当前位置:文档之家› 自考《数学教育》专业 近世代数习题指导

自考《数学教育》专业 近世代数习题指导

自考《数学教育》专业 近世代数习题指导
自考《数学教育》专业 近世代数习题指导

自考《近世代数》练习1及答案

一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)

1、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。 ( )

2、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且( )

3、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( )

4、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。( )

5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( )

6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( )

7、如果环R 的阶2≥,那么R 的单位元01≠。 ( )

8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( )

10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。 ( )

二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分)

1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( )

①集合D A A A n ,,,,21 中两两都不相同;

②n A A A ,,,21 的次序不能调换;

③n A A A ??? 21中不同的元对应的象必不相同;

④一个元()n a a a ,,,21 的象可以不唯一。

2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ;

③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。

3、设 是整数集Z 上的二元运算,其中{}b a b a ,m ax = (即取a 与b 中的最大者),

那么 在Z 中( )

①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

4、设() ,G 为群,其中G 是实数集,而乘法k b a b a ++= :,这里k 为G 中固定的常数。那么群() ,G 中的单位元e 和元x 的逆元分别是( )

①0和x -; ②1和0; ③k 和k x 2-; ④k -和)2(k x +-。

5、设c b a ,,和x 都是群G 中的元素且xac acx bxc a x ==-,12,那么=x ( ) ①11--a bc ; ②11--a c ; ③11--bc a ; ④ca b 1-。

6、设H 是群G 的子群,且G 有左陪集分类{}cH bH aH H ,,,。如果6,那么G 的阶=G ( )

①6; ②24; ③10; ④12。

7、设21:G G f →是一个群同态映射,那么下列错误的命题是( ) ①f 的同态核是1G 的不变子群; ②2G 的不变子群的逆象是1G 的不变子群;③1G 的子群的象是2G 的子群; ④1G 的不变子群的象是2G 的不变子群。

8、设21:R R f →是环同态满射,b a f =)(,那么下列错误的结论为( ) ①若a 是零元,则b 是零元; ②若a 是单位元,则b 是单位元; ③若a 不是零因子,则b 不是零因子;④若2R 是不交换的,则1R 不交换。

9、下列正确的命题是( )

①欧氏环一定是唯一分解环; ②主理想环必是欧氏环;

③唯一分解环必是主理想环; ④唯一分解环必是欧氏环。

10、若I 是域F 的有限扩域,E 是I 的有限扩域,那么( )

①()()()F I I E I E :::=; ②()()()I E F I E F :::=;

③()()()I F F E F I :::=; ④()()()F I I E F E :::=。

三、填空题(将正确的内容填在各题干预备的横线上,内容填错或未填者,该空无分。每空1分,共10分)

1、设集合{}1,0,1-=A ;{}2,1=B ,则有=?A B 。

2、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。

3、设集合A 有一个分类,其中i A 与j A 是A 的两个类,如果j i A A ≠,那么

=j i A A 。

4、设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为 。

5、凯莱定理说:任一个子群都同一个 同构。

6、给出一个5-循环置换)31425(=π,那么=-1π 。

7、若I 是有单位元的环R 的由a 生成的主理想,那么I 中的元素可以表达为 。

8、若R 是一个有单位元的交换环,I 是R 的一个理想,那么I

R 是一个域当且仅当I 是 。

9、整环I 的一个元p 叫做一个素元,如果 。

10、若域F 的一个扩域E 叫做F 的一个代数扩域,如果 。

四、改错题(请在下列命题中你认为错误的地方划线,并将正确的内容写在预备

的横线上面。指出错误1分,更正错误2分。每小题3分,共15分)

1、如果一个集合A 的代数运算 同时适合消去律和分配律,那么在n a a a 21里,元的次序可以掉换。

2、有限群的另一定义:一个有乘法的有限非空集合G 作成一个群,如果满足G 对于乘法封闭;结合律成立、交换律成立。

3、设I 和S 是环R 的理想且R S I ??,如果I 是R 的最大理想,那么0≠S 。

4、唯一分解环I 的两个元a 和b 不一定会有最大公因子,若d 和'd 都是a 和b 的最大公因子,那么必有'd d =。

5、α叫做域F 的一个代数元,如果存在F 的都不等于零的元n a a a ,,,10 使得010=+++n n a a a αα 。

五、计算题(共15分,每小题分标在小题后)

1、下列四个四元置换

???

?

