当前位置:文档之家› 特级教师高考数学首轮复习第39讲-直线、平面平行的判定与性质

特级教师高考数学首轮复习第39讲-直线、平面平行的判定与性质

特级教师高考数学首轮复习第39讲-直线、平面平行的判定与性质
特级教师高考数学首轮复习第39讲-直线、平面平行的判定与性质

来源:591UP

一、知识结构

二、重点叙述

1. 直线与平面平行

①直线与平面平行的判定定理:

图形语言 符号语言

平面外一条直线与此平面内那么该直线与

②直线与平面平行的性质定理:

图形语言 符号语言

如果一条直线和一个平面平经过这条直线的平面和这个那么这条直线和交线2. 平面与平面平行

①平面与平面平行的判定定理:

图形语言 符号语言 如果一个平面内有两条相交那么若a α,b α,a∩b=A,且a∥α,b∥β,则α∥β。

②平面与平面平行的性质定理:

如果两个平行平面同时和第

那么它们的交线

a∥b。

3.线面、面面判断或证明方法:

①直线与平面的判断或证明方法:

Ⅰ、定义法:即若,则。

Ⅱ、判定定理法:即直线与平面平行的判定定理。注意“三个条件,一个结论”缺一不可。Ⅲ、面面法:即。

Ⅳ、向量法:(见相关部分)

②平面与平面的判断或证明方法:

Ⅰ、定义法:即若,则。

Ⅱ、判定定理法:即平面与平面平行的判定定理。注意“相交” 的条件。

Ⅲ、线面垂直法:即。

Ⅳ、传递法:即。

Ⅴ、向量法:(见相关部分)

4.应用

Ⅰ、直线与平面、平面与平面平行判定、性质定理的应用;

Ⅱ、直线与直线、直线与平面、平面与平面平行的相互转化及其综合应用。

三、案例分析

案例1:如图,四面体被一平面所截,截面为平行四边形。

求证://平面。

分析:要证线面平行(//平面),只要证明线线平行(),只要证线面线平行(),只要证线线平行(),因为截面为平行四边形,显然成立。

证明:∵截面为平行四边形,

∴,又,∴。

∵,且,

∴。

∵,且在平面外,

∴//平面。

案例2:如图,正方形ABCD、ADEF,M、N分别是对角线AE、BD上一点,使得AE=BN。求证:MN//平面EDC。

分析:如图,要证明线面平行,只要证明线线平行,或证明面面平行。于是构造平行四边形或构造相似三角形证明线线平行;也可以构造含MN的平面,使之与平面EDC平行。

证明:证法1:如图,分别过M、N作AD的平行线MG、NH交ED、CD于G、H,连接GH,则。

∵在正方形ABCD、ADEF中,AM=BN,∴ME=ND。∴,∵,

∴。又,

∴四边形是平行四边形。于是。又,

∴。

证法2:如图,过M作MG//ED交AD于G,连接GN,

∵,,

∴。

∵,∴,

∴。

∵,,

∵,且

∴。

∵,

∴(否则,与平面相交,这与矛盾)。

证法3:如图,连接AN,延长AN与DC或DC的延长线交于P,连接EP。

∵,∴,

在中,∵,∴。

∵P,∴,

∴,又,

∴。

案例3:如图,正方体ABCD-A1 B1 C1 D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1 G:GD=1:2,AC∩BD=O。

