当前位置:文档之家› 高效节能叶片泵关键技术研究(上)

高效节能叶片泵关键技术研究(上)

高效节能叶片泵关键技术研究(上)
高效节能叶片泵关键技术研究(上)

附件:《高效节能叶片泵关键技术研究》研究报告

研究报告内容如下:

1、报告题目:基于ANSYS的叶片模态分析与创新设计

2、项目组成员姓名

3、摘要

本文提出新的叶片结构,通过改变叶片与定子传统的磨擦形式,减小磨损。利用有限元软件ANSYS对叶片进行模态分析,求解各阶模态振型及固有频率,对叶片结构进行优化设计,避免叶片产生共振,从而能达到节能降噪的目的。

4、关键词

叶片; ANSYS;模态分析;降噪

5、研究报告正文

一、前言

在液压传动技术领域,叶片泵是目前工业使用较多的液压泵,衡量叶片泵性能的重要指标主要是泵的振动和噪声高低问题。近年来,国内外的高校、科研院所在叶片泵降噪方面的进行了大量的研究,取得了一定的成果。随着叶片泵向高压、高转速方向发展,国产的叶片泵运转长时间运行后的噪声和振动问题依然突出,一直没有很好地解决,振动和噪声导致大量的能量损耗,降低了液压系统效率。

叶片泵的噪声有机械噪声和流体噪声两部分构成,机械噪声为其主要成份,机械噪声与定子曲线形状、转子及叶片的结构等相关,机械噪声主要是叶片与定子内表面磨擦、撞击产生的。叶片泵的技术难点在于解决叶片运动过程中对定子的冲击,以及如何进一步改善叶片的受力、减少磨损。虽然定子高次曲线的应用在理论上保障了叶片运动的平稳性,但由于叶片顶部结构为尖角状或圆弧廓状,叶片在运动中与定子仍然存在较大的磨擦,引起噪声,此外叶片在高速旋转过程中,当激振频率与叶片的某阶固有频率相等时,会引起叶片剧烈的振动。

二、叶片的受力分析

图1,叶片泵结构图2,叶片受力图

1、定子;

2、转子;

3、叶片;

4、配流盘

传统叶片泵的结构如图1所示,主要由定子、转子、叶片、配流盘等组成。叶片在定子曲线上划动时,叶片顶部受到定子内曲线的两个作用力,如图2所示,叶片与定子为滑动磨擦,F1为定子对叶片的接触反作用力,方向沿A点处定子曲线的法线方向,F2为定子对叶片的摩擦力,方向沿A点处定子曲线的切线方向,

且F2=f X F1,f为叶片与定子的摩擦系数。由于工作中叶片高速旋转的惯性力、液压力的作用,叶片顶部A点磨损较大,叶片顶部逐渐被磨成一个平面,导致叶片与定子曲面的接触面增大,进而引起摩擦力F2较大。

三、叶片优化设计及模态分析

1、传统叶片结构

如图3所示,传统叶片结构简单,制造加工方便,此外与叶片装配的定子结构也简单,装配简便,应用中的装配图如图1所示。但缺点是叶片顶部与定子为滑动磨擦,接触面的受力性能较差,叶片运转时的摩擦力较大,容易引起叶片与定子的剧烈磨损和系统噪声。

图3 传统叶片结构图传统叶片与定子装配图

2、新型叶片结构

为了改善传统叶片受力状况,在传统叶片的基础上改进,设计一种新型叶片结构,新型叶片结构由叶片、滚动体、销钉、螺钉四个部分组成,如图4至9所示。其中,如图4b的叶片空间框架图所示,叶片的顶部开有滚动体的滚槽,滚槽左侧是滚动体支撑孔,滚槽右侧打螺纹孔,叶片底部设有一个方形槽腔,用于安装弹簧,弹簧提供叶片与转子之间的弹簧力,使叶片运转时能够始终压紧定子。

叶片顶部的滚动体可以绕自身轴线滚动,当叶片在定子曲面上划动工作时,由于滚动体的滚动,有效减小了叶片与定子曲面的磨损及摩擦力,可以较好地提高效率,降低噪声,降低能耗。与传统叶片相比,新型叶片允许增大叶片泵转子转速,提高流量,此外,还可以提高叶片底部的弹簧压力,增大叶片与定子曲面的法向压力,提高液压密封腔的密封能力以及叶片泵的容积效率。

a 叶片立体图

b 叶片空间图

图4 新型叶片结构

图5 螺钉 图6滚动体

图7 销钉 图8 新型叶片结构图

3、叶片的模态分析

前面设计了新型叶片结构,以改善传统叶片结构的受力问题,下面利用用有

限元软件对叶片进行模态分析,求解两种叶片的各阶固有频率及相应模态振型,为解决新型叶片在工作中因共振而引起的噪声问题,提供参考解决方法。

工作中叶片的激振频率取决于电机转速,因此对应于电机的不同转速,激振

频率也不同,当激振频率达到叶片相应的固有频率时,会导致叶片共振,引起叶片剧烈振动,使叶片与定子、转子之间产生噪声和振动。例如,假设电机转速为970r/min ,则激振频率为16.667Hz 。

图10 传统叶片结构有限元网格图 图11 新型叶片结构有限元网格图 把叶片结构网格划分,取SOLID45单元,叶片的有限元网格图如图10、11所示。材料属性输入杨氏模量E=112.210′Pa ,泊松比为0.31,密度r =37800/kg m 。求解传统叶片结构前30阶、新型叶片结构前35阶的固有频率,各阶固有频率结果如图12、13所示。图中数据显示,从第7阶开始,两种叶片都有固有频率,且在相同阶次中,

传统叶片的固有频率比新型叶片的固有频率数值更大些。

图12 前30阶模态图13 前35阶模态

通过逐一查找各阶模态振型,其中可以找到传统叶片结构的横向振型图如图14所示,固有频率是第18 阶51.604Hz;纵向振型图如图15所示,固有频率是第29阶83.384Hz。同理,可以找到新型叶片结构的横向振型图如图16所示,固有频率是第19阶43.169Hz;纵向振型图如图17所示,固有频率是第29阶77.893Hz。在谐振状态,叶片的横向振型、纵向振型分别对泵体的定子和侧盖能产生剧烈的冲击和噪声,对叶片及相关泵体磨损较大。

从图12、13可见,设计的叶片有很多阶固有频率,因此在应用中为了有效避免叶片泵因共振引起的振动和噪声,有两种方法,一是要避免叶片的激励频率等于叶片任何一阶的固有频率。二是在已知激励频率的情况下,通过结构优化设计,使叶片的固有频率不等于激励频率。

图14 第18阶振型图图15 第29阶振型图

图16 第19阶模态的振型图图17 第34阶模态的振型图

通过对比图14、16可知,传统叶片结构的横向模态振型出现在第18阶,而新型叶片结构的横向模态振型出现在第19阶,对比图15和图17可知,传统叶片结构的纵向模态振型出现在第29阶,而新型叶片结构的纵向模态振型出现在第34阶,说明结构较复杂的新型叶片的模态比结构简单的传统叶片更多,即新型叶片比传统叶片的固有频率阶次更多,在相同条件下,新型叶片比传统叶片更容易被激振源激励而引起共振。但只要用有限元软件准确分析出新型叶片的各阶固有频率,并计算出激励源的激振频率,只要能做到两者不相等,就完全能够避免共振的发生。

四、结论

通过总结前人关于叶片泵噪声的主要来源的研究结果,指出传统叶片结构与定子的受力模型存在缺陷,是引起叶片泵机械噪声的原因之一。本文提出一种新型叶片结构,能够改善叶片与定子在运动中的磨损,用有限元软件ANSYS对新型叶片进行模态分析,求解它们的各阶固有频率的大小、模态振型,为叶片的结构优化设计提供参考依据。通过结构设计与有限元分析,理论上新型叶片结构具有可行性,有一定的实际应用价值,能够避免叶片在工作中产生共振,减小叶片泵的噪声和振动,从而能达到节能降噪的目的。

6、参考文献

[1] 雷天觉.液压工程手册[M].北京:机械工业出版社,1990.

