当前位置:文档之家› 土壤学第二章 岩石风化和土壤形成及土壤剖

土壤学第二章 岩石风化和土壤形成及土壤剖

土壤学第二章 岩石风化和土壤形成及土壤剖
土壤学第二章 岩石风化和土壤形成及土壤剖

全文电子教材

土壤与土壤资源学(上篇:土壤学)

林学专业

第二章岩石风化和土壤形成及土壤剖面

第一节岩石风化

一、风化作用的概念及类型

当岩石处在风化它的环境条件下时,它是很稳定的,但一旦条件发生的变化,为了在新的条件下达到平衡,岩石必然发生相应的变化。位于地壳深部的岩石,由于地质作用的结果露出地表,岩石本身因外压力的减少而产生膨胀,导致岩石产生缝隙和裂纹。同时岩石与大气接触以后,受到各种自然因素(主要是水、热及空气等)和生物的影响,这种影响是长期的和复杂的。

根据外界因素对岩石作用的性质,可以将风化作用区分为物理风化和化学风化。当然,在自然界这两类作用是紧密相联系的,有时很难把它们区分开来。生物的活动,就其对岩石或矿物的作用性质而言,也是以物理或化学的方式作用于岩石矿物的。也有人将生物活动所引起的岩石或矿物的风化,称为生物风化。由于地球表面广泛的存在着大量的生物,它们在风化过程中起着积极的影响,以至在自然界中地表物质的风化过程几乎都有生物参加。从原始幼年土形成来看,风化过程先于土壤形成,风化过程先产生形成原始土壤的母质,因此风化过程可以说是土壤形成的基础。从现代的土壤形成和发展来看,风化过程则是成土过程本身的一部分。

(一)物理风化过程

物理风化又称为机械崩解作用,主要是由温度变化、水分冻结、碎石劈裂以及风力、流水、冰川的磨擦力等物理因素的作用所引起的。

温度变化可以引起物质产生热胀冷缩。岩石是由各种矿物组成的,而各种矿物的热学性质是不同的,例如石英的热膨胀系数为0.0000075,而正长石为0.000020,当昼夜或季节温度变化时,在矿物之间的接触面上产生张力,使岩石产生裂隙和崩解。粗粒结晶的花岗岩,由于结晶矿物的膨胀幅度较大,这种作用更为明显。含有暗色矿物的岩石,由于提高了岩石的热辐射能力,温度变化比较大,因此像玄武岩、辉长岩及辉绿岩等一些深色岩石,常产生剥蚀现象。而由单一矿物集合的岩石或浅色岩石(如石灰岩、石英岩等),受到温度的影响较小,崩解也比较慢。由于温度的反复变化,坚硬的岩石便逐渐散碎。

浸入岩石缝隙中的水,结冰是体积膨胀增大1/11,所产生的压力可高达960公斤/平方厘米,因而引起岩石破裂。落在岩隙中的碎石,起着像楔子一样的作用,当碎石受热膨胀时,岩隙扩大;当碎石冷却收缩时则向岩缝中堕落,对岩体产生劈裂作用。

此外,风和流水对岩石的侵蚀摩擦,也是很重要的物理风化作用,尤其在携有泥砂时其作用更为强烈。第三纪末、第四纪处,我国广大区域内曾有国冰川的活动,第四纪中又有过几次冰川,冰川移动时摩擦粉碎着地表的岩石。

大陆性气候的干旱地区昼夜温差悬殊,物理风化作用比较强烈,地面上多形成乱石滩,其风化产物粗糙并且夹杂石砾较多,养分释放极少。在较高的山地,由于结冰和重力等综合因素的作用,有时在山麓形成倒石堆,残留的岩石依然耸立。

物理风化作用的结果,使岩石由大块变成碎块,再嘴尖变成细粒,其形状和大小改变了,但成分的变化很小,只是空气、水分的通透性增强了,暴露的表面积增大了,为化学风化创造了条件。

(二)化学风化作用

化学风化又称为化学分解作用。主要是由水、二氧化碳和氧气等参与下进行的各种过程,包括溶解、水化、水解和氧化等作用。

1溶解作用

是指矿物和岩石为水所溶解的作用。一般矿物是难溶于水的,但是在大量的水分和较高的温度下,也可以使矿物的溶解度增大。在多雨的地区,降水中溶有二氧化碳,使碳酸钙变成溶解度大得多的碳酸氢钙,从而提高它的溶解性。

2 水化作用

矿物与水化合称为水化作用。如石膏和氧化铁的水化过程,其反应式如下:

石膏水化:CaSO4 + 2H2O →CaSO4.2H2O

氧化铁水化:2Fe2O3 + 3H2O →2Fe2O3.3H2O

(赤铁矿)(褐铁矿)

矿物水化后膨胀并失去光泽,变得松软,有利于进一步风化。

3 水解作用

是化学风化作用中最重要的一种作用。

水有一定的解离度,当水分子进行解离时形成H+和OH-离子。水解作用就是由于水的H+离子从硅酸盐矿物中,部分取代了碱金属和碱土金属的盐基离子,生成可溶性盐类。当水中含有二氧化碳和酸性物质时,解离的氢离子增多,提高了氢离子浓度,因而增强了水解作用。土壤中的各种生物学过程增加着二氧化碳的含量,所以矿物的水解强度与生活动有着密切的关系。

在水解过程中由于可形成易溶性盐类,所以水解过程也是矿物质养分的有效化过程。

1. 含钾矿物的水解过程

土壤中含钾矿物主要有正长石、云母和含钾的黏土矿物,经水解作用生成可

被植物吸收的可溶性钾盐。如钾长石经水解作用生成较为稳定的高岭石和钾盐,其反应式如下:

2KAISi3O8 + H.HCO3 →KHAl2Si6O16 + KHCO3

(钾长石) (酸性铝硅酸盐)

KHAI2Si6O16 + H.HCO3 →H2AI2Si6O16 + KHCO3

(游离铝硅酸)

H2AI2Si6O16 + H.HCO3 →H2AI2Si2O8.H2O + 4SiO2 + CO2

(高岭石)

2. 含磷矿物的水解过程

土壤中含磷矿物,如氟磷石灰3Ca3(PO4)2.CaF2,经水解作用其主要成分可转

化为易溶性酸式磷酸盐,其反应式如下:

Ca3(PO4)2 + H2O + CO2 →2CaHPO4 + CaCO3

(弱酸溶性)

2CaHPO4+ H2O + CO2 →Ca(H2PO4)2 + CaCO3

(水溶性)

3. 含钙镁矿物的水解过程

土壤中含钙镁的矿物主要有橄榄石、角闪石、辉石等硅酸盐类等矿物和方解

石、白云石等碳酸盐类。含钙镁的碳酸盐类经水解作用增加了溶解度。硅酸盐类则需经过一系列水解作用,才能分解成较简单的盐类。如含镁矿物橄榄石彻底水解的反应式如下:

2Mg2SiO4 + 2 H.HCO3 →H2Mg3Si2O8.H2O + MgCO3 + CO2

(橄榄石) (蛇纹石类盐酸盐)

H2Mg3Si2O8.H2O + 6 H.HCO3 →3 MgCO3 + 2H4SiO4 + 3 CO2 + 4 H2O

MgCO3 + H.HCO3 →Mg(HCO3)2

4 氧化作用

大气中的氧气促使矿物发生氧化作用。在湿润的条件下含铁、硫的矿物普遍地进行着氧化过程。如黄铁矿(FeS2)的氧化反应如下:

4 FeS2 + 15O2 + 2 H2O →2Fe2(SO4)3 + 2H2SO4

4 Fe2(SO4)3 + 8 H2O →4FeOOH + 6 H2SO4

原生矿物经过风化以后,以各种形式的风化产物留存在土壤中。一部分以残存的原生矿物存留在土壤中,一部分以可溶性盐存留在土壤中;一部分以粘土矿物存留在土壤中。现概括如下:

1. 形成可溶性盐

由岩石矿物中释放出来的盐基成分,形成简单的无机盐类,如碱金属和碱土

金属的硫酸盐、碳酸盐、磷酸盐和氯化物等,这是化学风化作用中最普遍和最基本的过程。由于所形成的盐类大多数是可溶于水的,植物可以从中摄取一部分钙、镁、钾、磷及微量元素,一部分盐类贮存在土壤中,另一部分则随水流入海洋,因此,除干旱地区外,在一般土壤中含量较少。

2. 形成粘土矿物、氧化物和氢氧化物长石、云母、角闪石、橄榄石等原生矿

物,在风化过程中生成各种土壤粘土矿物。粘土矿物一般是指高岭石和蒙脱石等含有OH基的结晶质的硅酸盐次生矿物,但土壤工作者常常把晶质和非晶质的硅、铁、铝的氧化物矿物也统称为土壤粘土矿物,因为这些矿物和铝硅酸盐类矿物都同样是岩石风化和成土过程的产物。它们对土壤形状和林木营养有一定的关系。

3. 残留矿物

经过风化作用后,一些难风化的或是尚未彻底风化的原生矿物,如石英、钾

长石、白云母等,以颗粒状残留在母质或土壤中。土壤中的粉砂、砂粒及石砾部分,主要是由它们组成的。

(三)生物活动与风化作用

生活在岩石表面和土壤中的各种生物,由于它们的生命活动,对岩石和矿物的风化过程起着重要影响。它们可以直接参与岩石矿物的分解破坏,但更重要的是生物活动加强了物理和化学风化的作用。

在岩石裂隙中生长的林木根系,对岩壁产生强大的挤压力,引起岩石崩解破碎。微生物在分解有机质过程中或活根系分泌葡萄酸、柠檬酸等有机酸,与矿物中的盐基离子形成螯合物,可加速矿物的分解。

自然界微生物的种类复杂,数量极多。某些微生物的活动,对岩石的分解有着重要的意义。土壤微生物的代谢过程都产生CO2,不断增加它们生活环境中的碳酸含量,因此,促进各种矿物水解作用增强。硝化细菌产生的硝酸,硫化细菌产生的硫酸,以及硅酸盐细菌对矿质元素的利用,

都可以加速分解硅酸盐类矿物。还有丁酸细菌能够用它分泌的物质使硅酸盐和磷灰石强烈的分解。含钾丰富的黑云母和长石所以受到分解,是与细菌、真菌和藻类从中吸取钾素分不开的。

各种藻类(如绿藻和蓝绿藻)使岩石表面变得松软,起着破坏作用。硅藻对风化过程的影响更大,它可以从硅酸盐中摄取硅,以组成本身的有机体,过去曾被认为是比较稳定的高岭石,也可以被硅藻分解。

生长在岩石表面上的地衣,直接最岩石产生着机械破坏和化学溶解。地衣在湿润的情况下,可以吸收超过本身体重三倍的水分而充分膨胀,在干燥的情况下就强烈卷缩,从岩石上拔起细小的岩屑,甚至连最难风化的石英也会呈鳞片状脱落。地衣的菌丝体可沿云母、角闪石及某些长石的解理裂缝往里深入,以吸取钾、钙、铁等营养,结果造成这些矿物的破碎。在花岗岩及石灰岩上,地衣的菌丝体甚至伸入岩石内数毫米深,并形成极薄的土层。地衣酸是一些多羟基——多羧基酸,地衣分泌的这种酸,可以强烈的与岩石矿物中的盐基离子形成可溶形螯合物,引起矿物的溶蚀。

二、风化产物的类型

岩石的风化产物包括三部分:

1、可溶性盐:硫酸盐、磷酸盐、碳酸盐、氯化物等

2、合成次生矿物:如伊利石,蒙脱石,高岭石等粘土矿物,以及铁铝的氧化物和氢氧化物。

3、残余的碎屑:难风化的矿物和各种岩屑。

(一)风化产物的生态类型

土壤是林木生长的生态环境因素之一。林木生长在各种立地条件下,土壤对它产生着影响。在相同的水、热、气候条件下,岩石风化产物的性质和化学组成直接影响着土壤的性状。如泥质页岩容易风化,常生成较厚的风化层,由它所形成的土壤,质地也比较粘重,养分含量较为丰富,保水及绿肥能力也较强;同样条件下由硅质砂岩形成的风化物,则厚度浅薄,砂粒含量高,养分贫乏且易漏水。这两种风化物对林木显然产生着不同的影响。

岩石风化产物对土壤性状的影响,主要表现在土壤的物理性质和化学性质两方面,如土壤的厚度、质地、结构、水分、空气、温度、养分等状况,以及酸度和交换量等等,都受岩石风化物的影响。这些性质又都是评定土壤宜林性的重要指标。