求证:平面AGO//平面D1 EF。

分析:如图,要证面面平行,只要证明线面平行,要证明线面平行,只要证明线线平行,因此,问题的关键是如何构造线线平行。

证明:如图,设,连接,

∵E、F分别是AB、BC的中点,∴。在正方形中,AC∩BD=O,

∴M是BO的中点,于是。

∵G为DD1上一点,且D1 G:GD=1:2,

∴。在中,,

∴。又,

∴。

同理,∵,即,∴。

∵,且,

∴。

案例4:如图,设AB、CD是夹在两个平行平面之间的线段,且直线AB、CD是异面直线,M、N分别是AB,CD的中点。

求证:直线MN//平面。

分析:如图,要证线面平行,利用线面平行的判定定理在线线平行不容易构建的情况时,可以先设计证明面面平行,进而解决线面平行;也可以再转化为构建线线平行,进而证得线面

平行。对于异面直线的问题,一定要用归面的思想方法,转化为某平面内解决。

证明:如图,连接BC,取BC的中点E,连接ME,EN,AC,BD,在中,

∵M是AB的中点,又E是BC的中点,

∴ME是的中位线,ME//AC。

∵,∴ME//AC。

∵,∴。

同理,在中,分别BC、DC的中点,

∴,∴。

∵,,∴。

又∵,

∴。

过MN作平面与平面相交,设交线为m,即,则。

又,∴。

专题15 数形结合思想 专题点拨 数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合. (1)数形结合思想解决的问题常有以下几种: ①构建函数模型并结合其图像求参数的取值范围; ②构建函数模型并结合其图像研究方程根的范围; ③构建函数模型并结合其图像研究量与量之间的大小关系; ④构建函数模型并结合其几何意义研究函数的最值问题和证明不等式; ⑤构建立体几何模型研究代数问题; ⑥构建解析几何中的斜率、截距、距离等模型研究最值问题; ⑦构建方程模型,求根的个数; ⑧研究图形的形状、位置关系、性质等. (2)数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解填空题、选择题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: ①准确画出函数图像,注意函数的定义域; ②用图像法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图像,由图求解. (3)在运用数形结合思想分析问题和解决问题时,需做到以下四点: ①要彻底明白一些概念和运算的几何意义以及曲线的代数特征; ②要恰当设参,合理用参,建立关系,做好转化; ③要正确确定参数的取值范围,以防重复和遗漏; ④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解. 例题剖析 一、数形结合思想在求参数、代数式的取值范围、最值问题中的应用 【例1】若方程x2-4x+3+m=0在x∈(0,3)时有唯一实根,求实数m的取值范围. 【解析】利用数形结合的方法,直接观察得出结果.

直线与平面、平面与平面平行的判定 [学习目标] 1.理解直线与平面平行、平面与平面平行判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题. 知识点一直线与平面平行的判定定理 语言叙述符号表示图形表示 平面外一条直线与此平面内的一条直线平 行,则该直线与此平面平行 ?? ? ?? a?α b?α a∥b ?a∥α 思考若一条直线平行于一个平面内的一条直线,则这条直线和这个平面平行吗? 答根据直线与平面平行的判定定理可知该结论错误. 知识点二平面与平面平行的判定定理 语言叙述符号表示图形表示 一个平面内的两条相交直线与另一个平 面平行,则这两个平面平行 ?? ? ?? a?α,b?α a∩b=A a∥β,b∥β ?α∥β 思考如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面也平行吗?答不一定.这条直线与另一个平面平行或在另一个平面内. 题型一直线与平面平行的判定定理的应用 例1如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、 DA的中点. 求证:(1)EH∥平面BCD; (2)BD∥平面EFGH. 证明(1)∵EH为△ABD的中位线, ∴EH∥BD.

∵EH?平面BCD,BD?平面BCD, ∴EH∥平面BCD. (2)∵BD∥EH,BD?平面EFGH, EH?平面EFGH, ∴BD∥平面EFGH. 跟踪训练1在四面体A-BCD中,M,N分别是△ABD和△BCD的重心,求证:MN∥平面ADC. 证明如图所示,连接BM,BN并延长,分别交AD,DC于P,Q两 点,连接PQ. 因为M,N分别是△ABD和△BCD的重心, 所以BM∶MP=BN∶NQ=2∶1. 所以MN∥PQ. 又因为MN?平面ADC,PQ?平面ADC, 所以MN∥平面ADC. 题型二面面平行判定定理的应用 例2如图所示,在三棱柱ABC-A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1. 证明由棱柱性质知, B1C1∥BC,B1C1=BC, 又D,E分别为BC,B1C1的中点, 所以C1E綊DB,则四边形C1DBE为平行四边形, 因此EB∥C1D, 又C1D?平面ADC1, EB?平面ADC1, 所以EB∥平面ADC1. 连接DE,同理,EB綊BD,

第一部分 二 27 一、选择题 1.已知f (x )=2x ,则函数y =f (|x -1|)的图象为( ) [答案] D [解析] 法一:f (|x -1|)=2|x - 1|. 当x =0时,y =2.可排除A 、C . 当x =-1时,y =4.可排除B . 法二:y =2x →y =2|x |→y =2|x - 1|,经过图象的对称、平移可得到所求. [方法点拨] 1.函数图象部分的复习应该解决好画图、识图、用图三个基本问题,即对函数图象的掌握有三方面的要求: ①会画各种简单函数的图象; ②能依据函数的图象判断相应函数的性质; ③能用数形结合的思想以图辅助解题. 2.作图、识图、用图技巧 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换. 描绘函数图象时,要从函数性质入手,抓住关键点(图象最高点、最低点、与坐标轴的交点等)和对称性进行. (2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系. (3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象结合研究. 3.利用基本函数图象的变换作图 ①平移变换: y =f (x )――→h >0,右移|h |个单位 h <0,左移|h |个单位y =f (x -h ), y =f (x )――→k >0,上移|k |个单位k <0,下移|k |个单位y =f (x )+k . ②伸缩变换: y =f (x )错误!y =f (ωx ),

y =f (x ) ――→01,纵坐标伸长到原来的A 倍 y =Af (x ). ③对称变换: y =f (x )――→关于x 轴对称 y =-f (x ), y =f (x )――→关于y 轴对称y =f (-x ), y =f (x ) ――→关于直线x =a 对称y =f (2a -x ), y =f (x )――→关于原点对称 y =-f (-x ). 2.(文)(2014·哈三中二模)对实数a 和b ,定义运算“*”:a *b =????? a ,a - b ≤1 b ,a -b >1 ,设函数f (x ) =(x 2+1)*(x +2),若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ) A .(2,4]∪(5,+∞) B .(1,2]∪(4,5] C .(-∞,1)∪(4,5] D .[1,2] [答案] B [解析] 由a *b 的定义知,当x 2+1-(x +2)=x 2-x -1≤1时,即-1≤x ≤2时,f (x )=x 2+1;当x <-1或x >2时,f (x )=x +2,∵y =f (x )-c 的图象与x 轴恰有两个公共点,∴方 程f (x )-c =0恰有两不同实根,即y =c 与y =? ???? x 2 +1 (-1≤x ≤2), x +2 (x <-1或x >2),的图象恰有两个交点, 数形结合易得1