??=???? ??=???? ??=???? ??=34124321,43124321,34214321,432143214321ππππ 组成的群G ,试写出G 的乘法表,并且求出G 的单位元及14131211,,,----ππππ和G 的

所有子群。

2、设[][][][][][]{}5,4,3,2,1,06=Z 是模6的剩余类环,且[]x Z x g x f 6)(),(∈。如果[][][]253)(3++=x x x f 、[][][]354)(2++=x x x g ,计算)()(x g x f +、)()(x g x f -和)()(x g x f 以及它们的次数。

六、证明题(每小题10分,共40分)

1、设a 和b 是一个群G 的两个元且ba ab =,又设a 的阶m a =,b 的阶n b =,并且1),(=n m ,证明:ab 的阶mn ab =。

2、设R 为实数集,0,,≠∈?a R b a ,令R x b ax x R R f b a ∈?+→,,:),( ,将R 的所有这样的变换构成一个集合{}0,,),(≠∈?=a R b a f G b a ,试证明:对于变换普通的乘法,G 作成一个群。

3、设1I 和2I 为环R 的两个理想,试证21I I 和{}2121,I b I a b a I I ∈∈+=+都是R 的理想。

4、设R 是有限可交换的环且含有单位元1,证明:R 中的非零元不是可逆元就是零因子。

近世代数试卷参考解答

一、判断题 1 2 3 4 5 6 7 8 9 10

× × √ √ × √ √ √ × ×

二、单项选择题 1 2 3 4 5 6 7 8 9 10

② ④ ③ ④ ① ② ④ ③ ① ④

三、填空题

1、()()()()()(){}1,2,0,2,1,21,1,0,1,1,1--。

2、a 。

3、φ。

4、n m 。

5、变换群。

6、()13524。

7、R y x ay x i i i i ∈∑,,。

8、一个最大理想。

9、p 既不是零元,也不是单位,且q 只有平凡因子。

10、E 的每一个元都是F 上的一个代数元。

四、改错题

1、如果一个集合A 的代数运算 同时适合消去律和分配律,那么在n a a a 21里,元的次序可以掉换。

结合律与交换律

2、有限群的另一定义:一个有乘法的有限非空集合G 作成一个群,如果满足G

对于乘法封闭;结合律成立、交换律成立。

消去律成立

3、设I 和S 是环R 的理想且R S I ??,如果I 是R 的最大理想,那么0≠S 。

S=I 或S=R

4、唯一分解环I 的两个元a 和b 不一定会有最大公因子,若d 和'd 都是a 和b 的最大公因子,那么必有d=d ′。

一定有最大公因子;d 和d ′只能差一个单位因子

5、α叫做域F 的一个代数元,如果存在F 的都不等于零的元n a a a ,,,10 使得010=+++n n a a a αα 。 不都等于零的元

《近世代数》练习2及答案

一、(16分)叙述概念或命题

1.正规子群;

2.唯一分解环;

3.代数数;

4.鲁非尼-阿贝尔定理

二、(12分)填空题

1.设有限域F 的阶为81,则的特征=p 。

2.已知群G 中的元素a 的阶等于50,则4a 的阶等于 。

3.一个有单位元的无零因子 称为整环。

4.如果710002601a 是一个国际标准书号,那么=a 。

三、(10分)设G 是群。证明:如果对任意的G x ∈,有e x =2,则G 是交换群。

四、(10分)证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

五、(15分)设}R ,,,|{H ∈+++=d c b a dk cj bi a 是四元数体,对H 中任意元

dk cj bi a x +++=,

定义其共轭

dk cj bi a x ---=。

1.证明:x x x x =是一个非负实数;

2.对k j i x 221-+-=,k j i y -+-=22,求xy ,yx 和1-x 。

六、(15分)设)6(1=I ,)15(2=I 是整数环的理想,试求下列各理想,并简述理

由。

1.21I I +;

2.21I I ?;

3.21I I ?

七、(10分)设有置换)1245)(1345(=σ,6)456)(234(S ∈=τ。

1.求στ和στ-1;

2.确定置换στ和στ-1的奇偶性。

八、(12分)求剩余类加群Z 12中每个元素的阶。

《近世代数》练习2答案

一、1.若H 是群G 的子群,且对每个G a ∈,有Ha aH =,那么H 称为是G 的正规子群。

2.设R 是个整环,若对于R 中每个非零非单位的元都有唯一分解,则称R 为唯一分解环。

3.有理数域上的代数元称为代数数。

4.如果5≥n (特征为0),那么n 次的一般方程没有根式解。 二、1.3

2.25

3.交换环

4.6

三、对于G 中任意元x ,y ,由于e xy =2)(,所以yx x y xy xy ===---111)((对每个x ,从e x =2可得1-=x x )。

四、设A 是任意方阵,令)(21A A B '+=,)(2

1A A C '-=,则B 是对称矩阵,而C 是反对称矩阵,且C B A +=。若令有11C B A +=,这里1B 和1C 分别为对称矩阵和反对称矩阵,则C C B B -=-11,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:1B B =,1C C =,所以,表示法唯一。 五、1.02222≥+++==d c b a x x x x

2.k j i xy 8424-+--=,k j i yx 2484-+--=,)221(10

11k i i x +-+=

- 六、1.)3(21=+I I ;