土壤发育的时间愈短,其性状愈接近于风化物的特性,其组成也愈与原风化物的组成类似。因此,对于幼年土和受到人为破坏较严重地区的土壤(如水土流失严重地区,土壤表层被冲刷,有时甚至土层整体被破坏冲走,诸如此类的土壤宜林性的影响。

根据风化产物对土壤肥力有影响的性状,作为分类标准,将各种风化产物进行生态上的区分,分为以下五种生态类型:

1 硅质风化物

形成这类风化物的岩石种类,主要包括由硅质组成或硅质胶结的岩石,如石英岩、硅质砾岩、石英砂岩及其它硅质岩类。这类岩石的矿物组成中含有大量石英,化学成分以二氧化硅为主,耐剥蚀而难风化,岩性坚硬,节理发达,多构成陡峻的山脊和山坡。

硅质岩类风化物的厚度极薄,砂质,多石砾,各种营养元素也十分贫乏,分散的石英颗粒及岩石碎屑保水能力很低,因此这类风化物所形成的土壤宜林性通常较差,尤其在干旱地区,造林不易成活。在温暖湿润的条件下,这类物质常形成酸性土壤。

2 长石质风化物

长石质岩石包括含有正长石矿物组成的岩石,主要种类有岩浆岩中的花岗岩、正长岩、斑岩、霏细岩、流纹岩、粗面岩,沉积岩中的正长砂岩,以及变质岩中的片麻岩等。这类岩石的风化物,由于岩石本身的矿物组成和构造的特点,其风化难易是不同的。

花岗岩、正长岩及片麻岩等粒状结晶岩,比较容易发生物理崩解,形成厚层砂壤质或壤质风化物,由其发育的土壤通透性能良好,植物需要的磷、钾、钙、镁等营养元素比较丰富,土壤常呈微酸性反应。这种风化物宜林性好,适于要求微酸性及通气良好的树种生长。尤其适合各种松、杉等针叶树种生长。隐晶质结构的霏细岩、流纹岩及粗面岩,比粒状岩石较难风化,且多形成壤质风化物。

在干旱气候条件下,这类岩石风化物多石砾,含石英颗粒多的花岗岩则生成砂砾质;在温暖湿润的条件下,则形成深厚的风化层,呈红色的粘壤土或砂质粘壤土,多呈酸性。

3 铁镁质风化物

由辉石、角闪石、橄榄石等含有铁、镁成分的矿物组成的岩石,属于铁镁质岩类。主要种类有闪长岩、安山岩、玢岩、辉长岩、辉绿岩、玄武岩以及铁镁质砾岩(如火山熔砾岩)、片岩等。

这类岩石因为含有容易风化的暗色矿物,化学风化及物理风化均进行得十分迅速。一般形成的风化层较厚,质地为壤质或稍粘重,含有大量的钙、镁、磷等元素,唯钾的含量较少。由这种风化物发育的土壤,养分状况良好,保水性能强,但通气状况较花岗岩风化物稍差。在较湿润的地区,可呈中性反应,在干旱地区则呈微碱性反应,宜林性良好,适于发展各种经济林木和对肥力条件要求比较高的针、阔叶树种。

4 钙质风化物

主要由碳酸钙组成的岩石,都称为钙质岩类。如石灰岩、大理岩、结晶石灰岩、白云岩,以及含钙质的砂岩和页岩等。石灰岩的矿物组成中以方解石及白云石占主要成分,可占全部矿物重量的90%以上。

钙质岩类在经受化学风化的溶蚀作用时,碳酸钙受酸性水溶解,大量随水流失。其风化物是由岩石中的少量粘土矿物等残留堆积而成的。在干旱或水土流失地区所形成的风化层很薄,常常残积在裸岩之间,质地粘重。

由钙质岩类风化物形成的土壤,有时缺乏林木需要的磷和钾,多具石灰物质,呈中性至微碱性反应,土质粘实,土壤易干旱。在干旱缺水情况下,林木一般生长不良,造林不容易成活,不太适合于针叶树种生长,但是某些喜钙耐旱的树种尚能良好生长。在水分条件良好又无水土流失的情况下,一般土层较厚,肥力高,土壤的宜林性质好。

5 未成岩类物质

这类物质不是某一类岩石的风化物,而是包括多种来源的矿物质或有机物的堆积物。这类堆积物未经成岩硬结作用,一般均具有疏松多孔的特性。矿质的未成岩物质包括各种成因的沙土、黄土、次生黄土或黄土性岩石,以及部分松软的板岩、页岩及粉砂岩等。这些物质的性质及养分含量的差别很大。在无地下水时,砂土的立地特点通常是松散、干旱、保水性也较强,宜林性较好,但若地下水位极深,土壤也易遭干旱。有机的未成岩物质,主要是冷湿低洼地及高山地带形成的泥炭物质。由于温度低、湿度大,有效养分缺乏,常呈强酸性反应,这种立地类型的宜林性极差,林木生产力很低,必须进行排水,促进泥炭物质分解,林木才能生长良好。

(二)风化产物的地球化学类型

地球表面疏松的风化层,是形成土壤的母质,它的成分和性质直接影响着土壤的性质。

风化层的物质组成,化学成分以及进一步风化的速率,一方面决定于风化物的种类及其特性;同时也决定于风化环境的生物气候条件。

岩石的风化过程,随着时间的推移,可以分成若干阶段,生物气候条件影响各个阶段的进程。在一定的生物气候条件下出现的风化产物,可分为几种地球化学类型。

1 碎屑类型

是岩石风化的最初期类型。岩石受物理风化作用,形成大块状或部分细粒状的

残积物。这种风化类型出现在山地,流水冲走了可溶性成分和细粒物质,只遗留下原岩的碎屑残块。此外,在干旱的荒漠地区,强烈的温差变化,也可以使岩石形成这种类型的风化物。碎屑类型风化物的化学成分和矿物组成与原岩基本相同。

2 钙化类型

岩石矿物经过化学风化,生成易溶性钾、钠、钙、镁的氯化物和硫酸盐,受流水作用逐渐淋溶流失,风化产物中只残留着大量溶解度较低的碳酸钙,并且形成各种次生矿物,主要有方解石、白云石、菱铁矿、绢云母、伊利石、蒙脱石等。

钙化类型的风化物,形成在干旱和半湿润条件下,我国新疆、内蒙古以及西北黄土高原、华北平原等地区均属于这种类型,这些地区的浅层地下水中,常含有各种可溶性盐分,矿化度比较高。从风化物中淋失的氯化物和硫酸盐,常积累在该区域内的盆地中,形成内陆盐土分布区,例如新疆塔里木盆地、准噶尔盆地以及青海柴达木盆地,就有大量盐分积聚。

3 硅铝化类型

岩石中的矿物受长期风化,可溶性氯化物及硫酸盐遭到强烈淋失,甚至溶解度较小的碳酸钙也被淋溶,而铝、铁、硅等元素尚有残留。风化物的反应由碱性或中性变成微酸性,并且形成伊利石、蛭石、蒙脱石等次生粘土矿物。这种类型的风化产物,形成在温带或暖温带雨量适中的条件下。

5 富铝化类型

由于长期强烈的化学分解,原生和次生的硅酸盐矿物,均遭到很大破坏,不仅盐基成分全部淋失殆尽,而且硅酸也产生淋溶,风化物中只残存着一些最难风化的石英、铁和铝的氧化物以及次生粘土矿物高岭石等。

无论是热带的砖红壤或亚热带的红壤,硅的迁移量均达40-70%,钙、镁、钾的迁移量更大,最高可接近100%;铁的富积量达7-15%;铝达10-12%,主要粘土矿物为高岭石,并含有赤铁矿及多水氧化铁。这是我国富铝化类型的一般特点。

(三)风化产物的母质类型

岩石矿物经过风化作用产生的土壤母质,除少量仍保留在原来生成的地方外,大多数成土母质经风力、水力、冰川力或重力等外力的作用,沿地表进行搬运,并在一定地区堆积下来。母质的搬运和堆积受地形直接影响很大,在不同的地形部位,堆积着各种不同类型的母质。

由于生物在地球表层空间广泛的分布和大量的存在,有些母质态的疏松矿物质(风化产物),实际上是不同方式形成的各种幼年土。例如在岩石风化物上、沙丘上和海滩上进行的造林,说明这些能被林业生产所利用的风化物实际上是幼年土。但从农业土壤来看,这些风化物是难于种庄稼的风化母质。在野外工作中,确定母质类型,是研究土壤生态性状的重要依据。

近代形成的母质可根据其搬运方式和堆积特点,分为定积母质和运积母质。定积母质是未经搬运的风化残留物,或称为残积物。运积母质则根据不同搬运作用的外力方式,可分为各种自然沉积物。第四纪沉积物形成的母质,在我国也有较大面积的分布。

Ⅰ定积母质

又称为残积物,它一般分布在山区比较平缓的高地上,是山区主要成土母质之一。

地面上的残积物,在经过水流临洗后,具有粗骨性的特征。残留在原地的岩石碎屑和难风化的矿物如石英颗粒,多具未经磨蚀的棱角,它的组成和性质已与原岩有较大的差别。下层的风化物逐渐过渡到基岩,具有连续性的特征。有时在裂面上积有白色的碳酸钙粉末,或存在黄色、红褐色的氧化铁、锰的斑痕。

残积物在气候寒冷的地区,其厚度一般较浅,在坡度较陡的山坡上部,因受水流冲刷,其厚度更为浅薄。在潮湿炎热的热带及亚热带地区,由于强烈的化学风化作用,可形成深厚的红色风化层。残积物的厚度及其发育的土壤肥力状况,决定于环境条件和基岩的性质。这种成土母质与山区发展林业生产有密切的关系。

Ⅱ运积母质

1、流水运积母质

即风化物经流水搬运而沉积的母质。根据流水的性质和沉积的地形,可分为三类:

(1)坡积物

坡积物是由于山坡上部的风化碎屑物质,经雨水或融雪水的冲刷,搬运到山

坡的中、下部堆积形成的。在山坡上部,堆积层薄,物质较粗;山坡下部,则堆积层厚,物质较细。坡积物分选性较差,质地多为含砾质壤土,并且常存在埋藏土壤剖面。

在坡积物的上部与残积物衔接地带的母质,称为坡积——残积物。在山麓的坡积物常形成宽阔的裙状地形,称为坡积裙,并常与洪积扇交互汇合。

坡积物是山区的主要成土母质,在自然条件较好的低山区,其形成的土壤是发展山区果树和经济林木的主要林业用地。

(2)洪积物

在干旱与半干旱地区的山地,由于骤融的雪水,或是间歇性的暴雨,形成流

速湍急的洪水,将山区的风化碎屑夹杂泥沙,搬运到山谷出口处,由于地势宽坦而水流减缓,使所携带的物质沉积下来,形成扇形地形,称为洪积扇。

洪积物具有粗略的分选性,但分选性很差,地势高处含有较多砾石和粗砂,在洪积扇的边缘,则物质逐渐变细,多为细砂质或粉砂质。

洪积扇的中、上部,地下水位很深,土壤渗透性强,经常水分不足,而扇缘地带的水量却往往比较充沛。有些地区在扇缘与冲积平原衔接处,地势低洼,称为山前交接洼地,此处地下水位过高,易形成沼泽化,或因地下水含盐量较多,产生土壤盐渍化。

(3)淤积物

淤积物又称冲积物或沉积物。风化碎屑物质,受河流(经常性水流)的侵蚀,搬运和堆积而形成的。

淤积物最明显的特征,是有明显的分层性,层内质地或砂或粘,粗细均匀。由于河水中携带的沙、石,在搬运过程中相互碰撞和滚动,棱角均被腐蚀,所以一般淤积沙、石的磨圆度很好。此外,河水中携带的泥沙颗粒,随流速的变化,按大小不同分别沉积下来;因此,淤积物的分选性很好。一般情况下,水流越快的部位,沉积物越粗;水流减缓的部位,沉积物越细。

淤积物多属于近代的河流沉积物,我国三大冲积平原(东北平原、华北平原、长江中下游平原),就是由于大面积的这种母质构成的。冲积平原是我国主要的农业生产区。

2、静水沉积母质

湖积物属于湖相静水沉积,分布在湖泊周围。由于湖水的激荡,沉积物颗粒细腻,质地粘重,有机质含量高,呈暗褐色或黑色。湖积物中的铁质,在嫌气条件下,与磷酸结合形成蓝铁矿Fe3(PO4)2.8H2O,或是菱铁矿FeCO3,使湖泥呈青灰色,这是湖积物的一个重要特征。由湖积物发育的土壤,一般肥力较高,我国洞庭湖、鄱阳湖和太湖周围的农田,就是在这种母质上发育的。

