当前位置:文档之家› The effect of stage temperature drop on MVC thermal performance

The effect of stage temperature drop on MVC thermal performance

The effect of stage temperature drop on MVC thermal performance
The effect of stage temperature drop on MVC thermal performance

The effect of stage temperature drop on MVC thermal performance

Fuad N.Alasfour,Hassan K.Abdulrahim ?

Mechanical Engineering Department,Kuwait University,P.O.Box 5969,Safat 13060,Kuwait

a r t i c l e i n f o Article history:

Received 6March 2010

Received in revised form 27July 2010Accepted 27July 2010

Available online 15September 2010Keywords:

Mechanical vapor compression Desalination

Thermal performance Exergy destruction

desalination system is proposed in this study,and a parametric study was carried out to study the effects of MVC brine temperature and temperature drop across MVC stage on system performance in terms of speci ?c power consumption,pressure ratio,feed to distillate ratio,speci ?c heat transfer area,distillate product and 1.Introduction

The concept of desalting seawater using vapor compression is not new;it has been applied during World War II through shipboard use.The unique characteristic of vapor compression is re-using the energy of vapor which is generated in the last effect in steam ejector or compressor,to act as a heat source for the ?rst effect [1].Mechanical vapor compression (MVC)is one of the promising,low-temperature desalination systems.Vapor compression desalination system is considered as low-temperature distillation systems;such systems are characterized by a number of advantages,such as:(1)low corrosion rate,(2)operation reliability and ?exibility,(3)high thermodynamic ef ?ciency,(4)minimal scaling rates,(5)high purity distillate,and (6)low energy costs [2].

MVC system considered as a viable desalination option which can alternate Reverse Osmosis (RO)system;it is compact and can be driven by electric motor,gas or steam turbine or diesel engine [3,4].The latest developments in MVC desalination industry showed that MVC can be supplied as a self-contained automatic package,and pre tested,pre wired and pre assembled with few requirements on site with proper capacity.MVC desalination system characterized by its compactness,ef ?cient utilization of energy,small amount of civil work and limited erection requirements,low capital cost,ease of operation and transportability [5,6],MVC system can be used for small and medium scale water desalination units which ranges from 1to 5000m 3/day.Market data showed a rapid progress and expansion of MVC systems,especially in the single effect con ?guration [7].

Latest reports showed that MVC,under development,can be able to produce up to 10,000m 3/d [8].Industrial experiences showed that MVC system can operate economically at low range of temperatures of 60to 70°C,with low possibilities of scale formation and corrosion,with no need of condenser or cooling water system [9].Water intake and pretreatment requirement for such system is inherently simple,and it is not sensitive to contamination of seawater by oil and/or other organic matter compared to RO system [10].The oxygen content in MVC is very low,due to removal of non condensable gases;such condition should reduce the risk of crevice corrosion in heat exchanger [11].

Reports indicated that MVC water production is characterized by high level of quality,5ppm TDS or less,and it does not have to be located near heat source or sink,which can leads to minimize the ecological effects [12].Thermodynamically,MVC system is operated under heat pump principle,where steam continuously recycled and kept the latent heat exchanged in the evaporation and condensation processes within the system [13].MVC desalination system can be integrated with conventional desalination systems such as MSF [14]and other friendly renewable systems such as;solar system [15],photovoltaic system [16]and wind system [17,18].The thermo-economic analysis showed that MVC ef ?ciency is signi ?cantly higher than traditional Multi-Stage Flashing (MSF),Multi-Effect Evaporation (MEE)or Thermal Vapor Compression (TVC).

There are several barriers to achieve the operation of large scale MVC system,one of the most important is the absence of specially designed steam compressor of a capacity comparable to MSF system [4].In practice growing demand of MVC is limited by several constraints such as:limitation of compressor volumetric ?ow rate,compressor head,operating temperature,and heat transfer capacity of evaporator [19].

Desalination 265(2011)213–221

?Corresponding author.Tel.:+96524985799;fax:+96524847131.E-mail addresses:alasfour@https://www.doczj.com/doc/ed18606303.html,.kw (F.N.Alasfour),hassan.abdulrahim@https://www.doczj.com/doc/ed18606303.html,.kw (H.K.Abdulrahim).

0011-9164/$–see front matter ?2010Elsevier B.V.All rights reserved.Contents lists available at ScienceDirect

Desalination

j o u r n a l h o me p a g e :w w w.e l sev i e r.c om /l oc a te /de sa l

2.Literature review

Several researchers studied MVC desalination system in the light of energy analysis [20–22],exergy analysis [23,24],modeling [25],and economics [4,11,26–28].In the ?eld of energy analysis,Darwish [20]presented the basic characteristics of MVC system.He studied the effect of design and operation parameters;evaporator temperature,compres-sion ratio,feed temperature and concentration ratio.His conclusions indicated that it is essential to bring feed temperature close to the evaporating temperature in order to reduce power consumption,this reduction can be achieved either by increasing the size of the multi ?ow heat exchanger and/or supply of an auxiliary heat.

Narmine et al.[9]investigated thoroughly the thermal perfor-mance of 5m 3/d MVC system,their experimental and theoretical results indicated that the potable water production rate increases by increasing the operating temperature from 70to 90°C,and the evaporator temperature has a good effect on heat transfer coef ?cient.

Bahar et al.[13]conducted an experimental research on MVC system,the desalination plant capacity was 1m 3/d.They evaluated the performance of MVC system under variable conditions including brine ?ow rate,compressor rotational speed,and feed concentration.Their results showed that the distillate production increases with the increase of brine ?ow rate and with salinity reduction;they found that the performance enhanced with lower values of salinity concentration and at elevated values of compressor speed,their results showed that the highest performance ratio obtained was 2.52.

Ettouny et al.[29]studied the characteristics of MVC system as a function of design and operating parameters.They investigated speci ?c power consumption and speci ?c heat transfer area,in addition to new design features such as dimensions of evaporator,demister,and ventilating ori ?ce.Their results showed a noticeable decrease in speci ?c power consumption and speci ?c heat transfer area at elevated values of MVC inlet temperatures.Results also showed that speci ?c power consumption decreases at low values of temperature difference between boiling brine and steam condensate,while speci ?c heat transfer area increases.

Desportes and Scharfe [30]presented and investigated the basic design parameters of MVC system,they compared the design of two 1500m 3/d units,and highlighted on the key design parameters that improve the energy ef ?ciency in the range of 14-17kWh/m 3to below 9kWh/m 3.

In the ?eld of exergy analysis,Vesa [31]reviewed the design parameters of a 500m 3/d MVC system in addition to operation features.The exergetic ef ?ciency was evaluated for heat exchangers and found to be 90%,which is high compared to other processes.The investigation lead to a conclusion that pre heaters were highly effective since temperature differences are low,which in turn reduces exergy destructions and provided an adequate performance regarding useful energy.

Mabrouk et al.[25]investigated a new design of hybrid MSF –MVC system,their analysis was based on energy,exergy and thermo-economic methodologies;their results showed that the performance ratio of the proposed MSF –MVC system was 2.4times the performance ratio of the conventional MSF system.In addition,their exergetic study showed that the exergy destruction has a minimum value at suction Nomenclature A Heat transfer area,(m 2)D Distillate,(kg/s)

ΔT MVC effect temperature drop,(°C)ΔT m Mean temperature difference,(°C)e Stream speci ?c exergy,(kJ/kg)Ex Rate of exergy,(kW)

ExD Rate of exergy destruction,(kW)h Speci ?c enthalpy,(kJ/kg)

h 0Speci ?c enthalpy at T e ,(kJ/kg)

h i Heat transfer coef ?cient internal,(kW/m 2°C )

h o Heat transfer coef ?cient external surface,(kW/m 2°C )k

Thermal conductivity of the tube material,(kW/m °C)LMTD Logarithmic mean temperature difference,(°C )m Mass ?ow rate,(kg/s)M w Molecular weight,(kmol)P or p Pressure,(bar)Pr Prandtl number

Q trans Rate of heat transfer,(kW)Re Reynolds number

R ?Internal fouling resistance,(m 2°C/kW )R fo External fouling resistance,(m 2°C/kW )s Stream speci ?c entropy,(kJ/kg K)s 0Speci ?c entropy at T e ,(kJ/kg K)T,t Temperature,(°C)

t 0Environment temperature,(°C)T o Top brine temperature,(°C)

U Overall heat transfer coef ?cient,(kW/m 2°C)v Stream speci ?c volume,(m 3/kg)w Stream salinity

˙W comp Rate of vapor compressor work,(kW)y Mole fraction of the salts in the seawater

y0

Mole fraction of the salts in the seawater at reference salinity;45,000ppm

Subscripts B,b Brine BPE Boiling point elevation C Condensate comp Compressor cw Cooling water D Distillate e Environment,or exit evap Evaporator F Feed HEX Heat exchanger i Inner,or inlet,or stage number o Outer S Steam v Vapor

Greek Symbols ηevap Thermal ef ?ciency of the evaporator ηm Mechanical ef ?ciency λs Latent heat of steam,(kJ/kg)λv Latent heat of vapor,(kJ/kg)

Abbreviations LMTD Logarithmic mean temperature difference MEE Multi effect evaporation

MIGD Million imperial gallon per day MSF Multistage ?ashing

MSF-BR Multistage ?ashing with brine recirculation MVC Mechanical vapor compression TBT Top brine temperature

TVC Thermal vapor compression RO Reverse osmosis VC Vapor compression

214 F.N.Alasfour,H.K.Abdulrahim /Desalination 265(2011)213–221

Hamed et al.[1]performed a thermodynamic analysis of TVC based on ?rst and second laws of thermodynamics.The values of exergy losses were compared against MEE and MVC desalination systems.Their results showed that TVC system yields the least exergy destruction among the three systems,and the level of exergy losses in TVC can be signi ?cantly reduced by increasing the number of effects and thermo-compressor entrainment ratio,or by decreasing Top Brine Temperature (TBT)and heat input temperatures of ?rst effect.

