当前位置:文档之家› 轴向滑块凸轮式差速器的建模与运动分析

轴向滑块凸轮式差速器的建模与运动分析

轴向滑块凸轮式差速器的建模与运动分析
轴向滑块凸轮式差速器的建模与运动分析

轴向滑块凸轮式差速器的建模与运动分析

潘虎,孙传祝

(山东理工大学工程技术学院,淄博255012)

摘要:本文利用Solidworks软件建立了轴向滑块凸轮式差速器的三维模型,并根据车辆转弯行驶时的实际情况,

利用COSMOS/MOTION编辑和添加相关约束、载荷等参数后,进行动态仿真。输出转速、转矩曲线及Csv格式的数

据后,计算分析认为:差速器在50~110N·m范围内的各合反转矩下,当左右差速轮的反转矩差≤24 N·m时,基本上

都能正常差速运行,且有ω1+ω2≈2ω0;在正常差速范围内,当排量为500cc,差速轮和滑块螺旋面的螺距为84㎜时,

平均锁紧系数为0.36,左右两差速轮的转矩比为2.09,因此该差速器锁紧系数大,满足了越野汽车的通过性要求;

改变螺距,即改变螺旋面的倾角,会得到不同的锁紧系数,两差速轮的转矩差也会相应改变。

关键词:差速器;差速轮;转矩;锁紧系数

The Modelling and Movement analysis of Axial Sliders Cam Differential

PAN Hu SUN Chuan-zhu

(School of Engineering Technology,Shandong University of Technology,Zibo 255012,China)Abstract:This paper have built 3D model of axial sliders cam differential in Solidworks; and according

to the vehicle running in the real situation being turning a corner edit and add parameters, such as

relevance constraint, loads and so on, then carry out dynamic simulation in COSMOS/MOTION; Then,

export the rotation rate and torque curve diagram, data of csv form, then analyze carefully by calculating

the simulated data in Excel. The result of the analysis is that when the synthesized reverse torque is

about 50~110 N·m of two spider gears and reverse torque difference ≤24 N·m, the differential works

normally and they just keep the relation, ω1+ω2≈2ω0; In normal differential area, when vehicle’ swept

volume is 500cc, spider gear and slide plate’screw is 84㎜, the average of the locking coefficient is

about 0.36, the ratio of torque between two spider gears is 2.09, so the locking coefficient of this

differential is and can meet the trafficability characteristic of cross country vehicle. By changing the

screw value of spider gear and slide plate’screw, which can change helicoid’angle, can get different

locking coefficient. If having big locking coefficient, torque difference between two spider gears

accordingly going to change simultaneously.

Key words: differential, spider gear, torque, locking coefficient

0引言

在新车型的研发中,驱动桥作为汽车传动系中的一个关键性部件,其性能直接影响着整车性能,而差速器则是其中的重中之重。差速器的作用是当汽车转弯行使或在不平路面上行使时,使左右驱动轮以不同的角速度滚动,以保证两侧驱动轮与地面间作纯滚动运动[1]。

差速器的种类繁多,应用领域各异,优缺点明显。

1.开式差速器,是典型的行星齿轮组结构,开式差速器的优点就是在铺装路面上转弯行驶的效果最好;缺点就是在一个驱动轮丧失附着力的情况下,另外一个也没有驱动力。

2.限滑差速器,用于部分弥补开式差速器在越野路面的传动缺陷,它是在开式差速器的机构上加以改进,在差速器壳与齿轮背面之间增加摩擦片,优点就是提供一定的限滑转矩,缺点是转向特性变差,摩擦片寿命有限。

3.锁止式差速器,通过一定的机械结构把差速器锁死,实现两个半轴的同步转动。优点是在越野路面提供了最大的驱动力,缺点是在差速器锁止时,车辆转向极其困难;存在单车轮承

受发动机100%转矩的可能,半轴会因为转矩过大而变形或折断;车辆在转向过程中,两半轴承受相反的转矩,如果两侧轮胎的附着力都很大,会扭断半轴。另外,这种差速器在车辆行驶过程中执行锁止动作,会产生比较大的噪音。中、重型汽车普遍采用强制锁止式差速器。

4.电子差速器锁,电子差速器锁与上述几种相比,没有改变开式差速器的结构和特性,而是利用ABS或EBD系统来执行单侧制动打滑车轮的动作,限制两驱动轮的转速差,保证两个驱动轮都有动力。优点是安全性好,不会损坏车辆。缺点是需要ABS和EBD系统,造价昂贵;在严酷的越野环境下,电子产品的可靠性不如机械产品;单侧车轮的驱动力,不如锁止式差速器的大。这类差速器锁,由于成本原因一般只应用于高档轿车和高档的SUV。

孙传祝等人[2]在总结了各类差速器的优缺点后,提出了一种新型差速器—轴向滑块凸轮式差速器,它是防滑差速器的一种,结构简单,体积更小,成本低廉。初步研究分析认为,在车辆动力性较小、路况差时,左右两轮差速效果比较明显,两半轴的转矩比大。那么,在大功率、差路况的情况下,它的性能又会怎么样呢?本文针对这一问题做了进一步分析研究。

1轴向滑块凸轮式差速器结构组成及工作原理

1.1 结构组成

轴向滑块凸轮式差速器主要由差速器壳、差速器盖、差速轮、滑块以及碟形弹簧等组成,其结构组成如图1所示。

图1轴向滑块凸轮式差速器爆炸图

差速轮的齿面为左右旋交替,螺距相同的螺旋面,从而沿圆周形成了多个形状相同的凸起,且螺旋面的母线呈内高外低的倾斜状态,如图2所示。左右差速轮的结构相同,通过花键与左右半轴连接。差速轮的背面加工有一条阿基米德螺旋线,用以将差速器壳外面的润滑油引入壳内,为差速轮和滑块创造润滑条件。差速轮通过花键槽分别与左右半轴联结。

图2差速轮

滑块两端分别加工有与差速轮相应的、左右旋交替的螺旋面,如图3所示。它有相互对称的两种形式,装配时沿差速器壳内孔表面的圆周方向,两组滑块相间地装入内孔表面的轴向槽内。

图3滑块

差速器壳内表面加工有与滑块数量相同的轴向槽,滑块沿轴向槽移动,因为差速轮螺旋面的母线内高外低,而滑块内低外高,使得滑块背面受到差速轮径向力的作用,始终贴合在差速器壳的内壁上,如图4所示。

图4差速器壳

图5是差速器盖的结构图,装配时差速器盖通过螺栓连接在差速器壳上,润滑油经进油槽流入差速器壳体内,保证滑块、差速轮以及差速器壳能够在润滑环境中正常工作。

图5差速器盖

1.2 工作原理

车辆直线行驶时,动力由差速器壳通过滑块带动左右差速轮旋转,并且在摩擦作用下滑块与差速器壳之间也无相对滑动,三者转速相等。

转弯行驶时,由于左右车轮转速不同,从而差速轮存在转速差。此时,滑块除了带动左右两侧差速轮转动外,还在差速器壳内孔表面的轴向槽内轴向移动,但是在碟形弹簧的轴向压力作用下,差速轮的螺旋面始终与滑块的螺旋面啮合,并且两者之间存在相对滑动。由于滑块与左右差速轮间产生的摩擦转矩作用,使慢转差速轮可以得到比快转差速轮更大的转矩。

轴向滑块凸轮式差速器的锁紧系数与凸轮表面的摩擦系数和倾角有关,正是利用了滑块与差速轮间产生的较大数值的内摩擦转矩,才使得该差速器的锁紧系数较大,成为一种高摩擦自锁式差速器。

2 仿真与分析

2.1 运动仿真概述

现代科学研究、生产开发、社会工程、经济运行中涉及的许多项目,都有一定的规模和复杂度。在进行项目设计和规划时,往往需要对项目的合理性、经济性等品质加以评价;在项目实际运行前,也希望对项目的实施结果加以预测,以便选择正确、高效的运行策略或提前纠正该项目设计中的缺陷,最大限度地提高实际系统的运行水平。采用仿真技术可以省时、省力、省钱地达到上述目的[3]。