直线与平面平行的判定 教学目标 1.知识目标 ⑴进一步熟悉掌握空间直线与平面的位置关系; ⑵理解并掌握直线与平面平行的判定定理、图形语言、符号语言、文字语言; ⑶灵活运用直线与平面的判定定理,把“线面平行”转化为“线线平行”。 2.能力训练 ⑴掌握由“线线平行”证得“线面平行”的数学证明思想; ⑵进一步培养学生的观察能力、空间想象力与类比、转化能力,提高学生的逻辑推理能力。 3.德育渗透 ⑴培养学生的认真、仔细、严谨的学习态度; ⑵建立“实践——理论——再实践”的科学研究方法。 教学重点 直线与平面平行的判定定理 教学难点 直线与平面平行的判定定理的应用 教学方法 启发式、引导式、观察分析、理论联系实际 教具 模型、尺、多媒体设备 教学过程 (一) 内容回顾 师:在上节课我们介绍了直线与平面的位置关系,有几种?可将图形给以什么作为划分的标准? 直线与平面平行 直线与平面相交 直线在平面内 //a α a α ?{} a A α=I

(二)新课导入 1、如何判定直线与平面平行 师:请同学回忆,我们昨天就是受用了什么方法证明直线与平面平行?有直线在平面外能不能说明直线与平面平行? 生:借助定义,说明直线与平面没有公共点。 师:判断直线与平面有没有公共点,需要将直线与平面延展开瞧它们有没有交点,但延展判断并不方便灵敏,那就需要我们挖掘一种新的判定方法。我们来瞧瞧生活中的线面平行能给我们什么启发呢? 若将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与 书本所在的平面具有怎样的位置关系? 师:您们能用自己的话概括出线面平行的判定定理不? 生:如果平面外一条直线与这个平面内的一条直线平行, 那么这条直线与这个平面平行。 2、分析判定定理的三种语言 师:定理的条件细分有几点? 生:线在平面外,线在平面内,线线平行 (师生互动共同整理出定理的图形语言、符号语言、文字语言) 图形语言 符号语言 文字语言 线线平行, 则线面平行。 (三)例题讲解 师:如果要证明线面平行,关键在哪里? 生:在平面内找到一条直线,证明线线平行。 例1 已知:如图空间四边形ABCD 中,E 、F 分别就是AB 、AD 的中点。求证:EF ∥平面BCD 。 证明:连结BD AE = EB ? EF ∥BD AF =FD EF ?平面BCD ?EF ∥平面BCD BD ?平面BCD 着重强调:①要证EF ∥平面BCD,关键就是在平面BCD 中找到与EF 平行的直线; ②注意证明的书写,先说明图形中增加的辅助点与线,证明步骤严谨。 例2 如图,正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,证明BD 1∥平面AEC 。 观察 l b a αααα////a b a b a ??? ? ?? ??

张喜林制 [ 2.2.4平面与平面平行的性质教案 【教学目标】 1、通过图形探究平面与平面平行的性质定理; 2、熟练掌握平面与平面平行的性质定理的应用; 3、进一步培养学生的空间想象能力,以及逻辑思维能力. 【教学重难点】 重点:通过直观感知,操作确认,概括并证明平面和平面平行的性质定理。 难点:平面和平面平行的性质定理的证明和应用。 【教学过程】 1、 教师引导学生借助长方体模型思考、交流得出课前预习学案中的结论 结论:<1>结合长方体模型,可知:或平行或异面; <2>直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平 行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行; <3>文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行; 符号语言:b a b a //,,//?=γ?β=β?αβα;图形语言如图所示: <4>应用面面平行的性质定理的难点是:过某些点或直线作一个平面.应用线面平 行性质定理的口诀:“见到面面平行,先过某些直线作两个平面的交线.” 2、思考:如果平面βα//,那么平面α内的直线a 和平面β内的哪些直线平行?怎么 找出这些直线? (教师引导学生借助长方体模型思考、交流得出结论) 结论:过直线a 做平面与平面β相交,则交线和a 平行. (在教师的启发下,师生共同概括完成上述结论及证明过程,从而得到两个平面平行的 性质定理)。 3、平面和平面平行平行的性质定理 定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 符号表示: b a b a ////??? ???==γβγαβα 证明: ==,,a b a b a b a b a b αγβγαβ αβ ??因为∩,∩所以,又因为∥所以没有公共点 又因为同在平面γ内 所以∥ 教师指出:可以由平面与平面平行得出直线与直线平行