In the modeling and simulation aspects,Aybar [32]studied the operation characteristics of low temperature MVC system.Mass and energy balance equations have been used,in addition to LMTD method for heat transfer analysis.Three main independent para-meters were investigated in the study;evaporation side pressure,condensation side pressure,and water inlet temperature.The study investigated the effect of three parameters on compressor work and distill mass ?ow rate.

In the ?eld of optimization Marcovecchio et al.investigated the optimum operational condition in for a desalination systems;and MVC [33].They investigated the optimal design of MVC desalination process using a detailed mathematical model of the process and a global optimization algorithm.

Finally in the area of economic analysis,Lara and Holtzapple [11]presented a detailed economic study of MVC system operating at high operating temperature of 172°C,they found that MVC system can deliver the following advantages;low compression work and small

heat transfer area.

In this paper an attempt is made to investigate the thermal performance of MVC desalination system using hybrid MSF –MVC system,the primary focus of this work is to perform a parametric study to investigate the effects of MVC brine temperature and temperature drop across MVC stage on MVC thermal performance,several parameters will be investigated in this research;speci ?c power consumption,pressure ratio,feed to distillate ratio,speci ?c heat transfer area,distillate product and exergy destruction.3.MVC description

In MVC desalination system,a centrifugal vapor compressor is used to compress the low temperature vapor formed in last effect to a

high temperature vapor to be used as heating steam in the ?rst effect.Fig.1(a)shows a single effect evaporator with mechanical vapor compression system.MVC systems are distinguished by the absence of the down condenser.Removal of the down condenser is a result of routing the entire vapor formed in the last effect to the vapor compressor,where the vapor is superheated to the desired temper-ature and pressure.The feed is preheated by recover part of the sensible heat found in the rejected brine and distillate product streams in a multi-?ow heat exchanger.This improves the system performance and maintains production at the design levels,especial-ly,during winter operation.Thus,instead of allowing thermal energy of the brine to be degraded,as in the case of conventional MSF and MEE desalination systems,MVC desalination mechanism can upgrade this energy and enable more evaporation for further brine [7].

In this system feed seawater enters the three-stream heat exchanger at state point 1,then it is heated to state point 2,where it enters the evaporation side of the evaporator.Here the feed is brought into contact with the heat transfer surface and heated to temperature T 1,where part of it becomes vapor at temperature T v1,state point 3,and the balance is taken out as brine at state point 4,to be cooled in the three-stream exchanger to state point 5.The vapor generated at state point 3enters the compressor where it is compressed to state point 6and then enters the condensation side of the evaporator where it condenses on the other side of the heat transfer surface to state point 7and is then cooled to state point 5in the three-stream exchanger.Fig.1(b)shows the T-s diagram for the entire process.

It is worth noting that the power consumption of compressor depends on the pressure difference,thus MVC compressor represents the major component that consume energy.In addition,industrial applications showed that extra care is required for compressor maintenance;industrial experiences showed that operating MVC at low temperatures is advisable to minimize the formation of scaling and corrosion of materials.4.MVC mathematical model

Several studies reviewed MVC modeling and simulation under steady state condition,in addition to studies that reviewed system

(b)

T

215

F.N.Alasfour,H.K.Abdulrahim /Desalination 265(2011)213–221

operation,novel con ?gurations,processes,economics,and system optimization.In this study a hybrid MSF –MVC is proposed,and MVC mathematical model will be presented.The following MVC basic assumptions will be considered during modeling [27]:

Horizontal falling ?lm evaporator.

Distillate is generated as saturated vapor at a temperature of T v .Brine leaving the evaporator is at saturated liquid phase with a temperature of T b and salinity of w b .

Condensate leaving the tube bundle is at saturated liquid phase and at a temperature of T s .

Pressure losses of vapor in the connections are ignored.

Distillate and brine streams leave the pre heater at same temperature.

The compression process of vapor is isentropic rather than isothermal.

No auxiliary heat utilization for feed preheating.4.1.Evaporator model

During steam ?ow inside the evaporator tube bundle,it provides its latent heat to the falling brine ?lm on the outer surface of the tubes.As a result steam is condensed as a saturated liquid (refer to Fig.2)and mass and energy balances for the steam inside the tubes can be evaluated as follow:˙m S =˙m

C e1T

The mass balance for the evaporator,including feed,distillate,and brine can be presented as ˙m F =˙m D +˙m B

e2T

Salt balance in the evaporator,assuming salt free distillate,shows ˙m F w F =˙m B w B e3T

and

Q trans =ηevap ˙m

S h S ?˙m C h C eTe4Twhere ηevap is the evaporator thermal ef ?ciency.ηevap is assumed to be

98%and it is used to account for the energy losses to the environment from the evaporator surfaces.

Since the temperature of preheated seawater feed is lower than the saturation temperature corresponding to the prevailing pressure in the evaporator,it is sprayed on the outer surface of the tube bundle forming a thin ?lm.The brine ?lm gains heat from the vapor ?owing inside the tubes,such that its temperature increases from T f to T b ,hence evaporates a mass of ˙m D 1of potable water.The energy balance in the evaporator can be evaluated as follows:Q trans =ηevap ˙m

S h S ?˙m C h C eT=˙m F h B ?h F eT+˙m D λv e5T

where ˙m D is the generated distillate vapor and λv is the latent heat of

vaporization.The distillate vapor temperature T V can be evaluated as T V =T B ?T BPE

e6T

where T BPE is the boiling point elevation,which depends on the brine

temperature and salinity.The temperature difference across the evaporator is ΔT =T S ?T V

e7T

The thermal load of the tube bundle (Q trans )represents the amount of heat transferred from the steam,inside the tubes,to the brine ?lm on the outer surface of tube bundle,where part of the steam is condensed on the inner surface,while the brine is evaporated on the outer surface.The heat transfer is calculated as Q trans =A U o ΔT m

e8T

where ΔT m is the mean temperature difference across the heat transfer surface of the evaporator and is equal to ΔT m =T S ?T B

e9T

The mean temperature difference can be expressed as a function of temperature drop across the stage ΔT m =T S ?T B

=T S ?T V +T BPE eT=T S ?T V eT?T BPE =ΔT ?T BPE

e10T

The overall heat transfer coef ?cient is calculated based on the outside surface area;the heat transfer coef ?cient can be estimated using the following equation [20].

U o =3+0:05T B ?60eT

e11T

The exergy balance for the evaporator can be represented as

Ex in feed +Ex in steam =Ex out brine +Ex out condensate +Ex out

distillate +ExD evap e12T

where

cw

e

e 216 F.N.Alasfour,H.K.Abdulrahim /Desalination 265(2011)213–221

In Eq.(13),e represents the stream speci ?c exergy;summation of thermal,chemical and pressure exergies of the stream,where e =e th +e ch +e p e th =h ?h 0eT?T e s ?s 0eT

e ch =à

R u ?T e ?ln

y 0

M

w

e p =100P ?P e eTv 0

e14T

For more details regarding the evaluation of stream exergy refer to

Alasfour and Abdulrahim,[34]https://www.doczj.com/doc/ed18606303.html,pressor model

Since the enthalpy of the steam can be evaluated before and after compression,the compressor speci ?c work is calculated using the following equation ˙W comp =˙m D h S

?h V eTηm

e15T

where ηm is the mechanical ef ?ciency of the compressor.

The exergy destruction in the compressor can be evaluated as ExD comp =P shaft ?˙m D e S ?e D eT

e16T

where P shaft is the shaft power supplied to the compressor.4.3.Heat exchanger model

A plate type heat exchanger is used in this model for preheating feed by recovering thermal energy from the condensate and the brine.The two streams ?ow through two heat exchangers to exchange heat with the feed stream [17].The heat transfer area for each heat exchanger can be calculated as follows:

For the distillate heat exchanger,HEX D ˙m D h C ?h e eT=A HEX D U D LMTD HEX D

e17Twhere h e is the enthalpy of the condensate at a temperature of t e .The logarithmic mean temperature difference is evaluated using the

following equation LMTD HEX D =

t C ?t F eT?t e ?t cw eT

C ?t F eT=t e ?t cw eTeT

e18T

The correlations of heat transfer coef ?cient [29]1D =1o +1i +R f ;o +R f ;i +δe19T

where δis the plate thickness,the inner and outer convective heat transfer coef ?cients are calculated using the following correlations [21]

h i =0:2536Re 0:65i Pr 0:4

i

k =D e eTh o =0:2536Re 0:65o Pr 0:4

o k =D e eT

e20T

where Re =D e ρV =μ;and D e =4wd eT=2w +d eT,w is the plate width and d is the plate spacing.The dimensions of the plate heat exchanger used in this work are,δ=0.9mm,w =1.2m and d=4mm.For the brine heat exchanger,HEX B ,The energy balance is ˙m B h B ?h e eT=A HEX B U B LMTD HEX B e21T

and LMTD HEX B =

t B ?t F eT?t e ?t cw eT

ln

t B ?t F eT=t e ?t cw eTeT

e22T5.Model solving

MSF mathematical model used in this work is extracted from

previous work by the authors,[27,34].The mathematical models of the proposed MSF –MVC hybrid desalination system are solved using IPSEpro process simulation environment software,[27,35].Each component of the simulated process is represented by an icon in the ?ow sheet window of the software where the mathematical model of the component is underneath the representing icon.Figs.2and 3present the ?ow sheets of MVC and hybrid MSF –MVC systems,respectively.For further details regarding the software and the solving method,refer to Abdulrahim,[27]and Alasfour and Abdulrahim,[34]

.

217

F.N.Alasfour,H.K.Abdulrahim /Desalination 265(2011)213–221

6.Results and discussion

The thermal performance of MVC system is presented in this section as a component of a hybrid MSF –MVC system.The parametric study will be performed based on energy and exergy analysis.In the proposed hybrid MSF –MVC desalination system,a certain amount of rejected cooling water from MSF process is used as a feed to MVC system (Fig.4).The MVC feed temperature is affected by MSF top brine temperature.For such case,the preheated and pretreated cooling water can improve the performance and the economy of MVC processes.

