样本点数为2 1βαA A ?.于是

相关主题
文本预览
相关文档 最新文档