[2] 雷亚勇,吴晓明,陈春明.双作用叶片泵噪声的产生机理和降噪分析[J].机床与液压,2007,35(1):145-147.

[3] 祝海林,葛乐通,皱旻.平衡式叶片泵的低噪声定子曲线[J].江苏工业学院,2003,15(4):41-43.

[4] 冀宏,王峥嵘,张玮.汽车动力转向叶片泵配流噪声控制的研究[J].液压与气动,2005(12):21-23.

[5] 胡阳.叶片泵噪声及其研究[J].液压与气动,2004(2):26-28.

[6] 张驰云,沈双达,金杨洁.叶片式转向助力泵定子曲线优化设计[J].机械设计与制造,2007(1):19-20.

[7] 罗先武,许洪元,刘树红.叶片倾斜对微型泵水力性能的影响[J].清华大学学报(自然科学版),2005,45(5)704-707.

[8] 郑开陆.叶片泵制造的研究[J].液压与气动,2006(2):21-23.

[9] 王力,权龙.单作用叶片泵瞬时流量的分析与计算[J].振动、测试与诊断,2006 26(3):188-191.

[10] 于霞,王峥嵘,李少年.转速变化对车辆用高压叶片泵性能的影响[J].机床与液压,2006(11):116-117.

[11] 杨新桥.典型工艺缺陷对叶片泵振动及噪声特性的研究[J].科技创业月刊,2006(3):173-174.

[12] 陈磊,候训波.平衡式变量叶片泵结构探讨[J].液压气动与密封,2007(3):14-16.

[13] 陈磊,孙玉清,张银东,纪玉龙.新型平衡式变量叶片泵[J].机械工程学报,2006,42(3):227-232.

[14] Eiichi Kojima. Development of a Quieter Variable一 Dispacement Vane pump for Automotive Hydraulic power Steering system [J]. International journal of Fluid Power,2003(4).

双作用叶片泵工作原理介绍

双作用叶片泵工作原理介绍 工作原理 图A所示为双作用叶片泵的工作原理。其工作原理与单作用叶片泵相似,不同之处在于双作用叶片泵的定子内表面似椭圆,由两大半径R圆弧、两小半径r圆弧和四段过渡曲线组成,且定子和转子同心。配油盘上开两个吸油窗口和两个压油窗口。当转子按图示方向转动时,叶片由小半径r处向大半径R处移动时,两叶片间容积增大,通过吸油窗口a吸油;当叶片由大半径R处向小半径r处移动时,两叶片间容积减小,液压油油液压力升高,通过压油窗口b压油。转子每转一周,每一叶片往复运动两次。故这种泵称为双作用叶片泵。双作用叶片泵的排量不可调,是定量泵。 叶片泵 2.排量和流量的计算 由图A可知,叶片泵每转一周,两叶片组成的工作腔由最小到最大变化两次。因此,叶片泵每转一周,两叶片间的油液排出量为大圆弧段R处的容积与小圆弧段r处的容积的差值的两倍。若叶片数为z,当不计叶片本身的体积时,通过计算可得双作用叶片泵的排量为 V=2π(R2-r2)b (1)泵的流量为q=2π(R2-r2)bnηv (2)式中,R为定子的长半径;,r为定子的短半径;b为叶片的宽度;n为转子的转速;ηv为叶片泵的容积效率。 由上述的流量计算公式可知,流量的大小由泵的结构参数所决定,当转速选定后,液压泵的流量也就确定了。因此,双作用叶片泵的流量不能调节,是定量泵。如果不考虑叶片厚度的影响,其瞬时流量应该是均匀的。但实际上叶片具有一定的厚度,长半径圆弧和短半径圆弧也不可能完全同心,泵的瞬时流量仍将出现微小的脉动,但其脉动率较其他形式的泵小得多,只要合理选择定子的过渡曲线及与其相适应的叶片数(为4的倍数,通常为12片或16片),理论上可以做到瞬时流量无脉动。

国内外大数据产业发展现状与趋势研究

龙源期刊网 https://www.doczj.com/doc/e217404549.html, 国内外大数据产业发展现状与趋势研究 作者:方申国谢楠 来源:《信息化建设》2017年第06期 大数据作为新财富,价值堪比石油。 进入21世纪以来,随着物联网、电子商务、社会化网络的快速发展,数据体量迎来了爆炸式的增长,大数据正在成为世界上最重要的土壤和基础。根据IDC(互联网数据中心)预测,2020年的数据增长量将是2010年的44倍,达到35ZB。世界经济论坛报告称,“大数据为新财富,价值堪比石油”。随着计算机及其存储设备、互联网、云计算等技术的发展,大数据应用领域随之不断丰富。大数据产业将依赖快速聚集的社会资源,在数据和应用驱动的创新下,不断丰富商业模式,构建出多层多样的市场格局,成为引领信息技术产业发展的核心引擎、推动社会进步的重要力量。 大数据产业发展现状 全球大数据产业发展概况 目前,大数据以爆炸式的发展速度迅速蔓延至各行各业。随着各国抢抓战略布局,不断加大扶持力度,全球大数据市场规模保持了高速增长态势。据IDC预测,全球大数据市场规模 年增长率达40%,在2017年将达到530亿美元。美国奥巴马政府于2012年3月宣布投资2亿美元启动“大数据研究和发展计划”,将“大数据研究”上升为国家意志;2015年发布“大数据研究和发展计划”,深入推动大数据技术研发,同时还鼓励产业、大学和研究机构、非盈利机构与政府一起努力,共享大数据提供的机遇。目前,美国大数据产业增长率已超过71%,大数据在美国健康医疗、公共管理、零售业、制造业等领域产生了巨大的经济效益。英国政府自2013年开始就注重对大数据技术的研发投入,2015年投入7300万英镑用于55个政府的大数据应用项目,投资兴办大数据研究中心,通过大数据技术在公开平台上发布了各层级数据资源,直接或间接为英国增加了近490亿至660亿英镑的收入,并预测到2017年,大数据技术可以为英国提供5.8万个新的工作岗位,或将带来2160亿英镑的经济增长。法国2011年推出了公开的数据平台 date.gouv.fr,以便于公民自由查询和下载公共数据;2013年相继发布《数字化路线图》、《法国政府大数据五项支持计划》等,通过为大数据设立原始扶持资金,推动交通、医疗卫生等纵向行业设立大数据旗舰项目,为大数据应用建立良好的生态环境,并积极建设大数据初创企业孵化器。日本在《日本再兴战略》中提出开放数据,将实施数据开放、大数据技术开发与运用作为2013-2020年的重要国家战略之一,积极推动日本政务大数据开放及产业大数据的发展,零售业、道路交通基建、互联网及电信业等行业的大数据应用取得显著效果。韩国政府高度重视大数据发展,科学、通信和未来规划部与国家信息社会局(NIA)共建大数据中心,大力推动全国大数据产业发展。根据《2015韩国数据行业白皮书》统计显示, 数据服务市场规模占韩国总行业市场规模的47%,位列第一;数据库构建服务以41.8%的占有