直线、平面平行的判定及其性质 1. 下列命题中,正确命题的是 ④ . ①若直线l 上有无数个点不在平面α内,则l ∥α; ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行; ③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点. 2. 下列条件中,不能判断两个平面平行的是 (填序号). ①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面 ③一个平面内有无数条直线平行于另一个平面 ④一个平面内任何一条直线都平行于另一个平面 答案 ①②③ 3. 对于平面α和共面的直线m 、n ,下列命题中假命题是 (填序号). ①若m ⊥α,m ⊥n ,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ?α,n ∥α,则m ∥n ④若m 、n 与α所成的角相等,则m ∥n 答案 ①②④ 4. 已知直线a ,b ,平面α,则以下三个命题: ①若a ∥b ,b ?α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b . 其中真命题的个数是 . 答案 0 5. 直线a //平面M ,直线b ? /M ,那么a //b 是b //M 的 条件. A .充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要 6. 能保证直线a 与平面α平行的条件是 A.b a b a //,,αα?? B.b a b //,α? C.c a b a c b //////,,,αα? D.b D b C a B a A b ∈∈∈∈?,,,,α且BD AC = 7. 如果直线a 平行于平面α,则 A.平面α内有且只有一直线与a 平行 B.平面α内无数条直线与a 平行 C.平面α内不存在与a 平行的直线 D.平面α内的任意直线与直线a 都平行 8. 如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系 A.相交 B.α//b C.α?b D .α//b 或α?b 9. 下列命题正确的个数是

高中数学人教新课标 A 版必修 2 第二章 点、直线、平面之间的位置关系 2.2.3 直线
与平面平行的性质 B 卷
姓名:________
班级:________
成绩:________
一、 单选题 (共 3 题;共 6 分)
1. (2 分) 如图,四棱锥 S—ABCD 的底面为正方形,SD 底面 ABCD,则下列结论中不正确的是
A . AC⊥SB B . AB∥平面 SCD C . SA 与平面 SBD 所成的角等于 SC 与平面 SBD 所成的角 D . AB 与 SC 所成的角等于 DC 与 SA 所成的角 【考点】
2. (2 分) 下列四个结论: ⑴两条不同的直线都和同一个平面平行,则这两条直线平行. ⑵两条不同的直线没有公共点,则这两条直线平行. ⑶两条不同直线都和第三条直线垂直,则这两条直线平行. ⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行. 其中正确的个数为( ) A.0 B.1 C.2 D.3 【考点】
3. (2 分) 设 是两条不同的直线,
是三个不同的平面.有下列四个命题:
①若 ,

,则 ;
②若

③若

,则 ,
; ,则

第 1 页 共 13 页

④若


,则

其中错误命题的序号是( )
A . ①④
B . ①③
C . ②③④
D . ②③
【考点】
二、 选择题 (共 5 题;共 10 分)
4. (2 分) (2018 高一上·深圳月考) 已知空间两条不同的直线
正确的是( )
A.若

B.若

C.
D.若

【考点】
和两个不同的平面
,则下列命题
5. (2 分) 已知两个不同的平面 和两条不重合的直线 a,b,则下列四个命题正确的是( ) 【考点】
6. (2 分) (2018 高一上·大连期末) 若
题的是( )
A.若
,则
是两条不同的直线,
B.若
,则
C.若 D.若 【考点】
,则 ,则
是三个不同的平面,则下列为真命
7. (2 分) (2019 高一上·集宁月考) 已知
是两个不同的平面,
第 2 页 共 13 页
是两条不同的直线,给出下列命

专题讲座: 数形结合 一、填空题 例1曲线241x y -+=(22≤≤-x )与直线()24-=-x k y 有两个交点时,实数k 的取值范围是 【答案】:53,124?? ?? ? 【提示】曲线为圆的一部分,直线恒过定点M (2,4),由图可得有两 个交点时k 的范围。 例2已知平面向量,(0,)αβααβ≠≠满足1,β=且αβα-与的夹角为120? ,则α的 取值范围是 【答案】:23 03 α<≤ 【提示】作出草图,由1 sin sin 60 B α ? = ,故α=23sin 3B 又0120B ? ? << 0sin 1B ∴<≤,23 03 α∴<≤ 例3已知向量(2, 0)OB =,(2, 2)OC =, (2cos , 2sin ),CA αα=则OA 与OB 夹角的范围为 【答案】:]12 5,12[ π π 【提示】因2(cos ,sin ),CA αα=说明点A 的轨迹是以(2, 2)C 为圆心,2为半径的圆,如图,则OA 与OB 夹角最大是 5,4612πππ+=最小是4612 πππ -= 例4若对一切R θ∈,复数(cos )(2sin )z a a i θθ=++-的模不超过2,则实数a 的取值范围为 【答案】:55,55?? -???? 【提示】复数的模2 2 (cos )(2sin )2z a a θθ=++-≤,可以借助单位圆上一点(cos ,sin )θθ-和直线2y x =的一点(,2)a a 的距离来理解。 x x y M