计算机仿真的显著特点是:它是一种在计算机上进行实验的方法,实验所依赖的是实际产品抽象出来的仿真模型。由于这一特点,计算机仿真给出的是由实验选出的较优解,而不像数学分析方法那样给出问题的确定性的最优解。

2.2 仿真设置

基于COSMOS/MOTION软件的动态仿真,可以依据如图6所示的基本步骤进行[4]。为了达到仿真与实际情况尽最大可能相符,在差速轮与滑块、滑块与差速器壳、差速轮与差速器壳

之间分别添加了摩擦,并设置差速器各零部件间的工作条件为润滑,为各个零件设置了密度和质量。

图6 COSMOS/MOTION仿真分析步骤

车辆转弯时,由于地面施加给内外侧车轮的摩擦力不一样,所以两轮上的反转矩也不相等,在仿真中给两轮设定不同的反转矩值。根据车辆的正常行驶速度及差速器的额定载荷,配有该差速器的车辆最高行驶速度约为50㎞/h,车轮直径为800㎜,最大驱动转矩为140N·m,因此,设定差速器壳(即滑块)的角速度为ω0=2000°/s,在30~140N·m范围内,给两差速轮设置了多组合反转矩值进行仿真模拟。

2.2 仿真结果分析

在仿真过程中,选取了发动机排量为500cc,差速轮(滑块)螺旋面螺距分别为84㎜和120㎜两组不同规格的差速器进行动态仿真。为区分左右两侧差速轮,分别取名为轮1、轮2。仿真中发现,当合反转矩及反转矩差不同时,差速器既有正常差速,也有反转等非正常差速,还有差速不明显或相当于直线行驶状态的不差速。所谓反转,就是添加了较大反转矩的差速轮旋转方向与差速器壳的旋转方向相反,即不正常结果。

2.2.1 排量为500 cc,螺距为84㎜时的仿真与分析

30~140N·m范围内,各组合反转矩下的仿真统计结果如表1所示。

表1 排量为500cc 仿真结果统计表单位:N·m

1. 反转矩差对差速效果的影响

由表1看出,当合反转在50~110N·m范围内,反转矩差≤24N·m时,差速器在各合反转矩下基本上都能正常差速运行。图7是两轮的合反转矩为100N·m时差速轮的角速度曲线,其中图(a)、(b)添加的反转矩分别为60N·m和40N·m。

由图7可以看出,轮1的角速度在1995°/s上下波动,而轮2的角速度在2005°/s上下波动。在Excel中输出0.30~0.50s范围内两差速轮的角速度值,并计算其平均角速度得:ω1=1994.472°/s,ω2=2005.488°/s,其平均值为1999.98°/s。因此,可以认为,当两轮的合反转

矩为100N·m ,且转矩差为20N·m 时,能够正常差速,并且ω1+ω2=2ω0。

(a)

(b)

图7 合反转矩为100N·m 时差速轮的角速度曲线

2. 合反转矩对差速效果的影响

仿真中发现,如果差速轮合反转矩降低到40N·m 时,差速就不明显了。图8是两轮的合反转矩为40 N·m 时差速轮的角速度曲线,其中图(a)、(b)添加的反转矩分别为30 N·m 和10 N·m 。

(a)

(b)

图8 合反转矩为40N·m 时差速轮的角速度曲线

由图8可以看出,两差速轮的角速度均在2000°/s 上下波动,输出两轮的角速度值后,所求得的各差速轮的平均角速度与滑块角速度的差值均不超过0.1%。因此,可认为当两差速轮合反转矩减小到40N·m 时,差速器基本上就不再差速了,而是以直线状态运行。

3. 左右两轮的转矩分配关系

差速器性能的主要评价参数是其锁紧系数,定义为差速器的内摩擦转矩与差速器壳接受的转矩之比,即:

k=T 3/T 0

定义快慢差速轮的转矩之比T 2/T 1为转矩比,以k b 表示

k b = T 2/T 1=k

k

-+11

普通圆锥齿轮差速器的锁紧系数为k =0.05~0.15,左右两轮的转矩比k b = 1.11~1.35,如果主减速器传给差速器的驱动转矩为100 N·m ,则普通圆锥齿轮差速器的内摩擦转矩几乎等于0,左右半轴转矩比近似为50:50。

仿真结束后,分别输出差速器壳、差速轮的反作用转矩曲线,如图9、图10分别是左右轮合反转矩为100N·m 、110N·m 时,轮1、轮2及差速器壳的反作用转矩曲线,其中图(a)、(b)分别是轮1、轮2的反作用转矩曲线,图(c)是差速器壳的反作用转矩曲线。

(a)

(b)

(c)

图9合反转矩为100N·m时,轮1、轮2及差速器壳的反转矩曲线

(a)

(b)

(c)

图10合反转矩为110N·m时,轮1、轮2及差速器壳的反转矩曲线

在Excel中分别输出、并计算两图中差速器壳的反作用转矩平均值,结果分别是100.47N·m 和110.78N·m。根据作用力和反作用力的关系,轮1、2及差速器壳的反作用转矩,即是它们各自的驱动转矩。设由主减速器传给差速器壳的转矩为T0,分配给轮1、2的转矩分别为T1和T2。由曲线图和计算结果分析得到两轮的驱动转矩符合下列关系:

T1+T2=T0

上述仿真模拟的是车辆转弯时的情况,即ω1<ω2,轮1、轮2的角速度分别为ω1、ω2。由于滑块与差速轮的螺旋面、以及差速轮与差速器壳间的相对滑动均存在较大的摩擦,所以将产生一内摩擦转矩T3,该摩擦转矩使慢转的轮1转矩增加,而使快转的轮2转矩减小。因此当左、右轮存在转速差时,T1=(T0+T3)/2,T2=(T0-T3)/2,即满足:

T1-T2=T3

分析时截取合反转矩在50~110N·m之间的一段数据,并且从中提取出仿真中即将出现不正常差速的临界值,如表2所示。

表2 合反转矩在50~110N·m之间,左右轮的最大转矩分配关系单位:N·m 合反转矩110 100 90 80 70 60 50 最大锁紧系数0.23 0.24 0.26 0.3 0.35 0.45 0.52

最大内摩擦转矩25 24 24 24 25 26 26

最大转矩比 1.59 1.63 1.73 1.86 2.11 2.53 3.17

从表2中,可以得到在50~110N·m范围内,锁紧系数的平均值为0.36,最大内摩擦转矩的平均值为24.86N·m,左右两轮的转矩比平均值为2.09。这与内摩擦小,锁紧系数小的普通锥齿轮差速器相比具有比较大的优越性,基本上能满足汽车越野通过性的要求。

2.4.2排量为500cc,螺距为120㎜时的仿真与分析

在仿真中还选取了排量为500cc,螺距为120㎜的差速器模型作为仿真对象。图11是排量500cc,螺距为120㎜,两差速轮输入100N·m合反转矩时,差速轮和差速器壳反作用转矩曲线,其中图(a)、(b)分别是轮1、轮2的反作用转矩曲线,图(c)是差速器壳的反作用转矩曲线。

(a)

(b)

(c)

图11排量500cc,螺距为120㎜的差速轮和差速器壳反作用转矩曲线

排量为500 cc,螺距增大到120㎜时,由曲线图可以看出,差速器壳主动转矩的平均值约为100N·m,而两轮的转矩差增大到了50N·m,即锁紧系数变为0.5,左右轮的转矩比为75:25。锁紧系数的提高表明,这种规格差速器的差力性能更好。

3结论

1)当反转矩差≤24N·m时,差速器在50~110N·m范围内的各合反转矩下,基本上都能正常差速运行,并且左右两侧差速轮的角速度之和近似等于差速器壳角速度的两倍,即:ω1+ω2≈2ω0。

2)当两差速轮合反转矩减小到40N·m,且转矩差≤30N·m时,差速器基本上就不再差速了。

3)在排量为500 cc,差速轮和滑块的螺距为84㎜时,锁紧系数的平均值为0.36,内摩擦转矩的平均值为24.86N·m,左右两轮的转矩比为2.09,满足了汽车越野通过性的要求。

4)通过改变差速轮和滑块的螺距,即改变螺旋面的倾角,会得到不同的锁紧系数,两轮转矩比也会相应地增大。

[ 参考文献]

[1] 王望予. 汽车设计[M]. 北京:机械工业出版社,2003.