The mathematical model of MVC system was veri ?ed against published results;which showed a good agreement.Fig.5shows the speci ?c power consumption as a function of MVC brine temperature under different values of temperature drop across MVC stage.Results indicated that at low values of temperature drop (2–4°C),the speci ?c power consumption slightly decrease as MVC brine temperature increases,and as the value of ΔT increase (6–10°C),one can noticed a measurable drop in speci ?c power consumption as brine temperature increases.For example,at 8°C temperature drop,MVC exposed to 30%drop in speci ?c power consumption,when brine temperature increases from 40to 90°C.

It is clear that as temperature drop across the stage increases,the speci ?c power consumption increase.This is attributed to the role of compressor,since it is the major contributor to speci ?c power consumption;speci ?c power of the compressor is a function of inlet vapor speci ?c volume,compression ratio,and compressor isentropic ef ?ciency,

Figs.6and 7explain the reduction in speci ?c power consumption as MVC brine temperature increases;the two ?gures show the effect of MVC brine temperature on compressor inlet volume ?ow rate and pressure ratio.Fig.6shows that volume ?ow rate is sharply decreases as MVC brine temperature increase,since vapor speci ?c volume is inversely proportional to brine temperature.Results also show that

temperature drop across MVC stage have no effect on inlet vapor speci ?c volume.As per pressure ratio,results in Fig.7indicated a small reduction in pressure ratio as MVC brine temperature increase,since speci ?c power consumption is a strong function of pressure ratio,the increase in the brine temperature leads to a reduction in speci ?c power consumption.

Another variable contributes to the speci ?c power consumption of MVC process is the power consumption by the feed pump.Fig.8depicted the effect of MVC brine temperature on feed to distillate ratio at different value of temperature drop.Results show that as the brine temperature increases,the feed to distillate ratio decrease,it is noticed that F/D ratio also decreases at low values of ΔT,which contribute toward the reduction in the speci ?c power consumption of MVC system as stage temperature drop decreases.The reason

behind

S p . P o w e r C o n s u m p t i o n , k W -h /m 3

MVC brine temperat u re (T b ), o C

Fig.5.Speci ?c power consumption versus MVC brine temperature.

218 F.N.Alasfour,H.K.Abdulrahim /Desalination 265(2011)213–221

that drop is the value of latent heat of vaporization which is required by the distillate,since the value of latent heat decreases as vapor temperature increase;this means that more distillate can be produced from the same amount of feed ?ow rate,which reduces the speci ?c power consumption of the system.

The effect of MVC brine temperature on speci ?c heat transfer area is shown in Fig.9.This ?gure reveals that as MVC brine temperature increases,the speci ?c heat transfer area decrease.The increase in the temperature drop across stage tends to decrease speci ?c heat transfer area.It is known that as the MVC brine temperature increases the overall heat transfer coef ?cient increase,resulting in less heat transfer area for the same amount of heat to be transferred.However,the increase in the temperature drop across MVC stage tends to reduce the required heat transfer surface area for the same amount of heat transfer.Results show that when ΔT increased from 4to 10°C,58%reduction in MVC surface area can be achieved at 80°C MVC brine temperature.

Fig.10shows the effect of temperature drop across MVC stage on distillate water production at three different values of MSF top brine temperature.As the ?gure reveals,the distillate water production decreases as the temperature drop across stage increase.Results also show a drop of about 38%in MVC production when temperature drop across the stage changed from 5to 10°C.Results also indicate that,MSF top brine temperature has tiny effect on MVC water production.

Fig.11shows the exergy destruction that occurred in the two main components of MVC desalination system;evaporator and compressor.The exergy destruction has been evaluated as a function of MVC brine temperature and at three different values of MSF top brine

C o m p r e s s o r I n l e t V o l u m e F l o w R a t e , m 3/

s

MVC brine temperature (T b ), o C

https://www.doczj.com/doc/ed18606303.html,pressor vapor ?ow rate versus MVC brine temperature.

P r e s s u r e R a t i o , P s /P

v

MVC brine temperature (T b ), o C

F /D

MVC brine temperature(T b ), o

C

Fig.8.Feed to distillate ratio as function of the MVC brine

temperature.

T MVC , o C

8.0

M V C P r o d u c t , k g /s

S p . H e a t T r a n s f e r A r e a (s A e v a p ), m 2/(k g /s )

MVC brine temperature (T b ), o

C

Fig.9.Speci ?c heat transfer area as function of the MVC brine temperature.

219

F.N.Alasfour,H.K.Abdulrahim /Desalination 265(2011)213–221

temperature.It is clear that the exergy destruction in the evaporator is much higher than that of the compressor.Results show that at MVC brine temperature of 70°C and at 90°C top brine temperature,the exergy destruction in the evaporator represents 2.5times the compressor exergy destruction,another observation in Fig.11that both exergy destructions were decreased as the MVC brine temper-ature increased.The effect of MSF top brine temperature show that for both MVC components that the increase in MSF top brine temperature tends to decrease exergy destruction.

Fig.12shows the exergy destruction in MVC components as a function of temperature drop across MVC stage.For both MVC components,the exergy destruction increases as the temperature drop across stage increase.Results indicate that when temperature drop changed from 5to 8°C,an increase of 14%in compressor exergy destruction and 20%increase in evaporator exergy destruction are noticed at MSF top brine temperature of 90°C.The increase in MVC temperature drop means an increase in the temperature difference across the stage as well as across the compressor,increasing the value of vapor temperature across the compressor leads to increase in pressure ratio,hence increasing the compressor work.Increasing the value of inlet steam temperature means higher value of steam exergy is produced,but the increase in the compressor work over rides the increase in the steam exergy,which will lead to an increase in the exergy destruction.Nevertheless,at higher values of the temperature differences,the above mentioned effects of the increase in the

compressor work and steam exergy are equalized,and hence the exergy destruction becomes almost constant.7.Conclusions

The aim of this research is to study the thermal performance of MVC desalination system under different values of temperature drop across MVC stage.A parametric study was carried out for a hybrid MSF –MVC system.The study aimed to investigate the effect of MVC brine temperature and temperature drop across MVC stage on speci ?c power consumption,speci ?c heat transfer area,distillate product and exergy destruction.

The analysis was performed using steady state mathematical model for hybrid MSF –MVC system.Results showed that:

1.As temperature drop across the stage increases,the speci ?c power consumption increases.

2.As MVC brine temperature increases,the speci ?c heat transfer area decreases.

3.The distillate water production decreases as the temperature drop across stage increases.

4.Exergy destructions decreases as the MVC brine temperature increases.

5.The exergy destruction increases as the temperature drop across stage increases.References

[1]O.A.Hamed,A.M.Zamamiri,S.Aly,N.Lior,Thermal performance and exergy

analysis of a thermal vapor compression desalination system,Energy Convers.Manage.37(1996)373–387.

[2] A.A.Mabrouk,A.S.Nafey,H.E.S.Fath,Analysis of a new design of a multi-stage ?ash -mechanical vapor compression desalination process,Desalination 204(2007)482–500.

[3] A.K.Adak,G.Kishore,V.K.Servastava,P.K.Tewari,Mechanical vapor compression

desalination plant at trombay,Int.J.Nucl.Desalin.2(2007)353–362.

[4]Y.M.El-Sayed,Thermoeconomic of some option of large mechanical vapor-compression units,Desalination 125(1999)251–257.

[5] A.Ophir,A.Gendel,Development of the world's largest multi effect mechanical vapor

compression (MEMVC)desalination plant,IDA World Congress Proceedings -San Diego,1999.

[6]G.Kronenberg,F.Lokiec,Low-temperature distillation processes in single-and

dual-purpose plants,Desalination 136(2001)189–197.

[7]K.M.El-Khatib, A.S.Abd El-Hamid, A.H.Eissa,M.A.Khedr,Transient model,

simulation and control of a single effect mechanical vapor compression (SEMVC)desalination system,Desalination 166(2004)157–165.

[8]J.Ji,R.Wang,L.Li,H.Ni,Simulation and analysis of a single-effect thermal vapor-compression desalination system at variable operation conditions,Chem.Eng.Technol.30(2007)1633–1641.

[9]N.H.Aly,A.K.El-Fiqi,Mechanical vapor compression desalination systems -a case

study,Desalination 158(2003)143–150.

[10]Alfa Laval International Magazine,https://www.doczj.com/doc/ed18606303.html, .April 2005.

[11]https://www.doczj.com/doc/ed18606303.html,ra and M.T.Holtzapple.An advanced vapor-compression desalination

system,IDAWC/MP07–175(2007).

[12] A.Ophir and https://www.doczj.com/doc/ed18606303.html,test developments in MED and MVC thermal

desalination processes,IDAWC/MP07–067(2007).

[13]R.Bahar,M.N.Hawlader,L.S.Woei,Performance evaluation of a mechanical vapor

compression desalination system,Desalination 166(2004)123–127.

[14]K.Genthener,M.M.El-Allawy,Solutions for coupling a mechanical vapor

compression distiller with a multi-stage-?ash evaporator,Desalination 45(1983)143–152.

[15] A.M.Helal,S.A.Al-Malek,C.P.Sevilla,Design of a solar-assisted mechanical vapor

compression (MVC)desalination unit for remote areas in the United Arab Emirates,Symposium:Towards Innovative Desalination and Power Generation in Kuwait.Dec.9-11,2007—State of Kuwait,2007,pp.180–210.

[16] A.S.Nafey,H.E.S.Fath,A.A.Mabrouk,Thermoeconomic investigation of multi

effect evaporation (MEE)and hybrid multi effect evaporation –multi stage ?ash (MEE –MSF)systems,Desalination 201(2006)241–254.

[17] A.Karameldin,A.Lotfy,S.Mekhemar,The Red Sea area wind-driven mechanical

vapor compression desalination system,Desalination 153(2002)47–53.

[18]M.Forstmeier,C.G.F.Mannerheim,Wind-Powered desalination by mechanical

vapor compression —a feasibility study,electronic energy system,GE Global Research,European Wind Energy Conference &Exhibition,May 7–102007.

[19] A.Ophir, A.Gendel,Steam driven large multi effect MVC (SD MVC)

desalination process for lower energy consumption and desalination costs,Desalination 205(2007)224–230.