2.)30(21=?I I ;

3.)90(21=?I I

七、1.)56)(1243(=στ,)16524(1=στ-;

2.两个都是偶置换。

八、

近世代数练习3

一、 判断题(每题1分,共10分)

1. G 的不变子群N 的不变子群N 1仍是G 的不变子群。

( ) 2. 集合的元素间的一个等价关系决定该集合的分类。

( ) 3. 任何无零因子的交换环R 都是一个域P 的子环。 (

) 4. 任何主理想环都是欧氏环。 ( )

5. 若一个群中,每个元的阶都是2,则该群为ABel 群。

( ) 6. 一个环的单位必是单位元。 ( )

7. 有理数域是整数环的商域。 ( )

8. 域上的一元多项式环是欧氏环。 ( )

9. 在任意环中,任意两个非零元的特征都相同。 (

10. 整数环的特征必为无穷大。 ( ) 二、 填空题(每空2分,共20分)

1. 称环R 0的元x 为环R 上的一个未定元,若由a 0α0+a 1α1+a 2α2+…+a n αn =0(a i ∈R )可以推出 。

2. 若|A |=n ,则|2A |= 。

3. 设A ,B 是两个集合,其中A ={1,2},B ={a ,b ,c },则

A ×

B ={ }。

4. 设R 为整数环,则素数p 生成最大理想(p ),从而剩余类环R /(p )是 。

5. 唯一分解环的任何两个元有最大公因子,且两个最大公因子一定是 。

6. 一个群的不变子群的象是象的 。

7. 有限集的一个一一变换也叫 。

8. 在两个环的同态下,零元的象是象的 。

9. 在一个交换环R 中,主理想(a )由集合{ }构成。

10. 整环I 为主理想环的充要条件是I 的每一个理想都是 。

三、 选择题(每题2分,共20分)

(每个题都给出了四个答案,但只有一个最佳答案,请将最佳答案的代号填在题后的括号中,选错或选出的代号超过一个均不得分,每题2分,共20分)。

1. 交换群G 是指 ( )。

A . ab =ba 对任意a 、b ∈G 都不成立的群;

B . ab =ba 对某些a 、b ∈G 成立的群;

C . ab =ba 对任意a 、b ∈G 成立的群;

D . 其中心C 为G 的真子群的群。

2. 任何群中都 ( )。

A .至少有一个单位元;

B . 至多有一个单位元;

C .可以没有单位元;

D . 有且只有一个单位元。

3. 设A ,B 是两个集合,A ={a ,b ,c ,d },B ={1,2,3},σσ12,是两个映射,

σσ123212223=={(,),(,),(,),(,)},{(,),(,),(,)}a b c d a b c , 则

( )。 A .σ1是满射; B .σ2是单射; C .σ2是满射; D .σ1是单射。

4. 设G 是由12个元素组成的循环群,a 是G 的生成元,则G 的全部生成元素是( )。

A .{e ,a };

B .{e ,a ,a 2,a 3,a 4};

C .{a ,a 3,a 6};

D .{a ,a 5,a 7,a 11}。

5. 设H 、K 都是G 的子群,则下列集合中必为G 的子群的是

( ) A .HK ; B .H ∩K ; C .H ∪K ; D .G - H 。

6. 下列关系中不是等价关系的为 ( )

A .整数间的相等关系;

B .整数间的同余关系;

C .三角形的相似关系;

D .三角形的全等关系。

7. 下列数集中,对于普通加法和乘法来说不能作成一个环的是 ( )。

A . 整数集;

B . 有理数集;

C . 无理数集;

D . 实数集。

8. 有限群的阶是指 ( )。

A . 群中元的阶之最大者;

B . 群中元的阶之最小者;

C . 群中元的阶之最小公倍数;

D . 群中元素的个数。

9. 在任意一个一一映射之下, ( )。

A . 必须每一个象都有唯一的原象;

B . 必须每一个原象都有唯一的象;

C . 每一个象都可以有多个原象;

D . A 或B 。

10. 在一个整环中, ( )。

A . 必须既有单位元又有零元;

B . 必须有零元而无单位元;

C . 必须有单位元而无零元

D . 必须既无单位元又无零元。

四、 计算题(每题8分,共24分) 1. A ={A ,B ,c },代数运算由下表给出,找出所有A 的一一变换,

对于代数运算o 来说,这些一一变换是否都是A 的自同构?