[2] 孙传祝,董焕俊. 关于轴向滑块凸轮式差速器的初步探讨[J]. 职大学报,2005,55(2):14-17.

[3] 张根保. 自动化制造系统[M]. 北京:机械工业出版社,2005.

[4] 江洪,陆利锋,魏峥. Solidworks动画演示与运动分析实例解析[M]. 北京:机械工业出版社,2005.

差速器的结构及工作原理 图解

差速器的结构及工作原理(图解) 汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。 当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等; 即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的实际上不可能相等,若两侧车轮都固定在同一转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。 差速器的作用 车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。 若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。

这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。 在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。 布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。

差速器可分为普通差速器和两大类。 普通差速器的结构及工作原理 目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。 对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或)固定在差速器壳右半部8的上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。

煤磨工艺流程课件

煤磨工艺流程讲义 新型干法水泥厂的生产过程,就是以悬浮预热和窑外分解技术内核心,应用现代科学技术和工业生产最新成就,以新型的烘干粉磨及原燃料均化工艺及装备,采用以计算机控制为代表的自动化过程控制手段,实现高效、优质、低耗的水泥生产过程,使水泥生产具有高效、优质、节约资源、清洁生产、符合环境保护要求和大型化、自动化、科学管理特征的现代水泥生产方法。与传统的湿法、干法、半干法水泥生产相比,其工艺过程比较复杂,系统环节多,连续性强。许多工序联合操作,相互影响,相互制约。生产过程本身要求具有高度的稳定性,设备运转的可靠性和参数调节控制的及时性。这就需要中控室的操作人员必须很好掌握新型干法工艺过程的特点,了解其工作原理和各种工艺热工过程的特性,同时具有机械、电气、自动化过程控制等方面的基本知识,这是提高中控室操作水平的基础。 一、煤磨系统工艺流程简介 1、原煤来源:通过原煤堆场侧臂取料机刮取原煤,再通过三条皮带输送机送至磨头原煤仓。 2、热风来源:生产期间篦冷机的热风,在煤磨主排风机的作用下,为煤磨烘干提供热源,非正常生产期间也可使用热风炉的热风,作为煤磨烘干和粉磨的热源。 3、煤粉制备工艺流程:原煤仓内的煤经定量给料机计量后由电动双翻板阀喂入风扫磨,在煤磨主排风机的抽力作用下,篦冷机的热气被抽到旋转的磨机筒体内,原煤进入烘干仓时,由于烘干仓内设有特别的扬料板将煤扬起,含有水分的原煤在此处与热气进行强烈的热交换而得到烘干,烘干后的煤块通过设有扬料板的双层隔仓板进入粉磨仓,粉磨仓内的研磨体被旋转的筒体带起、抛落,从而把煤块粉碎和研磨成煤粉,煤粉在排风机的抽力作用下被送入高效选粉机,经选粉机分级后,粗粉由螺旋输送机送入磨内重新粉磨,细粉进入袋收尘收集后由螺旋输送机送入煤粉仓,经收尘器过滤后的气体通过排风机排入大气。煤粉进入煤粉仓后带入的废气经安置在煤粉仓顶部的袋收尘过滤后由独立的风机排出。另外经绞刀收集的煤粉可以经可逆输送绞刀,完成煤磨系统之间窑炉仓用煤互相供给。 4、安全防范:为防止煤粉仓(1820),袋收尘(1830)着火,该系统设置了一套氮气灭火装置,分别为煤粉仓(1820),袋收尘器(1830)灭火,另外煤磨还设置有一套消防水。 防范方法: 4.1煤粉仓着火:关闭全部档板或阀门及上部各螺旋铰刀,从煤粉仓顶部,下部锥体部位充氮气,若传感器处温度大于50℃,要求将称重传感器拆除。 4.2袋收尘器(1830)着火(包括袋子及收尘器灰斗):关闭收尘器入口出口档板(或阀),打开灰斗部位的冲氮装置。着火煤粉可以通过螺旋绞刀反转外排。 二、主机设备

PCB制程工艺

一〉流程: 磨板→贴膜→曝光→显影 一、磨板 1、表面处理除去铜表面氧化物及其它污染物。 a. 硫酸槽配制H2SO4 1-3%(V/V)。 b.酸洗不低于10S。 2、测试磨痕宽度控制范围10-15mm,磨痕超过15mm会出现椭圆孔或孔口边沿无铜,一般控制10-12mm 为宜。 3、水磨试验每日测试水膜破裂时间≥15s,试验表明,在相同条件下磨痕宽度与水膜破裂时间成正比。 4、磨板控制传送速度1.2-2.5M/min,间隔1",水压1.0-1.5bar,干燥温度70-90℃。 二、干膜房 1、干膜房洁净度10000级以上。

2、温度控制20-24°C,超出此温度范围容易引起菲林变形。 3、湿度控制60-70%,超出此温度范围也容易引起菲林变形。 4、工作者每次进入干膜房必须穿着防尘服及防尘靴风淋15-20s。 三、贴膜 1、贴膜参数控制 a. 温度100-120°C,精细线路控制115-120°C,一般线路控制105-110°C,粗线路控制100-105°C。 b.速度<3M/min。 c. 压力30-60Psi,一般控制40Psi左右。 2、注意事项 a.贴膜时注意板面温度应保持38-40°C,冷板贴膜会影响干膜与板面的粘接性。 b. 贴装前须检查板面是否有杂物、板边是否光滑等,若板边毛刺过大会划伤贴膜胶辊,影响使用寿命。

c. 在气压不变情况下,温度较高时可适当加快传送速度,较低时可适当减慢传送速度,否则会出现皱 膜或贴膜不牢,图形电镀时易产生渗镀。 d.切削干膜(手动贴膜机)时用力均匀,保持切边整齐,否则显影后出现菲林碎等缺陷。 e. 贴膜后须冷却至室温后方可进行曝光。 四、曝光 1、光能量 a.光能量(曝光灯管5000W)上、下灯控制40-100毫焦/平方厘米,用下晒架测试上灯,上晒架测试 下灯。 b.曝光级数7-9级覆铜(Stoffer 21级曝光尺),一般控制8级左右,但此级数须显影后才能反映出来, 因此对显影控制要求较严。 2、真空度

油气集输研究进展

油气集输研究进展 摘要:油气集输是油田地面工程处理中重要的生产阶段,在油气开展中不可忽视的重要环节,需要我们对其进行更深层次的探讨,切实地提高油气集输处理工艺技术。本文通过大量的调研文献综述了国内外在油气集输方面的研究成果,然后分析了我国油气集输工艺所面临的挑战以及今后的研究方向,这可以为我国油气集输的发展提供一定的方向和理论基础。 关键词:油气集输油田开发采油原油天然气集输 一﹑引言 油气集输是将油田采出的原油和天然气进行输送、储存、收集和进行一系列加工处理使其达到输出标准的工艺流程。其主要包括将从采出物中分离出来的天然气输送到天然气处理厂进行净化处理处理和将原油进行脱水等处理后把合格的原油输送到油田原油库进行储备。同时,还必须将压气站和原油库里的能源物质经过再次处理后以不同的方式外输给用户。油气收集处理工艺具有很多独特的特点主要是覆盖线长、油田点多、覆盖面广的生产特性,然而正由于这些特性导致集输工艺十分复杂,容易发生易燃易爆等事故。近年来生产连的不断深入,油气集输处理工艺将面临着更加严峻的挑战,生产越来越受到大家的重视,油气集输工艺与油田企业的经济效应挂钩,可以说是直接影响到整个油田的生产运输流程,一个好的集输工艺流程必然带来良好的经济效应。所以研究油气集输工艺流程提升油气集输的效益对于我们石油事业的发展具有很重要的意义。 二﹑国内外油气集输工艺 (一)原油集输技术 在低渗透率、断块小的油田开发上,国内油田企业在油气集输方面十分注重集输系统的高效、节能的研究与应用,我国大部分的集输流程都通过简化优化工艺流程,在整个集输系统中尽量采用不加热集输技术和串联管网集输工艺,这样不仅降低了原油生产能耗也保证了集输系统的高效运行。目前我国原油集输与处理技术正向着低投资、低能耗方向发展,而且逐步向上、下游两头延伸慢慢渗透整个生产流程;上游的钻井开采与采油工程相互渗透,下游的净化处理正与炼油技术相互融合。其主要包括如下方面: 1.串联管网集输工艺。串联管网集输工艺核心是采用功图量油技术,实现管网的串联布局,改变传统的计量站模式,不仅节约了能源资源并可降低投资。 2.稠油集输工艺。稠油集输工艺主要包括六个环节:掺水、掺稀、改质降黏、