[20]M.A.Darwish,Vapor compression desalting systems,J.Univ.Kuwait (Sci.)16(1989)

E x D e v a p , M W

E x D c o m p , M W

MVC brine temperature (T b ), o

C

Fig.11.Exergy destruction of MVC components as function of MVC brine temperature.

0.70.8

0.9

1.01.1E x e r g y D e s t r u c t i o n , M W

E x e r g y D e s t r u c t i o n , M W

T MVC , o C

Fig.12.Exergy destruction of MVC components as function of MVC stage temperature 220 F.N.Alasfour,H.K.Abdulrahim /Desalination 265(2011)213–221

[21]H.Ettouney,H.El-Dessouky,Y.Al-Roumi,Analysis of mechanical vapor

compression desalination process,Int.J.Energy Res.23(1999)431–451. [22] F.Lokiec and A.Ophir.The mechanical vapor compression:38years of experience,

IDA World Congress—Spain,Vol.IDAWC/MP07–084,(2007)pp.1–10.

[23]M.Miilu.Desalination and potential for harnessing brine and solar energy in the US

Virgin Island,M.Sc.Thesis,Massachusetts Institute of Technology(MIT)(2003). [24] A.S.Nafey,H.E.S.Fatah,A.A.Mabrouk,Thermoeconomic design of a multi-effect

evaporation mechanical vapor compression(MEE–MVC)desalination process, Desalination230(2008)1–15.

[25] A.A.Mabrouk,A.S.Nafey,H.E.S.Fath,Analysis of a new design of multi-stage?ash-

mechanical vapor compression desalination process,Desalination204(2007) 482–500.

[26] A.A.Mabrouk,A.S.Nafey,H.E.S.Fath,Thermoeconomic analysis of some existing

desalination processes,Desalination205(2007)354–373.

[27]H.K.Abdulrahim.Multiobjective optimization of MSF–RO and MSF–MVC hybrid

desalination systems using genetic algorithm,P.hD.Thesis submitted to Faculty of Engineering at Cairo University–Egypt(2006).[28]M.Al-Sahali,H.Ettouney,Developments in thermal desalination processes:

design,energy and costing aspects,Desalination214(2007)227–240.

[29]H.M.Ettouney,Design of single-effect mechanical vapor compression,Desalination

190(2006)1–15.

[30] C.Desportes and J.Scharfe.high energy ef?ciency mvc desalination plants:a case

study,IDAWC/MP07–071(2007).

[31]J.M.Veza,Mechanical vapor compression desalination plants—a case study,

Desalination101(1995)1–10.

[32]H.S.Aybar,Analysis of a mechanical vapor compression desalination system,

Desalination142(2002)181–186.

[33]M.Marcovecchio,P.Aguirre,N.Scenna,S.Mussati,Global optimal design of

mechanical vapor compression(MVC)desalination process,Comput.Aided Chem.

Eng.28(2010)1261–1266.

[34] F.N.Alasfour,H.K.Abdulrahim,Rigorous steady state modeling of MSF-BR

desalination system,J.Desalin.Water Treat.1(2009)259–276.

[35]SimTech simulation technology,IPSE pro–PSE User Manual,Ver.4.0,Build869,

https://www.doczj.com/doc/ed18606303.html,.2004.

221

F.N.Alasfour,H.K.Abdulrahim/Desalination265(2011)213–221

数显表使用说明书1

数显控制仪使用说明 1、概述 数显仪与各类模拟量输出的传感器、变送器配合,完成温度、压力、液位、成分等物理量的测量、变换、显示和控制 误差小于0.5%F.S,并具备调校、数字滤波功能 适用于标准电压、电流、热电阻、热电偶等信号类型 2点报警输出,上限报警或下限报警方式可选择。报警灵敏度独立设定 变送输出(选项),能将测量、变换后的显示值以标准电流、电压形式输出供其它设备使用 2、型号规格 3、技术规格 3、技术规格 电源:85V AC~265V AC,100V DC~380V DC,功耗小于4W 工作环境:0℃~50℃,湿度低于85%R.H,无结露。 显示范围:-1999~9999,小数点位置可设定 输入信号类型:万能输入,可通过设定选择 ★注:0~10VDC输入,订货时需说明,此时仪表不能万能输入

基本误差:小于0.5%F S 测量控制周期:0.2秒 报警输出:2点继电器输出,触点容量220V AC ,3A 变送输出 光电隔离 4mA~20mA ,0mA~10mA ,0mA~20mA 直流电流输出,通过设定选择。负载能力大于600Ω 1V~5V ,0V~5V ,0V~10V 直流电压输出,需订货时注明 输出分辨力:1/1000,误差小于±0.5% F .S ★ 变送输出为选项功能,只有订购选择后,仪表才具有此功能。 外供电源 用于给变送器供电,输出值与标称值的误差小于±5%,负载能力大于50mA 其它规格,需在订货时注明 4、安装与接线 为确保安全,接线必须在断电后进行。 2线制变送器电流信号的接线 A-H 规格160×80尺寸的仪表(mm ) 外形尺寸 开孔尺寸

高中自我评价100字(共3篇)

篇一:学生自我评价100字 学生自我评价100字 我自上高中一年级以来,在学校领导和老师的谆谆教导下,在德育、智育、体育等方面都有了的一定的进步。一年来,我尊敬师长,团结同学,关心集体;坚持真理,修正错误,自觉抵御封建迷信和“黄赌毒”活动的影响;认真参加学校及班级组织的各项政治活动和文化娱乐活动;在思想上和行动上向团支部靠拢;在学习过程中,勤奋刻苦、自强进取,努力学好各门功课,掌握科学的学习方法,合理安排时间,有惜时的良好的学习习惯。我听取老师的要求和建议,及时完成老师布置的任务。我也有好些不足的地方:在一年的学习生活中,同学们有时向我提出一些疑难的问题时,我觉得还不够耐心地向他们讲解,态度也不够热情。有时看到某些同学做坏事、结群斗殴也不敢大胆揭发等。这些都是我在过去的一年里表现不够的地方,以后我决心把这些缺点纠正过来,做一名品学兼优的高中生。 篇二:最新高中生毕业自我评价范文 高中生自我评价范文 高中生自我评价范文一: 热情、性格活泼开朗的我,心理素质好,对待生活、工作乐观向上、为人真诚、坦率,善于人际关系,能吃苦耐劳,有较强的适应能力和自学能力,不易受外界环境的干扰。 在学习上,我成绩良好,多次获得奖励。在学习专业课知识的同时,更注重理论与实践的结合工作。利用课余时间学习食品行业相关的其他内容,使所学知识能够与社会发展相适应。 在校期间,我一直担任学生干部,工作责任心强,有较强的组织能力、领导能力以及较好的团队合作精神。 我的兴趣广泛,喜欢读书、听音乐、体育运动,多次参加各种文体活动并在各种学校学院的活动中取得良好成绩。 高中生自我评价范文二: 本人在校热爱祖国,尊敬师长,团结同学,乐于助人,是老师的好帮手,同学的好朋友。我学习勤奋,积极向上,喜欢和同学讨论并解决问题,经常参加班级学校组织的各种课内外活动。 在家尊老爱幼,经常帮爸爸妈妈做家务是家长的好孩子,邻居的好榜样。 初中三年我学到了很多知识,思想比以前有了很大的提高,希望以后能做一个有理想,有抱负,有文化的人,为建设社会主义中国做出自己的努力。 当然我也深刻认识到自己的不足,字写的不是很好,有时候做事情会只有三分钟热情,我相信只要克服这些问题,我就能做的更好。 本人能自觉遵守中学生守则,积极参加各项活动,尊敬师长,与同学和睦相处,关心热爱集体,乐于帮助别人,劳动积极肯干,自觉锻炼身体,经常参加并组织班级学校组织的各种课内外活动。 本人品德兼优、性格开朗、热爱生活,有较强的实践能力和组织能力 学习之余,走出校门,本人珍惜每次锻炼的机会,与不同的人相处,让自己近距离地接触社会,感受人生,品味生活的酸甜苦辣。 高中生自我鉴定范文 本人的优点是诚实、热情、性格坚毅.本人认为诚信是立身之本,所以本人一直是以言出必行来要求自己的,答应别人的事一定按时完成,记得有好几次,同学或老师约了本人见面,本人答应以后必定按时到达指定约会地点,即使有急事也从不失约,给他们留下了深刻的映像.由于待人热情诚恳,所以从小学到高中一直与同学和老师相处得很好,而且也很受周围同学的欢迎,与许多同学建立起深厚的友谊.在学习知识的同时,本人更懂得了,考虑问题应周到,这

数显表说明书1

GCS型 统显系光栅数(英文米字管提示) 使 用 说 明

书 司公限有器仪密精星兴恒 1 尊敬的用户:欢迎您使用深圳市恒兴星最新开发液晶英文提示的GCS 光栅数显系统,恒兴星光栅系 统广泛用于铣床、磨床、镗床、线切割、车床,它的应用有助于提高生产效率、显示直观、操作方便、精度准确、重复性稳定,是模具制造业、机械加工业、精密测量仪器必不可少 的装置。 8 的加工点记忆、等分圆和椭圆、斜面加工、R 本系统设置多种智能化功能,如SDM300 个面选择、分中功能的用法,还配置了计算器,等等功能,使用起来十分方便。 应用恒兴星的光栅数显系统,不须经过培训,按照英文使用说明书每步提示一看就懂。 最适合刚使用操作的新手,对于熟练得操作者更是得心应手。 要想了解有关的细节请详细阅读使用说明书。 安全注意事项:打开产品包装,取出箱内数显表与电子尺相接,然后插上电源检查显 示是否正常。 若有故障应立即联系本公司销售部,切勿自行拆卸维修。①开箱后检查外观是否完好, 的交流电源,电源插头是带有接地脚的三芯~60Hz,本装置使用110V~220V50Hz② 电源插头。三芯电源插座地线一定要接地牢靠。 用户不可以自行打开机壳修理,表内有很高压电源以免造成人员伤害。③ 工程塑料,不具防爆高温的环境中使用。④本机壳是采用ABS 平时不用时请关闭电源,可延长本产品使用时间。⑤ 在雷雨天气时应关闭或拔掉电源线以免高压雷击电网引起表的电源电压突然猛增⑥ 高而烧毁表内电源,给用户带来不必要的损失。 2 日常维护: ①每天下班时,清洁时请关闭电源。