2019国内外大数据行业现状

当前,许多国家的政府和国际组织都认识到了大数据的重要作用,纷纷将开发利用大数据作为夺取新一轮竞争制高点的重要抓手,实施大数据战略,对大数据产业发展有着高度的热情。 美国政府将大数据视为强化美国竞争力的关键因素之一,把大数据研究和生产计划提高到国家战略层面。在美国的先进制药行业,药物开发领域的最新前沿技术是机器学习,即算法利用数据和经验教会自己辨别哪种化合物同哪个靶点相结合,并且发现对人眼来说不可见的模式。根据前期计划,美国希望利用大数据技术实现在多个领域的突破,包括科研教学、环境保护、工程技术、国土安全、生物医药等。 其中具体的研发计划涉及了美国国家科学基金会、国家卫生研究院、国防部、能源部、国防部高级研究局、地质勘探局等6 个联邦部门和机构。 目前,欧盟在大数据方面的活动主要涉及四方面内容:研究数据价值链战略因素;资助“大数据”和“开放数据”领域的研究和创新活动;实施开放数据政策;促进公共资助科研实验成果和数据的使用及再利用。 英国在2017 年议会期满前,开放有关交通运输、天气和健康方面的核心公共数据库,并在五年内投资1000 万英镑建立世界上首个“开放数据研究所”;政府将与出版行业等共同尽早实现对得到公共资助产生的科研成果的免费访问,英国皇家学会也在考虑如何改进科研数据在研究团体及其他用户间的共享和披露;英国研究理事会将投资200 万英镑建立一个公众可通过网络检索的“科研门户”。 法国政府为促进大数据领域的发展,将以培养新兴企业、软件制造商、工程师、信息系统设计师等为目标,开展一系列的投资计划。法国政府在其发布的《数字化路线图》中表示,将大力支持“大数据”在内的战略性高新技术,法国软件编辑联盟曾号召政府部门和私人企业共同合作,投入3 亿欧元资金用于推动大数据领域的发展。法国生产振兴部部长ArnaudMontebourg、数字经济部副部长FleurPellerin 和投资委员LouisGallois 在第二届巴黎大数据大会结束后的第二天共同宣布了将投入1150 万欧元用于支持7 个未来投资项目。这足以证明法国政府对于大数据领域发展的重视。法国政府投资这些项目的目的在于“通过发展创新性解决方案,并将其用于实践,来促进法国在大数据领域的发展”。众所周知,法国在数学和统计学领域具有独一无二的优势。 日本为了提高信息通信领域的国际竞争力、培育新产业,同时应用信息通信技术应对抗灾救灾和核电站事故等社会性问题。2013 年6 月,安倍内阁正式公布了新IT 战略——“创建

双作用叶片泵

引言 在广泛应用的各种液压设备中,液压泵是关键性的元件,它们的性能和寿命在很大程度上决定着整个液压系统的工作能力,因此对液压泵的合理选择和正确使用显得格外重要。即使是使用维护液压设备或从事液压系统的设计、生产,而不是从事液压元件开发、生产的工程技术人员,也有必要深入了解液压泵的结构及性能。本次设计中主要是从设计双作用叶片泵的方面来进入研究的。 本设计主要从双作用叶片泵的结构、原理、性能以及它的合理使用与维护来进行的,对于叶片泵参数设计的问题也有涉及。采用了国内通常所称的双作用式。 本设计的内容安排比较单一,只涉及了一种YB型的双作用叶片泵,而且其中的很多数据并不是按顺序来进行设计的,有些事根据网上的实验材料来进行取值的,先介绍的是双作用叶片泵的基本原理,接下来是流量计算,在然后是双作用叶片泵各零件和部件的设计,最后组装成为一个整体的双作用叶片泵。 由于本设计中,能够直接收集到的资料有限,不尽之处在所难免,希望您能指正。

1.双作用叶片泵的概述 1.1 工作原理 如图1-1所示。它的作用原理和单作用叶片泵相似,不同之处只在于定子表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线八个部分组成,且定子和转子是同心的。在图示转子顺时针方向旋转的情况下,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区把它们隔开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的液压力径向平衡,所以又称为平衡式叶片泵。 定子内表面近似为椭圆柱形,该椭圆形由两段长半径R、两段短半径r和四段过渡曲线所组成。当转子转动时,叶片在离心力和(建压后)根部压力油的作用下,在转子槽内作径向移动而压向定子内表,由叶片、定子的内表面、转子的外表面和两侧配油盘间形成若干个密封空间,当转子按图示方向旋转时,处在小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,叶片外伸,密封空间的容积增大,要吸入油液;再从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子内壁逐渐压进槽内,密封空间容积变小,将油液从压油口压出,因而,当转子每转一周,每个工作空间要完成两次吸油和压油,所以称之为双作用叶片泵,这种叶片泵由于有两个吸油腔和两个压油腔,并且各自的中心夹角是对称的,所以作用在转子上的油液压力相互平衡,因此双作用叶片泵又称为卸荷式叶片泵,为了要使径向力完全平衡,密封空间数(即叶片数)应当是双数。

单作用叶片泵的结构特点

分析仪器 https://www.doczj.com/doc/e217404549.html, 单作用叶片泵的结构特点如下: 1.定子和转子相互偏置改变定子和转子之间的偏心距,可以调节泵的流量。 2.径向液压力不平衡 由于单作用叶片泵的这一特点,使泵的工作压力受到限制,所以这种泵不适于高压。 3.叶片后倾 一般在单作用叶片泵中,为了使叶片顶部可靠地与定子内表面相接触,叶片底部油槽在压油区是与压油腔相通,在吸油区与吸油腔相通的,即叶片的底部和顶部受到的压力是平衡的。这样,叶片仅靠随转子旋转时所受到的离心惯性力向外运动,顶住定子的内表面。根据力学原理,叶片后倾一个角度有利于叶片在惯性力的作用下向外甩出。通常,后倾角为24°。