机械原理大作业——凸轮机构运动分析

机械原理大作业 凸轮机构运动分析 学号 姓名 院系 专业 完成日期 设计题号 指导教师 一、设计如图1所示直动从动件盘形凸轮机构。其原始参数见表1。

图1 行程(mm)升程运 动角 (°) 升程运 动规律 升程许 用压力 角(°) 回程运 动角 (°) 回程运 动规律 回程许用 压力角 (°) 远休止 角 (°) 近休止 角 (°) 35 80 余弦加 速度35 60 3-4-5 多项式 70 100 120 表1 二、计算流程图

凸轮机构分析 建立数学模型 位移方程速度方程 加速度方程 速度线图位移线图加速线图 ds/d Ψ-s 曲线升程压力角回程压力角 确定轴向及基圆半径 压力角图确定滚子半径实际轮廓理论轮廓 轮廓图 结束 三、建立数学模型 1. 位移、速度、加速度、ds/dψ-s 、压力角图 (1)运动方程: A.升程运动方程(余弦加速度): ? ?? ? ? ≤≤π?940 ??????-= )cos(12h 01?φπs )sin(20 011?φπφωπh v =

)cos(202 212 1 ?φπφωπh a = B.远休止方程: ?? ? ??≤≤π?π94 h s =2 02=v 02=a C.回程运动方程(3-4-5多项式): ??? ? ?≤≤π?π34 ])(*6)(*15)( *101[5 0' 040'030'03φφφ?φφφ?φφφ?s s s h s -----+---= ])(*30)(*60)( *30[4 '030'020'00'1 3φφφ?φφφ?φφφ?φωs s s h v --+------ = ])(*120)(*180)( *60[3 ' 020'00'02 0'2 1 3φφφ?φφφ?φφφ?φωs s s h a --+------ = D.近休止方程: ?? ? ??≤≤π?π34 04=s 04=v 04=a (2)源代码及作图(matlab ) syms a1 a2 a3 a4;

汽车差速器三维建模设计

差速器设计 汽车在行驶过程中,左、右车轮在同一时间内所滚过的路程往往是不相等的,如转弯时内侧车轮行程比外侧车轮短;左右两轮胎内的气压不等、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行驶阻力不等等。这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行驶或直线行驶,均会引起车轮在路面上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过性和操纵稳定性变坏。为此,在驱动桥的左、右车轮间都装有轮间差速器。在多桥驱动的汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷、传动系零件损坏、轮胎磨损和燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同角速度转动。差速器按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。 一、差速器结构形式选择 (一)齿轮式差速器 汽车上广泛采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。他又可分为普通 锥齿轮式差速器、摩擦片式差速器 和强制锁止式差速器等 1.普通锥齿轮式差速器 由于普通锥齿轮式差速器结 构简单、工作平稳可靠,所以广泛 应用于一般使用条件的汽车驱动 桥中。图5—19为其示意图,图中 ω0为差速器壳的角速度;ω1、ω 2分别为左、右两半轴的角速度; To为差速器壳接受的转矩;T r为差速器的内摩擦力矩;T1、T2分别为左、右两半轴对差速器的反转矩。 根据运动分析可得 ω1+ω2=2ω0 (5—23) 显然,当一侧半轴不转时,另一侧半轴将以两倍的差速器壳体角速度旋转;当

(工艺技术)制模工艺解析

制模工艺解析 1、1、对照样品:原形是否有与样品不相符的地方,测量样品和原形的高度,按收缩比例计算是否相符, 比例如白云土5%,半瓷土10%; 2、2、切附件:仔细检查判断是否有附件,可以不切下的或有的仅仅只有一点点卡模,是不是修一点就 可少分一片,说明:少切附件或尽可能的少分一片,并非偷懒,因为这小小的动作就会给注浆、修整减少很多的人力和物力,比如,注浆少脱一片模,修整就少刮一条模线,注浆少灌一个附件,修整就少接一个附件既节省人力又提高了效率,所以切附件是一个很重要的环节; 3、3、附件归类:要把空心的和实心的分开来分,这样有利于操作; 4、4、原形表面处理:表面用细水砂纸打光滑,纹路刻深,记号、编号写清楚; 5、5、分片:分片前先画线,以确保模线走向的准确度,然后就可以填泥巴,倒石膏浆,待石膏浆发热 后,用风枪或借用其它工具,比如木锤、橡胶锤把它从原形上取下来修好,便可开始第二片,周而复始,截止分完; 6、 6 、烤模试灌: 是为了在做KS前能有效的把问题控制,不至于以后工作中出现漏洞,使做出的KS模一而再再而三的修改,或报废的一种检查手段,待试灌确认没问题后便可进入KS工作;7、7、做KS: 做KS前要把模子反处理,然后缩夹心,以0。3MM为准,做KS用KS石膏,比例为1: 2.6 水与石膏; 8、8、修KS: 修KS 时也要对照样品,包括每一条纹路,都要仔细的对照,要把每一片模具的利角修出来,修好后涂上一层洋干漆,让其形成一层硬化膜; 9、9、保养与烤KS: 目的是为了把KS里面的水份烤干,以免敲模时模具石膏发热会把KS里面的水份蒸发使模具出现真空; 10、敲模: 敲模前要对KS,保养1 —2个小时,止KS光滑发亮时,方可灌石膏浆,石膏浆的比例为平台1:0。 75,高压1 : 0。乙石膏与水(单位KG); KS保养好后敲的第一模具拿去试产,保证大货能顺利生产,试产通过后方可大量敲模; 11、主要以手工制作, 但不免也要在生产中借用一些简单的工具或化学制剂来协肋完成, 比 如:我们所使用的打浆机, 它的主要作用是用来搅拌石膏与水配比后的搅拌作用, 同时又给提供一个真空环境, 把石膏里的空气全部抽空, 增加模具的脱模次数, 刮板的作用是在我们把石膏浆倒入KS后,过上约5分钟左右,石膏浆初凝时,用刮板刮去多余的石膏, 使模具形成一个平面, 第一, 增加模具美感与可观度, 第二, 能使模具摆放平稳, 木锤用来协助脱模, 待石膏终凝后用木锤敲打模具, 使其振动至松动, 最终达到脱模目的; 化学剂:有钾肥皂,也称脱模剂,在脱模前要用调好的加钾肥皂涂抹数次,使表面形成 油层来防止KS吸水,调制钾肥皂与水的参考值为 1 : 5; 注浆工艺解析 所谓注浆, 也就是产品成形的一个过程。它主要由石膏模具和泥浆两者结合而达到的一个效果。 、石膏模具对注浆的影响 1、1、模具的硬度如何将影响到它的吸水性 a.a.模具硬度大,则吸水性差;b.b.模具硬度适中则吸水性比较好 2、2、造型的复杂与否直接影响到注浆的操作。

工艺流程 (解析版)

原创精品资源学科网独家享有版权,侵权必究! 1 专题16 工艺流程 【母题来源】2019年高考新课标Ⅰ卷 【母题题文】硼酸(H 3BO 3)是一种重要的化工原料,广泛应用于玻璃、医药、肥料等工艺。一种以硼镁矿(含Mg 2B 2O 5·H 2O 、SiO 2及少量Fe 2O 3、Al 2O 3)为原料生产硼酸及轻质氧化镁的工艺流程如下: 回答下列问题: (1)在95 ℃“溶浸”硼镁矿粉,产生的气体在“吸收”中反应的化学方程式为_________。 (2)“滤渣1”的主要成分有_________。为检验“过滤1”后的滤液中是否含有Fe 3+离子,可选用的 化学试剂是_________。 (3)根据H 3BO 3的解离反应:H 3BO 3+H 2O 垐?噲?H ++B(OH)?4,K a =5.81×10?10,可判断H 3BO 3是______ 酸;在“过滤2”前,将溶液pH 调节至3.5,目的是_______________。 (4)在“沉镁”中生成Mg(OH)2·MgCO 3沉淀的离子方程式为__________,母液经加热后可返回____ _______工序循环使用。由碱式碳酸镁制备轻质氧化镁的方法是_________。 【参考答案】(1)NH 4HCO 3+NH 3 (NH 4)2CO 3 (2)SiO 2、Fe 2O 3、Al 2O 3 KSCN (3)一元弱 转化为H 3BO 3,促进析出 (4)2Mg 2++323CO -+2H 2O Mg(OH)2·MgCO 3↓+23HCO - (或2Mg 2++223CO -+H 2O Mg(OH)2·MgCO 3↓+CO 2↑) 溶浸 高温焙烧