用干布或毛刷擦拭数显表或电子尺防护外壳。② 不能用甲苯或乙醇清洗外壳。③ 数显表外壳或显示窗的污迹可用洗衣粉和水搅匀用毛巾扭干水擦拭。④ 承诺: 本公司产品如因用户使用操作不当造成电子尺和数显表的损坏,特别是因碰撞造成产品外观或内部损坏,或自行拆下电子尺限位,造成因超行程把尺撞坏,需本公司维修服务的,本公司要收取适当的材料费和维修费。 3 面板按键说明

最新百特数显表操作方法资料

百特智能数显表说明书 工作状态下按SE T显示LOCY→按SET输入密码18→按SE T显示RAN9→按SE T通过△▽选择分度号→按SET显示Poin设置小数点→按SET显示r9.00设置量程下限→按SET显示r9.FS设置量程上限 工作状态下按SET→通过△▽选择COrr按SET显示old.1→按SET通过△▽修正温度值 参数设定说明: Locy:菜单上锁操作入口;按SET键确认;按△▽键退出;开锁密码为18 Ran9.:分度号和量程设置入口;按SET键确认;按△▽键退出 0-10/…/y:分度号设置;按△▽键设置;按SET确认 PoIn:小数点位置设置;按△▽键设置;按SET确认 R9.00:量程零点设置;按△▽键设置;按SET确认 R9.FS:量程满度设置;按△▽键设置;按SET确认 Corr:量程迁移和滤波时间设置菜单入口;按SET键确认;按△▽键取消 Old.1:修正温度值;按△▽键设置;按SET确认 按键说明: △:变更参数设定时,用于增加数值 SET:参数设定确认键 ▽:变更参数设定时,用于减少数值 常见故障处理: 仪表通电不亮:供电电源未接入,正确接入仪表电源;接触不良,取出表芯确认弹片接触是否良好。 LED屏显示:broy分度号选择错,选择与输入信号相符的分度号;输入信号太大,调节与输入信号保证在仪表范围内;信号短线,正确接入信号线。H.oFL.分度号选择错,选择与输入信号相符的分度号;输入信号太大,调节与输入信号保证在仪表范围内;仪表标定错误,选择正确标定信号重新标定。L.Ofl.: 选择与输入信号相符的分度号;输入信号太小,调节与输入信号保证在仪表范围内;仪表标定错误,选择正确标定信号重新标定 昌辉SWP系列智能仪表说明书 控制方式: 1、正确的接线 仪表卡入表盘后,请参照仪表随机接线图接妥输入、输入及电源线,并请确认无误。 2、仪表的上电 本仪表与电源开关,接入电源即进入工作状态。 3、仪表设备号及版本号的显示 仪表在投入电源后,可立即确认仪表设备号及版本号。 3秒钟后,仪表自动转入工作状态,PV显示测量值,SV显示控制目标值或输出量的 百分比。如要求自检,可按一下面板右下方的复位键(面板不标出位置),仪表将 重新进入自检状态。 控制参数设定: 1、控制参数的种类: 在仪表PV测量值显示状态下,按SET键,仪表将转入控制参数设定状态。 CLK:设定参数禁锁。 AL1:第一报警值。

成长中的烦恼100字日记

成长中的烦恼100字日记 在成长的过程中,有许许多多的事情,有开心的事,有难过的事情,有难忘的事情;;今天,我就来说一说成长中的烦恼吧!下面是为大家精心整理的关于成长中的烦恼100字日记,希望能够帮助到你们。 成长中的烦恼 生活中有许多人有烦恼,当然我也不例外。 那天单元考试分数报给我们了,试卷也发下来了,我考得很差,只有70多分。放学回到家,把那张试卷给妈妈看,妈妈一看生气地说:“你怎么考这么差?都到倒数去了,作文怎么整整扣了8分,你怎么弄的?”我小声地说:“是我昨天没有认真。”妈妈说:“昨天我跟你讲了很多次,重点也讲了很多次,你就是不听……” 唉,每次考试考得差,妈妈都会啰啰嗦嗦讲一大堆,这个烦恼什么时候才能解决啊? 这就是我的烦恼,为了解决这个烦恼,我一定要好好学习! 成长中的烦恼 有一年,我当上了三好学生,有几个同学都很嫉妒我,常常给我起外号,叫:“瘦猴子”。 自从有这个外号以后,每天,都能听到同学们给我起的外号声。有一次,我刚到学校,同学们都一边说给我起的外号一边打笑,我听

着非常难受,就连回家,外号声也不断追着我,可是,马上要举行学校组织的春游了,如果同学们还要说我的外号的话,我的脸可全丢光了。我真担心,到了那一天,我的同学会不会把我的外号传到四年级每个班,每当下课的时候,我都没脸玩了。 还有一次,我的爸爸的单位组织一次活动,居然,有一个同学的妈妈在那里上班,那个同学到了单位,居然还不放过我还是要在这里把我的外号传开。 嗨!我叹了一口气,我希望同学们把我当三好生的念头忘了呀! 成长中的烦恼 其实我的烦恼很多很多,不知如何是好。 有一次,我数学考了80几分,我十分伤心,原以为回到家后,妈妈能安慰我一下,没想到,回家后,妈妈竟很生气骂我:“你说说你,才考这么点儿分,真是太不像话……”面对妈妈的一句句训语,本已很伤心的我,心里更难受了。“去,把我给你买的卷子做2张。一会儿拿来给我检查。”我拖着已十分疲劳的身躯来到书房,拿出卷子做,看着卷子上一行行密麻的字,我便开始头昏,此时此刻的我就好像关在笼子里的小鸟,渴望那一片蓝蓝的天,一朵朵的白云,我真得很累…… 每个人在成长的道路上,必须经历种种考验。人人都有烦恼与欢乐,而我们的生活充满了七彩阳光,但即便在阳光普照的时候,也难免会出现短暂的阴云。所以请告诉我,在出现这些阴云的时候,我该怎么办?

数显表使用说明

GCS型 光栅数显系统 (英文米字管提示) 使 用 说 明 书 恒兴星精密仪器有限公司

尊敬的用户: 欢迎您使用深圳市恒兴星最新开发液晶英文提示的GCS 光栅数显系统,恒兴星光栅系 统广泛用于铣床、磨床、镗床、线切割、车床,它的应用有助于提高生产效率、显示直观、操作方便、精度准确、重复性稳定,是模具制造业、机械加工业、精密测量仪器必不可少 的装置。 本系统设置多种智能化功能,如SDM300点记忆、等分圆和椭圆、斜面加工、R的加工8 个面选择、分中功能的用法,还配置了计算器,等等功能,使用起来十分方便。 应用恒兴星的光栅数显系统,不须经过培训,按照英文使用说明书每步提示一看就懂。最适合刚使用操作的新手,对于熟练得操作者更是得心应手。 要想了解有关的细节请详细阅读使用说明书。 安全注意事项: 打开产品包装,取出箱内数显表与电子尺相接,然后插上电源检查显示是否正常。 ①开箱后检查外观是否完好,若有故障应立即联系本公司销售部,切勿自行拆卸维修。 ②本装置使用110V~220V,50Hz~60Hz的交流电源,电源插头是带有接地脚的三芯 电源插头。三芯电源插座地线一定要接地牢靠。 ③用户不可以自行打开机壳修理,表内有很高压电源以免造成人员伤害。 ④本机壳是采用ABS工程塑料,不具防爆高温的环境中使用。 ⑤平时不用时请关闭电源,可延长本产品使用时间。 ⑥在雷雨天气时应关闭或拔掉电源线以免高压雷击电网引起表的电源电压突然猛增 高而烧毁表内电源,给用户带来不必要的损失。

日常维护: ①每天下班时,清洁时请关闭电源。 ②用干布或毛刷擦拭数显表或电子尺防护外壳。 ③不能用甲苯或乙醇清洗外壳。 ④数显表外壳或显示窗的污迹可用洗衣粉和水搅匀用毛巾扭干水擦拭。 承诺: 本公司产品如因用户使用操作不当造成电子尺和数显表的损坏,特别是因碰撞造成产品外观或内部损坏,或自行拆下电子尺限位,造成因超行程把尺撞坏,需本公司维修服务的,本公司要收取适当的材料费和维修费。

百特数显表操作方法

百特智能数显表说明书 工作状态下按SET显示LOCY按SET输入密码18T SET显示RAN》按SET通过△ ▽选择分度号T 按SET显示Poin设置小数点》按SET显示r9.00设置量程下限》按SET显示r9.FS 设置量程上限工作状态下按SET》通过△▽选择COrr按SET显示old.1》按SET通过△▽修正温度值 参数设定说明: Locy :菜单上锁操作入口;按SET键确认;按△▽键退出;开锁密码为18 Ran9?:分度号和量程设置入口;按SET键确认;按△▽键退出 0-10/…/y :分度号设置;按△▽键设置;按SET确认 PoIn:小数点位置设置;按△▽键设置;按SET确认 R9.00:量程零点设置;按△▽键设置;按SET确认 R9.FS:量程满度设置;按△▽键设置;按SET确认 Corr :量程迁移和滤波时间设置菜单入口;按SET键确认;按△▽键取消 Old.1 :修正温度值;按△▽键设置;按SET确认 按键说明: △ :变更参数设定时,用于增加数值 SET:参数设定确认键 ▽:变更参数设定时,用于减少数值 常见故障处理: 仪表通电不亮:供电电源未接入,正确接入仪表电源; 接触不良,取出表芯确认弹片接触是否良好。 LED屏显示:broy分度号选择错,选择与输入信号相符的分度号;输入信号太大,调节与输入信号保证在仪表范围内;信号短线,正确接入信号线。H.oFL. 分度号选择错,选择与输入信号相符的分度号;输入信号太大,调节与输入信号保证在仪表范围内;仪表标定错误,选择正确标定信号重新标定。L.Ofl.: 选择与输入信号相符的分度号;输入信号太小,调节与输入信号保证在仪表范围内;仪表标定错误,选择正确标定信号重新标定 昌辉SWP系列智能仪表说明书 控制方式: 1、正确的接线 仪表卡入表盘后,请参照仪表随机接线图接妥输入、输入及电源线,并请确认无误。 2、仪表的上电 本仪表与电源开关,接入电源即进入工作状态。 3、仪表设备号及版本号的显示 仪表在投入电源后,可立即确认仪表设备号及版本号。 3秒钟后,仪表自动转入工作状态,PV显示测量值,SV显示控制目标值或输出量的百分比。 如要求自检,可按一下面板右下方的复位键(面板不标出位置),仪表将 重新进入自检状态。 控制参数设定: 1 、控制参数的种类: 在仪表PV测量值显示状态下,按SET键,仪表将转入控制参数设定状态。 CLK:设定参数禁锁。 AL1: 第一报警值。 AL2:第二报警值。 LBA:控制环断线或短路报警。(当仪表控制输出量等于PIDL或PIDH,并且连续时间