2. 设M ={1,2,3},写出M 的置换群P 及其所有子群,说明这些群中,哪些是循环群。 3. 找出S 3的所有子群。

五、 证明题(每题10分,共20分)

1. 假定R 是有理数域。证明,这时(2,x )是一元多项式环R [x ]一个主理想。

2. 一个有限群的每一个元的阶都有限。

六、 简答题(每题3分,共6分)

1. A ={1,2,…,100}。找一个A ×A 到A 的映射。

举例说明整数对于除法不满足结合律。

||||a

b c a c c c b c

c c c c

c c ο---

--

多所高校近世代数题库 一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。 ( ) 二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那么 在Z 中( )

全国自考(普通逻辑)模拟试卷1 一、单项选择题 1 所谓推理的有效性,主要指的是推理的( ) (A)内容有效性 (B)形式有效性 (C)混合有效性 (D)实质有效性 2 “动物”这个概念属于( ) (A)单独概念 (B)普遍概念 (C)集合概念 (D)负概念 3 在下列各项两概念中具有矛盾关系的是( ) (A)黑、白 (B)对称关系、非对称关系 (C)马克思主义、非马克思主义

(D)资本主义国家、社会主义国家 4 若断定SAP和SEP都假,则( ) (A)违反同一律 (B)违反矛盾律 (C)违反排中律 (D)不违反普通逻辑的基本规律 5 已知S真包含于P,由此可以作出的一个真判断是( ) (A)所有的P是S (B)所有S不是P (C)有的P是S (D)有S不是P 6 “要么A,要么B”这个不相容选言判断的逻辑含义是( ) (A)A和B必有一真,并可同真 (B)A和B至少有一真,也可同假 (C)A和B必有一假,并可同假 (D)A真或B真,但不可同真

7 据卫星提供的最新气象资料表明,原先预报的明年北方地区的持续干旱不一定出现。以下最接近于以上气象资料含义的断定是明年北方地区的持续干旱( ) (A)可能不出现 (B)可能出现 (C)一定不出现 (D)出现的可能性比不出现大 8 若“这件商品既物美又价廉”为假,根据排中律,下列判断为真的是( ) (A)这件商品或物美,或价廉 (B)这件商品不物美也不价廉 (C)这件商品要么物不美,要么价不廉 (D)这件商品如果物美,那么价就不廉 9 如果一个演绎推理的形式有效,则( ) (A)前提不真实时,结论不一定为真 (B)前提真时,结论一定假 (C)结论真时,前提不真实 (D)与前提真假无关

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A I ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A =I ,B B A ?Y , 及由B A ?得B B A ?Y ,故B B A =Y , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数模拟试题一 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出得四个备选项中只有一个就就是符合题目要求得,请将其代码填写在题后得括号内。错选、多选或未选均无分。 1、设A=B=R(实数集),如果A到B得映射:x→x+2,x∈R,则就就是从A到B得( )A、满射而非单射?B、单射而非满射 C、一一映射??? D、既非单射也非满射 2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B得积集合A×B中含有( )个元素。 A、2 ??? B、5 C、7????D、10 3、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解就就是( )乘法来说 A、不就就是唯一 B、唯一得 C、不一定唯一得D、相同得(两方程解一样) 4、当G为有限群,子群H所含元得个数与任一左陪集aH所含元得个数( ) A、不相等B、0 C、相等 D、不一定相等。 5、n阶有限群G得子群H得阶必须就就是n得( ) A、倍数 B、次数C、约数 D、指数 二、填空题(本大题共10小题,每空3分,共30分)请在每小题得空格中填上正确答案。错填、不填均无分。 1、设集合;,则有---------。 2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R得--------。 3、环得乘法一般不交换。如果环R得乘法交换,则称R就就是一个------。 4、偶数环就就是---------得子环。 5、一个集合A得若干个--变换得乘法作成得群叫做A得一个--------。 6、每一个有限群都有与一个置换群--------。 7、全体不等于0得有理数对于普通乘法来说作成一个群,则这个群得单位元就就是---,元a得逆元就就是-------。 8、设与就就是环得理想且,如果就就是得最大理想,那么---------。 9、一个除环得中心就就是一个-------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、设置换与分别为:,,判断与得奇偶性,并把与写成对换得乘积。 2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之与。 3、设集合,定义中运算“”为ab=(a+b)(modm),则(,)就就是不就就是群,为什么? 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、设就就是群。证明:如果对任意得,有,则就就是交换群。 2、假定R就就是一个有两个以上得元得环,F就就是一个包含R得域,那么F包含R得一个商域。 近世代数模拟试题二 一、单项选择题 二、1、设G有6个元素得循环群,a就就是生成元,则G得子集( )就就是子群。 A、 B、 C、 D、 2、下面得代数系统(G,*)中,( )不就就是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法