机械基础 常用机构 习题

铰链四杆机构的基本特性和凸轮机构 一、判断题 ()1、曲柄摇杆机构的急回特性是用行程速度比系数K来表征,K值越小,急回作用越明显。 ()2、当K>1,θ>0时,机构具有急回特性。 ()3、曲柄摇杆机构以曲柄为原动件时就一定存在急回运动特性。 ()4、偏心曲柄滑块机构以曲柄为原动件时一定存在急回运动特性。 ()5、对心曲柄滑块机构无急回特性。 ()6、摆动导杆机构以曲柄为原动件时不一定存在急回运动特性。 ()7、在曲柄和连杆同时存在的平面四杆机构中,只要曲柄和连杆处于共线位置,就是曲柄的“死点”位置。 ()8、曲柄摇杆机构一定存在死点位置。 ()9、缝纫机踏板机构有时会出现踩不动或倒机的现象,这是因为死点位置造成的。 ()10、缝纫机踏板机构是利用飞轮惯性使其通过死点位置的。 ()11、曲柄摇杆机构以摇杆为原动件时存在两个死点位置。 ()12、内燃机中的曲柄滑块机构不存在死点位置。 ()13、滚子从动件凸轮机构中,从动件与凸轮之间的滚动摩擦阻力小,适于高速传动场合。 ()14、从动件的运动规律取决于凸轮轮廓的形状。 ()15、在柱体凸轮机构中,从动件可以通过直径不大的圆柱凸轮或端面凸轮获得较大的行程。 ()16、尖顶从动件易于磨损,而平底从动件磨损则较小,这是因为前者与凸轮组成高副,而后者与凸轮组成低副的原因。 ()17、凸轮机构能将原动件的旋转运动转化为从动件的往复直线运动。()18、尖顶从动件盘形凸轮机构,基圆与实际工作轮廓线相切。 ()19、凸轮机构的压力角是指凸轮轮廓线某点的法线方向与从动杆速度方向之间的夹角,一般情况下,在工作过程中它是恒定不变的。 ()20、凸轮机构中,升程一定时,基圆半径增大,压力角也随之增大。()21、移动从动件盘形凸轮机构,当从动件不动时,对应的凸轮轮廓线为一直线。 ()22、压力角影响机构的传力特性,压力角越大,传力特性越好。 二、选择题 ()1、当行程速度比系数为时,曲柄摇杆机构才有急回特性。 A. K>1 B. K<1 C. K=0 D. K<0 ()2、下列关于急回特性的描述,错误的是。 A. 机构有无急回特性取决于行程速度比系数 B. 急回特性可使空回行程的时间缩短,有利于提高生产率 C. 极位夹角值越大,机构的急回特性越显著 D. 只有曲柄摇杆机构具有急回特性 ()3、下列机构中存在急回特性的是。 A. 对心曲柄滑块机构且以曲柄为原动件 B. 偏心曲柄滑块机构且以滑块为原动件 C. 摆动导杆机构且以曲柄为原动件 D. 摆动导杆机构且以导杆为原动件 ()4、当四杆机构出现死点位置时,可在从动件上使其顺利通过。 A. 加设飞轮 B. 加大驱动力 C. 减小阻力 D. 更换原动件()5、关于缝纫机踏板机构,以下论述错误的是。

凸轮机构设计及运动分析

凸轮机构设计及运动分析 问题描述: 如图1所示为以对心直动尖顶盘形凸轮机构。从动杆位移s随时间变化曲线如图2所示。要求设计凸轮机构并分析从动件速度v,加速度a随时间变化的规律,及应力、应变随时间变化的规律。 任务与要求 1.设计满图2运动规律的凸轮机构;(要有设计计算步骤) 2.对所设计的机构运用ansys软件分析从动件速度、加速度随时间变化的规律; 3.查阅资料、了解所给机构的在生产、生活中的应用,说明其工作原理,并附相应的图片或视频。 凸轮机构设计及运动分析指导书

一、设计的目的 通过设计,训练学生机构设计的能力,掌握运用ANSYS Workbench进行瞬态动力学分析的方法、步骤和过程,提高学生解决实际问题的能力。 二、设计报告的主要要求 设计报告包括设计报告书Word文档和Powerpoint演示文稿两部分。 1.设计报告书内容包括目录、任务书、正文、参考文献、组员工作内容表。 (1)文档格式严格遵守设计书文档规范要求。 (2)目录必须层次清楚,并标有页码数。 (3)正文按章节编写,按照任务书要求合理安排内容,并附有参考文献。 2.Powerpoint演示文稿要求内容简洁,重点突出。 三、人员要求:1人 四、时间安排 1.布置任务、准备、查阅资料:2天; 2.机构设计及动画:6天; 3.Ansys分析:6天; 4.编写报告书、Powerpint演示文稿、验收:2天。 5.答辩。 五、成绩形成: 设计报告书:50分;答辩:50分 组内成员按实际完成工作量评定每位学生最终成绩;不参加答辩的学生没有答辩成绩。 六、参考资料:机械原理的平面机构,ansys机械工程应用精华59例

国内外限滑差速器结构及性能对比

国外限滑差速器结构及性能对比 一、国外几种常用限滑差速器简介 在发达国家,限滑差速器是一种非常常用的汽车零部件,比如在欧美国家,几乎所有的皮卡都装备有限滑差速器,但在国,限滑差速器由于价格较贵,目前只有少数厂家采用,并且只作为选装件。由于大多数限滑差速器的结构复杂,制造成本高,同时有些关键问题不能很好的解决,因此国的限滑差速器绝大多数从国外进口。 根据结构类型限滑差速器可以分为以下几种: 图1 限滑差速器结构分类 根据工作原理亦可归纳为摩擦式、超越式、与ABS刹车系统相结合的电子限滑差速系统、齿轮变传动比式等几种,分别简述如下:

1.摩擦式:具体结构可以分为无预压摩擦片式和弹簧预压摩擦片式限滑差速器。 图2无预压摩擦片式限滑差速器图3 弹簧预压摩擦片式限滑差速器其工作原理是利用摩擦片之间的摩擦力限制半轴轮相对于差速器壳体转动,使相对转动的阻力增大,从而限制打滑。该类型差速器工作平稳,技术成熟,在国外的高级轿车、越野车和工程机械上应用较广。 该类型差速器缺点是: ①易磨损,维修难; ②锁紧系数大了转向难,小了限滑功能差; ③这类差速器对润滑油有特殊要求,故在选用润滑油时要兼顾齿轮和摩擦片对油的不同要求; ④该型差速器结构复杂,价格较高。 2.超越式差速器: 工作原理是只允许一侧半轴转的比差速器壳快,不允许比差速器壳慢,否则就被锁在差速器壳上。由此差速器壳快的车轮上没有任何牵引力,只能被拖着走,因此在超越和给合的转换过程中工作不太平稳,转