在干旱的内陆地区,湖水蒸发量极大,湖水中的可溶性盐,在湖积物中有时浓度很高,甚至形成盐分结晶,含盐过量的盐渍土必须经过改良才能利用。

在寒冷地区,湖水中的水生植物遗体,常年堆积在湖底,得不到彻底分解,于湖底形成泥炭物质,这种物质是很好的肥源。

3、海水沉积母质

海水物属于海相沉积。由于逐次海退,使海滩露出地面。海积物实际上是由河流携带入海的物质,颗粒粗细不一,往往硅质含量高。江苏北部沿海有大面积海积物分布,是形成滨海盐土的一种成土母质。

4、风积母质

风积母质是由风力所夹带的矿物碎屑,经吹扬作用(风蚀作用)后,而沉积形成的。

沙丘是由风力吹扬形成的丘状沙质沉积物,我国西北地区的内陆性新月形沙丘,黄河故道两旁的河岸沙丘,都是风积物。沙漠也是风积的产物。

风积物的特点是分选性强,粗细均匀,沙砾磨圆度高,但因土壤缺水而肥力较低。吹扬作用经常伴随着岩石表面的磨蚀作用,荒漠地区的石漠景观就是由于磨蚀形成的。

5、重积母质又称塌积物

山地陡崖上的风化岩石,受重力作用而坍塌坠落,是山麓及谷地局部地段上母质的类型,它的组成以碎石砾为主,无分选性也无层次,在山麓形成倒石堆地形。

Ⅲ第四纪沉积物

第四纪距今一百万年左右,当时在各种外力作用下,进行剥蚀、搬运的风化物,堆积覆盖在地层的最上层,这些沉积物是形成近代土壤的重要母质。对农林业的生产有着直接的关系。

我国地域辽阔,南北气候差别很大,加以海陆分布和地形的影响,使我国第四纪沉积物的特点更加复杂。我国的第四纪沉积物主要包括:黄土及黄土性物质、红土和冰碛物。

1、黄土及黄土性物质

黄土是第四纪的一种特殊沉积物。据近来的研究证明,我国黄土的成因很复杂。一般是在气候干旱或半干旱,季节变化极明显的条件下形成的。

黄土为淡黄或暗黄色,土层厚度可达数十米,粉砂质地,粗细适宜,通体颗粒均匀一致,疏松多孔,通透性好,具有发达的直立性状,含有10-15%的碳酸钙,常形成石灰质结核。根据黄土的性状和组成,以及发现有蜗牛等陆地动物的化石,所以认为黄土是一种与风力搬运堆积有关的母质。

黄土在我国分布很广,主要分布区域是太行山以西,大别山、秦岭以北,遍及陕西、甘肃、宁夏、山西、河南等省。此外,在新疆、青海、河北、山东、内蒙古等省、自治区也有部分分布。

黄土性物质又称次生黄土,是由黄土经流水侵蚀、搬运后,再沉积而形成的。例如在江苏省西部,南京至镇江一线,广泛分布着由次生黄土构成的丘陵,通常称下蜀黄土。它的特点是土层深厚,无明显层次,颗粒细小均匀,为棕黄色粉砂质粘土,具棱柱状结构,并含有大量铁锰结核及胶膜。由于地处较潮湿地区,碳酸钙被淋溶至底部多呈结核状,上部呈微酸性反应。

我国的黄土已有几千年耕种历史,早在战国时代是一种具有优良生产性能的土壤。

2、红土

在我国华中、华南及西南广大地区,从第四纪以来,由于受海洋性气团的影响,气候炎热而潮湿,各种堆积物强烈风化,其中含有较多的铁、铝的氧化物和高岭石等。红土的质地粘重,通气透水性不良,常呈酸性至强酸性反应。

3、冰碛物

冰碛物是冰川期的遗迹,在我国分布很广。由于我国在第四纪期间没有大陆冰盖,冰川堆积多为零星式小片分布,如在甘肃、四川、广西、贵州等地都有这种不连续的冰川堆积物。在长江以南低山丘陵地带也有小片分布。青藏高原地区,气候干燥而寒冷,有较大面积的现代冰川分布,第四纪沉积也以各种冰碛物为主。冰川活动期间,气候寒冷,积雪成冰。当冰层下部溶解时,整个冰体缓缓移动,冰川下面的石块相互研磨,粗细夹杂,经过之处被冰体磨蚀,致使某些岩石上仍留有冰川擦痕。间冰期气候转暖,冰川消融,地面则为冰碛物所覆盖。这种冰碛物层次薄,而地势较平坦,其中巨砾、粗砾及泥沙相互混杂,称为冰砾泥。

第二节土壤的形成

一、土壤形成的实质

土壤形成的实质是地质大循环和生物小循环的矛盾统一。

(一)地质大循环

地质大循环:植物营养物质由大陆流到海洋,海洋又变为大陆后,这些物质又由新的大陆流向新的海洋。营养物质的这种循环过程称为植物营养物质的地质大循环。

风化作用下大块岩石不断崩解,由大变小,由粗变细,最后成为疏松多孔的散碎体。在此过程中,还产生了一些溶解于水的矿物质(如硅酸盐内含有的一些钾、钠、钙、镁、磷、硫等营养元素)。这些物质被降水不断地淋洗,并随着地表径流从高处流向低处,经过河流最后流到海洋中去。流入海洋后的这些物质,与流入海洋的岩石和泥沙等在浓缩、沉淀、堆积的过程中,经胶

结和硬化的成岩作用,形成沉积岩。在地壳上升的运动中,沉积岩由海洋的底部上升形成大陆;沉积岩暴露于地表之后,又重新进行风化和淋溶,重复的进行着这种作用。

(二)生物小循环

生物小循环:通过植物(包括所有参与这一过程的生物)的反复吸收利用和积累营养物质的这一过程,称为营养物质的生物小循环。

由于风化作用的结果,产生了母质。母质具有松散性、多孔性、透气性、透水性和保水性。这就给植物的生长提供了水分、空气、养分等条件。也就是提供了植物在母质上生长的可能性。而最初在原始幼年土壤上生活的,只是一些需要养分较少的低等植物,它们从原始幼年土中吸收矿质养分、水分和获取其它生活物质和条件,来建造自身的有机体。这样就使得地质大循环过程中的一些可溶性养分得到了保存。当这些植物死亡之后,经微生物的分解作用,有机残体中的营养元素又变成无机物质,一部分又重新进入地质大循环的过程中,另一部分可为植物重新吸收利用。

(三)地质大循环与生物小循环的矛盾统一

土壤形成过程是建筑在地质大循环(营养元素的释放和淋溶过程)与生物小循环(营养元素被生物吸收积累和释放过程)的基础上的。

生物小循环是构成地质大循环中地表物质运动的一部分。地质大循环使营养元素不断向下淋失,而生物小循环却从地质大循环中不断的积累生物所必需的营养元素。按照生物界的发展过程,原始生物对营养元素的要求是种类少,数量低,所以积累在土壤中的营养物质也少。随生物种类的进化,通过生物的选择性吸收,土壤中的养分积累也越来越多。生物对土壤的影响是逐渐扩大和加深的。

在地质大循环和生物小循环这一对矛盾相互作用、不断发展的过程中,土壤肥力也得到不断发展。

二、影响土壤形成的因素

(一)自然因素

自然成土因素:影响土壤形成过程的因素,在没有受人类经济活动影响的成土过程中,称之为自然成土因素。属于自然成土因素的有:生物、气候、母质(或岩石)、地形和时间。

S=B+C+P+Tg+Ti(+M)

(1)母质:

母质是岩石风化的产物,是自然土壤形成的物质基础。它对土壤的物理性质和化学性质的影响极为明显。如花岗岩中的长石、云母易风化,并富含钾素;而石英则不易风化,经常呈砂粒残留在土壤中。因此在花岗岩母质上发育的土壤,往往砂粒比例适中。由于页岩是由富含粘土的物质经过硬化后形成的,所以在其风化产物上形成的土壤,质地较粘重。石英砂岩主要是由石英颗粒组成。因此在其风化产物上形成的土壤,往往砂性较强,养分较少,并含有较多的石砾。

(2)生物

植物着生于母质后,就开始了土壤的形成作用。植物和其死体所产生的物理作用和化学作用,不断的改善着土壤的肥力状况。其中主要的是高等绿色植物通过选择吸收养分,合成有机质并在死亡后积累在土壤中。土壤微生物及小动物分解有机质,释放出养分,同时还合成稳定的腐殖质物质。这样,一方面增加了有机质,另一方面也改造了土壤的物理性质,形成各种土壤结构。由于生物作用的结果,使土壤的肥力状况不断的得到发展。

(3)气候

气候对土壤形成的作用十分复杂。它直接影响在土壤形成过程中起重要作用的水分和热量条件,同时在很大程度上决定着各种植被类型的分布,从而影响土壤矿物和土壤有机质的分解和合成。

温度直接影响着土壤形成过程的强度和方向。在寒冷地带,土壤中的化学作用比较弱,植物生长也较缓慢,有机质形成量小,土壤微生物活动不旺盛,因而土壤中养分的转化也很缓慢。反之,在热带地区,土壤中的矿物质除石英外大部分被分解,植物生长迅速,有机质形成量大,微生物活动旺盛,生物小循环较寒冷地区快。

降水量对土壤形成的影响也极为显著,在干旱气候条件下,盐类不断积累,使土壤发生盐渍化现象。在潮湿气候条件下,盐基离子遭到降水不断的淋洗,使土壤胶体呈不饱和状态。上述这些现象在我国不同类型土壤的形成过程中,都强烈地表现出来。

(4)地形

地形在土壤形成过程中所起的作用是多方面的。首先地形能影响热量的重新分配,不同坡度和方位的斜坡,接受太阳的热量不同。南坡最多,土温高;北坡则相反,土温低。在不同方位的坡向上,由于温度和湿度的差异,植物的分布也是不同的,因而在某些地区,土壤类型在不同的坡向上的分布也会有所不同。

地形还能影响土壤水分、养分和机械组成的分配状况。在分水岭和斜坡地区,水分及其夹带的养分(包括盐类),以及土壤细粒,经常以地表径流或土壤径流的方式向下坡及低地移动,引起坡地和分水岭的土壤不同。坡地上部的土壤经常保持良好的排水状况,土层较薄,质地较粗,养分(及盐基)较少。下部及低平地区,因水分集中,土壤含水量较大。

地形的影响还能通过海拔绝对高度的变化表现出来。随海拔的增加,气候变冷湿,土壤的水热条件和植被都因此而发生相应的改变,所以山区土壤的分布和海拔高度的变化有很密切的关系。

(5)时间

土壤的形成过程随着时间的进展不断加深。任何一个成土因素对土壤的影响,随时间而加深。土壤形成过程的程度是以时间为转移的,随时间持续不同,土壤中物质的淋溶与聚积的程度也程度也不同,因此土壤形成过程必然受到当地地质年龄的影响。在其他土壤形成条件相同的情况下,具有发育年龄不同的土壤,其肥力状况是不同的。如菜园土因培育的时间长短不同,其熟化程度也不同。

(6)五个因素的关系

五个成土因素中的每一个因素,不仅可以直接影响土壤的形成过程,而且可以间接影响其他因素而起作用。如气候因素,一方面它对土壤形成过程有直接影响,另一方面又影响着植被的组成、有机质的数量以及微生物的分解等方面。植被也能影响近地表的大气层,造成特殊的小气候,并通过这种气候影响土壤的水热状况。

(二)人为因素:

人类的生产活动直接影响土壤的肥力状况,而且也会对自然成土因素有所影响。长期以来,不少自然土壤早为人类开垦利用,为提高土壤生产力,人类积极地控制自然因素,使之向对生产有利的方向发展。如通过精耕细作、合理施肥、灌溉排水等各种土壤改良措施,来改善土壤的肥力性状。

第三节土壤剖面

一、概念

1、土壤剖面:从地表凋落物向下直到土壤母质的垂直切面。

2、土壤发生层:由于成土作用形成的土层

二、自然土壤剖面的形成

(一)土壤剖面定义

1、定义:土壤剖面是指从地面向下挖掘所裸露的一段垂直切面,这段垂直切面的深度一般在两米以内。

2、自然的土壤剖面是在五个主要成土因素的共同影响下形成的

3、土壤剖面构造:指土壤剖面从上到下不同土层的排列方式。一般情况下,这些土层在颜色、结构、紧实度和其他形态特征上是不同的。各个土层的特征是与该层的组成和性质一致的,是土壤内在性状的外部表现,是在土壤长期发育过程中形成的。