近世代数习题解答 第三章环与域 1加群、环的定义 1. 证明,本节内所给的加群的一个子集作成一个子群的条件是充分而且必要的. 证 (ⅰ)若S 是一个子群 则S b a S b a ∈+?∈, '0是S 的零元,即a a =+'0 对G 的零元,000' =∴=+a a 即.00S a a s ∈-=-∴∈ (ⅱ)若S b a S b a ∈+?∈, S a S a ∈-?∈ 今证S 是子群 由S S b a S b a ,,∈+?∈对加法是闭的,适合结合律, 由S a S a ∈-?∈,而且得S a a ∈=-0 再证另一个充要条件: 若S 是子群,S b a S b a S b a ∈-?∈-?∈,, 反之S a a S a a S a ∈-=-?∈=-?∈00 故S b a b a S b a ∈+=--?∈)(, 2. },,,0{c b a R =,加法和乘法由以下两个表给定: + 0 a b c ? 0 a b c 0 0 a b c 0 0 0 0 0 a a 0 c b a 0 0 0 0 b b c 0 a b 0 a b c c c b a 0 c 0 a b c 证明,R 作成一个环 证R 对加法和乘法的闭的. 对加法来说,由.9.2习题6,R 和阶是4的非循环群同构,且为交换群. 乘法适合结合律Z xy yz x )()(= 事实上. 当0=x 或a x =,)(A 的两端显然均为0. 当b x =或x=c,)(A 的两端显然均为yz .

这已讨论了所有的可能性,故乘法适合结合律. 两个分配律都成立xz xy z y x +=+)( zx yx x z y +=+)( 事实上,第一个分配律的成立和适合律的讨论完全一样, 只看0=x 或a x =以及b x =或c x =就可以了. 至于第二个分配律的成立的验证,由于加法适合交换律,故可看 0=y 或a y =(可省略a z z ==,0的情形)的情形,此时两端均为zx 剩下的情形就只有 0,0)(=+=+=+x x bx bx x b b 0,0)(=+=+=+x x cx cx x c c 0,0)(=+=+==+x x cx bx ax x c b ∴R 作成一个环. 2交换律、单位元、零因子、整环 1. 证明二项式定理 n n n n n b b a a b a +++=+- 11)()( 在交换环中成立. 证用数学归纳法证明. 当1=n 时,显然成立. 假定k n =时是成立的: k i i k k i k k k k b b a b a a b a +++++=+-- )()()(11 看1+=k n 的情形)()(b a b a k ++ ))()()((11b a b b a b a a k i i k k i k k k ++++++=-- 1111111)]()[()()(++--+++++++++=+k i i k k i k i k k k k b b a b a a b a 1111 11)()(+-+++++++++=k i i k k i k k k b b a b a a (因为)()()(11 k r k r k r -++=) 即二项式定理在交换环中成立. 2. 假定一个环R 对于加法来说作成一个循环群,证明R 是交换环. 证设a 是生成元 则R 的元可以写成 na (n 整数) 2)]([)]([))((nma aa m n ma a n ma na === 2))((mna na ma =

《近世代数》复习试题 一 填空题 1.12,,n A A A 是集合A 的子集,如果(1) ,(2) , 则称12,,n A A A 为A 的一个分类. 2.设},{21A =,},,,,{e d c b a B =,则有____个A 到B 的映射,_____个A 到B 的单射. 3. 设G 是一个群,G a ∈,且21||=a ,则=||6a __________. 4. 设G 是群,,,G b a ∈若1),(,||,||===n m n b m a ,而且ba ab =,则=||ab ______. 5. 在3S 中,)23()12)(123(1-= . 6. 模6的剩余类环6Z 的所有可逆元: . 7. 模6的剩余类环6Z 的所有零因子: . 8. R 是一个有单位元交换环,R a ∈,则由a 生成的主理想=)(a . 9. 设群G 的阶是45, a 是群G 中的一个元素,则a 的阶只可能是____________. 10. 高斯整环][i Z 的单位群])[(i Z U 的全部元素:____________________________. 二 解答、证明题 1.设Z 是全体整数的集合,在Z 中规定: .,,2Z b a b a b a ∈?-+= 证明:),( Z 是一个交换群. 2.证明:群G 不能表示成两个真子群的并. 3.证明:r-循环为偶置换的充要条件是r 为奇数. 4.设p 为素数,||G =n p ,证明:G 一定有一个p 阶子群. 5.设G 是一个群,,,G K G H ≤≤证明:KH HK G HK =?≤. 6.设H G ≤,N G ,证明:HN G ≤. 7.设H G ≤,且2]:[=H G ,证明:.G H 8.证明:每个素数阶的群都是循环群. 9.设N 是群G 的子群,N 的阶是r (1)证明1()gNg g G -∈也是G 的一个子群.