我们为大家介绍了电磁流量计应该如何去了解它的制作工艺和性能有点,才能在工业生产中取得更好的应用,今天我公司技术人员来教您该产品是具有怎样的测量原理,还有如何挑选电磁流量计的技能参数,如何正确选型,包括防护等级、如何选择附加功能、如何选择安装、安装的位置需要注意哪些等选择条件,金湖捷特仪表有限公司是您可以值得信赖的专业生产流量仪表的公司。 电磁流量计具有怎样的测量原理,首先该产品是运用法拉第电磁感应定律,导电液体在磁场中作为切割磁力线运动时,导体中会产生感应电势,感应电势分别为K、B、V、D,其中K为仪表常数,B为磁感应强度,V为测量管道内的平均流速,D为测量管道内截面的内径。电磁流量计在工作测量流量时,导电液体以速度V流过垂直于流动方向的磁场,导电性液体的流动感应出一个与平均流速成正比的电压,其感应,它的感应电压信号通过二个或者以上与液体直接接触的电极检出,然后通过电缆传送至转换器再通过智能化处理,在液晶显示显示出标准信号。 电磁流量计应该如何正确的选型,该流量计的选型是工业应用中非常重要的工作,根据各个客户反馈的资料显示出,在实际的应用中有一大半的故障是由于选型错误和安装错误造成的,这要值得大家注意。

大数据的国内外研究现状与发展动态分析报告

大数据的国内外研究现状及发展动态分析大数据的概念 产生的背景与意义 上世纪60年代到80年代早期,企业在大型机上部署财务、银行等关键应用系统,存储介质包括磁盘、磁带、光盘等。尽管当时人们称其为大数据,但以今日的数据量来看,这些数据无疑是非常有限的。随着PC的出现和应用增多,企业内部出现了很多以公文档为主要形式的数据,包括Word、Excel文档,以及后来出现的图片、图像、影像和音频等。此时企业内部生产数据的已不仅是企业的财务人员,还包括大量的办公人员,这极大地促进了数据量的增长。互联网的兴起则促成了数据量的第三次大规模增长,在互联网的时代,几乎全民都在制造数据。而与此同时,数据的形式也极其丰富,既有社交网络、多媒体等应用所主动产生的数据,也有搜索引擎、网页浏览等被动行为过程中被记录、搜集的数据。时至今日,随着移动互联网、物联网、云计算应用的进一步丰富,数据已呈指数级的增长,企业所处理的数据已经达到PB级,而全球每年所产生的数据量更是到了惊人的ZB级。在数据的这种爆炸式增长的背景下,“大数据”的概念逐渐在科技界、学术界、产业界引起热议。在大数据时代,我们分析的数据因为“大”,摆脱了传统对随机采样的依赖,而是面对全体数据;因为所有信息都是“数”,可以不再纠结具体数据的精确度,而是坦然面对信息的混杂;信息之“大”之“杂”,让我们分析的“据”也由传统的因果关系变为相关关系。 大数据热潮的掀起让中国期待“弯道超越”的机会,创造中国IT企业从在红海领域苦苦挣扎转向在蓝海领域奋起直追的战略机遇。传统IT行业对于底层设备、基础技术的要求非常高,企业在起点落后的情况下始终疲于追赶。每当企业在耗费大量人力、物力、财力取得技术突破时,IT革命早已将核心设备或元件推进至下一阶段。这种一步落后、处处受制于人的状态在大数据时代有望得到改变。大数据对于硬件基础设施的要求相对较低,不会受困于基础设备核心元件的相对落后。与在传统数据库操作层面的技术差距相比,大数据分析应用的中外技术差距要小得多。而且,美国等传统IT强国的大数据战略也都处于摸着石头过河的试错阶段。中国市场的规模之大也为这一产业发展提供了大空间、大平台。大数据对于中国企业不仅仅是信息技术的更新,更是企业发展战略的变革。随着对大数据的获取、处理、管理等各个角度研究的开展,企业逐渐认识数据已经逐渐演变成“数据资产”。任何硬件、软件及服务都会随着技术发展和需求变化逐渐被淘汰,只有数据才具有长期可用性,值得积累。数据是企业的核心资产,可以是也应该是独立于软硬件系统及应用需求而存在的。大数据是信息技术演化的最新产物,确立了数据这一信息技术元素的独立地位。正因为数据不再是软硬件及应用的附属产物,才有了今天爆炸式的数据增长,从而奠定了大数据的基础。

国内外大数据发展现状和趋势(2018)

行业现状 当前,许多国家的政府和国际组织都认识到了大数据的重要作用,纷纷将开发利用大数据作为夺取新一轮竞争制高点的重要抓手,实施大数据战略,对大数据产业发展有着高度的热情。 美国政府将大数据视为强化美国竞争力的关键因素之一,把大数据研究和生产计划提高到国家战略层面。在美国的先进制药行业,药物开发领域的最新前沿技术是机器学习,即算法利用数据和经验教会自己辨别哪种化合物同哪个靶点相结合,并且发现对人眼来说不可见的模式。根据前期计划,美国希望利用大数据技术实现在多个领域的突破,包括科研教学、环境保护、工程技术、国土安全、生物医药等。其中具体的研发计划涉及了美国国家科学基金会、国家卫生研究院、国防部、能源部、国防部高级研究局、地质勘探局等6个联邦部门和机构。 目前,欧盟在大数据方面的活动主要涉及四方面内容:研究数据价值链战略因素;资助“大数据”和“开放数据”领域的研究和创新活动;实施开放数据政策;促进公共资助科研实验成果和数据的使用及再利用。 英国在2017年议会期满前,开放有关交通运输、天气和健康方面的核心公共数据库,并在五年内投资1000万英镑建立世界上首个“开放数据研究所”;政府将与出版行业等共同尽早实现对得到公共资助产生的科研成果的免费访问,英国皇家学会也在考虑如何改进科研数据在研究团体及其他用户间的共享和披露;英国研究理事会将投资200万英镑建立一个公众可通过网络检索的“科研门户”。 法国政府为促进大数据领域的发展,将以培养新兴企业、软件制造商、工程师、信息系统设计师等为目标,开展一系列的投资计划。法国政府在其发布的《数字化路线图》中表示,将大力支持“大数据”在内的战略性高新技术,法国软件编辑联盟曾号召政府部门和私人企业共同合作,投入3亿欧元资金用于推动大数据领域的发展。法国生产振兴部部长ArnaudMontebourg、数字经济部副部长FleurPellerin和投资委员LouisGallois在第二届巴黎大数据大会结束后的第二天共同宣布了将投入1150万欧元用于支持7个未来投资项目。这足以证明法国政府对于大数据领域发展的重视。法国政府投资这些项目的目的在于“通过发展创新性解决方案,并将其用于实践,来促进法国在大数据领域的发展”。众所周知,法国在数学和统计学领域具有独一无二的优势。 日本为了提高信息通信领域的国际竞争力、培育新产业,同时应用信息通信技术应对抗灾救灾和核电站事故等社会性问题。2013年6月,安倍内阁正式公布了新IT战略——“创建最尖端IT国家宣言”。“宣言”全面阐述了2013~2020年期间以发展开放公共数据和大数据为核心的日本新IT国家战略,提出要把日本建设成为一个具有“世界最高水准的广泛运用信息产业技术的社会”。日本著名的矢野经济研究所预测,2020年度日本大数据市场规模有望超过1兆日元。 在重视发展科技的印度,大数据技术也已成为信息技术行业的“下一个大事件”,目前,不仅印度的小公司纷纷涉足大数据市场淘金,一些外包行业巨头也开始进军大数据市场,试图从中分得一杯羹。2016年,印度全国软件与服务企业协会预计,印度大数据行业规模在3年内将到12亿美元,是当前规模的6倍,同时还是全球大数据行业平均增长速度的两倍。印度毫无疑问是美国亦步亦趋的好学生。在数据开放方面,印度效仿美国政府的做法,制定了一个一站式政府数据门户网站https://www.doczj.com/doc/e217404549.html,.in,把政府收集的所有非涉密数据集中起来,包括全国的人口、经济和社会信息。 我国大数据行业仍处于快速发展期,未来市场规模将不断扩大 ?目前大数据企业所获融资数量不断上涨,二级市场表现优于大盘,我国大数据行业的市