成长中的我

4单元成长中的我 1.做事有始有终 教学目标: 情感与态度做事认真负责、有事负责,不拖拉。行为与习惯认真完成自己承担的任务,做事有始有终。知识与技能学习自己和别人的优点和长处,并以此激励自己不断进步。 过程与方法通过体验感受有始有终的重要性,学习用观察、讨论等方法进行简单的探究活动。 教学重难点: 1.养成做事认真负责、有始有终的习惯。 2.辨析生活中经常遇到的事,指导学生如何恰当地解决,做到善始善终。教学准备:教师准备多媒体课件。 课时安排:2课时 第一课时 一、激发兴趣,导入新课 1.故事导入:《群鸟学艺》。(图配教师的讲解) 2.谁最后搭的窝又漂亮,又结实,而且很舒适?(小燕子)为什么? 3.师生小结揭题:小燕子认真学习,做事有始有终。今天这节课我们学习《做事有始有终》。 二、主题探究活动活动一:故事园里听一听 1.播放配音朗读《白头翁的故事》。

2.白头翁是怎样学艺的?你明白了什么? 3.教师总结:白头翁做事不够坚持,有始无终,它最后什么本领也学不到。不要学习白头翁这种做事的态度。 活动二:身边事例讲一讲 师:找一找身边有始无终的小事例,讲给小组的人听一听。 1.小组内说一说。 2.班级汇报。 活动三:现实生活演一演 情景表演生活中的小事例。 1.先在小组内进行排练。 2.选取小组进行表演。 三、总结收获,感悟提升 1.总结收获。 学生自由回答本节课的收获。 1. 感悟提升(辨析) 师:当你遇到下面的情况时,你该怎么做呢?为什么? (1)老师布置的小手工还没做完,但是小明找我去玩轮滑。 (2)晓丽练习扬琴很长时间了,课时少晓丽不想学了,说太累。 (3)小可在做作业时遇到了麻烦,他在想,要不要继续把这道题做完呢? (4)小刚答应妈妈今天把自己的书桌收拾好,可是收拾了一半,就烦了。 四、拓展延伸,指导生活 师:经过今天的学习,一定收获很多,有始有终益处大,只要一直坚持下

初中自我评价100字左右

初中自我评价100字左右 篇一:初中自我评价100字左右 初一自我鉴定100字 初一的第一个学期结束了。在这个学期里,老师为我们的学习和成长付出了许多心血,我也为自己的学习付出了努力。过去的半年,学习中我注意总结、思考,认认真真看书,及时的预习,及时的总结自己不明白的问题,日常生活中,我注意团结同学,尊敬老师,爱护公物,积极打扫卫生,积极参加各种学校举办的活动。过去的半年,我继续着为国做贡献的思想。努力学习,积极锻炼身体,为我即将开始的新学年打好知识基础,身体基矗可我需要更好的鞭策自己,参加了光荣的中国共青团以后,使我的思想基础更加牢固!。总结这个学期的学习,主要有以下几个方面。 一.学习态度比较端正。能够做到上课认真听讲,积极发言,自觉遵守课堂纪律,不跟同学交头接耳,不做小动作;对老师布置的作业,能够认真完成;对不懂的问题,能主动向同学和老师请教。 二.认真做好课前预习和课后复习,上课时有不懂和不明白的问题敢于举手提问;在家做作业中遇到做错和不会做的,

让家长给讲一讲;经常把以前做错的题拿出来复习,直到弄懂弄会。 三.课外学习不放松。每天做完作业,只要有时间,便会主动看会儿课外书,读几篇作文或者做几道数学题。在这些过程中,我的思想发生了大的改变,这一点是不言而喻的。在学校期间,我表现良好,遵守纪律,尊敬师长,爱护同学,成绩良好,为同学们作出了良好的榜样,在家里,我按时完成老师布置的家庭作业,帮助父母做一些力所能及的家务事,但是我也有一些不足,有时候我会发一些小脾气,做题有时候粗心大意,不善于和老师们沟通交流,不过我会努力改正自身的缺点,发扬自己的长处,尽力把自己变成一个完美的人,老师的好帮手,同学们的好朋友。 初一自我鉴定100字二: 这个学期结束了。在这个学期里,老师为我们的学习付出了许多心血,我们也为自己的学习洒下了许多辛勤的汗水。这次期末,我的每门功课,都取得 了比较好的成绩。 总结这个学期的学习,我想,主要有以下几个方面: 第一,学习态度比较端正。能够做到上课认真听讲,不与同学交头接耳,不做小动作,自觉遵守课堂纪律;对老师布置

数显表使用说明书

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 数显控制仪使用说明 1、概述 数显仪与各类模拟量输出的传感器、变送器配合,完成温度、压力、液位、成分等物理量的测量、变换、显示和控制误差小于0.5%F.S,并具备调校、数字滤波功能 适用于标准电压、电流、热电阻、热电偶等信号类型 2点报警输出,上限报警或下限报警方式可选择。报警灵敏度独立设定 变送输出(选项),能将测量、变换后的显示值以标准电流、电压形式输出供其它设备使用 3、技术规格 电源:85V AC~265V AC,100V DC~380V DC,功耗小于4W 工作环境:0C ~50C,湿度低于85%R.H,无结露。 显示范围:-1999~9999,小数点位置可设定

输入信号类型:万能输入,可通过设定选择

共享知识分享快乐 测量控制周期:0.2秒 报警输出:2点继电器输出,触点容量220V AC,3A 变送输出 光电隔离 4mA~20mA,0mA~10mA,0mA~20mA直流电流输出,通过设定选择。负载能力大于600Q 1V~5V,0V~5V,0V~10V直流电压输出,需订货时注明 输出分辨力:1/1000,误差小于土0.5% F.S ★ 变送输出为选项功能,只有订购选择后,仪表才具有此功能。 外供电源 用于给变送器供电,输出值与标称值的误差小于土5%,负载能力大于50mA 其它规格,需在订货时注明 4、安装与接线 外形尺寸

i ISl.i A-S规格80X160尺寸的仪表(mm) 外形尺寸 接线端子图 B-F规格96X 96尺寸的仪表(mm ) 外形尺寸 开孔尺寸 接线端子图 输出 * - + AL M电冒输入住供辅出律岀22OV AC 鞘出 尿? V -需出 开孔尺寸

电子数显指示表使用说明书

电子数显指示表使用说明书 一.注意事项 1.指示表测量杆的移动速度不得大于0.5m/s。 2.指示表属精密量具,使用时应防止撞击、跌落,以免丧失精度。 3.应保持清洁,避免水等液态物质渗入指示表内以免影响正常使用。 4.不使用数据输出端口时,不要将输出口盖取下,不要用金属器件任意触及输出端,以免损坏电子电路。 5.指示表的任何部位不能施加电压,不要用笔刻字,以免损伤电子电路。 6.长期不使用时,应取出电池。 二.主要技术参数: 分辨率:百分表:0.01mm,千分表:0.001mm。 量程:百分表:0~10mm,千分表:0~3mm,0~5mm,0~10mm 电源:1.55V氧化银电池(SR44) 工作温度:0~40℃ 储运温度:-20~70℃ 相对湿度:≤80% 三.各部分名称: I型指示表II型指示表 1.测量头 2.测量杆 3.装夹轴套 4.开关键(或多功能键) 5.置零键 6.显示屏 7.数据输出口 8.防尘帽 9.电池10.测量制式转换键11.平型后盖(或带耳后盖)四.功能: 1.任意位置清零,以便于微差测量; 2.对于I型表,具有ON/OFF开关键,而对于II型表,具有多功能键:即有数据保持、快动显示、寻找最大值、寻找最小值的功能。 3.测量制式转换键。 4.备有串行数据输出口,可选择普通数据口或微型USB数据口。

五.I型表使用方法: 1.将测量杆和测量头擦拭干净。 2.按开关键,打开电源;使测量头接触被测工件并压缩约0.15mm,然后按置零键置零,即可正常读数。 II型表使用方法: 1.将测量杆和测量头擦拭干净。 2.按测量制式转换键或轻推测杆,打开电源;使测量头接触被测工件并压缩约0.15mm,然后按置零键置零,即可正常读数。 3.如果需用特殊功能可按M功能键和置零键,其选用方法如下: a.数据保持:按M功能键,显示“H”,即进入数据保持状态。 b.选快速跟踪:按M功能键,显示“H”,再按置零键,显“F.T”, 即为快速跟踪。测量完毕按M功能键,“F.T”消失,转为正常显示。 c.选快速跟踪最大值:按两次M功能键,显示“H MAX”;再按一 次置零键显示“F.T MAX”即为快速跟踪最大值。测量完毕按M功 能键,“F.T MAX”消失,转为正常显示。 d.选快速跟踪最小值:按三次功能键,显示“H MIN”,再按一次置 零键,显示“F.T MIN”即为快速跟踪最小值。测量完毕按M功能 键,“F.T MIN”消失,转为正常显示。 测量方向选择键的使用 客户可选用带有测量方向选择键的产品,该键使用方法如下: 当要求测量方向相反时,按一下测量方向选择键,则测量方向改变。六.电池安装方法: 拨下电池卡环,带出电池,换下旧电池,再将电池卡环嵌入指示表 中(正极朝上)。 七.故障排除方法: 宏研电子:https://www.doczj.com/doc/ed18606303.html,