(二)、淋溶作用和淀积作用

1、土壤剖面各发生层次的形成:成土过程中,原生矿物不断风化,产生各种易溶性盐类,含水氧化铁和含水氧化铝以及硅酸等,并在一定条件下合成不同的粘土矿物。同时通过土壤有机质的分解和腐殖质的形成,产生各种有机酸和无机酸。在降雨的淋洗作用下引起土壤中的这些物质的淋溶和淀积,从而形成了土壤剖面的各种发生层次。

(1)、淋溶作用:指土壤中的下渗水,从土壤剖面的上层淋溶或浮悬土壤中某种成分的作用。因此一般将土壤剖面的上层称为淋溶层或简称A层。

(2)、淀积作用:指下渗水到达剖面下层沉淀其中某些溶解物或悬浮物的作用。因此,土壤剖面的下层一般称为淀积层或简称B层。B层之下一般是未受淋溶或淀积作用的土壤母质层,简称C层。土壤母质下面,如果是未风化的基岩,称为基岩层或简称D层。

(三)物质的转移作用

1、物质的转移作用

淋溶作用和淀积作用密切联系,是物质转移过程所导致的两种结果。土壤水携带着溶解或悬浮的物质产生的移动,称为物质的转移作用。这种转移作用分为物理性转移和化学性转移。

2、物理性转移

矿物质与有机物质胶粒以及其他微粒,从A层到B层而沉淀下来,使B层质地相对变粘,干燥时亦可发生裂隙。

3、化学性转移

矿物在风化过程中产生的可溶性盐类等,从A层随着下渗水下移,或停积在B层或到达地下水层而流失。草原区域因易溶性盐的聚积常生成石灰质和石膏质硬盘。温带森林区域含铁铝的有机和无机胶体可悬浮在渗漏水和毛管水中,从A层移动到B层,亦可形成铁质硬盘。

4、潜育层

地下水位高而排水不良的地方,矿物在风化过程中产生的可溶性盐类往往由剖面的下层,随着毛管水的上升到达地面,形成盐结皮,这种物质转移的方向和一般情形相反。由于通气不良,特别是在地下水位很高的情况下,B层的下段或C层的一部分,将因还原作用变为蓝灰色或绿灰色,称为潜育层或灰粘层或简称G层。

(四)土壤发生层次

1、O层:枯落物层

据分解程度不同,可分为三个亚层。

L层:分解较少的枯枝落叶层。

F层:分解较多的半分解的枯枝落叶层。

H层:分解强烈的枯枝落叶层,已失去其原有植物组织形态。

2、A1层:腐殖质层

可分为两个亚层。

A11层:聚积过程占优势(当然也有淋溶作用)、颜色较深的腐殖质层。

A12层:颜色较浅的腐殖质层。

3、A2层:灰化层

4、AB层:腐殖质层和淀积层的过渡层。

5、B层:淀积层,里面含有由上层淋洗下来的物质,所以一般较坚实。据发育程度的不同可分为B1、B2、B3等亚层。

6、BC层:淀积层和母质层的过渡层。

7、G层:潜育层。

8、C层:母质层。据盐的不同有:

C C层:母质层中有碳酸盐的聚积层;

C S层:母质层中有硫酸盐的聚积层。

9、D(R)层:母岩层。

根据土壤剖面发育的程度不同可以有不同的土壤类型。上面介绍的模式剖面,在实际工作中,往往不会出现那么多的层次,而且层次间的过渡情况也会各有不同,有的层次明显,有的不明显,有的是逐渐的。层次间的交线有平直的、曲折的、带状的、舌状的等多种形式。

三、耕作土壤剖面的形成

人类生产活动和自然因素的综合作用,使耕作土壤产生层次分化。典型的耕作土壤剖面层次,从上到下大体可以分为三层:表土层,心土层和底土层。

1表土层

可分为两层。

1、耕作层:受耕作、施肥、灌溉影响最强烈的土壤层,厚度一般约20厘米左右。耕作层易受生产活动和地表生物、气候条件的影响,一般疏松多孔,干湿交替频繁,温度变化大,通透性良好,物质转化快,含有效态养分多。根系主要集中分布于这一层中,一般约占全部根系总量的60%以上。

2、犁底层:位于耕作层之下,厚约6-8厘米。典型的犁底层很紧实,孔隙度小,非毛管孔隙(大孔隙)少,毛管孔隙(小孔隙)多,所以通气性差,透水性不良,结构常呈片状,甚至有明显可见的水平层理。这是经常受耕畜和犁的压力以及通过降水,灌溉使粘粒沉积而形成的。

2 心土层

位于犁底层以下,厚度约为20-30厘米,该层也能受到一定的犁、畜压力的影响而较紧实,但不象犁底层那样紧实。在耕作土壤中,心土层是起保水保肥作用的重要层次,是生长后期供应水肥的主要层次。在这一层中根系的数量约占根系总量的20-30%。

3底土层

在心土层以下,一般位于土体表面50-60厘米以下的深度。此层受地表气候的影响很少,同时也比较紧实,物质转化较为缓慢,可供利用的营养物质较少,根系分布较少。一般常把此层的土壤称为生土或死土。

四、土壤剖面形态特征

土壤形态就是土壤的外部特征,这种外部特征是通过人们的感官即视觉,嗅觉和触觉来认识的。在土壤形成以后,各土层在组成和性质上市不同的,所以,反映在剖面形态特征上,各层也是有差别的。在野外通过土壤剖面形态的观察,可判断出土壤的一些重要性质。土壤重要的形态特征有:颜色,结构,质地,坚实度,孔隙,湿度,新生体,侵入体,动物孔穴等。

(一)土壤颜色

土壤颜色是土壤内在物质组成在外在色彩的表现。由於土壤的矿物组成和化学组成不同,所以土壤的颜色是多种多样的。通常在鉴别土壤层次和土壤分类时,土壤颜色是非常明显的特征.土壤颜色采用芒塞尔颜色命名系统,将土块与标准颜色卡对比,给予命名。给土壤的颜色定名时,用一种颜色常常有困难,往往要用两种颜色来表示,如棕色,有暗棕,黑棕,红棕等之分。这样定名,在前面的字是形容词,是指次要的颜色,而后面的字是指主要的颜色。决定土壤的颜色,主要有以下几种物质:

腐殖质含量多时,使土壤颜色呈黑色。含量少时,使土壤颜色呈暗灰色。

氧化铁在土壤中德氧化铁一般多为含水氧化铁,如褐铁矿,针铁矿等,这些矿物使土壤呈铁锈色和黄色。

石英,斜长石,方解石,高岭石,二氧化硅粉末,碳酸钙粉末等,它们都能使土壤呈白色。氧化亚铁广泛出现在沼泽土,潜育土中,它使土壤具有蓝色或青灰色,如蓝铁矿,这类矿物为白色,但遇空气中德氧即很快变为青灰色。除物质成分影响土壤颜色外,土壤的物理性状不同,也会使土色有所差别。例如,土壤愈湿,颜色愈深,土壤愈细,颜色愈浅,光线愈暗,颜色愈深。所以在比较土壤颜色时,必须注明条件。

土壤颜色本身对树木生长并不重要,但是颜色却可指示土壤的许多重要特征.土壤颜色还可影响土壤的温度.深色土壤比浅色土壤易吸热.有森林植被的土壤受温度的影响比裸露的土壤小.森

林火灾后,表层土壤颜色变深,从而导致土温增加.

(二)土壤结构

土壤结构就是土壤固体颗粒的空间排列方式。自然界的土壤,往往不是以单粒状态存在,而是形成大小不同,形态各异的团聚体,这些团聚体或颗粒就是各种土壤结构。根据土壤的结构形状和大小可归纳为块状,核状,柱状,片状,微团聚体及单粒结构等。

土壤的结构状况对土壤的肥力高低,微生物的活动以及耕性等都有很大的影响。同时一些人为的活动将很大程度上破坏土壤的结构.如森林采伐后,由于重型机械的使用将导致土壤被压实,土壤表层结构被破坏.

(三) 土壤质地

土壤质地是土壤中各种颗粒,如砾,砂,粉粒,粘粒的重量百分含量。土壤质地影响土壤肥力,如土壤持水力,土壤通气性,有机质的贮存,营养元素的吸附和土壤的耕性,从而影响树木的生长。

准确测定土壤质地要用机械分析来进行,但在野外常用指测法来判断土壤质地,将土壤质地分为:砂土,砂壤土,轻壤土,中壤土,重壤土,粘土等。

(四) 土壤湿度

土壤水分是植物生长所必需的土壤肥力因素。根据土壤水分含量,在野外将土壤湿度分为:干,潮,湿,重湿,极湿等。

(五) 新生体

在土壤形成过程中新产生的或聚积的物质称为新生体,它们具有一定的外形和界限。新生体可以按它们的外观分类,也可按它们的化学组成来分类。按外观分,新生体盐霜,盐斑,结核等。

按照化学组成分,新生体可由易溶性盐类组成,如氯化钠,硫酸钠,碳酸钙等;还有由晶质或非晶质的化合物组成,如含水氧化铁的化合物,氧化亚铁的化合物,锰的化合物,二氧化硅和有机物等。

新生体是判断土壤性质,土壤组成和发生过程等非常重要的特征。例如,盐结皮和盐霜,表示土壤中有可溶性盐类的存在。锈斑和铁结核是近代或过去,在水影响下产生于干湿交替的特征。

(六) 侵入体

位于土体中,但不是土壤形成过程中聚积和产生的物体,称为侵入体。侵入体有砖头,瓦片,铁器和磁器等。一般常见于耕作土壤中,是判断人为经营活动对土壤层次影响所达到的深度,以及土层的来源等。

(孙向阳)

岩石风化程度的判断 岩石受风化作用,改变了物理化学性质,其变化情况随风化程度轻重而不同。如岩石的裂隙度、孔隙度、透水性、亲水性、胀缩性等都随风化程度加深而增加,抗压、抗剪强度随风化程度加深而降低。所以岩石风化程度愈深的地区,工程建筑地基承载力愈低,岩石边坡愈不稳定,所以,为达到对其防治的作用,要对岩石的风化程度有所判断,以下从六个方面阐述了岩石风化程度的判断方法。(一)颜色的改变 岩石的风化程度不同,则其颜色也表现出差异。从整体来性来看,有的原岩新鲜时为灰绿色,经风化后,其剖面上颜色由上往下为:黄绿、黄褐、棕红、红。从局部来看,颜色的变化程度也有所不同,有的仅沿岩石裂隙面发生变化,有的仅部分岩体发生变化,有的则全部岩体发生变化。总的来说,随风化程度加深,岩石的颜色光泽与新鲜原岩相比会变得暗淡。 (二)岩石物理力学和水理性质的变化 岩石的物理力学和水理性质的变化,是原岩矿物成分和结构变化的综合反映。在风化壳剖面上,有上到下的趋势是:①孔隙性和压缩性由大到小②吸水性有强到弱③声波速度由小到大④强度由低到高 (三)次生矿物的产生 由于不同矿物抗风化能力不同,岩石中中那些不稳定的矿物总是首先风化变异,当风化进一步发生时,那些稍稳定的矿物才会依次发生风化。此外,化学风化在不同时期主要作用的化学反应是不同的,因此,在风化壳的不同部位,具有不同的矿物共生组合。一般而言,同一种岩石,越疏松,次生矿物越多,风化程度越深。 (四)节理裂隙的情况 当岩石中节理裂隙不发育时,表明岩石较为新鲜。节理裂隙不太发育时,岩石微风化。节理裂隙发育时,岩石弱风化。简而言之,随风化程度加深,节理裂

隙越发育,(某些岩石风化后表现为粘土或次生矿物较多,则节理裂隙表现不明显)。 (五)机械破碎程度 岩石越破碎,机械风化作用越严重,但构造作用也会造成岩石破碎,但是构造作用与机械分风化作用区别在于:构造成因的,岩石破碎有规律,或附近有地质构造特别是断层,还有构造作用与气候的关系不大,而机械作用恰恰相反。(六)风化深度 随风化程度加深,风化深度也随之加深,其判别方法可用钻探、物探等,物探即就是通过测量波在岩石中的传播速度来确定风化深度,相比之下,钻探更为准确。