变量叶片泵工作原理

变量叶片泵工作原理 单作用叶片泵,它的理论排量为V=4BzeRsin(丌/z) 式中 y——变量叶片泵的排量; B——叶片宽度; z——叶片数; R——定子圆半径; e——定子环对转子的偏心距。 显然,泵的理论排量正比于定子环对转子的偏心距e。 1.内控式变量叶片泵 内控式泵的变量操纵力来自其本身的排出压力。如图7.1所示,定子环5在其顶部滚动轴承的支承下可在水平方向移动。泵配流盘的吸、排油窗口的布置和定子运动方向存在偏角0,排油压力对定子环的作用力可分解为垂直方向的分量F1及与定子移动方向同向的水平分量F2。F2克服调节弹簧的压缩力,形成调节力,推动定子环移动。当泵的工作压力所形成的调节力R小于弹簧预紧力时,定子对转子的偏心距e 受最大流量调节螺钉的限制,保持在最大值。因而泵的流量基本不变,只是由于泄漏略有下降,如图7—2中AB所示。当泵的工作压力超过P。值后,调节力F2大于弹簧预紧力。随工作压力的增加,调节力F,增加,克服弹簧力使定子环向偏心距减小方向移动,泵的排量开始下降。当工作压力到达P,时,定子环的偏心距所对应的泵的理论流量等于它的泄漏量,泵的实际输出流量为零。此时泵的输出压力为最大。 增加调节弹簧的预紧力可以使图7—2的曲线船段平行右移。减小弹簧刚度,可改变BC段的斜率,使其更陡。调节最大流量调节螺钉,可调节曲线A点的位置(即最大流量)。这种变量泵称为限压式(亦称压力反馈或压力补偿式)泵。 内控式变量叶片泵结构简单,调节容易。但是,由于配流盘的偏转会使泵的有效排量减少、并使流量脉动增加。它的动态调节特性也比较差,因而一般仅用于经济型的小规格泵上。对于性能要求比较高的大、中规格的变量叶片泵,大图7—2限压式变量叶片泵特性部分采用外控式。 2.外控式变量叶片泵 外控式变量叶片泵的工作原理如图7.3所示。定子在顶部滑块3的限制下可水平移动。泵的吸、排油腔对称地布置在定子中心线的两侧。因而,作用在定子环上的液压力不产生使定子移动的调节力。外来控制压力通过控制活塞2克服弹簧力推动定子环移动,改变其对于转子的偏心距而实现变量。 采用不同的液压控制手段及不同的泵的输出参数反馈,可以组成各种控制形式的变量叶片泵。

大数据发展背景及研究现状

大数据发展背景与研究现状 (一)大数据时代的背景 随着计算机存储能力的提升和复杂算法的发展,近年来的数据量成指数型增长,这些趋势使科学技术发展也日新月异,商业模式发生了颠覆式变化。《分析的时代:在大数据的世界竞争》是____年12月xx全球研究院(MGI)发表的一份报告。五年前MGI就指出大数据分析在基于定位的服务、xx零售业、制造业、欧盟公共部门及xx健康医疗领域有很大的增长潜力。数据正在被商业化,来自网络、智能手机、传感器、相机、支付系统以及其他途径的数据形成了一项资产,产生了巨大的商业价值。苹果、亚马逊、Facebook、xx、通用微软以及阿里巴巴集团利用大数据分析及自己的优势改变了竞争的基础,建立了全新的商业模式。稀缺数据的所有者利用数字化网络平台在一些市场近乎垄断,只需用独特方式将数据整合分析,提供有价值的数据分析,几乎可以“赢家通吃”。____年全球的数据储量就达到1.8ZB,与____年相比____年大数据增长了近4倍,未来十年,全球数据存储量还将增长十倍,大数据成为提升产业竞争力和创新商业模式的新途径。大数据在企业中得到了充分的应用并实现了巨大的商业价值。xx百货的SAS系统可以根据7300种货品的需求和库存实现实时定价。零售业寡头摩尔xx通过最新的搜索引擎Polaris,利用语义数据技术使得在线购物的完成率提升了10%到15%。我国信息数据资源80%以上掌握在各级政府部门手里,但很多数据却与世隔绝“xx闺中”,成为极大的浪费。____年,国务院印发《促进大数据发展行动纲要》,明确要求“____年底前建成国家政府数据统一开放平台”;今年5月,国务院办公厅又印发《政务信息系统整合共享实施方案》,进一步推动政府数据向社会开放。 大数据可以把人们从旧的价值观和发展观中解放出来,从全新的视角和角度理解世界的科技进步和复杂技术的涌现,变革人们关于工作、生活和思维的看法。大数据的应用十分广泛,通过对大规模数据的分析,利用数据整体性与涌现性、相关性与不确定性、多样性与非线性及并行性与实时性研究大数据在公共交通、公共安全、社会管理等领域的应用。大数据与xx计算、物联网一起使得很多事情成为可能,将会是新的经济增长点。大数据随着以数据科学为核心的计算机技术的迅猛发展,推动了社会科学与自然科学等跨科学研究的发展。因此对xx乃至全国的大数据研究具有深刻而广泛的意义。

单作用叶片泵

单作用叶片泵 工作原理:单作用叶片泵也是由转子、定子、叶片和配油盘等零件组成。与双作用叶片泵明显不同之处是,定子的内表面是圆形的,转子与定子之间有一偏心量e,配油盘只开一个吸油窗口和一个压油窗口。单作用叶片泵的转子回转时,由于离心力的作用,使叶片紧靠在定子内壁,这样在定子、转子、叶片和两侧配油盘间就形成若干个密封的工作区间,当转子按图示的方向回转时,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这就是吸油腔。叶片被定子内壁逐渐压进槽内,工作空间逐渐减小,将油液从压油口压出,这就是压油腔。叶片泵转子每转一周,每个工作空间完成一次吸油和压油,称单作用叶片泵。 排量计算:下图是单作用叶片泵排量和流量计算简图。定子、转子直径分别为D 和d,宽度为B,两叶片间夹角为β,叶片数为Z,定子与转子的偏心量为e。当泵的转子转一转时,两相邻叶片间的密封容积的变化量为V1-V2。若把AB和CD看作是以O1为中心的圆弧,则有 所以,单作用叶片泵的排量为 泵的实际流量q为 式中,n—转子转速;ηpv—泵的容积效率。