例5若11 ||2 x a x -+≥对一切0x >恒成立,则a 的取值范围是 【答案】:(,2]-∞ 【提示】分别考虑函数1y x a =-和211 2 y x =- +的图像 例6 已知抛物线()y g x =经过点(0,0)O 、(,0)A m 与点(1,1)P m m ++, 其中0>>n m ,a b <,设函数)()()(x g n x x f -=在a x =和b x =处取到极值,则n m b a ,,,的大小关系为 【答案】b n a m <<< 【提示】由题可设()(),(0)g x kx x m k =->, 则()()()f x kx x m x n =--,作出三次函数图象即可。 例7若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 【答案】:0k <或4k = 【提示】:研究函数1y kx =(10y >)和函数2 2(1),(1)y x x =+>-的图像 例8已知函数2 1 ()(2) 1ax bx c x f x f x x ?++≥-=?--<-? ,其图象在点(1,(1)f )处的切线方程为 21y x =+,则它在点(3,(3))f --处的切线方程为 【答案】:230x y ++= 【提示】:由()(2)f x f x =--可得()f x 关于直线1x =-对称,画出示意图(略),(1,(1)f )和(3,(3))f --为关于直线1x =-的对称点,斜率互为相反数,可以快速求解。 例9直线1y =与曲线2 y x x a =-+有四个交点,则a 的取值范围是__________ 【答案】:514a << 【提示】研究22,0 ,0 x x a x y x x a x ?-+≥?=?++

《直线与平面平行的性质》教学设计 南蔡村中学 一、学情分析: 1、知识上:学习过“空间直线与平面的位置关系”,“直线与平面平行的判定”等知识,为学习“直线与平面平行的性质”作了必要的知识准备。 2、思维上:研究过判定定理的推导过程,已经初步具备了一定的逻辑思维和推理论证能力。 3、能力上:积极引导学生学会观察,学会分析问题、探究问题、自主归纳总结得出规律与结论。 二、学习容分析 《点、直线、平面之间的位置关系》在必修2中安排在第一章《空间几何体》之后,将使学生在前一章整体观察、认识空间几何体的基础上,进一步认识空间中点、直线、平面之间的位置关系;初步体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题。 “空间直线与平面平行的位置关系”是“空间直线平行关系”和“空间平面平行关系”的桥梁与纽带。即 “线线平行线面平行 三、教学目标 (一)知识目标: 1.理解直线与平面平行的性质定理。 2.能利用这个性质定理去解决一些简单问题。 (二)能力目标: 1.在探究直线与平面平行的性质定理的过程中让学生体会直线与平面平行中蕴含 着哪些特殊的直线与直线之间的位置关系,体会探索思路中蕴含的转化、类比、

从特殊到一般等思想方法。 2.通过与线面平行的判定定理作对比,让学生体会知识之间的相互联系以及知识点 的灵活应用。 3.结合已学知识,让学生自己总结出判定空间中直线与平面平行的方法。 四、教学重点、难点 重点:直线与平面平行的性质定理及其应用。 难点:发现线面平行性质,理解线面平行性质与判定定理的关系并把它们整合到数学知识体系中。 五、教学手段 计算机PPT,投影仪 六、课堂教学基本流程

§2.2.1 直线与平面平行的判定 一、学习目标: (1)理解并掌握直线与平面平行的判定定理; (2)进一步培养学生观察、发现的能力和空间想象能力; 二、学习重点与难点 重点:直线与平面平行的判定定理及应用。 难点:直线与平面平行的判定定理的探索及应用。 三、教学过程 (一)知识准备、新课引入 α 提问2:今天我们针对直线与平面平行的位置关系进行探究。根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。 (二)探求判定定理 1、直观感知 提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗? 2、动手实践 教师取出预先准备好的直角梯形泡沫板演示: 当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以的感觉, 当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象是 3、探究思考 (1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢? (2)如果平面外的直线a与平面α内的一条直线b平行,那么直线a与平面α平行吗?

4、归纳确认: 直线和平面平行的判定定理: 文字语言: 图形语言: 符号语言: 简单概括:(内外)线线平行 线面平行 温馨提示: 作用:判定或证明线面平行。 关键:在平面内找(或作)出一条直线与面外的直线平行。 思想:空间问题转化为平面问题 5、思考:你能否尝试证明一下线面平行判定定理? (三)应用定理,巩固与提高 例1:已知:空间四边形ABCD 中,E 、F 分别是AB 、AD 试判断EF 与平面BCD 的关系,并予以证明 变式:空间四边形ABCD 中,E 、F 分别是AB 、AD 上的点, 且AE= 31AB ,AF=3 1AD 求证:EF ∥平面BCD . A B C D E F

数形结合 实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。如等式()()x y -+-=21422 一、联想图形的交点 例1. 已知,则方程的实根个数为01<<=a a x x a |||log |() A. 1个 B. 2个 C. 3个 D. 1个或2个或3个 分析:判断方程的根的个数就是判断图象与的交点个数,画y a y x x a ==|||log |出两个函数图 象,易知两图象只有两个交点,故方程有2个实根,选(B )。 例2. 解不等式x x +>2 令,,则不等式的解,就是使的图象 y x y x x x y x 121222= +=+>=+ 在的上方的那段对应的横坐标, y x 2=如下图,不等式的解集为{|} x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。{|}x x -≤<22 练习:设定义域为R 函数?? ?=≠-=1 01 1lg )(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同 实数解的充要条件是( ) 0,0. 0,0. 0,0. 0,0.=≥=<<>>c ,设P :函数x c y =在R 上单调递减,Q :不等式12>++c x x 的解集为R ,如 果P 与Q 有且仅有一个正确,试求c 的范围。 因为不等式12>++c x x 的几何意义为:在数轴上求一点)(x P ,使P 到)2(),0(c B A 的距离之和的最小值大于1,而P 到AB 二点的最短距离为12>=c AB ,即2 1> c 而P :函数x c y =在R 上单调递减,即1