土壤学试题与答案 一按章节复习 第一章绪论 一、填空 1.德国化学家比希创立了(矿质营养)学说和归还学说,为植物营养和施肥奠 定了理论基础。 2.土壤形成的五大自然因素是(母质)、(气候)、(生物)、(地形)和时间。 3.发育完全的自然土壤剖面至少有(表土层)、(淀积层)和母质层三个层次。 4.土壤圈处于(岩圈)、(大气圈)、(生物圈)、(水圈)的中心部位,是它们相 互间进行物质,能量交换和转换的枢纽。 5.土壤四大肥力因素是指(水分)、(养分)、(空气)和(热量)。 6.土壤肥力按成因可分为(自然肥力)、(人工肥力);按有效性可分为(有效 肥力)、(潜在肥力) 二、判断题 1.(√)没有生物,土壤就不能形成。 2.(×)土壤三相物质组成,以固相的矿物质最重要。 3.(×)土壤在地球表面是连续分布的。 4.(×)土壤的四大肥力因素中,以养分含量多少最重要。 5.(×)一般说来,砂性土壤的肥力比粘性土壤要高,所以农民比较喜欢砂性

土壤。 6.(√)在已开垦的土壤上自然肥力和人工肥力紧密结合在一起,分不出哪是 自然肥力,哪是人工能力。 三、名词解释 1. 土壤:是具有肥力特性因而能生产植物收获物的地球陆地疏松表层。 2. 土壤肥力:土壤能适时地供给并协调植物生长所需的水、肥、气、热、固着条件和无毒害物质的能力。 3. 土壤剖面:在野外观察和研究土壤时,从地面垂直向下直到母质挖一断面。 四、简答题 1. 土壤在农业生产和自然环境中有那些重要作用? (1)土壤是植物生长繁育和生物生产的基地,是农业的基本生产资料。 (2)土壤耕作是农业生产中的重要环节。 (3)土壤是农业生产中各项技术措施的基础。 (4)土壤是农业生态系统的重要组成部分。 2. 土壤是由哪些物质组成的?土壤和土壤肥力的概念是什么? 土壤是由固体、液体和气体三相物质组成的疏松多体。 3. 简述“矿质营养学说”和“归还学说”。 矿质营养学说:土壤中矿物质是一切绿色植物唯一的养料,厩肥及其它有机肥料对于植物生长所起的作用,并不是其中所含的有机质,而是由于这些有机质在分解时形成的矿物质。 归还学说:由于不断地栽培作物,土壤中矿物质必然引起损耗,如果不把作物由土壤中摄取的那些矿物质归还给土壤,那么到最后土壤会变得十分贫瘠,甚至寸草不生。要想完全避免土壤的这种损耗是不可能的,但是恢复土壤中所损耗的物质是可能的,办法就是施用矿质肥料,使土壤的损耗和营养物质的归还之间保持着一定的平衡。 4. 土壤具有哪些特征? (1)土壤是在母质、气候、地形、生物和时间五种因素下形成的。 (2)土壤以不完全连续的状态覆盖于陆地表面,处在大气圈、水圈、生物圈和岩圈相互交接的地带。 (3)土壤具有一定的层次构造。 (4)土壤是由固体、液体和气体三相物质组成的疏松多体。 (5)土壤具有巨大的表面积。 (6)土壤是一个生态系统。 (7)土壤中进行着物质和能量的转移和转化过程。

风化程度划分

岩石风化程度 学科:工程地质学 词目:岩石风化程度 英文:degree of rock weathering 释文:岩石风化程度是风化作用对岩体的破坏程度,它包括岩体的解体和变化程度及风化深度。 岩石的解体和变化程度一般划分成:全风化、强风化、弱风化、微风化等四级。 确定岩石风化程度主要依据的是矿物颜色变化、矿物成分改变、岩石破碎程度和岩石强度变化四个方面的特征变化情况;根据对上述4个方面的判断,可以将岩石风化程度划分为未风化、微风化、弱风化、强风化和全风化。 四个方面的特征变化情况;根据对上述4个方面的判断,可以将岩石风化程度划分为未风化、微风化、弱风化、强风化和全风化。 如何确定基岩的风化程度 请大家来谈谈基岩风化程度的划分依据 1 沿海花岗岩地区分带明显且厚度大,具备定量划分的条件,其他岩性不好说 2 用标贯可确定。

n<30残积土,30<=n=<50全风化,n>50强风化 楼上给出的老岩土规范的划分标准,而且不修正的,实践中看,n>50不修正作为强风化上限多数是土状的东西 用标贯是不准确的,有两个方面:1、标贯操作有误差,工作人员一般不热心打标贯。2, 是标贯超过20米(有的说是25米),标贯数据误差比较大,通过修正也不能完全反应地层情况。 3根据钻孔用肉眼判定岩层的风化程度,各个行业应该是一致的。 如果岩芯呈土状或土柱状,或者大部分呈土状或土柱状,手可搓碎,即可判定是全风化。 如果岩芯大部分呈块状、碎块状,手不可掰开,或者用力才能掰开,锤击声闷,即可判定为强风化。 若岩芯颜色新鲜,很少矿物质,多呈柱状,锤击声脆,即可判定是弱风化或微风化。 4我想各个地质区域的岩性其划分条件是不一样的,比如花岗岩就可以用力学指标去判定,其它的大多数还是以经验判定。主要还是根据各类岩石岩性,其风化后所表现出的各种特征来判定。我在江西南昌,以泥质粉砂岩为主,其强风化就表现出泥土状及碎片状,强度很低,手可折断;中风化,裂隙较发育,层面多见Fe、Me质,而且泥质成分肉眼就可感觉偏多;余下划分的基本就需靠岩石强度去调整了。 5岩体风化程度划分分级 颜色光泽 岩体组织结构的变化及破碎情况

《土壤学II》学习指导 ——供大农学各专业用 农业大学资源与环境学院 土壤教研室编 二零一一年八月 绪论

1、德国化学家比希创立了()学说和归还学说,为植物营养和施 肥奠定了理论基础。 2、土壤圈处于()、()、()、()的中心部 位,是它们相互间进行物质,能量交换和转换的枢纽。 3、土壤四大肥力因素是指()、()、()和()。 4、土壤肥力按成因可分为()、();按有效性可分为 ()、()。 二、判断题 1、()没有生物,土壤就不能形成。 2、()土壤在地球表面是连续分布的。 3、()土壤肥力的四大因素中,以养分含量多少最重要。 4、()一般说来,砂性土壤的肥力比粘性土壤要高,所以农民比较喜欢砂性土 壤。 5、()在已开垦的土壤上自然肥力和人工肥力紧密结合在一起,分不出哪是自 然肥力,哪是人工能力。 三、名词解释 1、土壤 2、土壤肥力

1、土壤生产力和土壤肥力的关系 2、18世纪以来有哪些主要土壤学派? 五、论述题 1、土壤在农业生产和自然环境中有那些重要作用? 第一章土壤母质与土壤的形成

一、填空题 1、地壳中化学元素含量最高的两种元素是()和(),含量最高的金属元素 是()。 2、按照矿物的起源,矿物可分为()、()两大类。 3、岩石按形成原因分为()、()和()三种类型。 4、按照二氧化硅的含量,岩浆岩可以分为()、()、()、 ()。 5、岩浆岩按成因和产状可分为()、()两类。 6、岩石矿物的风化作用按风化作用的因素和特点可分为()、 ()、()三类。 7、化学风化作用包括四种作用,它们是()、()、()、()。 8、岩石风化的三个阶段是()、()、() 9、土壤形成的五大自然因素是()、()、()、()和时间。 10、发育完全的自然土壤剖面至少有()、()和母质层三个层次。 11、岩浆岩一般具有()构造、沉积岩一般具有()构造、变质岩 一般具有()构造。 二、判断题 1、()高岭石是原生矿物。 2、()伊利石是原生矿物。 3、()云母的解理为不完全解理。 4、()花岗岩是变质岩。

岩石级别坚固程度代表性岩石 Ⅰ 最坚固最坚固、致密、有韧性的石英岩、玄武岩和其他各种特别坚固的岩石。(f=20) Ⅱ 很坚固很坚固的花岗岩、石英斑岩、硅质片岩,较坚固的石英岩,最坚固的砂岩和石灰岩.(f=15) Ⅲ坚固致密的花岗岩,很坚固的砂岩和石灰岩,石英矿脉,坚固的砾岩,很坚固的铁矿石.(f=10) Ⅲa 坚固坚固的砂岩、石灰岩、大理岩、白云岩、黄铁矿,不坚固的花岗岩。(f=8) Ⅳ比较坚固一般的砂岩、铁矿石(f=6) Ⅳa 比较坚固砂质页岩,页岩质砂岩。(f=5) Ⅴ中等坚固坚固的泥质页岩,不坚固的砂岩和石灰岩,软砾石。(f=4) Ⅴa 中等坚固各种不坚固的页岩,致密的泥灰岩.(f=3) Ⅵ比较软软弱页岩,很软的石灰岩,白垩,盐岩,石膏,无烟煤,破碎的砂岩和石质土壤.(f=2)

Ⅵa 比较软碎石质土壤,破碎的页岩,粘结成块的砾石、碎石,坚固的煤,硬化的粘土。(f=1.5) Ⅶ软软致密粘土,较软的烟煤,坚固的冲击土层,粘土质土壤。(f=1) Ⅶa 软软砂质粘土、砾石,黄土。(f=0.8) Ⅷ土状腐殖土,泥煤,软砂质土壤,湿砂。(f=0.6) Ⅸ松散状砂,山砾堆积,细砾石,松土,开采下来的煤(f=0.5) Ⅹ流沙状流沙,沼泽土壤,含水黄土及其他含水土壤. (f=0.3) A表示矿岩的坚固性的量化指标. 人们在长期的实践中认识到,有些岩石不容易破坏,有一些则难于破碎。难于破碎的岩石一般也难于凿岩,难于爆破,则它们的硬度也比较大,概括的说就是比较坚固。因此,人们就用岩石的坚固性这个概念来表示岩石在破碎时的难易程度。 坚固性的大小用坚固性系数来表示又叫硬度系数,也叫普氏硬度系数f 值)。 坚固性系数f=R/100 (R单位kg/cm2) 式中R——为岩石标准试样的单向极限抗压强度值。 通常用

第二章土壤有机质 第一节、土壤有机质的组成与性质 土壤有机质概念:存在于土壤中的所有含碳的有机物质. 一、土壤有机质的来源包括: ---植物残体; ---动物残体; ---微生物的残体; ---有机肥料; ---有机废物; 其中进入土壤的植物残体是最主要的来源。 二、土壤有机质含量 有机质土壤:有机质含量超过20%的土壤。 矿质土壤:有机质含量低于20%以下的土壤。 矿质土壤土壤在陆地上占绝大多数 土壤有机质成为土壤肥力的重要物质基础,也是评价土壤肥瘦的重要标志之一。 三、土壤有机质的存在形态 1、新鲜有机质 2、半分解有机质 3、腐殖质 第二节土壤有机物质的分解与转化 矿质化作用和腐殖化作用 一.有机质的矿化作用 1、概念* 有机物质在微生物的作用下分解成无机营养元素的过程 2、意义* 1)为作物生长释放出了营养元素---有效化过程 2)为腐殖质形成提供了基本材料,成为腐殖化的前提 3、含氮物质的分解 1)水解作用 2)氨化作用——氨气(好氧合厌氧皆可) 3)硝化作用(好气条件下)——硝酸根 5)反硝化作用(厌氧)——氮气、N2O 旱地和水地含氮化合物的转化结果会有何差异? 3、矿化率:每年因矿化而消耗的有机物质量占土壤有机质总量的百分数