为了使叶片运动自如、减小磨损,叶片槽通常向后(注意,这里与双作用叶片泵不同)倾斜20o~30o。下图为单作用叶片泵的配油盘和转子结构简图。 特点:单作用叶片泵的特点 可以通过改变定子的偏心距 e 来调节泵的排量和流量。 叶片槽根部分别通油,叶片厚度对排量无影响。 因叶片矢径是转角的函数,瞬时理论流量是脉动的。叶片数取为奇数,以减小流量的脉动。 单作用叶片泵与双作用叶片泵的区别: 一:单作用 1、单数叶片(使流量均匀) 2、定子、转子和轴受不平衡径向力 3、轴向间隙大,容积效率低 4、叶片底部的通油槽采取高压区通高压、低压区通低压,以使叶片底部和顶部的受力平衡,叶片靠离心力甩出。 5、叶片常后倾(压力角较小) 二:双作用 1、双数叶片(使流量均匀) 2、定子、转子和轴受平衡径向力 3、叶片底部的通油槽均通以压力油(定子曲线矢径的变化率较大,在吸油区外伸的加速度较大,叶片的离心力不足以克服惯性力和摩擦力) 4、叶片常前倾(叶片在吸油区和压油区的压力角变化较大) 总结:叶片泵流量大,压力大、压力稳定、噪音小。缺点:工作时易发热。制作精度高,成本高。 它是目前液压系统中应用最广的一种低噪音油泵。目前还没有能代替它的油泵,发展前景受到液压系统的限制,一般一套液压系统只用一台叶片泵。

限压式变量叶片泵的工作原理

1.限压式变量叶片泵的工作原理 限压式变量叶片泵是单作用叶片泵,根据前面介绍的单作用叶片泵的工作原理,改变定子和转子间的偏心距e,就能改变泵的输出流量,限压式变量叶片泵能借助输出压力的大小自动改变偏心距e的大小来改变输出流量。当压力低于某一可调节的限定压力时,泵的输出流量最大; 压力高于限定压力时,随着压力增加,泵的输出流量线性地减少,其工作原理如图3-20所示。泵的出口经通道7与活塞6相通。在泵未运转时,定子2在弹簧9的作用下,紧靠活塞4,并使活塞4靠在螺钉5上。这时,定子和转子有一偏心量e0,调节螺钉5的位置,便可改变e0。当泵的出口压力p较低时,则作用在活塞4上的液压力也较小,若此液压力小于上端的弹簧作用力,当活塞的面积为A、调压弹簧的刚度k s、预压缩量为x0时,有:pA<k s x0(3-22) 此时,定子相对于转子的偏心量最大,输出流量最大。随着外负载的增大,液压泵的出口压力p也将随之提高,当压力升至与弹簧力相平衡的控制压力p B时,有 p B A=k s x0(3-23) 当压力进一步升高,使pA>k s x0,这时,若不考虑定子移动时的摩擦力,液压作用力就要克服弹簧力推动定子向上移动,随之泵的偏心量减小,泵的输出流量也减小。p B称为泵的限定压力,即泵处于最大流量时所能达到的最高压力,调节调压螺钉10,可改变弹簧的预压缩量x0即可改变p B的大小。 设定子的最大偏心量为e0,偏心量减小时,弹簧的附加压缩量为x,则定子移动后的偏心量e为: e=e0-x (3-24) 这时,定子上的受力平衡方程式为: pA=k s(x0+x) (3-25) 将式(3-23)、式(3-25)代入式(3-24)可得: e=e0-A(p-p B)/k s(p≥p B) (3-26) 式(3-26)表示了泵的工作压力与偏心量的关系,由式可以看出,泵的工作压力愈高,偏心量就愈小,泵的输出流量也就愈小,且当p=ks(e0+x0)/A时,泵的输出流量为零,控制定子移动的作用力是将液压泵出口的压力油引到柱塞上,然后再加到定子上去,这种控制方式称为外反馈式。

国内外大数据经典案例研究

国内外大数据经典案例研究

大数据时代的来临使得产生的数据量呈爆炸式增长,各行各业均面临着海量数据的分析、处理问题。如何运用大数据技术从海量数据中挖掘出有价值的信息,将是今后企业发展的一个巨大挑战。点评收集研究了国内外大数据应用的经典案例,希望可以对读者有所启示。 1、塔吉特百货孕妇营销分析 最早关于大数据的故事发生在美国第二大超市塔吉特百货。孕妇对零售商来说是个含金量很高的顾客群体,但是她们一般会去专门的孕妇商店。人们一提起塔吉特,往往想到的都是日常生活用品,却忽视了塔吉特有孕妇需要的一切。在美国,出生记录是公开的,等孩子出生了,新生儿母亲就会被铺天盖地的产品优惠广告包围,那时候再行动就晚了,因此必须赶在孕妇怀孕前期就行动起来。 塔吉特的顾客数据分析部门发现,怀孕的妇女一般在怀孕第三个月的时候会购买很多无香乳液。几个月后,她们会购买镁、钙、锌等营养补充剂。根据数据分析部门提供的模型,塔吉特制订了全新的广告营销方案,在孕期的每个阶段给客户寄送相应的优惠券。结果,孕期用品销售呈现了爆炸性的增长。2002年到2010年间,塔吉特的销售额从440亿美元增长到了670亿美元。大数据的巨大威力轰动了全美。 点评:这个案例说明大数据在企业营销上的成功,利用大数据技术分析客户消费习惯,判断其消费需求,从而进行精确营销。这种营销方式的关键在于其时机的把握上,要正好在客户有相关需求时才进行营销活动,这样才能保证较高的成功率。 2、沃尔玛“啤酒加尿布”经典案例 总部位于美国阿肯色州的世界著名商业零售连锁企业沃尔玛拥有世界上最

大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析。沃尔玛数据仓库里集中了其各门店的详细原始交易数据,在这些原始交易数据的基础上,沃尔玛利用NCR数据挖掘工具对这些数据进行分析和挖掘,可以很轻松地知道顾客经常一起购买的商品有哪些。一个意外的发现是:“跟尿布一起购买最多的商品竟是啤酒!” 这是数据挖掘技术对历史数据进行分析的结果,反映数据内在的规律。沃尔玛派出市场调查人员和分析师对这一数据挖掘结果进行调查分析,经过大量实际调查和分析,揭示了隐藏在“尿布与啤酒”背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。 既然尿布与啤酒一起被购买的机会很多,于是沃尔玛就在其一个个门店将尿布与啤酒摆放在一起,结果是尿布与啤酒的销售量双双增长。 点评:无论“啤酒加尿布”仅仅是一个传说,还是一个真的发生过,它都已经成为大数据技术应用的一个经典案例。这个故事的意义在于将看似不相关的商品数据放在一起进行分析,找到他们之间的相关性,从而进行交叉营销,促进商品的销量。这种思维方式才是成功的关键。 3、试衣间的大数据应用 传统奢侈品牌PRADA正在向大数据时代迈进。她在纽约及一些旗舰店里开始了大数据时代行动。在纽约旗舰店里,每件衣服上都有RFID码,每当顾客拿起衣服进试衣间时,这件衣服上的RFID会被自动识别,试衣间里的屏幕会自动