华侨中学高三数学(理科)第二轮复习专题:数形结合思想教学地点:一中集美分校高三(4)班 授课教师:华侨中学王磊 2016.03.24 【思想方法概述】 数形结合的思想在每年的高考中都有所体现,它常用来研究方程根的情况,讨论函数的值域(最值)及求变量的取值围等.对这类容的选择题、填空题,数形结合特别有效.从2015年的高考题来看,数形结合的重点是研究“以形助数”.预测2016年高考中,仍然会沿用以往的命题思路,借助各种函数的图象和方程的曲线为载体,考查数形结合的思想方法,在考题形式上,不但有小题,还会有解答题,在考查的数量上,会有多个小题考查数形结合的思想方法.复习中应提高用数形结合思想解题的意识,画图不能太草,要善于用特殊数或特殊点来精确确定图形间的位置关系. 以形助数(数题形解)借助形的生动性和直观性来阐述数形之间的关系, 把形转化为数,即以形作为手段,数作为目的的解 决数学问题的数学思想. 数形结合思想通过“以 形助数,以数辅形”,使 复杂问题简单化,抽象问 题具体化,能够变抽象思 维为形象思维,有助于把 握数学问题的本质,它是 数学的规律性与灵活性 的有机结合.[来源:学&科&网Z&X&X&K][来源:学_科_网] 以数辅形(形题数解)[来源:][来 源:https://www.doczj.com/doc/e618279789.html,][来源:Z*xx*https://www.doczj.com/doc/e618279789.html,][来源:][来源:https://www.doczj.com/doc/e618279789.html,]借助于数的精确性和规性及严密性来阐明形的某些属性,即以数作为手段,形作为目的的解决问题的数学思想.[来源:https://www.doczj.com/doc/e618279789.html,] 以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质. 2.运用数形结合思想分析解决问题时,要遵循三个原则: (1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应. (2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错. (3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值围,特别是运用函数图象时应设法选择动直线与定二次曲线.3.数形结合思想在高考试题中主要有以下六个常考点

2.2.1 直线与平面平行的判定及性质教学设计 一、教材分析 直线与平面问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理能力。 二、教学目标 1、知识与技能 (1)通过直观感知、操作确认,理解直线与平面平行的判定定理并能进行简单应用。 (2)进一步培养学生观察、发现问题的能力和空间想像能力。 2、过程与方法 (1)启发式:以实物(门、书、景色)为媒体,启发、诱思学生逐步经历定理的直观感知过程。 (2)指导学生进行合情推理。对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题、教师予以指导,帮助学生合情推理、澄清概念、加深认识、正确运用。 3、情感态度与价值观 (1)让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力。 (2)在培养学生逻辑思维能力的同时,养成学生办事认真仔细的习惯及合情推理的探究精神。 三、教学的重点与难点 教学重点:直线和平面平行的判定定理的发现及其应用。 教学难点:从生活经验归纳发现直线和平面平行的判定定理。 四、教学过程 (一)引入新课 1、内容回顾,老师带领学生复习直线与平面的已学内容。 直线与平面有两个公共点——直线在平面内(直线上所有的 点都在这个平面内) 直线与平面只有一个公共点——直线与平面相交 直线与平面没有公共点——直线与平面平行

直线与平面平行 2、直观感知 老师提问学生:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗? 学生举例:例举日光灯与天花板,树立的电线杆与墙面。 门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。 (二)新授内容 1、如何判定直线与平面平行: 如果平面外一条直线与这个平面内的一条直线平行,那 么这条直线和这个平面平行。 老师给学生讲解例题: 例1:求证:空间四边形相邻两边中点的连线,平行于 经过另外两边的平面。 已知:如图空间四边形ABCD中,E、F分别是AB、AD的 中点。求证:EF∥平面BCD AE=EB ?EF∥BD AF=FD EF ?平面BCD ?EF∥平面BCD BD ?平面BCD 2.直线和平面平行的性质定理: 如果一条直线和一个平面平行,经过这条直线的平面和