最新自我陈述100字3篇

个人自我介绍100字1 本人性格热情开朗待人友好人诚实谦虚工作勤奋认真负责能吃苦耐劳尽职尽责有耐心具有亲和力平易近人善于与人沟通,学习刻苦认真成绩优秀名列前茅品学兼优连续三年获得学院奖学金四年大学生涯让我组织协调能力、管理能力、应变能力等大大提升使我具备良好心理素质让我竞争拥有更大优势让我人生事业走得更高更远获得了优秀大学生和优秀毕业生称号个人自我介绍100字2 为人诚实、乐观有责任心,善于独立思考。具有团队精神,能承受一定的压力。勤奋、好学,有强烈的上进心,具备吃苦耐劳的精神。对负责的工作会付出全部精力和热情,制定缜密计划,力争在最短时间内将目标达成,喜欢挑战,能在较短时间内适应高压力的工作。个人自我介绍100字3 自入学以来,一直遵守学校的各项规章制度,具有良好的.思想道德品质,各方面表现优秀。有强烈的集体荣誉感和工作责任心,坚持实事求事的原则。本人思想端正,能吃苦耐劳,有崇高的理想和伟大的目标,注重个人道德修养,养成良好的生活作风,乐于助人,关心国家大事。在校期间,本人一直勤奋学习,刻苦钻研,通过系统地学习掌握较为扎实的基础知识。由于有良好的学习作风和明确的学习目标,曾获得"优秀团员"、"三好学生"个人自我介绍100字4 本人勤奋踏实,工作认真负责,自学能力强;性格开朗,轻易与人相处,注重团队协作精神,且能承受较大压力。注重专业基础学习和实践能力的培养,在校期间不仅做过多个课程设计暑假期间也往过单位实践过,对JAVA编程和网站开发具有浓厚的爱好。个人自我介绍100字5 我热爱集体,有强烈的集体荣誉感。性格开朗,乐观。并有处理突发事件之能力,通过对贵公司的了解,感觉贵公司实乃我理想中锻炼自己,完善自己并发挥自己所学的理想场所。在此,我诚挚的请求加入贵公司,希望贵公司能给我机会,我会尽自己所能为公司服务。最后,祝贵公司事业蒸蒸日上。个人自我介绍100字6 忠实诚信,讲原则说做决推卸责任;有自制力做事情始终坚持有始有终从半途而废;肯学习,有问题逃避,愿意虚心向人学习;自信自负,自我心;愿意谦虚态度赞扬接纳优越者,权威者;会用100%热情和精力投入工作;平易近人人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地有较强团队精神,工作积极进取,态度认真 自我陈述(精选10篇) 自我陈述(一): 时光流逝,丰富多彩的三年xx生活即将结束,这三年是我人生中最重要的一段里程,它将永远铭记在我的脑海里。

V9696数显表说明书

V9696数显表说明书

V9696数显表说明书 1、电流输出技术指标工作电压(DC):12V 15V 24V 输出:4-20mA(0-10mA,0-20mA)负载阻抗:250Ω输出精度:<0.1% 工作温度范围:-20℃~+85℃ 2、电压输出技术指标工作电压(DC):12V 15V 24V 输出(DC):0-5V 1-5V 0-10V 0-±5V 输出电压精度:<0.05% 工作温度范围:-20℃~+85℃ 3.型号: 放大器ZMST(0-10V) 放大器ZMST(4-20mA) 放大器ZMST(0-10mA) 放大器ZMST(0-5V) 放大器ZMST(1-5V) 放大器ZMST(±5V) 变送器ZMST(0-10V) 变送器ZMST(4-20mA) 变送器

ZMST(0-10mA) 变送器ZMST(0-5V) 变送器ZMST(1-5V) 变送器ZMST(±5V) 重量变送器ZMST(0-10V) 重量变送器ZMST(4-20mA) 重量变送器ZMST(0-10mA) 重量变送器ZMST(0-5V) 重量变送器ZMST(1-5V) 重量变送器ZMST(±5V) 放大器XK3196H(0-10V) 放大器XK3196H(4-20mA) 放大器XK3196H(0-10mA) 放大器XK3196H(0-5V) 放大器XK3196H(1-5V) 放大器XK3196H(±5V) 变送器XK3196H(0-10V) 变送器XK3196H(4-20mA) 变送器XK3196H(0-10mA) 变送器XK3196H(0-5V) 变送器XK3196H(1-5V) 变送器XK3196H(±5V) 重量变送器XK3196H(0-10V) 重量变送器XK3196H(4-20mA) 重量变送器XK3196H(0-10mA) 重量变送器XK3196H(0-5V) 重量变送器XK3196H(1-5V) 重量变送器XK3196H(±5V) ZM104无线显示屏 可配套LED显示屏 4英寸(10cm)6位超高亮显示。 1.8英寸(4.6cm)6位超高亮显示,无需电源,低价。可定制其他任意规格的大屏幕显示器。 ZM105有线显示屏 可配套LED显示屏

初中自我评价100字左右

初中自我评价100字左右 学生的不断学习就是收获知识一点一点进步的过程,而自我评价就是让自己看清楚自己,有针对的让自己面对自己的优缺,进步随之而来。现在下面是由小编分享的初中学期自我评价范文,希望对你有用。 初中自我评价篇一 个学期这么快就结束了,真有些怀念。从去年的9月份开始,我就步入了中学,开学的第一天我就认识了准备和我朝夕相处3年的同学,并且通过军训和同学产生了许多感情。我很高兴也很荣幸。但我因此也明白中学是一个充满竞争和挑战的地方,不能有放松自己的任何念头。于是为了给新的老师同学留下一个好印象,我充分发挥自己的长处,很快成为了班长。成为班长后,我就更加严格要求自己,用“班长”二字,时刻提醒自己。果然,通过努力,在开学第一次的全年级数学第一但与单元测试中,我取得了全班第一的好成绩,但我并没有骄傲,我知道以后等待我的路还很长。 “十一”过后,语文又进行了一次测验,这次我排在了班级第二。当时,确实有点后怕,一想到自己在班级第二,在学校就可

能排在二十,那我的梦想——锦州中学就会离我越来越远。于是我更加努力的学习。从此的各种测试都基本保持在了第一、第二的位置上。期中考试时,尽管我已经很努力了,可成绩还是不理想,虽然在班级第一,可在学校却是第二十四。考试后老师找我谈了话,她说期末考试一定要进全校前十名,因为我入学考试是全校第三。于是带着老师的期望,我有继续努力,并在自己的桌布上写下自己的目标。之后不久在学校的数学大赛中我取得了一等奖的好成绩。我一直坚信“有努力,就一定会有成功! 现在期末考试结束,成绩还没有发下来,但听老师说我 考得很好,不但又是全班第一,在学校可能还是好成绩。我完成了我的目标!!! 在这个学期,我拿到了三张奖状,两张社会实践报告奖励表,收获是真的不少,但也有许多地方需要加强——积极锻炼身体。相信我,通过我的努力,我一定会成功的。下个学期,我一定会以更好的精神面貌去迎接的。加油!! 初中自我评价篇二 这个学期结束了。在这个学期里,老师为我们的学习付出了许多心血,我们也为自己的学习洒下了许多辛勤的汗水。这次期末考试,我的每门功课,都取得 了比较好的成绩。 总结这个学期的学习,我想,主要有以下几个方面:

多功能数显表使用说明书

多功能电力监测仪使用手册 版本: 杭州正普科技有限公司 使用前必读 在您使用本产品之前,请务必仔细阅读此使用手册内容,正确按照用户手册指导操作,这会有助于您更好地使用本产品,并有助于解决现场出现的各种问题。 1、监测仪在施加工作电源之前,务必确保工作电源在仪表规定范围之内; 2、现场安装使用时,电流输入端子严禁开路,电压输入端子严禁短路; 3、通讯端子(RS485)严禁施加高压; 4、使用时仪表接线方式务必与内部系统设置方式一致; 5、与后台通讯时,仪表通讯参数务必与后台一致;不能带电拔插通信接口; 6、本手册中的信息如有变动,恕不另行通知; 我公司自始至终本着“质量第一服务第一”的宗旨,将以优质的产品、优良的服务奉献给国内外用户! ●使用前请仔细阅读本用户使用手册 ●请注意妥善保存 目录 一、概述-------------------------------------------------- 1 二、型号定义---------------------------------------------- 1 三、尺寸对照表-------------------------------------------- 1 四、型号与功能对照表-------------------------------------- 2 五、技术指标---------------------------------------------- 3 六、外形及安装尺寸---------------------------------------- 4 七、接线图------------------------------------------------ 6 八、操作说明----------------------------7 (RS485通讯规约、CT/PT设置、开关量操作、变送输出操作)

铣床数显表操作手册精选.doc

铣床数显表操作手册 1》PCD圆周分孔 等分圆弧功能(PCD 功能)各项所需定义参数: 1.圆心位置(CT POS):是指圆弧中心相对于对刀清零时的刀具中心的位置. 2.直径(DIA):要等分的圆弧直径. 3.点数(NUMBER):将圆弧等分的点数.如将360度圆等分8段应设置9个点数,因第一个点和第九点正好重合。 4.起始角度(STANG):要等分圆弧的起点角度. 5.结束角度(EDANG):要等分圆弧的结束点角度. 2》SMOOTH平滑R 平滑R(SMOOTH)功能使用步骤: 1.选择平滑R(SMOOTH)功能. 2.选择加工平面XY、XZ或YZ. 3.输入圆弧中心位置(CTPOS).圆弧中心位置是指圆弧中心相对于对刀清零时的刀具的位置. 4.输入圆弧半径(RADIUS). 5.输入刀具直径(TL DIA ).加工XZ和YZ平面上的圆弧时,使用平底铣刀加工R,是用刀角端加工,刀具直径大小对加工并无影响,请输入刀具直径(TL DIA )=0. 6.输入最大切割量(MAX CUT ).此功能加工圆弧,每刀切割量相等.7.输入圆弧的起始角度(ST ANG). 8.输入圆弧的结束角度(ED ANG ). 9.确定内、外圆弧加工方法ARD+TL、ARD-TL。 10.按轴显移动机床至加工起点,然后逐点加工圆弧. 3》SIMPLE简易R 1.选择简易R功能(SIMPLE). 2.选择R加工形式,形式为预设的1-8型,提示形式为(WHICH). 3.选择加工平面XY、XZ或YZ. 4.输入圆弧的半径(RADIUS). 5.输入刀具直径(TL DIA)。加工XZ和YZ平面上的圆弧时,使用平底铣刀加工R,是用刀角端加工,刀具直径大小对加工并无影响,请输入刀具直径(TL DIA)=0。 6.输入最大切割量(MAX CUT).在加工XZ和YZ平面上的圆弧时,是指Z轴方向每步进刀量,在加工过程中,可改变最大切割量;在加工XY平面上的圆弧时,(MAX CUT)是指每刀的切割量,此切割量每刀相等。 7.按显示逐点加工圆弧.