2017年10月高等教育自学考试 《普通逻辑》 一、单项选择题(本大题共15小题,每小题1分。共15分) 1.两个单独概念外延之间的关系或者是同一关系,或者是() A.真包含关系 B.真包含于关系 C.交叉关系 D.全异关系 【答案】D 【解析】同一关系是两个单独概念的外延完全相同,全异关系是两个单独概念的外延完全不同。 2.当S真包含P时,由此可以得到() A.SOP与SEP均真 B.SAP与SOP均真 C.SOP与SIP均真 D.SIP与SEP均真 【答案】C 【解析】当S真包含P时,说明所有P是S,有的S是P,即有的S是P和有的S不是P均为真。 3.“鲁迅的作品不是一天可以读完的”和“《祝福》是鲁迅

的作品”中,上述判断中“鲁迅的作品”() A.前者是非集合概念,后者是集合概念 B.都是非集合概念 C.前者是集合概念,后者是非集合概念 D.都是集合概念 【答案】C 【解析】辨别一个概念是集合概念还是非集合概念,一个基本的方法是看这个概念所反映的属性是否为这个概念所涉及的每一个个体所具有。如果这个概念所反映的属性为这个概念所涉及的每一个个体所具有,则这个概念通常是非集合概念。如果这个概念所反映的属性未必为这个概念所涉及的每一个个体所具有,则这个概念通常是集合概念。所以前者是集合概念后者是特指《祝福》,非集合概念。 4.下列概念的概括,正确的是() A.“鼠标”概括为“个人电脑” B.“北京”概括为“中国” C.“番茄”概括为“西红柿” D.“工具书”概括为“书” 【答案】D 【解析】概念的概括是通过减少概念的内涵、扩大概念的外延来明确概念的一种逻辑方法。A和B是组成关系,C是同一关系,D是种属关系,是对概念的概括。

近世代数习题解答 第四章 整环里的因子分解 1 素元、唯一分解 1. 证明:0不是任何元的真因子。 证 当0≠a 时 若b a 0=则0=a 故矛盾 当0=a 时,有00ε= (ε 是单位) 就是说0是它自己的相伴元 2. 我们看以下的整环I ,I 刚好包含所有可以写成 m m n (2是任意整数,0≥n 的整数) 形式的有理数,I 的哪些个元是单位,哪些个元是素元? 证 1)I 的单位 总可以把m 表为 p p m k (2=是0或奇数,k 非负整数)我们说 1±=p 时,即k m 2±=是单位,反之亦然 2)I 的素元 依然是k p p m k ,(2=的限制同上) 我们要求 ⅰ)0≠p ⅱ)1±≠p ⅲ)p k 2只有平凡因子 满足ⅰ)—— ⅲ)的p 是奇素数 故p m k 2=而p 是奇素数是 n m 2是素元,反之亦然, 3.I 是刚好包含所有复数b a bi a ,(+整数)的整环,证明5不是I 的素元,5有没有唯一分解? 证 (1)I 的元ε是单位,当而且只当12=ε 时, 事实上,若bi a +=ε是单位 则11-=εε 2'221εε= 即2'21εε= 但222b a +=ε是一正整数,同样2'ε也是正整数, 因此,只有12=ε 反之,若1222=+=b a ε,则0,1=±=b a 或1,0±==b a 这些显然均是单位

此外,再没有一对整数b a ,满足12 2=+b a ,所以I 的单位只有i ±±,1。 (2)适合条件52=α的I 的元α一定是素元。 事实上,若52=α则0≠α 又由α)1(也不是单位 若2225,λβαβλα=== 则12=β或52=β ββ?=12是单位λαβλ?=?-12是α的相伴元 λλβ?=?=1522是单位βαλβ?=?-1是α的相伴元 不管哪种情形,α只有平凡因子,因而α是素元。 (3)I 的元5不是素元。 若βα=5则2225λβ= 这样,2β只可能是25,5,1 当52=β由)1(β是单位 当1522=?=λβ由)1(λ是单位 此即λβ,中有一是5的相伴元 现在看52=β的情形 5,222=+=+=b a bi a ββ可能的情形是 ???==21 b a ???-=1b a ???=1b a ???-=-=21b a ???=1b a ???-==12b a ???=-=12b a ???-=1b a 显然)2)(2(5i i -+= 由(2)知52=β的β是素元,故知5是素元之积 (4)5的单一分解 )21)(21(5i i -+=)21)(1)(21)(1(i i --+-= )21)()(21)(()21)()(21)((i i i i i i i i --+=-+-= i ±±,1均为单位 2 唯一分解环 1.证明本节的推论 证 本节的推论是; 一个唯一分解环I 的 n 个元n a a a ,,21 在I 里一定有最大公因子 , n a a a ,,21 的两个最大公因子只能查一个单位因子。 用数学归纳法证 当2=n 时,由本节定理3知结论正确。 假定对1-n 个元素来说结论正确。

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

近 世 代 数 试 卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1 -f 。 ( ) 4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整 数环,()p 是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ??? 21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ??? 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。 3、设 是整数集Z 上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),那么 在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