课题 平面与平面平行的性质 班级:_______姓名:_______ 自学导航 学习目标: 1`.通过图形探究面面平行的性质定理。2.熟练掌握面面平行的性质定理的应用。 3.进一步培养学生的空间想象能力,以及逻辑思维能力。 重点:面面平行的性质。 难点:面面平行性质的应用。 学法指导: 平行是一种非常重要的位置关系,不仅应用较多,而且是空间问题平面化的典范。面面平行的性质定理给出了由面面平行....转化为线线平行.... 的方法。 自主学习 知识链接:平面与平面平行的判断方法有 自主探究: 预习教材60页至61页,找出疑惑之处,并完成下列问题: 问题提出 1.平面与平面平行的判定定理是什么? 2.平面与平面平行的判定定理解决了平面与平面平行的条件问题,反之,在平面与平面平行的条件下,可以得到什么结论呢? 思考1:若α∥β,l ?α,则直线l 与平面β的位置关系如何? 思考2:若α∥β,直线l 与平面α平行,那么直线l 与平面β的位置关系如何? 思考3:若α∥β,直线l 与平面α相交,那么直线l 与平面β的位置关系如何? 思考4:若α∥β,平面α与平面γ相交,则平面β与平面γ的位置关系如何? 思考5:若α∥β,平面α、β分别与平面γ相交于直线a 、b ,那么直线a 、b 的位置关系如何?为什么? 由下图反映出来的性质就是一个定理,分别用文字语言和符号语言可以怎样表述? 思考6:如果两个相交平面同时和第三个平面相交,那么它们的交线的位置关系如何? γβα b a

思考5:若平面α、β都与平面γ平行,则平面α与平面β的位置关系如何? 小组交流、展示提升 例1 求证:夹在两个平行平面间的平行线段相等. 例2 在正方体ABCD-A ′B ′C ′D ′中,点M 在CD BD 的位置关系,并说明理由. 例3 如图,已知AB 、CD 是夹在两个平行平面α、β之间的线段,M 、 N 分别为AB 、CD 的中点,求证:MN ∥平面β.

高二下9.3 直线与平面平行的判定和性质同步练习 基础练习 1.给出下列四个命题: ①若一直线与一个平面内的一条直线平行,则这直线与这个平面平行. ②若一直线与一平面内的两条直线平行,则这直线与这个平面平行. ③若平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行. ④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行. 其中正确命题的个数是(). A . 0B. 1C. 2D. 3 2.梯形 ABCD 中, AB∥ CD ,AB平面,CD平面,则直线 CD 与平面内的直 线的位置关系只能是(). A .平行B.平行或异面 C.平行或相交D.异面或相交 3.( 1)若直线 a、 b 均平行于平面a,那么 a 与 b 的位置关系是 __________; (2)若直线 a∥ b,且 a∥平面,则 b 与的位置关系是 __________; (3)若直线 a、 b 是异面直线,且 a∥,则 b 与的关系是 __________ . 4.如图 9-空间四边形ABCD 中, E 是边 AB 上的一点,求作过C、E 的一个平面,使对角线 BD 平行于这个平面,并说明理由. 图 9-5.在正方体ABCD -A1B1C1D1中,E、F 分别为A1C1和CC1的中点,求证:直线A1C ∥平面 B1EF . 综合练习 1.直线与平面平行的充要条件是这条直线与平面内的(). A.一条直线不相交 2.给出以下命题,不正确的是(). A.如果两条平行线中的一条与一个平面相交,那么另一条也和这个平面相交 B.如果直线 a 和直线 b 平行,那么直线 a 平行于经过 b 的所有的平面 C.如果 a 和 b 是异面直线,那么经过 a 有且只有一个平面与直线 b 平行

直线与平面平行的判定定理教案设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

§2.2.1 直线与平面平行的判定 (选自人教A版必修②第二章第二节第一课时) 一、教材分析 本节教材选自人教A版数学必修②第二章第二节第一课时,主要内容是直线与平面平行的判定定理的探究与发现、归纳概括、练习与应用。它是在前面已学空间点、线、面的位置关系的基础上,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。学线面平行判定是三大平行判定(线线平行、线面平行、面面平行)的核心,也是高考的高频考点之一,学好线面平行对后续学习面面平行及三大垂直的判定与性质等内容,具有良好的示范作用,同时,它在立体几何学习中起着承上启下的作用,具有重要的意义与地位。本节课的学习对培养学生空间想象能力与逻辑推理能力起到重要作用。线面平行的判定蕴含的数学思想方法主要有数形结合与化归与转化思想。 二、学情分析 本节课的教学对象是高一的学生,他们具备一定的由形象思维转化为逻辑思维的能力。学生在此前已经学习了直线与直线平行的性质及判定、直线与平面平行的定义,对直线与平面平行有了一定的认识,这些都为学生学习本节课做了准备。同时,由于本节课与生活实际相结合,学生的学习兴趣、参与度会比较大。但是由于学生处于学习空间立体几何的初始阶段,学习立体几何所具备的语言表达及空间感与空间想象能力不够,特别是对线面平行(空间立体)转化为线线平行(平面)的化归与转化思想,这是学生首次接触的思想方法,应加以必要的强化与引导。 三、教学目标 (一)知识技能目标 (1)理解直线与平面平行的判定定理并能进行简单应用; (2)培养学生观察、发现问题的能力和空间想象能力。 (二)过程方法目标