叶片泵在工程机械中的应用

目录 前言 (1) 第一章液压叶片泵的发展与应用 (2) 1.1液压叶片泵的发展史 (2) 1.2液压叶片泵的发展现状及发展趋势 (2) 1.3液压叶片泵的应用领域及意义 (3) 第二章液压叶片泵的介绍 (4) 2.1液压叶片泵的品牌及型号 (4) 2.2液压叶片泵的分类 (5) 2.3液压叶片泵的工作原理 (5) 2.4叶片泵的注意事项 (5) 2.5叶片泵的常见问题 (6) 第三章单作用叶片泵的工作原理 (11) 3.1单作用叶片泵构造 (11) 3.2单作用叶片泵的工作原理 (11) 3.3.单作用叶片泵的排量和流量计算 (12) 3.4单作用叶片泵的特点 (12) 第四章双作用叶片泵简介 (14) 4.1双作用叶片泵的结构特点 (14) 4.2双作用叶片泵工作原理 (15) 4.3双作用叶片泵的排量和流量计算 (16) 4.4 提高双作用叶片泵压力的措施 (17) 第五章限压式变量叶片泵的工作 (20) 5.1 限压式变量叶片泵的工作原理 (20) 5.2 限压式变量叶片泵的特性曲线 (21) 5.3限压式变量叶片泵与双作用叶片泵的区别 (21) 第六章推土机的工作原理 (23) 6.1推土机的发展史 (23) 6.2推土机的结构与工作原理 (24) 6.3推土机的转动系统 (25) 第七章叶片泵在推土机中的应用 (28) 7.1叶片泵在推土机中的正确使用 (28) 7.2叶片泵在推土机的安装与拆卸 (28)

……………………………………⊙……装…………………………⊙……订………………………⊙……线……………………………………… 7.3推土机叶片泵的故障检修...........................................28 结束语..................................................................31 致谢.. (32)

国内外大数据产业发展状况分析

国内外大数据产业发展状况分析 全球大数据产业发展规模 2014年,全球大数据解决方案不断成熟,各领域大数据应用全面展开,为大数据发展带来强劲动力。2014年全球大数据市场规模达到285亿美元,同比增长53.2%。大数据逐渐成为全球IT支出新的增长点。 2014年数据中心系统支出达1430亿美元,比2013年增长2.3%。大数据对全球IT开支的直接或间接推动将达2320亿美元,预计到2018年这一数据将增长3倍。 中投顾问发布的《2016-2020年中国大数据行业投资分析及前景预测报告》从市场结构分析,2014年,全球大数据市场结构从垄断竞争向完全竞争格局演化。企业数量迅速增多,产品和服务的差异度增大,技术门槛逐步降低,市场竞争越发激烈。在全球大数据市场中,行业解决方案、计算分析服务、存储服务、数据库服务和大数据应用为市场份额排名最靠前的细分市场,分别占据35.4%、17.3%、14.7%、12.5%和7.9%的市场份额。云服务的市场份额为6.3%,基础软件占据3.8%的市场份额,网络服务仅占据了2%的市场份额。 我国大数据产业发展提速 1、基础设施建设率先起步 大数据产业“十三五”发展规划正在制定,2016年下半年将发布。这是实施国家大数据战略的又一政策举措。 大数据将是新的生产要素。政策助推知识开始,云计算、大数据、人工智能是大数据这场“新工业革命”的重要推手。其中,数据是重要资源。在此背景下,众多互联网科技企业以及传统生产企业都在积极布局大数据产业。 统计数据显示,2015年国内大数据产业市场规模已达1105.6亿元,较2014年增长44.15%。其中,大数据基础设施建设、大数据软件和大数据应用分别占比64.53%、25.47%和10%。 目前已有42家计算机行业上市公司披露了2016年上半年报业绩预告,平均增速中位数为15%。从细分领域看,大数据与人工智能子板块平均增速中位数为65%。 随着大数据产业的快速发展,受益顺序为基础设施建设率先起步,并带来数据分析、数据源、数据安全环节的发展。在基础设施方面,数据中心、服务器等领域近年来快速增长。其中,中科曙光、浪潮信息等公司服务器业务收入增长明显。 随着基础设施逐渐完善,数据分析成为了可能。数据分析服务在整体产业收入的占比也代表着大数据 中投顾问·让投资更安全经营更稳健

大数据研究综述

大数据研究综述

————————————————————————————————作者:————————————————————————————————日期: ?

大数据研究综述 摘要:从大数据基本理论,大数据存储与分析处理技术和大数据应用研究三个角度说明当前研究热点,重点比较当前大数据处理工具的优缺点,并深入归纳总结了基于数据存储大数据处理技术,对未来研究进行展望。 关键词:大数据,综述,数据处理,数据挖掘 引言 现代社会提到大数据大家都知道这是近几年才形成的对于数据相关的新名词,在1980年,,著名未来学家阿尔文·托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。在20 世纪 80年代我国已经有一些专家学者谈到了海量数据的加工和管理,但是由于计算机技术和网络技术的限制大数据未能引起足够的重视,它蕴藏的巨大信息资源也暂时隐藏了起来。随着云计算技术的发展,互联网的应用越来越广泛,以微博和博客为代表的新型社交网络的出现和快速发展,以及以智能手机、平板电脑为代表的新型移动设备的出现,计算机应用产生的数据量呈现了爆炸性增长的趋势。2012年末出版的《大数据时代》的作者英国牛津大学网络学院互联网研究所治理与监管专业教授维克托·尔耶·舍恩伯格在书的引言中说,大数据正在改变人们的生活以及理解世界的方式, 而更多的改变正蓄势待发。美国总统奥巴马的成功竞选及连任的背后都有大数据挖掘的支撑,美国政府认为,大数据是“未来的新石油”,并将对大数据的研究上升为国家意志,这对未来的科技与经济发展必将带来深远影响[1]。如今,大数据已成为一项业务上优先考虑的工作任务,因为它能够对全球整合经济时代的商务产生深远的影响。大数据的应用范围如此广泛,与大数据相关的很多问题都引起了专家和学者的重视。大数据最基本的问题-大数据的定义目前还没有一个统一的定论,但大数据作为一种基础性资源需要被处理才能显现其潜在的价值,那么如何更好地处理大数据这种基础性资源就显得特别重要,因为这些问题都关系到大数据核心价值的体现。为此,本文从大数据若干个版本的概念出发,调查分析了大数据的研究和应用现状,重点分析了当前主流的大数据处理工具和技术,最后预测了大数据未来