近世代数习题解答 第二章群论 1群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证G={1,-1}对于普通乘法来说是一个群. 3. 证明,我们也可以用条件1,2以及下面的条件 4,5'来作群的定义: 4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立 5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa e A_1 证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e 1 1 1 ' 所以(a a)e = (a a)(a a ) 即a a = e (2)一个右恒等元e 一定也是一个左恒等元,意即 由ae = a 得ea = a 即ea = a 这样就得到群的第二定义. (3)证ax二b可解 取x = a 这就得到群的第一定义. 反过来有群的定义得到4,5'是不困难的. 2单位元,逆元,消去律 1. 若群G的每一个元都适合方程x2二e,那么G就是交换群. 证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba . 2. 在一个有限群里阶大于2的元的个数是偶数. _1 n —1 n n —1 —1 证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e 若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶 _4 _4 2 (2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾 (3) a b 贝U a「b' 斗

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G 中下列各个元素1213,,0101c d cd ???? == ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

2016年10月高等教育自学考试全国统一命题考试 普通逻辑试卷 (课程代码00024) 本试卷共6页,满分100分。考试时间150分钟。 考生答题注意事项: 1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。 2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡"的相应代码涂黑。 3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。 4.合理安排答题空间。超出答题区域无效。 第一部分选择题(共35分) 一、单项选择题(本大题共15小题。每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。错涂、多涂或未涂均无分。 1.“所有S不是P”和“有些S是这两个判断形式,它们 A.主、谓项都相同,但逻辑常项都不同B.主项相同,谓项不同,逻辑常项都相同 C.主、谓项都不同,但逻辑常项都相同D.主项相同,谓项不同,逻辑常项都不同 2.“北京市”和“北京市海淀区”,这两个概念外延之间是 A.真包含关系 B. 交叉关系C.全同关系D.全异关系 3.要使得SEP、SOP都为真,但SIP为假,则概念S与概念P外延的关系为 A.全同关系B.全异关系C.真包含予关系D.真包含关系 4.下列判断形式中,主、谓项都周延的是 A.所有S都是P B.所有S都不是P C.有的S是P D.有的S不是P 5.运用对当关系推理,可以推出并非SOP的是 A.SAP B.SIP C.并非SAP D.并非SIP 6.只有通过身份认证的人才允许上公司内网,如果没有良好的业绩就不可能通过身份认证,张辉有良好的业绩,而王纬没有良好的业绩。 如果上述断定为真,则以下哪一项一定为真? A.允许张辉上公司内网 B.不允许王纬上公司内网 C. 张辉通过身份认证D.有良好的业绩,就允许上公司内网 7.“凡贪污罪都是故意犯罪,这个行为是故意犯罪,所以这个行为是贪污罪。”这个三段论所犯的逻辑错误是 A.大项不当周延B.小项不当周延 C.中项两次不周延D.两否定推结论 8.“张涛既是民主党派人士,又是中共党员”与“如果张涛是民主党派人士,那么他就不是中共党员”这两个判断 A.不可同真但可同假B.不可同假但可同真 C.可同真也可同假D.不可同真也不可同假

近世代数课后习题参考答案 第五章 扩域 1 扩域、素域 1. 证明:)(S F 的一切添加S 的有限子集于F 所得的子域的并集是一个域. 证 一切添加S 的有限子集于F 所得的子域的并集为∑ 1)若 ∑∈b a , 则一定有),,(2,1n F a ααα ∈ ) ,,(2,1m F b βββ ∈易知 m n F b a βββααα,,,,,,(2121 ∈- 但∑? ),,,,,,(2121m n F βββααα 从而∑∈-a b 2)若,,∑∈b a 且0≠b 则 ),,,(21m F b βββ ∈- 从而有∑ ? ∈-),,,,,,(21211 m n F ab βββααα 2 单扩域 1. 令E 是域F 的一个扩域,而F a ∈证明a 是F 上的一个代数元,并且 F a F =)( 证 因0=-a a 故a 是F 上的代数元.其次,因F a ∈,故 F a F ?)(易见F a F ?)(,从而F a F =)( 2.令F 是有理数域.复数i 和 1 12-+i i 在F 上的极小多项式各是什么? )(i F 与)1 12( -+i i F 是否同构? 证 易知复数i 在F 上的极小多项式为1 12, 12 -++i i x 在F 上的极小多项式为2 52 +-x x 因)1 12()(-+=i i F i F 故这两个域是同构的. 3.详细证明,定理3中a 在域F 上的极小多项式是)(x p 证 令?是)(x F 中的所有适合条件0)(=a f 的多项式作成)(x f 的集 合. 1) ?是)(x F 的一个理想 (ⅰ)若 ?∈)(),(x g x f 则0)(,0)(==a g a f 因而0)()(=-a g a f 故??-)()(x g x f ⅱ)若)(,)(x h x f ?∈是)(x F 的任一元 那么0)()(=a f a h 则?∈)()(x f x h 2)是一个主理想 设 )(1x p 是?中a !的极小多项式