100字毕业生自我鉴定

方桂发同学学习刻苦认真,专业方向明确,专业知识扎实,尊师爱友,团结同学,踊跃参与各项集体活动,工作出色,深受师生好评。思想上积极向上,努力向党组织靠拢,时刻以党员的标准要求自我,生活习惯良好,开朗大方,给班级做好先锋模范作用。篇二:大学自我鉴定100字 大学自我鉴定100字 (一)在政治思想方面: 我一直认为一个人如果没有一种可以终生奉行的信仰的话,也就迷失了自己的方向,在很多事情上会很糊涂,不知道怎么处理,日子也过得毫无目的,浪费时光。有信仰才能有动力,才有原则,才会让自己觉得很充实,才可以分辨是非。自从进入大学以后,这个感觉越来越强烈,因为在大学里,自己在学习和行动等方面都有了一个初步的目标,然而在思想政治方面却感觉失去了方向。同时通过对实事和我党政策的了解,更加坚定了我加入党的愿望。 大一上学期,我参加了西南大学计算机与信息科学学院第一期党校培训,从中学到了很多东西,也坚定了我的共-产主义意识,让我认识只有在中国共-产-党这个先进的组织里我才能找到的我的理想。从此以后,平时我都虚心地向各党员前辈请教思想上的问题,努力地向成为一名合格的中国共-产-党员奋斗。 终于在大三上学期,我顺利加入伟大的党组织,这不仅是对我在思想和行为方面的一种肯定,同时对我来说也是一种鼓励。现在我将一如既往的走马列主义路线,并且进一步深入学习科学发展观,不断地用党的先进理论武装自己。 (二)在学习、科研方面: 刚刚进入大一,我就以学习为目标,努力地完成了第一学年的学习任务,并取得了班级专业成绩第一,综合排名成绩第三的优异成绩。进入大二后,我更是认识到了知识和能力的重要性,以更胜于大一的学习热情来对待学业,对待知识。皇天不负苦心人,最终取得了前三名的成绩。到了大三,我认识到这是大学最为关键的一年。为了弥补自己能力上的不足,也为了以后能够更好融入社会,所以参加了班委的竞选,并最终获任学习委员一职。我相信我一定能以此为契机,争取全面发展,坚持学习能力两手都要抓,两边都不能耽误,努力地将自己培养成为一名四有新人。 在学习方面,我还意识到其它像英语和计算机方面的重要性,在学习上也有所规划。在大一下学期,我就以556分的成绩顺利通过cet-4,之后在大二上期成功通过cet-6,除此之外,我还不断注意自己英语口语方面的锻炼。至于计算机的学习,我更注重的是平时的动手操作能力,同时,我也顺利通过了全国计算机等级(三级)考试。 (三)社会实践活动方面 在大一时,我虽然没有担任班委,但我觉得不一定非得当我被赋予某种职务的时候才开始意识要为同学服务,生活其实在于点滴之中。我始终认识,一个人最能让人佩服的一点就是乐于助人。所以同学有困难的时候,我都会尽我所能帮助同学渡过难关。 在大二的时候,我担任了电子商务协会的副会长。在担任该工作期间,我自认十分地敬业,与所有会员一起合作举办了多项活动,并协助会长及会员将电子商务协会的名字传入了西大的每一个角落。在这些举办活动所获得的经验中,锻炼出了较强的组织协调能力,能与协会的各项工作配合,也能与协会的各个会员打成一团。 在大三,担任着学习委员一职的我一直忙于各项班级活动,秉着一颗真正乐于助人的心,热爱集体,积极参与策划班级活动,为班级的每一步发展成长献策献力。鉴于现在大三班上还有很多同学没有过英语xx的情况,我积极召集同学晨读英语,并为同学修改英语作文,并对同学在英语学习方面存在的问题提供力所能及的帮助。在校本科教学评估期间,我更是以身作则,发挥班干部的模范带头作用,督促班上同学在教学评估期间的作息及出勤状况,并且积极与老师沟通协作,同时紧盯班上同学们的实验情况,让同学们在教学评估专家组的视

100字左右自我评价

100字左右自我评价 个人简历100字左右自我评价,供大家参考。阅读请查看本站个人简历! 100字左右自我评价 100字左右自我评价 本人能严格遵守学校纪律,有较强的集体荣誉感,乐于助人,关心同学,与同学相处融洽;学习上刻苦努力,思维活跃。是一个正直诚恳,听话懂事,诚实质朴的学生。老师和同学都很喜欢我。学习上虽然很努力,但学习方法不是,所以成绩还不够理想。希望在以后的学习和生活中,能探索出适合我自己的高效的学习方法。 我能够尊敬师长,团结同学,基本上能遵守校纪校规。本人自控力还可以,但是也要提高自身的分析识别能力。以后我会在各个方面能够独立自觉,自己管理自己。 在学习上,我有提高各科成绩的良好愿望,但这不能只是口头上说说而已,我要用自己的行动来表明我的决心,迎接每一个崭新的明天! 自我评价 本人兴趣爱好广泛,喜欢听音乐、体育运动,多次参加各种文体活动并在学校的活动中取得良好成绩。 我热爱祖国,尊敬师长,团结同学,乐于助人,积极参

加劳动,是老师的好帮手,同学的好朋友。我学习勤奋,积极向上,喜欢和同学讨论并解决问题,经常参加班级学校组织的各种课内外活动。 在家尊老爱幼,经常帮爸爸妈妈做家务是家长的好孩子,邻居的好榜样。 高中三年我学到了很多知识,思想比以前有了很大的提高,希望以后能做一个有理想,有抱负,有文化的人,为建设社会主义中国做出自己的努力。 我在学习课本知识的同时,更注重理论与实践的结合工作。利用课余时间学习食品行业相关的内容,使所学知识能够与社会发展相适应。走出校门,我珍惜每次锻炼的机会,与不同的人相处,让自己近距离地接触社会,感受人生,品味生活的酸甜苦辣。 当然我也深刻认识到自己还存在不足的地方——有时候做事情会只有三分钟热情,我相信只要克服这个问题,我就能做得更好。在这里我想感谢老师对我的指导,让我不断的发现自身不足,解决成长过程中所出现的问题,让我的人格,性格趋于完善,综合能力不断的提升,我相信自己能做得更好。相信明天会更美好。 本人在校热爱祖国,尊敬师长,团结同学,乐于助人,是老师的好帮手,同学的好朋友。我学习勤奋,积极向上,喜欢和同学讨论并解决问题,经常参加班级学校组织的各种

我的成长日记作文100字_学生日记

我的成长日记作文100字_学生日记 篇一:我的第一篇成长日记[100字]俞天宁 明天是清明节,学校放假一天,所以妈妈今天就到学校来接我了,这个周末我们会休息3天,真开心!之后,妈妈带我去了我们家正在装修的新房子,看到了我房间的蜜蜂灯,这只灯由两个小蜜蜂组成,它们的眼睛就是两个大灯泡,非常可爱! 妈妈希望我今后能够像小蜜蜂一样勤劳能干。 篇二:我和小书同成长[100字] 花开了,草绿了,小鸟唱着快乐的歌。 我跟爸爸妈妈到儿童公园去游玩。在公园里,我看见几棵小树站在那里打吊针,我觉得很奇怪,问爸爸:“树问什么打针呢?”爸爸说:“这是给树补充养分。”真是太有趣了,小树跟我一样需要吸收丰富的营养才能长成参天大树啊! 一阵风吹过,小树仿佛在向我招手。再见了小树,让我们一起茁壮成长吧! 篇三:新学期我要学会成长[100字] 开学的第一天,老师组织我们在教室里看了开学第一课的电视,讲述了属于我们宜昌人的先进事迹,有个大姐姐明明家里生活困难,但是她把自己给别人做家教的钱分别给了三个小朋友当零花钱,她的这种勤工俭学、乐于助人的高贵品德让我很感动。 想想我自己,衣来伸手,饭来张口还把妈妈给的早餐钱节省下来乱买玩具的坏毛病,想想真是惭愧,我一定要改掉这些坏毛病,学会成长。 篇四:个人成长日记[100字] 我生在费县,也长在费县。父母对管教比较严格,但我还是拥有比较快乐的童年。我有很好适应能力,什么事都可以去做,但不能做得十分完美,还有时会搞砸。 在初中学年里,我的语文和英语一直在扯后腿,父母也因此操了不少心,我也很不争气,一直没能升上去,也不知怎么回事。升入高中进入十一班,希望有所改变。 希望在以后的三年中,无论是否在同一个班级,但请记住我们是十一班,祝大家在2017年6月份中取得如愿成绩。 篇五:新年自我成长[100字]四( 4 )詹淑嵋 漫长的寒假慢慢的离开了,要用自己的认真来学习的学期来了。 我们已经进入了学习状态。这个新年已经过了我拿了许多红包。而且我也长大了1岁。所以我应该做新的成长计划:学习要认真,取得好成绩。

相关主题
文本预览
相关文档 最新文档