向阻力和转向时对轮胎磨损较大。 3.与ABS刹车系统相结合的电子限滑差速系统: 工作原理:该限滑——防抱死系统通过传感器监视两侧半轴的转速及方向盘的转角,并根据方向盘的转角计算两侧车轮的转速比例。若两侧车轮的转速之比与计算值之差超过给定的误差围,便通过ABS制动系统对转速相对偏高的车轮进行适度的制动,使两轮的转速之比保持在理论值附近。 这种限滑系统的优点是工作平稳,准确,对转向毫无影响。 该限滑系统缺点是: ①该类差速器通过制动快速轮来增加慢转轮的扭矩,而不像其他类型的限滑差速器,通过将快转轮上的扭矩转移到慢转轮上来防止快转轮打滑,故要获得同样的牵引力,消耗的发动机功率要增加许多; ②该类差速器牵涉电子系统复杂,传感器被泥泞污染后即失去功能。 4.齿轮结构限滑差速器: 齿轮结构限滑差速器学名叫变传动比限滑差速器,包括:单周节和三周节变传动比限滑差速器两种。变传动比的限滑差速器早在20世纪30年代TIMKEN公司就将它装到载货汽车的驱动桥上,经过几十年的改进,目前主要应用在工程机械中,目前的应用厂家主要有ZF、日本小松和中国的一些工程机械厂家。 A.单周节变传动比限滑差速器结构: 单周节限滑差速器齿轮每个齿都一样,齿轮采用了非渐开线的分段齿形设计,行星轮和半轴轮的每个齿从刚开始啮合到结束啮合这个过程

凸轮机构的设计计算和运动分析

% ******** 偏置移动从动件盘形凸轮设计绘图和运动分析******** disp ' ######## 已知条件########' disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边' disp ' 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动' % 基圆半径;滚子半径;从动件偏距;从动件升程 rb=40;rt=10;e=15;h=50; % 推程运动角;远休止角;回程运动角;推程许用压力角;凸轮转速 ft=100;fs=60;fh=90;alpha_p=35;n=200; % 角度和弧度转换系数;机构尺度 hd=pi/180;du=180/pi;se=sqrt(rb^2-e^2); w=n*pi/30; omega=w*du; % 凸轮角速度(°/s) fprintf(' 基圆半径rb = %3.4f mm \n',rb) fprintf(' 滚子半径rt = %3.4f mm \n',rt) fprintf(' 推杆偏距 e = %3.4f mm \n',e) fprintf(' 推程升程h = %3.4f mm \n',h) fprintf(' 推程运动角ft = %3.4f 度\n',ft) fprintf(' 远休止角fs = %3.4f 度\n',fs) fprintf(' 回程运动角fh = %3.4f 度\n',fh) fprintf(' 推程许用压力角alpha_p = %3.4f 度\n',alpha_p) fprintf(' 凸轮转速n = %3.4f r/min \n',n) fprintf(' 凸轮角速度(弧度) w = %3.4f rad/s \n',w) fprintf(' 凸轮角速度(度) omega = %3.4f 度/s \n',omega) disp ' ' disp ' 计算过程和输出结果' disp ' ' % (1)---校核凸轮机构的压力角和轮廓曲率半径' disp ' *** 计算凸轮理论轮廓的压力角和曲率半径***' disp ' 1 推程(等加速/等减速运动)' for f=1:ft if f<=ft/2 s(f)=2*h*f^2/ft^2;s=s(f); % 等加速-位移方程 ds(f)=4*h*f*hd/(ft*hd)^2;ds=ds(f); d2s(f)=4*h/(ft*hd)^2;d2s=d2s(f); vt(f)=4*h*omega*f/ft^2; % 等加速-速度方程else s(f)=h-2*h*(ft-f)^2/ft^2;s=s(f); % 等减速-位移方程 ds(f)=4*h*(ft-f)*hd/(ft*hd)^2;ds=ds(f); d2s(f)=-4*h/(ft*hd)^2;d2s=d2s(f); vt(f)=4*h*omega*(ft-f)/ft^2; % 等减速-速度方程end alpha_t(f)=atan(abs(ds-e)/(se+s)); % 推程压力角(弧度) alpha_td(f)=alpha_t(f)*du; % 推程压力角(度) pt1=((se+s)^2+(ds-e)^2)^1.5; pt2=abs((se+s)*(d2s-se-s)-(ds-e)*(2*ds-e));

差速器设计说明书

学号成绩 汽车专业综合实践说明书 设计名称:汽车差速器设计 设计时间 2012年 6月 系别机电工程系 专业汽车服务工程 班级 姓名 指导教师 2012 年 06 月 18日

目 录 任务设计书 已知条件:(1)假设地面的附着系数足够大; (2)发动机到主传动主动齿轮的传动效率96.0=w η; (3)车速度允许误差为±3%; (4)工作情况:每天工作16小时,连续运转,载荷较平稳; (5)工作环境:湿度和粉尘含量设为正常状态,环境最高温度为30 度; (6)要求齿轮使用寿命为17年(每年按300天计,每天平均10小时); (7)生产批量:中等。 (8)半轴齿轮、行星齿轮齿数,可参考同类车型选定,也可自己设计。 (9)主传动比、转矩比参数选择不得雷同。 差速器的功用类型及组成 差速器——能使同一驱动桥的左右车轮或两驱动桥之间以不同角速度旋转,并传递转矩的机构。起轮间差速作用的称为轮间差速器,起桥间作用的称桥间(轴间)差速器。轮间差速器的功用是当汽车转弯行驶或在不平路面上行驶时,使左右驱动轮以不同的转速滚动,即保证两侧驱动车轮作纯滚动。 1.齿轮式差速器 齿轮式差速器有圆锥齿轮式和圆柱齿轮式两种。 按两侧的输出转矩是否相等,齿轮差速器有对称式(等转矩式)和不对称式(不等转矩式)。目前汽车上广泛采用的是对称式锥齿轮差速器,具有结构简单、质量较小等优点,应用广泛。它又可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器等。其结构见下图:

2.滑块凸轮式差速器 图二—2为双排径向滑块凸轮式差速器。 差速器的主动件是与差速器壳1连接在一起的套,套上有两排径向孔,滑块2装于孔中并可作径向滑动。滑块两端分别与差速器的从动元件内凸轮4和外凸轮3接触。内、外凸轮分别与左、右半轴用花键连接。当差速器传递动力时,主动套带动滑块并通过滑块带动内、外凸轮旋转,同时允许内、外凸轮转速不等。理论上凸轮形线应是阿基米德螺线,为加工简单起见,可用圆弧曲线代替。

冶金工业时代的轧钢工艺技术分析

冶金工业时代的轧钢工艺技术分析 摘要:在目前工业产业结构中,冶金轧钢生产属于十分重要的内容及组成部分, 在整个工业产业中占据重要地位。在冶金轧钢生产过程中,为能够使生产效率及生 产质量得以有效提升,需要对相关新技术进行合理应用,促使冶金轧钢生产能够 更好满足实际需求。本文就冶金轧钢生产新技术进行分析,从而为更好进行冶金 轧钢生产提供更好的技术支持,实现冶金轧钢生产产业的更好发展。 关键词:冶金轧钢;生产技术;新技术 引言 随着我国经济高速发展,建筑行业、造船业、汽车制造业等所需钢铁行业的兴旺,给冶金轧钢行业带来了新的机遇,然而,矿石原材料。冶炼成本费用的提高却 给我国钢铁行业带来了新的困难。结合我国基本国情,当前乃至今后轧钢生产要以 围绕降低生产成本、节约能源、提高轧钢质量,保证产量,开发新产品所进行的 新技术、新工艺开发为主。新技术、新工艺的研究、开发、推广和使用,可以提 高产品质量和性能,增强冶金企业的市场竞争力。本文重点分析了以节能降耗.提 高产品性能质量、生产自动化连续化为目标的冶金轧钢生产新技术。虽然我国的 粗钢产量位居世界榜首,但是精钢生产技术和产量仍处于世界落后水平,很多钢铁 企业仍停留在重产量轻质量的发展瓶颈上,中国冶金轧钢业要振兴,路仍然艰辛漫长,必须要走精细化道路。在2008年世界金融危机的爆发,也暴露出我国钢铁企 业的一些问题,高成本、高耗能、污染、附加值,严重制约了我国钢铁企业的发展。因此,开发探究轧钢新技术、新工艺是突破发展瓶颈的唯一,是钢铁企业降低成本、节约能源、提高质量、提高性能,提高产品竞争力的主要方法。 1冶金工业时代的冷轧轧钢工艺技术分析 冷轧轧钢工艺是坯材在初步经过热轧轧钢工艺加工之后,对钢材使用条件有 特殊要求,需要进一步对钢材进行加工的工艺,该工艺主要包括以下工艺流程:首 先进行冷轧工艺的润滑加工;其次进行冷轧工艺的退火处理,最后进行冷轧工艺氧 化膜处理。 1.1 冷轧工艺的润滑加工分析 加入润滑剂的加工工序,我们可以称之为润滑加工。该工序在冷轧轧钢工艺 中极为重要,润滑加工成功或者是失败,直接影响冷轧轧钢工艺钢材成晶质量是否 达标。首先需要在润滑工序进行时控制好钢材上润滑剂的油性,确保轧锟与钢材之 间具有良好润滑的效果。其次就是确保润滑剂具有优秀的冷却能力,冷却能力优 秀说明其散热效果好。可以把轧锟与钢材之间多余的热量散发掉,使钢材可以冷 轧轧钢工处于一个理想的温度环境。并且润滑剂自身具有的过滤性还可以去除掉 润滑剂中的其他杂质,防止多余杂质吸附到钢材表面,另外在冷轧轧钢工艺中使用 的润滑剂除过滤性外还需要具有一定清洁性,该工序有利于对钢材进行进一步退 火处理。 1.2冷轧工艺的退火处理分析 退火处理包括在冷轧轧钢工艺中,该工艺是冷轧轧钢工艺中重要的加工工序之一。退火处理其实质是对坯材不采用脱脂处理,直接进行退火的工艺。在普通情 况下,如果退火处理前润滑加工工序中润滑剂使用不当,就会导致钢材表面生成 大量斑点。所以进行退火处理前就要确保高品质润滑剂使用,这样可以使退火处 理工艺效果达到最佳,高品质润滑剂使用能够减少经过退火处理后钢材表面形成 的斑点数量。