高中数学-立体几何典型例题一 例1 简述下列问题的结论,并画图说明: (1)直线?a 平面α,直线A a b =I ,则b 和α的位置关系如何? (2)直线α?a ,直线a b //,则直线b 和α的位置关系如何? 分析:(1)由图(1)可知:α?b 或A b =αI ; (2)由图(2)可知:α//b 或α?b . 说明:此题是考查直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法. 典型例题二 例2 P 是平行四边形ABCD 所在平面外一点,Q 是PA 的中点,求证://PC 平面BDQ . 分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以了. 证明:如图所示,连结AC ,交BD 于点O , ∵四边形ABCD 是平行四边形 ∴CO AO =,连结OQ ,则OQ 在平面BDQ 内, 且OQ 是 APC ?的中位线, ∴OQ PC //. ∵PC 在平面BDQ 外, ∴//PC 平面BDQ . 说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样找这一直线呢? 由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知直线和交线平行,那么就能够马上得到结论.这一个证明线面平行的步骤可以总结为: 过直线作平面,得交线,若线线平行,则线面平行. 典型例题三

例3 经过两条异面直线a ,b 之外的一点P ,可以作几个平面都与a ,b 平行?并证明你的结论. 分析:可考虑P 点的不同位置分两种情况讨论. 解:(1)当P 点所在位置使得a ,P (或b ,P )本身确定的平面平行于b (或a )时,过P 点再作不出与a ,b 都平行的平面; (2)当P 点所在位置a ,P (或b ,P )本身确定的平面与b (或a )不平行时,可过点P 作a a '//,b b //'.由于a ,b 异面,则a ',b '不重合且相交于P .由于P b a =''I ,a ',b '确定的平面α,则由线面平行判定定理知:α//a ,α//b .可作一个平面都与a ,b 平行. 故应作“0个或1个”平面. 说明:本题解答容易忽视对P 点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进行分类讨论. 典型例题四 例4 平面外的两条平行直线中的一条平行于这个平面,那么另一条直线也平行于这个平面. 已知:直线b a //,//a 平面α,α?b . 求证:α//b . 证明:如图所示,过a 及平面α内一点A 作平面β. 设c =βαI , ∵α//a , ∴c a //. 又∵b a //, ∴c b //. ∵α?b ,α?c , ∴α//b . 说明:根据判定定理,只要在α内找一条直线b c //,根据条件α//a ,为了利用直线和平面平行的性质定理,可以过a 作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化. 和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的. 典型例题五 例5 已知四面体ABC S -的所有棱长均为a .求: (1)异面直线AB SC 、的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角. AB SC 、分析:依异面直线的公垂线的概念求作异面直线的公垂线段,进而求出其距离;对于异面直线所成的角可 采取平移

数形结合思想 由于新教材新大纲把常见的数学思想纳入基础知识的范畴,通过对数学知识 的考查反映考生对数学思想和方法的理解和掌握的程度。数形结合的思想重点考查以形释数,同时考查以数解形,题型会渗透到解答题,题量会加大.数形结合常用于解方程、解不等式、求函数值域、解复数和三角问题中,充分发挥形的形象性、直观性、数的深刻性、精确性,弥补形的表面性,数的抽象性,从而起到优化解题途径的作用。 例题1.关于x 的方程2x 2-3x -2k =0在(-1, 1)内有一个实根,则k 的取值范围是什么? 分析:原方程变形为2x 2-3x =2k 后可转化为函数 y =2x 2-3x 。和函数y =2k 的交点个数问题. 解:作出函数y =2x 2-3x 的图像后,用y =2k 去截抛物线,随着k 的变化,易知2k =-89 或-1≤2k <5时只 有一个公共点.∴ k =- 16 9或- 2 1≤k < 2 5. 点拨解疑:方程(组)解的个数问题一般都是通过相应的函数图象的交点问题去解决.这是用形(交点)解决数(实根)的问题. 例题2.求函数u =t t -++642的最值. 分析:观察得2t +4+2(6-t )=16,若设x =42+t ,y =t -6,则有x 2+2y 2=16, 再令u =x +y 则转化为直线与椭圆的关系问题来解决. 解:令42+t =x , t -6=y , 则x 2+2y 2=16, x ≥0, y ≥0, 再设u =x +y , 由于直线与椭圆的交点随着u 的变化而变化,易知,当直线与椭圆相切时截距u 取得最大值,过点(0,22)时,u 取得最小值22, 解方程组 ???=++-=16 22 2y x u x y ,得3x 2-4ux +2u 2-16=0, 令△=0, 解得u =±26 . ∴ u 的最大值为26,最小值为22. 点拨解疑:数学观察能力要求透过现象,发现本质,挖掘题中的隐含条件. 例题3.已知s = 1 322 +-t t ,则s 的最小值为 。 分析:等式右边形似点到直线距离公式. 解:|s |= 1 |32|2 +-t t , 则|s |可看成点(0, 0)到直线tx +y +2t -3=0的距离,又直线tx +y +2t -3=0变形为:(x +2)t +y -3=0后易知过定点P (-2,3),从而原点到直线 tx +y +2t -3=0的最短距离为|OP |=13, ∴ -13≤s ≤13.

相关主题
文本预览
相关文档 最新文档