矿化率是土壤矿化快慢的指标 4、影响土壤有机质转化的因素:1)有机残体的特性 2)土壤水分和通气状况 3)温度 4)土壤特性 5、有机残体的组成与状态 1、物理状态 多汁、幼嫩的植物残体比干枯、老化的植物残体容易分解; 粉碎的植物残体比未粉碎的容易分解。 2、有机残体 一般阔叶>针叶,叶片>残根;豆科>禾本科 秸秆还田如何做最有利于有机质的分解? 6、激发效应:土壤中加入新鲜有机植物会促进土壤原有有机物的降解。 激发效应可以是正的,也可以是负的 激发比率:加入新鲜有机物质后,土壤有机物质矿化量与加入前矿化量之比 7、发生植物和土壤争夺N的原因是什么呢? 8、秸秆还田怎么处理就不会造成微生物和植物争夺氮素呢? 9、南方和北方相比,那里的土壤有机质含量相对较高?原因呢? 北方。 在适当湿润而通气良好的条件下,好气微生物活动强烈,有机质进行好气分解,分解速度快,矿化率高,中间产物累积少,释放出的矿质养分多,但腐植化系数低,不利于腐植质的累积 第三节腐殖质 腐殖质:复杂的天然高分子聚合物,其主体为腐殖酸及其盐 腐殖化作用:使简单的有机化合物形成新的、较稳定的有机化合物,使有机质及其养分保蓄起来的过程。 一、腐殖物质的分离与组成 1、根据腐殖物质在不同溶剂中的溶解度和颜色 可分离出3种性质不同的腐殖质: 胡敏素(黑腐酸HM)不溶于碱 胡敏酸(褐腐酸HA)溶于碱,不溶于酸和水 富里酸(黄腐酸FA)溶于碱,溶于酸和水 2、大多数草本植物或阔叶树残体(盐基较高)有利于形成胡敏酸类为主的腐殖质;针叶树残体利于形成富里酸类为主的腐殖质。 二、土壤腐殖质在土壤中存在形态 (1)游离态的腐殖质,在一般土壤中占极少部分。红壤 (2)与矿物中强盐基化合成稳定的盐类,主要为腐殖酸钙镁。黑土 (3)与含水三氧化物化合成复杂的凝胶体。 (4)与粘粒结合成有机无机复合体。 第一:通过钙离子结合。农业重要,与团粒结构形成有关。 第二:通过铁、锰、铝离子结合。结合紧密,不具水稳性。

第一章土壤的形成和发育教学重点 了解主要成土矿物、岩石及其基本特性。掌握风化作用的几种类型,影响物理、化学风化作用和生物风化作用的因素。了解不同土壤母质类型的成因和特点。 正确理解岩石与母质的关系。了解土壤的成土因素;熟悉主要成土因素在土壤形成过程中的作用,以及各成土因素之间的相互关系。 掌握自然土壤的形成过程和实质,并区别与农业土壤形成的不同之处。 第一节形成土壤母质的矿物岩石 一、主要的成土矿物 (一)矿物(mineral) 的概念矿物是地壳中的化学元素在各种地质作用下形成的自然产物。 有的矿物是由单一元素所组成的。有的是由几种元素组成的化合物,它们具有一定的化学性质,内部构造和物理特性,并以各种形态, (固、液、气)存在于自然界中 (二)成土的主要矿物 1、原生矿物(primary mineral) 由地壳深处的岩浆冷凝而成的矿物,在风化过程中没有改变原来的化学成分和结构,只遭到物理性的破坏,而留存于土壤中。 在土壤中常见的原生矿物有石英、长石、云母、角闪石、辉石、橄榄石、磷灰石等。 2、次生矿物(secondary mineral) 由原生矿物经过化学变化, (如变质作用和风化作用)形成的新矿物。它的性质、成分、形态都发生了变化。 土壤中颗粒最细的粘粒大都是次生矿物,由于这些次生矿物颗粒很细,又称粘土矿物。 它们有高岭石、蒙脱石、水云母(伊利石) ,含水氧化物和二、三氧化物,铝土矿AI2O3?3H2O、褐铁矿2Fe2O3?3H2O、针铁矿等。 不同地理环境中次生矿物形成的一般模式 二、成土的主要岩石 (一)岩石(rock ) 的概念岩石是由一种或数种矿物组成的自然集合体。 由多种矿物集合而成的岩石称为复成岩,如花岗石就是一种复成岩,它是由石英、长石和云母以及少量的其它矿物组成的。 由一种矿物组成的岩石称为单成岩,如烧石灰用的石灰岩,就是一种单成岩,是由方解石一种矿物组成的。 (二)成土的岩石 1 、岩浆岩(magmatic rock ) 火成岩岩浆岩是由地下的岩浆,经熔融作用以后上升到地表或地壳内,经过冷凝以后形成的岩石。在地壳深处冷凝的叫侵入岩,岩浆流出地表形成的叫喷出岩。 (1)酸性岩含SiO2> 65%,有花岗岩、花岗斑岩、石英斑岩、流纹岩,主要含石英、长石等难以风化的矿物。 ( 2)中性岩含SiO252%~65% ,有正长石、粗面岩,所含矿物以石英、长石为主,闪长岩、安山岩主要含斜长石,角闪石。 (3)基性岩含SiO245%~52% ,常见的有辉长岩、玄武岩等,含盐基丰富,无游离SiO2。 (4)超基性岩含SiO2 V 45%,常见的有橄榄岩、辉岩。 岩浆岩的共同特点是不具层理、不含化石,侵入岩多具大形的矿物结晶,喷出岩则具玻璃质结晶与气孔构造。 2、沉积岩(sedimentary rock)沉积岩是由地壳上早期形成的各种岩石,经风化、搬运、沉积、胶结作用形成的岩石。其特点是有明显的层理,常含有化石、所含矿物成分极其复杂常见的有砾岩、砂岩、页岩、石灰岩等。 3、变质岩(metamorphic rock)变质岩是由岩浆岩、沉积岩在高温高压下发生变质作用所形成的,其矿物组成、结构和化学成分较岩浆岩、沉积岩有显著改变。 一般特点是片状(或片麻状)组织,变质后的岩石较变质前致密、坚硬、比较不容易风化。常见的有片麻岩、板岩、石英岩、大理岩。 主要成土岩石的风化和风化产物

第二章天然石料 天然石料:天然岩石经机械或人工开采、加工(或不经加工)获得的各种块料或散粒状石材。 第一节岩石的形成与分类 岩石由于形成条件不同可分为: 岩浆岩(火成岩) 沉积岩(水成岩) 变质岩 一、岩浆岩 (一)岩浆岩的形成与分类 岩浆岩是由地壳深处熔融岩浆上升冷却而成的。 (1)深成岩:岩浆在地壳深处,在上部覆盖层的巨大压力下,缓慢且比较均匀地冷却而形成的岩石。 特点:矿物全部结晶,多呈等粒结构和块状构造,质地密实,表观密度大、强度高、吸水性小、抗冻性高。 建筑上常用的深成岩主要有花岗岩、闪长岩、辉长岩等。 (2)喷出岩:岩浆喷出地表时,在压力急剧降低和迅速冷却的条件下形成的。 特点:岩浆不能全部结晶,或结晶成细小颗粒,常呈非结晶的玻璃质结构、细小结晶的隐晶质结构及个别较大晶体嵌在上述结构中的斑状结构。 建筑上常用的喷出岩主要有玄武岩、辉绿岩、安山岩等。 (3)火山岩:火山岩也称火山碎屑岩,是火山爆发时喷到空中的岩浆经急速冷却后形成的。 常见的有火山灰、火山砂、浮石及火山凝灰岩等。 (二)岩浆岩的主要矿物成分 (1)石英:结晶状态的SiO2 强度高、硬度大、耐久性好。 常温下基本不与酸、碱作用。 温度达575℃以上时,石英体积急剧膨胀,使含石英的岩石,在高温下易产生裂缝岩浆岩分为:

酸性岩石(SiO2>65%) 中性岩石(65%≥SiO2≥55%) 碱性岩石(SiO2<55%) (2)长石:强度、硬度及耐久性均较低(与石英相比) 正长石(K2O·Al2O3·6SiO2) 斜长石钠长石(Na2O·Al2O3·6SiO2) 钙长石(CaO·Al2O3·2SiO2) 干燥条件下耐久性高, 温暖潮湿的条件下较易风化,特别遇CO2,更易于被破坏。风化后主要生成物是高岭石(Al2O3·2SiO2·2H2O)。 (3)云母:含水的铝硅酸盐,柔软而有弹性的成层薄片。 白云母 黑云母 云母含量较多时,易于劈开,降低岩石的强度和耐久性,且使表面不易磨光。 (4)暗色矿物:角闪石、辉石、橄榄石等着色深暗的铁镁硅酸盐类矿物,统称为暗色矿物。 特点:密度特别大(3~4)g/cm3。 与长石相比,强度高,冲击韧性好,耐久性也较高。 在岩石中含量多时,能形成坚固的骨架。 其它:黄铁矿(FeS2), 特征:岩石表面具有锈斑。 黄铁矿遇水,易氧化成硫酸,腐蚀其它矿物,加速岩石风化。 二、沉积岩 (一)沉积岩的形成与分类 位于地壳表面的岩石,经过物理、化学和生物等风化作用,逐渐被破坏成大小不同的碎屑颗粒和一些可溶解物质。这些风化产物经水流、风力的搬运,并按不同质量、不同粒径或不同成分沉积而成的岩石,称为沉积岩。 特点:有明显的层理,较多的孔隙,不如深成岩密实。 (1)化学沉积岩:原岩石中的矿物溶于水,经聚集沉积而成的岩石。 常见:石膏、白云岩、菱镁矿及某些石灰岩。 (2)机械沉积岩:原岩石在自然风化作用下破碎,经流水、冰川或风力的搬运,逐渐沉积而成。

土壤学课后习题及答案. 《土壤科学二》学习指导 线索理论 1,填空 -主要农艺学专业 | 2011年8月 1 9 9 2和PEDOSPHERE位于()、()、()、()、和()的中心,是它们之间交换和转换物质和能量的枢纽。 3年,土壤四个肥力因子分别为()、()、()、和()4.土壤肥力根据成因可分为()和()两种。根据有效性,它可以分为()、()2.是非问题 1,()没有生物,土壤就不能形成2.()土壤不断地分布在地球表面3,()在土壤肥力的四个主要因素中,养分含量是最重要的 4,()一般来说,沙土的肥力比粘性土高,所以农民更喜欢沙土

5,()在复垦土壤中自然肥力和人工肥力是紧密结合在一起的,从分不出哪个是自然肥力,哪个是人工能力 3,名词解释1,土壤 2,土壤肥力 4,简答 1,土壤生产力与土壤肥力的关系 2年和18世纪以来主要的土壤学派是什么?土壤在农业生产和自然环境中的重要作用是什么? 第一章土壤母质与土壤的形成 1,填写问题 1,地壳中化学元素含量最高的两种元素是()和(),含量最高的金属元素是() 2,根据矿物的来源,矿物可分为()、()两大类3.根据成因,岩石可分为三种类型4.根据硅石的含量,岩浆岩可分为() 5年,岩浆岩按其成因和产状可分为()和() 6,岩石和矿物的风化根据风化因素和特征可分为() 7,化学风化包括四种作用,它们是()、()、()、()8.岩石风化的三个阶段是()、()、() 9,土壤形成的五个自然因素是()、()和时间10.一个完全发育的天然土壤剖面至少有三个层次()、()和母质层11.岩浆岩一般有()结构,沉

积岩一般有()结构,变质岩有()结构,如 3 (2)真假问题 1,()高岭石是原生矿物2.()伊利石是原生矿物3.()云母的解理是非完全解理4.()花岗岩是变质岩5.()板岩是沉积岩 6,()沉积岩在地球陆地表面有最大的暴露面积,但岩浆岩有最大的重量(质量) 7,()三种不同的风化类型,物理的、化学的和生物的,同时存在于一个地区,只是作用强度不同。3.名词解释1。矿物: 2,原生矿物:3,次生矿物: 4,岩石:5,岩浆岩:6,沉积岩: 7,化学或化学岩石:8,变质岩: 9,风化: 10,物理风化: 11,化学风化: 2 保留过程: XXXX年龄和相对年龄: 26,土壤母质:

岩体风化程度的判别 1.岩体风化的基本特征 在各种风化营力作用下,岩石所发生的物理和化学变化过程称为岩石风化。其中影响岩石风化的风化营力主要是太阳热能、水溶液(地表、地下及空气中的水)、空气(氧气及二氧化碳等)及生物有机体等。同时按照风化营力的类型及引起岩石变化的方式,风化作用可以分为物理风化、化学风化和生物风化三种。 与原岩相比,风化使岩石发生了一系列的变化,从工程地质的角度出发,这些变化主要有以下几点:岩体结构构造发生变化,即其完整性遭到削弱和破坏;岩石矿物成分和化学成分发生变化;岩石工程地质性质恶化。 风化后的岩石在工程建筑上的优良性质削弱了,不良性质则增加了,使工程地质条件大为恶化。 2.岩石风化的判别 岩石风化程度的划分及工程特性研究,对于大型水利水电工程、高层建筑、道路桥梁等工程建基面的选择以及地基基础设计施工方案的确定起着关键性作用,对评价围岩的稳定和边坡工程亦具有重要意义。 影响岩石风化的因素有很多,其中最主要的有气候、岩性、地质构造、地形地貌和一些其他的因素。岩石的风化往往不是单因子作用的结果,而是由多种因素所共同控制的。 目前,岩石风化程度划分多采用工程地质定性评价方法,从岩石颜色、次生矿物的发生、节理裂隙发育情况、机械破碎程度、风化深度、以及岩石的物理、力学和水理性质变化等方面综合分析确定。关于岩石风化程度的定量评价,目前常采用的是对岩体工程地质性质比较敏感的一些物理力学性质指标,通过室内或现场测试岩石物理力学性质单项或综合指标进行风化程度分带。由于岩石类型的千差万别,影响岩石风化因素复杂,各种岩石风化速度和风化后形态的变化也各异。因此,很难建立岩石风化程度划分的统一、定量的标准。岩石风化程度划分应当采用定性描述和定量指标相结合的方法,两者互为印证以积累利用定量指标划分岩石风化程度的经验。

岩石风化程度判断 1.岩石风化 岩石在各种风化营力作用下,发生的物理和化学变化的过程称为岩石风化。岩石风化是岩石在太阳辐射、大气、水和生物作用下出现破碎、疏松及矿物成分次生变化的现象。 常用分带标志主要有:颜色、岩体破碎程度、矿物成分的变化、水理性质及物理力学性质的变化、钻探掘进及开挖中的技术特性。 具体原则包括: (1)要充分反映各风化带岩石变化的客观规律,反映各带岩石因风化程度不同所具有的不同特性; (2)分带标志视具体条件选择,应既有代表性,又明确,便于掌握,尽量避免人为因素的影响; (3)将定性与定量研究、宏观与微观研究结合起来,综合各种标志进行分带; (4)分带数目要考虑工程建筑的实际需要,既不要过于繁琐,分级过多;也不要过于简略,致使同一带内的岩石特性差异过大。 2.岩石风化程度和各种性质变化 岩石风化程度的划分及工程特性研究,对于大型水利水电工程、高层建筑、道路桥梁等工程建基面的选择以及地基基础设计施工方案的确定起着关键性作用,对评价围岩的稳定和边坡工程亦具有重要意义。 影响岩石风化的因素有很多,其中最主要的有气候、岩性、地质构造、地形地貌和一些其他的因素。岩石的风化往往不是单因子作用的结果,而是由多种因素所共同控制的。 目前,岩石风化程度划分多采用工程地质定性评价方法,从岩石颜色、次生矿物的发生、节理裂隙发育情况、机械破碎程度、风化深度、以及岩石的物理、力学和水理性质变化等方面综合分析确定。关于岩石风化程度的定量评价,目前常采用的是对岩体工程地质性质比较敏感的一些物理力学性质指标,通过室内或现场测试岩石物理力学性质单项或综合指标进行风化程度分带。由于岩石类型的千差万别,影响岩石风化因素复杂,各种岩石风化速度和风化后形态的变化也各异。因此,很难建立岩石风化程度划分的统一、定量的标准。岩石风化程度划分应当采用定性描述和定量指标相结合的方法,两者互为印证以积累利用定量指标划分岩石风化程度的经验。 2.1颜色的改变 风化前岩石断面颜色鲜艳,有光泽。而经过风化后的岩石。微风化,仅沿裂隙面颜色略

岩石风化程度 学科:工程地质学 词目:岩石风化程度 英文:degree of rock weathering 释文:岩石风化程度是风化作用对岩体的破坏程度,它包括岩体的解体和变化程度及风化深度。 岩石的解体和变化程度一般划分成:全风化、强风化、弱风化、微风化等四级。 四个方面的特征变化情况;根据对上述4个方面的判断,可以 如何确定基岩的风化程度 请大家来谈谈基岩风化程度的划分依据 1 沿海花岗岩地区分带明显且厚度大,具备定量划分的条件,其他岩性不好说 2 用标贯可确定。 n<30残积土,30<=n=<50全风化,n>50强风化 楼上给出的老岩土规范的划分标准,而且不修正的,实践中看,n>50不修正作为强风化上限多数是土状的东西

用标贯是不准确的,有两个方面:1、标贯操作有误差,工作人员一般不热心打标贯。2, 是标贯超过20米(有的说是25米),标贯数据误差比较大,通过修正也不能完全反应地层情况。 3根据钻孔用肉眼判定岩层的风化程度,各个行业应该是一致的。 如果岩芯呈土状或土柱状,或者大部分呈土状或土柱状,手可搓碎,即可判定是全风化。 如果岩芯大部分呈块状、碎块状,手不可掰开,或者用力才能掰开,锤击声闷,即可判定为强风化。 若岩芯颜色新鲜,很少矿物质,多呈柱状,锤击声脆,即可判定是弱风化或微风化。 4我想各个地质区域的岩性其划分条件是不一样的,比如花岗岩就可以用力学指标去判定,其它的大多数还是以经验判定。主要还是根据各类岩石岩性,其风化后所表现出的各种特征来判定。我在江西南昌,以泥质粉砂岩为主,其强风化就表现出泥土状及碎片状,强度很低,手可折断;中风化,裂隙较发育,层面多见Fe、Me质,而且泥质成分肉眼就可感觉偏多;余下划分的基本就需靠岩石强度去调整了。 5岩体风化程度划分分级 颜色光泽 岩体组织结构的变化及破碎情况 矿物成分的变化情况 物理力学特征的变化 锤击声 全风化 颜色已全改变光泽消失 组织结构己完全破坏,呈松散状或仅外观保持原岩状态,用手可折断,捏碎 除石英晶粒外,其余矿物大部分风化变质,形成次生矿物 浸水崩解,与松软土体的特性近似 哑声 强风化 颜色改变,唯岩块的断口中心尚保持原有颜色 外观具原岩组织结构,但裂隙发育,岩体呈干砌块石状,岩块上裂纹密布,疏松易碎 易风化矿物均已风化变质形成风化次生矿物,其他矿物仍部分保持原矿物特征物理力学性质显著减弱,具有莱些半坚硬岩石的特性,变形模量小,承载强度低哑声 弱风化 表面和沿节理面大部变色,但断口仍保持新鲜岩石特点 组织结构大部完好,但风化裂隙发育,裂隙面风化剧烈 沿节理裂隙面出现次生风化矿物 物理力学性质减弱,岩体的软化系数与承载强度变小

土壤学课后习题及答案

《土壤学II》学习指导 ——供大农学各专业用 安徽农业大学资源与环境学院 土壤教研室编 二零一一年八月 绪论 一、填空

1、德国化学家李比希创立了()学说和归还学说,为植物营养 和施肥奠定了理论基础。 2、土壤圈处于()、()、()、()的中心部 位,是它们相互间进行物质,能量交换和转换的枢纽。 3、土壤四大肥力因素是指()、()、()和()。 4、土壤肥力按成因可分为()、();按有效性可分为 ()、()。 二、判断题 1、()没有生物,土壤就不能形成。 2、()土壤在地球表面是连续分布的。 3、()土壤肥力的四大因素中,以养分含量多少最重要。 4、()一般说来,砂性土壤的肥力比粘性土壤要高,所以农民比较喜欢砂性 土壤。 5、()在已开垦的土壤上自然肥力和人工肥力紧密结合在一起,分不出哪是 自然肥力,哪是人工能力。 三、名词解释 1、土壤 2、土壤肥力 四、简答题 1、土壤生产力和土壤肥力的关系 2、18世纪以来有哪些主要土壤学派?

五、论述题 1、土壤在农业生产和自然环境中有那些重要作用? 第一章土壤母质与土壤的形成 一、填空题 1、地壳中化学元素含量最高的两种元素是()和(),含量最高的金属元 素是()。 2、按照矿物的起源,矿物可分为()、()两大类。 3、岩石按形成原因分为()、()和()三种类型。 4、按照二氧化硅的含量,岩浆岩可以分为()、()、()、 ()。 5、岩浆岩按成因和产状可分为()、()两类。 6、岩石矿物的风化作用按风化作用的因素和特点可分为()、 ()、()三类。 7、化学风化作用包括四种作用,它们是()、()、()、()。 8、岩石风化的三个阶段是()、()、() 9、土壤形成的五大自然因素是()、()、()、()和时间。 10、发育完全的自然土壤剖面至少有()、()和母质层三个层次。

土壤学复习要点 绪论 一.名词解释 1. 土壤:农业生产:能产生植物收获的地球陆地表面的疏松层次。 生态学:土壤是地球表层系统中,生物多样性最丰富,生物地球化学的能量交换、物质循环最活跃的生命层。 2. 土壤肥力:在植物生活全过程中,土壤供应和协调植物生长所需水、肥、气、热的能力。 3. 土壤圈:土壤圈是覆盖于陆地和浅水域底部的土壤所构成的一种连续体或覆盖层。 4. 自然肥力:指土壤在自然因子(气候、生物、地形、母质、年龄)综合作用下所具有的肥力。 5. 人为肥力:土壤在人为条件熟化(耕作、施肥、灌溉等)作用下所表现出来的肥力。 二.思考题 1. 土壤在植物生长繁育过程中有何作用?为什么? 2. 土壤圈与其它圈层系统有何关系? 3. 为什么说土壤是最珍贵的自然资源? 4. 土壤学有哪些分支学科?土壤学与哪些学科存在联系? 5. 植物生产、动物生产和土壤管理之间存在什么关系? 6. 土壤学的研究方法有哪些? 第一章地学基础 一、名词解释 1. 矿物:指地壳及上地幔中的化学元素在各种地质作用下形成的具有一定的化学组成和物理性质的单质或化合 物。 2. 原生矿物:由地壳深处岩浆冷凝而形成的矿物。 3. 次生矿物:由原生矿物风化演变而形成的新矿物。又称次生粘土矿物。 4. 风化作用:指地壳表层的岩石在大气和水的作用及温度变化和生物活动的影响下所发生的一系列崩解和分解 作用。 5. 地质作用:引起地壳物质组成、地表形态和地球内部构造发生改变的作用。地质作用根据能量的来源不同, 分内力地质作用和外力地质作用两类,或称内、外营力。 6. 物理风化:指岩石在外界因素作用下机械地破裂成碎屑,只改变其大小而不改变其化学成分的过程。 7. 化学风化:指岩石在水、二氧化碳、氧气等外界因素的影响下,改变其化学成分,产生新物质的过程。 8. 生物风化:指生物及其生命活动对岩石、矿物所产生的破坏作用。包括物理的和化学的。 二、思考题 1. 河流冲积物有何特点?为什么? 2. 岩石的化学风化受哪些因素的影响? 第二章土壤固相组成 一、名词解释 1.土壤颗粒组成:土壤中各级土粒的百分含量。 2.土壤质地:按土壤颗粒组成进行分类,将颗粒组成相近而土壤性质相似的土壤划分为一类并给予一定名称, 称为土壤质地。 3.有机质矿质化:指复杂的有机质在微生物的作用下,转化为简单的无机物的过程。 4.同晶替代:指硅酸盐矿物的中心离子被电性相同、大小相近的其它离子所代替而矿物晶格构造保持不变的现 象。 5.有机质腐殖化:进入土壤中的有机质转化形成腐殖质的过程。 6.有机质矿化率:土壤有机质因矿质化作用每年损失的量占土壤有机质总量的百分数。 7. 有机质腐殖化系数:单位重量的有机碳在土壤中分解一年后残留的碳量。 8. 腐殖质:是除未分解和半分解动、植物残体及微生物体以外的有机物质的总称,由非腐殖物质(Non-humic substances)和腐殖物质(Humic substances)组成,通常占土壤有机质的90%以上。 二、思考题 1.不同粒级的土粒矿物组成、化学组成和物理性质有何差异? 2.试述不同质地土壤的肥力特征。 3.质地不良土壤如何改良? 4.有机肥施用前为什么提倡先行堆沤?