PCB制程工艺简要介绍模板

PCB制程工艺简要介绍模 板 1

一〉流程: 磨板→贴膜→曝光→显影 一、磨板 1、表面处理除去铜表面氧化物及其它污染物。 a. 硫酸槽配制 H2SO4 1-3%( V/V) 。 b. 酸洗不低于10S。 2、测试磨痕宽度控制范围10-15mm, 磨痕超过15mm会出现 椭圆孔或孔口边沿无铜, 一般控制10-12mm 2

为宜。 3、水磨试验每日测试水膜破裂时间≥15s,试验表明, 在相同条 件下磨痕宽度与水膜破裂时间成正比。 4、磨板控制传送速度1.2-2.5M/min, 间隔1", 水压1.0-1.5bar, 干燥温度70-90℃。 二、干膜房 1、干膜房洁净度10000级以上。 2、温度控制20-24°C, 超出此温度范围容易引起菲林变形。 3、湿度控制60-70%, 超出此温度范围也容易引起菲林变形。 4、工作者每次进入干膜房必须穿着防尘服及防尘靴风淋15-20 s。 三、贴膜 1、贴膜参数控制 a. 温度100-120°C, 精细线路控制115-120°C, 一般线路控制105-1 10°C, 粗线路控制100-105°C。 3

b. 速度<3M/min。 c. 压力30-60Psi, 一般控制40Psi左右。 2、注意事项 a. 贴膜时注意板面温度应保持38-40°C, 冷板贴膜会影响干膜与板面的粘接性。 b. 贴装前须检查板面是否有杂物、板边是否光滑等, 若板边毛刺过大会划伤贴膜胶辊, 影响使用寿命。 c. 在气压不变情况下, 温度较高时可适当加快传送速度, 较低时 可适当减慢传送速度, 否则会出现皱 膜或贴膜不牢, 图形电镀时易产生渗镀。 d. 切削干膜( 手动贴膜机) 时用力均匀, 保持切边整齐, 否则显影后出现菲林碎等缺陷。 e. 贴膜后须冷却至室温后方可进行曝光。 四、曝光 1、光能量 4

差速器的结构及工作原理

汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。 当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等; 即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的滚动半径实际上不可能相等,若两侧车轮都固定在同一刚性转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。 差速器的作用 车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。 若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。 这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。 在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各驱动桥所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。 布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。 差速器可分为普通差速器和防滑差速器两大类。

普通差速器的结构及工作原理 目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。 对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或铆钉)固定在差速器壳右半部8的凸缘上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。 行星齿轮的背面和差速器壳相应位置的内表面,均做成球面,这样作能增加行星齿轮轴孔长度,有利于和两个半轴齿轮正确地啮合。 差速器的工作原理 在传力过程中,行星齿轮和半轴齿轮这两个锥齿轮间作用着很大的轴向力,为减少齿轮和差速器壳之间的磨损,在半轴齿轮和行星齿轮背面分别装有平垫片3和球面垫片5。垫片通常用软钢、铜或者聚甲醛塑料制成。 差速器的润滑是和主减速器一起进行的。为了使润滑油进入差速器内,往往在差速器壳体上开有窗口。为保证润滑油能顺利到达行星齿轮和行星齿轮轴轴颈之间,在行星齿轮轴轴颈上铣出一平面,并在行星齿轮的齿间钻出径向油孔。在中级以下的汽车上,由于驱动车轮的转矩不大,差速器内多用两个行星齿轮。相应的行星齿轮轴相为一根直销轴,差速器壳可以制成开有大窗孔的整体式壳,通过大窗孔,可以进行拆装行星齿轮和半轴齿轮的操作。 差速器的工作原理图解 一般的差速器主要是由两个侧齿轮(通过半轴与车轮相连)、两个行星齿轮(行星架与环形齿轮连接)、一个环形齿轮(动力输入轴相连)。 传动轴传过来的动力通过主动齿轮传递到环齿轮上,环齿轮带动行星齿轮轴一起旋转,同时带动侧齿轮转动,从而推动驱动轮前进。

化学镍金制程分析

化学镍金制程分析

Electroless Nickle / Immersion Gold Process 酸性清洁 CLEN 目的:去除铜箔表面的轻 微氧化物以及轻微的油 微 蚀 目的:使铜面产生一个良 好的粗糙面,促进铜面与 预 浸 目的:作为下一站钯活化 的预处理,保护活化槽不 活 化 目的:可以使裸露的铜表 面置换上一层钯金属,作 需有循环过滤装置(循环量6~8turn over ),加热 需有循环过滤装置(循环量6~8turn over ),加热 需有循环过滤装置(循环 化学反应式: Pd 2+ +CU Pd+CU 2+

化学镀镍 目的:为裸铜面提供一层要求厚度的镍层。防止铜离化学浸金 目的:在镍层上镀上一定要求厚度的金层,保护镍层化学镍槽:不锈钢304或316;PP 需有循环 (过滤)装置(循主反应: Ni 2+ +2H 2PO 2- +2H 2O=Ni+2HPO 3 2-+4H + +H 2 副反应: 4H PO -=2HPO 2- +2P+2H O+H 需要有循环装置,加热装置(石英或铁弗龙) 主要反应: 2Au(CN)2-+Ni=2Au+Ni 2++4C N - ■原理:

■化学镀镍/金可焊性控制 1金层厚度对可焊性和腐蚀的影响 在化学镀镍/金上,不管是施行锡膏熔焊或随后的波峰焊,由于金层很薄,在高温接触的一瞬间,金迅速与锡形成“界面合金共化物”(如A uSn、Au Sn2 、Au Sn 3等)而熔入锡中。故所形成的焊点,实际上是着落在镍表面上,并形成良好的Ni-Sn合金共化物Ni3Sn4,而表现固着强度。换言之,焊接是发生在镍面上,金层只是为了保护镍面,防止其钝化(氧化)。因此,若金层太厚,会使进入焊锡的金量增多,一旦超过3%,焊点将变脆性反而降低其粘接强度。 据资料报导,当浸镀金层厚度达0.1μm时,没有或很少有选择性腐蚀;金层厚度达0.2μm时,镍层发生腐蚀;当金层厚度超过0.3μm时,镍层里发生强烈的不可控制的腐蚀。 2镍层中磷含量的影响 化学镀镍层的品质决定于磷含量的大小。磷含量较高时,可焊性好,同时其抗蚀性也好,一般可控制在7~9%。当镍面镀金后,因Ni-Au层Au层薄、疏松、孔隙多,在潮湿的空气中,N i为负极,A u为正极,由于电子迁移产生化学电池式腐蚀,又称焦凡尼式腐蚀,造成镍面氧化生锈。严重时,还会在第二次波峰焊之后发生潜伏在内的黑色镍锈,导致可焊性劣化与焊点强度不足。原因是Au面上的助焊剂或酸类物质通过孔隙渗入镍层。如果此时镍层中磷含量适当(最佳7%),情况会改善。 3镍槽液老化的影响 镍槽反应副产物磷酸钠(根)造成槽液“老化”,污染溶液。镍层中磷含量也随之升高。老化的槽液中,阻焊膜渗出的有机物量增高,沉积速度减慢,镀层可焊性变坏。这就需要更换槽液,一般在金属追加量达4~5MT O时,应更换。 4 PH值的影响 过高的P H,使镀层中磷含量下降,镀层抗蚀性不良,焊接性变坏。对于安美特公司之Aurot ech (酸性)镀镍/金体系,一般要求PH不超过 5.3,必要时可通过稀硫酸降低PH。 5稳定剂的影响 稳定剂可阻止在阻焊Cu焊垫之间的基材上析出镍。但必须注意,太多时不但减低镍的沉积速度,还会危害到镍面的可焊性。 6不适当加工工艺的影响 为了减少N i/Au所受污染,烘烤型字符印刷应安排在Ni/Au工艺之前。光固型字符油墨不宜稀释,并且也应安排

油田油气集输与处理工艺技术

油田油气集输与处理工艺技术 发表时间:2019-08-13T09:12:28.407Z 来源:《防护工程》2019年10期作者:陈辉 [导读] 通过不断对油田油气技术工艺进行研究发展,可以更好地确保所开采出来油气质量。 中国石油新疆油田分公司新港公司新疆克拉玛依 834000 摘要:当前阶段,我国油田事业飞速发展,在对油田进行开采过程中,不断进行油田油气技术可以很好地将油田企业的经济效益提升上去,确保企业可以持续发展。通过不断对油田油气技术工艺进行研究发展,可以更好地确保所开采出来油气质量。 关键词:油田油气;集输;处理工艺 1油气集输技术分析 1.1原油脱水技术 原油的脱水技术在油气集输工艺技术中尤为重要,可以说是最为关键的一个环节。原油脱水技术繁琐复杂,一般由两大部分组成。第一部分是使用大罐沉降技术将游离水脱除,第二部分是利用平挂电极与竖挂电极交直流复合电脱水技术对其进行处理。在大罐中由于油水的密度不同,互相不会融合,利用重力和浮力双重作用使得油水分离,在分离之后收油装置会收集分离沉降后的原油。再利用平挂电极与竖挂电极之间的复合电极形成高压电磁场,水珠在高压下不断变形,同时在电场力的作用下快速的实现聚结,再次有效沉降。对于不同种类的油来说要适当变通处理方法。稠油的油水密度相差较小且粘度较大,用传统的脱水技术耗资较大,效果也不尽如人意,因此在利用多次大罐沉降技术之后可以通过高温加热的方法提升温度,加快沉降的速度以此来有效提高稠油的分离效果。 1.2原油集输技术 当前阶段,我国更多的是对低渗透以及小断块油田进行开发,通过对原油集输技术进行研究,可以很好地降低原油开采过程中原油的损耗。在进行原油集输过程中,我国目前所采用的技术就是对相应的运输流程进行简化,具体就是通过将管网进行串联,以将原油的运输效率进行提升,并且降低原油在运输过程中所出现的损耗。此外,在集输上,对采油企业以及原油加工企业采取并行化处理的方式,目的就是为了将两者进行有效融合,使得原油的生产、加工和销售呈现出一体化状态,从而可以更好地保证原油生产企业的经济效益。关于稠油集输技术方面,将稠油原油六道加工技术工艺进行有效的融合,从而可以对传统稠油加工技术进行改善,在输送过程中采取集输化方式,避免稠油在运输过程中出现的高损耗现象,确保稠油的运输效率以及运输质量。当前我国在对高含水原油集输工艺进行改善的过程中,所采取的方式就是对其进行预处理,在对高含水量原油进行处理过程中,通过对三相分离器进行应用可以很好地对原油和水分进行分离,真正将原油的质量提升上去。但是需要特别注意的是,目前所采用的工艺还很难将原油当中的大部分水分去掉,只能去掉一部分水分,并且同国外高含水量原油预分离技术还是存在比较大的差距。 1.3油气水多相混输技术 由于油气集输路线较长,采取混合集输的技术能够使集输效果更明显,该技术现发展迅速,应用广泛,效果良好,是目前使用最多的一种新型技术。油气水多相混输技术是将两种技术相结合,同时发挥其优势,弥补各自的不足。不仅优化了运输技术、提高了运输效果,也减少了经济成本的投入,有效节省了人力物力,避免了资源的浪费。在此基础上为了更好地发展油气水多相混输技术,还应当不断深入研究电热技术,多次检验混合输技术的效果,更好的为石油事业做出贡献。相比于其他国家的成果我们应当继续努力,不断进步。 2油气集输处理工艺 油田产物是油气水三相的混合物,经过油气水的初步分离,降低了混合物的含水率,之后,对原油和水进行彻底的分离,将原油中的游离水和乳化水分离除去。分离获得的天然气经过除油净化处理,计量后用于加热炉作为燃料进行燃烧,剩余的天然气通过压缩机系统输送给天然气处理场所,实施进一步的净化处理,获得的商品天然气外输。分离出来的含油污水经过深度污水处理,除去其中的油和悬浮颗粒,使其达到注入水的水质标准后,经过注水泵加压,输送至注水干线,经过配水间进入注水井,达到水驱的开发效率。油气水三相分离的工艺技术措施,主要依靠油气水的密度差异,利用重力沉降分离的原理,获得油气水三相的初步分离结果。为了提高原油破乳脱水的效果,应加强对破乳剂的研制,选择高效的原油破乳剂,通过管道的热化学脱水和电化学脱水技术措施,将原油中的乳化水脱除,促使外输原油的含水达到标准的规定。对含油污水的处理工艺进行优化,设计含油污水的除油技术措施,通过气浮选等技术,将含油污水中的浮油分离出来,经过收油处理,使其作为油田产物的一部分,作为油田产量的补充。而含油污水中的悬浮颗粒,通过过滤设备的作用,选择最佳的过滤材料,保证悬浮颗粒的含量达标,对含油污水处理后的水质进行化验分析,达到水质标准后,方可注入到油层。 3油气集输储运工艺设计要点 3.1 站外油气集输储运工程设计重点 站外油气集输储运工程设计要选择适合的模式,例如单井集油模式,这种模式下,要做好单井计量方法选择,科学布置阀组间,选择适合的集输管材。其次,要做好工艺计算。工艺计算包括热力计算、水力计算、强度计算,以计算结果为参考实施标准化设计。做好地面工程建设规模和工艺流程的优化和简化,将机械技术、电气技术、信息技术进行有机结合,根据目标进行配置功能,进而实现中小型站场或大型站场中多个生产单元同时运行的目的。 3.2站内油气集输设计重点 油气处理主要包括油气分离与脱水等环节,石油企业要结合油品性质,采取相应的油气分离技术与脱水技术,优化工艺流程,本着“大型模块化、小型一体化”的原则建站,将传统油田地面建设转变为“搭积木”式的快速建设,建设周期短,成本低,安全可靠。对于油气分离可以建立一体化集成装置,原油通过来液阀组进行收集和计量,进入缓冲罐在通过增压泵加压进入一级分离器,油气水分离后原油进入储油罐,天然气进入加热原油,再次进入二级分离器,分离器要配置加药口,分离后还要科学处理污水。 3.3 外输工艺设计 油气集输储运过程中原油外输工程设计占据重要的地位,要科学设定建设规模,选择适合的管材,优化外输管线设计。外输管线的设计首先要确定参数,包括水力计算、热力计算和强度计算,科学计算出外输管线的外径,合理设置中间站。外输管线线路设计要注意走向,铺设方式也要选择最适合的,管线防腐蚀维护也要注意,科学设置热力补偿区,确定固定墩位置。输油管道要设置清管设备,设置清

相关主题
文本预览
相关文档 最新文档