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若是一个有限整数n ,那么G 与-------同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。 6、若映射?既是单射又是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

绝密 考试结束前 全国2017年4月高等教育自学考试 普通逻辑试题 课程代码:00024 请考生按规定用笔将所有试题的答案涂二写在答题纸上三 选择题部分 注意事项: 1.答题前,考生务必将自己的考试课程名称二姓名二准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上三 2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑三如需改动,用橡皮擦干净后,再选涂其他答案标号三不能答在试题卷上三 一二单项选择题(本大题共15小题,每小题1分,共15分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将 答题纸 的相应代码涂黑三错涂二多涂或未涂均无分三 1. 人 和 机器人 这两个概念外延之间的关系是 A.真包含关系 B.交叉关系 C.全异关系 D.全同关系 2.若一个充分条件假言判断的前件二后件恰好是另一个充分条件假言判断的后件二前件,则这 两个充分条件假言判断 A.可同真,可同假 B.可同真,不同假 C.不同真,可同假 D.不同真,不同假 3. 若p,则?q 假,当且仅当 A.p真q真 B.p真q假 C.p假q真 D.p假q假 4. 并非有的S不是P 等值于 A.有的S是P B.所有S是P C.所有S不是P D.所有P是S 5.从并非S E P可以推出 A.S O P B.P I S C.P E S D.S A P 6.如果一个有效三段论的结论是S E P,小前提也是E命题,则大前提只能是

7.不可以 ???得到 近朱者赤,近墨者黑 这个结论的推理方法是 A.科学归纳法 B.不完全归纳推理 C.简单枚举法 D.完全归纳推理 8.若 p??q 真与 q 真,则 A. p 真假不定 B. p 真 C. p 假 D. ?p 假 9.若S A P与S E P恰有一假,则必然是 A.S I P与S O P恰有一真 B.S A P与S I P恰有一假 C.S E P与S O P恰有一真 D.S E P与S O P恰有一假 10.以 如果甲或乙不是犯罪嫌疑人,那么丙也不是犯罪嫌疑人 为一前提,若再增加另一前提, 可必然推出 乙是犯罪嫌疑人 的结论三 最合适作这一前提的判断是 A.丙是犯罪嫌疑人 B.丙不是犯罪嫌疑人 C.甲是犯罪嫌疑人 D.甲不是犯罪嫌疑人 11.未来深海电缆的外皮是由玻璃制成的,而不是特殊的钢材或铝合金三原因是金属具有颗粒 状的微观结构,在深海压力之下,粒子交结处的金属外皮易于断裂三玻璃外皮就不会有这种情况三因为玻璃看起来是固体,由于它在压力之下可以流动,所以可将其视为液体三最有可能从上述议论中推出的一项是 A.液体没有颗粒状的微观结构 B.目前的深海电缆经常发生故障 C.所有称之为固体的东西只不过是移动极其缓慢的液体 D.只有断裂的玻璃是微观粒状的 12.某评委对一个未入围歌唱比赛最后决赛的选手说: 你之所以没能进入最后的决赛,主要是 因为演唱的歌曲是民族歌曲三 以下哪项如果为真,将最有力地反驳该评委的解释? A.内因是变化的根据,外因是变化的条件 B.好几个入围最后决赛的选手演唱的曲目都是民族歌曲 C.大部分进入最后决赛的选手演唱的都是外国歌曲 另一个评委说该选手未能入围是因为所唱曲目难度不够

近 世 代 数 试 卷 一、判断题(下列命题您认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 与B 都就是非空集合,那么{}B A x x B A ∈∈=?x 且。 ( ) 2、设A 、B 、D 都就是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 3、只要f 就是A 到A 的一一映射,那么必有唯一的逆映射1-f 。 ( ) 4、如果循环群()a G =中生成元a 的阶就是无限的,则G 与整数加群同构。 ( ) 5、如果群G 的子群H 就是循环群,那么G 也就是循环群。 ( ) 6、群G 的子群H 就是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征就是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 就是整数环,()p 就是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21Λ与D 都就是非空集合,而f 就是n A A A ???Λ21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21Λ中两两都不相同;②n A A A ,,,21Λ的次序不能调换; ③n A A A ???Λ21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21Λ的象可以不唯一。 2、指出下列那些运算就是二元运算( ) ①在整数集Z 上,ab b a b a +=ο; ②在有理数集Q 上,ab b a =ο; ③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。 3、设ο就是整数集Z 上的二元运算,其中{}b a b a ,m ax =ο(即取a 与b 中的最大者),那么ο在Z 中( ) ①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。 4、设()ο,G 为群,其中G 就是实数集,而乘法k b a b a ++=οο:,这里k 为G 中固定

相关主题
文本预览
相关文档 最新文档