岩石分类及硬度级别 岩石级别坚固程度代表性岩石 Ⅰ最坚固最坚固、致密、有韧性的石英岩、玄武岩和其他 各种特别坚固的岩石。(f=20) Ⅱ很坚固很坚固的花岗岩、石英斑岩、硅质片岩,较坚固 的石英岩,最坚固的砂岩和石灰岩.(f=15) Ⅲ坚固致密的花岗岩,很坚固的砂岩和石灰岩,石英矿 脉,坚固的砾岩,很坚固的铁矿石.(f=10) Ⅲa 坚固坚固的砂岩、石灰岩、大理岩、白云岩、黄铁 矿,不坚固的花岗岩。(f=8) Ⅳ比较坚固一般的砂岩、铁矿石(f=6) Ⅳa 比较坚固砂质页岩,页岩质砂岩。(f=5) Ⅴ中等坚固坚固的泥质页岩,不坚固的砂岩和石灰岩,软砾 石。(f=4) Ⅴa 中等坚固各种不坚固的页岩,致密的泥灰岩.(f=3) Ⅵ比较软软弱页岩,很软的石灰岩,白垩,盐岩,石膏, 无烟煤,破碎的砂岩和石质土壤.(f=2) Ⅵa 比较软碎石质土壤,破碎的页岩,粘结成块的砾石、碎 石,坚固的煤,硬化的粘土。(f=1.5) Ⅶ软软致密粘土,较软的烟煤,坚固的冲击土层,粘土质土壤。(f=1) Ⅶa 软软砂质粘土、砾石,黄土。(f=0.8) Ⅷ土状腐殖土,泥煤,软砂质土壤,湿砂。(f=0.6) Ⅸ松散状砂,山砾堆积,细砾石,松土,开采下来的煤. (f=0.5) Ⅹ流沙状流沙,沼泽土壤,含水黄土及其他含水土壤. (f=0.3) A

表示矿岩的坚固性的量化指标. 人们在长期的实践中认识到,有些岩石不容易破坏,有一些则难于破碎。难于破碎的岩石一般也难于凿岩,难于爆破,则它们的硬度也比较大,概括的说就是比较坚固。因此,人们就用岩石的坚固性这个概念来表示岩石在破碎时的难易程度。坚固性的大小用坚固性系数来表示又叫硬度系数,也叫普氏硬度系数f值)。 坚固性系数f=R/100 (R单位kg/cm2) 式中R——为岩石标准试样的单向极限抗压强度值。 通常用的普氏岩石分及法就是根据坚固性系数来进行岩石分级的。 如: ①极坚固岩石f=15~20(坚固的花岗岩,石灰岩,石英岩等) ②坚硬岩石f=8 ~10(如不坚固的花岗岩,坚固的砂岩等) ③中等坚固岩石f=4 ~6 (如普通砂岩,铁矿等) ④不坚固岩石f=0.8~3 (如黄土、仅为0.3) 矿岩的坚固性也是一种抵抗外力的性质,但它与矿岩的强度却是两种不同的概念。强度是指矿岩抵抗压缩,拉伸,弯曲及剪切等单向作用的性能。而坚固性所抵抗的外力却是一种综合的外力。(如抵抗锹,稿,机械碎破,炸药的综合作用力)。

第二章矿物岩石的风化和土壤形成主要教学目标:使学生了解由岩石经过风化形成母质,再由母质发育成土壤的过程。在学习过程中要特别注意什么是母质,母质与土壤有什么区别以及土壤层次的发育顺序。 第一节风化作用 一、风化作用任何事物只是处于它生存的环境时才能稳定。而地表的矿物岩石处于和它形成时的不相同的外界条件时,这种稳定性被破坏,从而发生变化,这就是矿物岩石的风化。 二、风化作用的类型 1、物理风化:由物理作用引起的矿物岩石发生物理变化的过程。又叫机械崩解作用。影响因素 :温 度变化 ,水分冻结 ,风力, 流水,冰川的摩擦力等。风化的结果使大岩石变成碎块,增大接触面,更利于化学风化进行。 2、化学风化:岩石的矿物成分发生化学成分和性质的变化。主要因素:水、二氧化碳、氧气等 主要化学风化作用的类型有 4 个:溶解作用:矿物在水中溶解的过程。造岩矿物的溶解度大小顺序为:方解石>白云石> 橄榄石>辉石>角闪石>斜长石>正长石>黑云母>白云母>石英。 水化作用:矿物与水相结合。如赤铁矿变成褐铁矿。 水解作用:矿物与水相遇,引起矿物分解并形成新矿物。如正长石水解后释放出钾离子,变成了高岭石。 氧化作用:二价铁氧化成三价铁。使许多矿物和岩石表面染成红褐色。 3 、生物风化:生物作用使岩石就地引起的破坏。 主要因素:根系的压力和根系分泌物 10-15 磅 /cm2 微生物分解有机质产生酸 , 三、岩石风化的产物 包括三部分: 1 、可溶性盐 : 硫酸盐、磷酸盐、碳酸盐、氯化物等 2 、合成次生矿物 : 如伊利石 , 蒙脱石 , 高岭石等粘土矿物,以及铁铝的氧化物和氢氧化物。 3 、残余的碎屑 : 难风化的矿物和各种岩屑。 四、矿物风化的难易 1、影响因素:外界环境条件和矿物本身的成分和结构。 2、外界条件相同时,矿物风化的相对稳定性,由易到难顺序为: 石膏,方解石<辉石<角闪石<黑云母<斜长石<正长石<白云母<石英<粘土矿物 五、影响岩石风化难易的因素: 1、矿物的组成、结构和构造 2、形成时的热力条件与目前所处环境的差异 3、岩石的节理和裂隙发育状况。在有棱和角的地方,岩石的自由表面积最大,首先遭受风化,棱角首先消失变成球形,这种现象称为球状风化。 第二节风化产物的类型 一、风化产物的生态类型有五种: 1、硅质风化物 : 硅质组成或硅质胶结的岩石。石英岩 , 硅质砾岩 , 石英砂岩风化物的厚度极薄,砂质,多石砾,各种营养元素也十分贫乏,分散的石英颗粒及岩石碎屑保水能力很低。 酸性土壤。 2、长石质风化物 : 花岗岩,正长岩,正长斑岩 ,流纹岩 ,粗面岩 ,长石砂岩厚层砂壤质或壤质风化物。 发育的土壤通透性能良好,植物需要的磷、钾、钙、镁等营养元素比较丰富,土壤常呈微酸性反应。

关于如何正确划分岩石风化程度等级的探讨 【摘要】本文根据本地区岩石的风化特点和多年从事现场岩土勘察工作实践,分析了如何正确划分岩石风化程度等级及其重要性,对提高岩土工程勘察和土建工程施工经验有一定的意义。 【关键词】残积土;全风化;强风化;中风化;微风化;未风化 一、前言 随着建设工程的日益发展,越来越多的相关部门和人员都与岩土工程分不开,如房地产开发公司及其现场代表、设计人员、现场监理员、施工人员、质量监督员、桩基检测员以及从事岩土工程勘察工作及相关课题研究的人员等等,都有着与岩土工作接触的经历,但如何去正确区分岩石处在何种风化程度等级呢?这个问题恐怕是最令他们头痛的事情,亦是争议性最大的话题。虽然有关规范都有相关定性的定义,但不同的岩性都有不同的风化特点,这是造成了对岩石风化程度等级划分意见分岐的因素,这在专门从事岩土工程勘察行业中亦没有统一的说法,往往是各部门都有自己的标准。本人也从从事桩基检测部门收集过多家勘察单位的地质资料,结果发现没有一家勘察单位对同一地层风化程度等级有相同的标准,在划分同一风化程度等级的岩石力学数据离散性很大,这对设计人员对岩石力学数据的采用及现场施工人员对岩石风化程度等级的判断都造成了很大误导。有些工地就因各单位对所挖岩石是什么风化程度等级出现争议不休的现象。本人曾对同一工地的岩土工程勘察岩样、桩位超前钻探岩样及开挖基桩过程中的岩样作过对比分析,发现三者都有所区别,这引起本人对岩石风化程度等级探讨的极大兴趣,由于水平有限,文中有不当之处在所难免,敬请读者批评指正。 二、岩石风化程度等级的划分 在探讨岩石风化程度等级的划分这个问题前,首先让我们来看看本地区地层由哪些岩性来组成。分布范围最广的要数白垩系红层,该岩系主要分布于市区的东部和西南部,为中生代白垩纪内陆湖盆沉积之红岩系地层(简称红层),普通称为红砂岩,它很少以单一的岩性组成的,一般由多种岩石组成的岩组产出,这些岩石在岩组中也往往是呈互层或夹层状产出的。从组成岩屑颗粒的大小可分为:砾岩、砂砾岩、粗砂岩、中砂岩、细砂岩、粉砂岩和泥岩,岩屑成分以长石、石英或灰岩、砂岩或花岗岩碎屑为主,多为泥质、铁钙质胶结。分布于市区的西北部的煤系地层为中生代二叠系和石炭系海相沉积岩层,其岩性一般较单一,以灰岩为主,局部地段与煤层呈互层或夹层状产出,由于受断裂等构造的影响,在地下水的作用下,往往形成溶隙或溶洞等不良地质现象。分布于市区的北部地层为燕山期侵入花岗岩体。 本文着重讨论红层的风化程度等级的划分,花岗岩在垂直剖面上遵循标准风化规律(从未风化→微风化→中风化→强风化→全风化→风化土,按国标《岩土工程勘察规范》(GB 50021-2001)规范(2009年版)表A.0.3划分,在此不作讨

第二章岩石风化与土壤形成答案 1 名词解释 物理风化:又称为机械崩解作用,主要是由温度变化、水分冻结、碎石劈裂以及风力、流水、冰川的磨擦力等物理因素的作用所引起的。 化学风化:又称为化学分解作用。主要是由水、二氧化碳和氧气等参与下进行的各种过程,包括溶解、水化、水解和氧化等作用。 洪积扇:在干旱与半干旱地区的山地,由于骤融的雪水,或是间歇性的暴雨,形成流速湍急的洪水,将山区的风化碎屑夹杂泥沙,搬运到山谷出口处,由于地势宽坦而水流减缓,使所携带的物质沉积下来,形成扇形地形,称为洪积扇。 第四纪沉积物:第四纪距今一百万年左右,当时在各种外力作用下,进行剥蚀、搬运的风化物,堆积覆盖在地层的最上层,这些沉积物是形成近代土壤的重要母质。我国的第四纪沉积物主要包括:黄土及黄土性物质、红土和冰碛物。

2 问答题 1)根据风化产物对土壤肥力有影响的性状,作为分类标准,简述风化产物的生态类型。答:根据风化产物对土壤肥力有影响的性状,作为分类标准,将各种风化产物进行生态上的区分,分为以下五种生态类型: (1)硅质风化物:形成这类风化物的岩石种类,主要包括由硅质组成或硅质胶结的岩石。(2)长石质风化物:长石质岩石包括含有正长石矿物组成的岩石。 (3)铁镁质风化物:由辉石、角闪石、橄榄石等含有铁、镁成分的矿物组成的岩石,属于铁镁质岩类。 (4)钙质风化物:主要由碳酸钙组成的岩石,都称为钙质岩类。 (5)未成岩类物质:这类物质不是某一类岩石的风化物,而是包括多种来源的矿物质或有机物的堆积物。 2)简要辨析定积母质和运积母质。 答:近代形成的母质可根据其搬运方式和堆积特点,分为定积母质和运积母质。定积母质是未经搬运的风化残留物,或称为残积物。运积母质则根据不同搬运作用的外力方式,可分为各种自然沉积物。 3)简述耕作土壤剖面的结构。 答:耕作土壤剖面层次,从上到下大体可分为以下三个层次:第一,表土层: 又可分为耕作层和犁底层。耕作层是受耕作,施肥,灌溉影响最强烈的土壤层。它的厚度一般约为20厘米左右。耕作层易受生产活动和地表生物,气候条件的影响,一般疏松多孔,干湿交替频繁,温度变化大,通透性良好,物质转化快,含有效态养分多。根系主要集中分布于这一层中,一般约占全部根系总量的60%以上。犁底层:位于耕作层下,厚约6-8厘米。典型的犁底层很紧实,孔隙度小,非毛管孔隙少,毛管孔隙多,所以通透性差,透水性不良,结构常呈片状,甚至可见的水平层理。第二,心土层:位於犁底层以下,厚度一般约为20-30厘米。该层也能受到犁,畜压力的影响而较紧实,但不象犁底层那样紧实。在耕作土壤中,心土层是起保水保肥作用的重要层次,是生长后期供应水肥的主要层次。在这一层中根系的数量约占根系总量的20-30%。第三,底土层:是在心土层以下的土层,一般位于土体表面50-60厘米以下的深度。此层受地表气候的影响很少,同时也比较紧实,物质转化较慢,可供利用的营养物质较少,根系分布较少。一般常把此层的土壤称为生土或死土。

相关主题
相关文档 最新文档