加油机叶片泵和组合泵的工作原理

加油机叶片泵和组合泵的工作原理 加油机的机械部分主要是一个液压系统,它包括电动机、叶片泵、油气分离器、流量计、电磁阀和油枪等。电动机是加油机的动力源,它将电能转化为机械能,并通过传动装置把机械能传给叶片泵。叶片泵将机械能转化为油液压力能,它是液压系统的动力源。从叶片泵出来的压力油进入油气分离器进行油气分离,气体被排入大气,油液进入流量计进行计量。流量计一方面不断地排出固定体积的油液,另一方面将流量信号转换为输出轴的转动信号。经计量后的油液通过电磁阀、导静电胶管和油枪注入受油容器。 第一节叶片泵 一、叶片泵的结构: 叶片泵又称旋板泵。它结构简单,抗污染能力强,成本低,易维护。叶片泵是液压系统的动力源,它的性能直接决定了整机的吸油与排油能力。叶片泵由铸铁泵体、铸铁泵盖、转子、叶片、弹簧(片)、溢流阀组件等组成。 铸铁泵体内分两部分,下部为泵腔,上部为溢流阀腔。泵腔为一空心圆柱体,其后端面左右两边各有一个三角口,右边三角口为叶片泵的进油口,左边三角口为叶片泵的出油口。泵腔左右两腰各开有一弧形槽,左弧形槽为正压过渡区,与叶片泵出油口相通,右弧形槽为负压过渡区,与叶片泵进油口相通。泵腔内偏心安装转子,转子沿圆周等距分布有七个径向槽,槽内装有弹簧(片)与叶片,转子旋转时,叶片能沿径向槽作往复运动。 溢流阀腔内装有溢流阀。溢流阀主要由阀座、阀芯、弹簧和调量螺钉等构成。阀座与阀芯将溢流阀腔分为左右两部分,左侧部分与泵的出油口及正压过渡区相通,右侧部分与泵的进油口及负压过渡区相通。 二、叶片泵的工作原理 A、B为相邻的两个叶片。转子和叶片A、B按顺时针转动。A叶片转动使低压过度区的容积不断增大,油液被吸入泵中。A、B两叶片所夹液体,因叶片的顺时针转动被带入高压过度区。在高压过度区,因叶片的转动,使容积不断缩小,油液在叶片的压迫下排出泵外。当转子连续转动时,油罐中的油液就被连续吸入泵内、排出泵外,使油泵形成一个稳定的流量。 泵腔圆柱体空间以其中心线为基准,可分为上密封区、下密封区、左过渡区和右过渡区四部分。转子与泵腔相切的部分为上密封区,与泵腔间隙最大的部分为下密封区,与出油口相通的左过渡区为正压区,与进油口相通的右过渡区为负压区。 叶片泵的泵腔上下两密封区的中心角为60°,两叶片间的夹角为51.43°(51°25′43″),故在密封区内有一个或两个叶片隔离了泵腔的两侧过渡区,使正压区与负压区之间的油液不能沟通。 当电机带动转子作顺时针旋转时,叶片在弹簧力和离心力的作用下贴紧泵腔(见图2.1.2),任意相邻的两叶片与转子、泵腔及端盖构成一个密封空间(在过渡区,各密封空间相通,形成一个大的密封空间)。右侧过渡区与泵的进油口相通,左侧过渡区与泵的出油口相通。转子顺时针旋转时,泵腔右侧密封容积增大,形成真空(负压),油罐内油液在大气压力作用下通过泵的进油口进入叶片泵的负压区,达到吸油的目的;左侧过渡区的密封容积减小,油液进入左过渡区后油压升高,压力油通过出油口被排出。转子连续不断地旋转,叶

ATOS单作用叶片泵和双作用叶片泵的工作原理

ATOS单作用叶片泵和双作用叶片泵的工作原理 阿托斯ATOS柱塞泵、阿托斯ATOS液压泵、阿托斯ATOS比例阀 ATOS意大利阿托斯液压泵 定量泵:叶片泵,径向柱塞泵,齿轮泵。变量泵:叶片泵,轴向柱塞泵,比例控制泵–多联泵–手动泵– Atex防爆泵 油缸伺服油缸液压油缸,标准型缸液压油缸防爆油缸不锈钢油缸 常规阀&叠加阀溢流阀先导式阀两级电磁阀安全阀方向开/关控制气控方向阀液控方向阀 一、A TOS单作用叶片泵的工作原理 泵由转子1、定子2、叶片3、配油盘和端盖等部件所组成。定子的内表面是圆柱形孔。转子和定子之间存在着偏心。叶片在转子的槽内可灵活滑动,在转子转动时的离心力以及通入叶片根部压力油的作用下,叶片顶部贴紧在定子内表面上,于是两相邻叶片、配油盘、定子和转子间便形成了一个个密封的工作腔。当转子按逆时针方向旋转时,图右侧的叶片向外伸出,密封工作腔容积逐渐增大,产生真空,于是通过吸油口6和配油盘5上窗口将油吸入。而在图的左侧。叶片往里缩进,密封腔的容积逐渐缩小,密封腔中的油液经配油盘另一窗口和压油口1被压出而输出到系统中去。这种泵在转子转一转过程中,吸油压油各一次,故称单作用泵。转子受到径向液压不平衡作用力,故又称非平衡式泵,其轴承负载较大。改变定子和转子间的偏心量,便可改变泵的排量,故这种泵都是变量泵。 二、A TOS双作用叶片泵的工作原理 它的作用原理和单作用叶片泵相似,不同之处只在于定子表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线八个部分组成,且定子和转子是同心的。在图示转子顺时针方向旋转的情况下,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区把它们隔开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的液压力径向平衡,所以又称为平衡式叶片泵。 ATOS双作用叶片泵的瞬时流量是脉动的,当叶片数为4的倍数时脉动率小。为此,双作用叶片泵的叶片数一般都取12或16。

双作用式叶片泵的工作原理及功用

双作用式叶片泵的工作原理及功用 日期:2012-9-19 来源:液压油缸_油缸_液压油缸价格_液压系统_油缸厂家_ 双作用式叶片泵的工作原理及功用 叶片泵也是一种常见的液压泵。根据结构来分,叶片栗有单作用式和双作用式两种。单作用式叶片泵又称非平衡式泵,一般为变量泵;双作用式叶片泵也称平衡式泵,一般是定量泵。 图3-9所示双作用式叶片栗是由定子6、转子3、叶片4、配流盘和泵体1组成,转子与定子同心安装,定子的内曲线是由两段长半径圆弧、两段短半径圆弧及四段过渡曲线所组成,共有八段曲线。 如图3-9所示,转子作顺时针旋转,叶片在离心力作用下,径向伸出,其顶部在定子内曲线上滑动。此时,由两叶片、转子外圆、定子内曲线及两侧配油盘所组成的封闭的工作腔的容积在不断地变化,在经过右上角及左下角的配油窗口处时,叶片回缩,工作腔容积变小,液压缸油液通过压油窗口输出;在经过右下角及左上角的配油窗口处时,叶片伸出,工作腔容积增加,油液通过吸油窗口吸人。

在每个吸油口与压油口之间,有一段封油区,对应于定子内曲线的四段圆弧处。 双作用式叶片泵每转一转,每个工作腔完成吸油两次和压油两次,所以称其为双作用式叶片栗,又因泵的两个吸油窗口与两个压油窗口是径向对称的,作用于转子上的液压力是平衡的,所以又称为平衡式叶片杲。 定子曲线是影响双作用式叶片泵性能的一个关键因素,它将影响叶片泵的流量均勻性、噪声、磨损等问题,过渡曲线的选择主要考虑叶片在径向移动时的速度和加速度应当均匀变化,避免径向速度有突变,使得加速度无限大,引起刚性冲击;同时又要保证叶片在作径向运动时,叶片顶部与定子内曲线表面不应产生脱空现象。目前,常用的定子曲线有等加速-等减速曲线、高次曲线和余弦曲线等。 叶片泵在叶片数确定后,由每两个叶片所夹的工作腔所占的工作空间角度随之确定该角度所占区域应在配流盘上吸油口与压油口之间(封油区内〉,否则会造成液压缸吸油口与压油口相通;而定子曲线中四段圆弧所占的工作角度应大于液压缸封油区所对应的角度,否则会产生困油现象。

相关主题
文本预览
相关文档 最新文档