当前位置:文档之家› 第九章第9讲离散型随机变量的均值与方差、正态分布

第九章第9讲离散型随机变量的均值与方差、正态分布

第九章第9讲离散型随机变量的均值与方差、正态分布
第九章第9讲离散型随机变量的均值与方差、正态分布

第9讲 离散型随机变量的均值与方差、正态分布

,[学生用书P201])

1.离散型随机变量的均值与方差

若离散型随机变量X 的分布列为

X x 1 x 2 … x i …

x n P p 1 p 2 … p i …

p n (1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)D (X )=∑n i =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差.

2.均值与方差的性质

(1)E (aX +b )=aE (X )+b (2)D (aX +b )=a 2D (X )

(a ,b 为常数). 3.两点分布与二项分布的均值、方差

X X 服从两点分布 X ~B (n ,p )

E (X ) p (p 为成功概率)

np D (X ) p (1-p ) np (1-p )

(1)曲线位于x 轴上方,与x 轴不相交;

(2)曲线是单峰的,它关于直线x =μ对称;

(3)曲线在x =μ处达到峰值1σ2π

; (4)曲线与x 轴之间的面积为1;

(5)当σ一定时,曲线随着μ的变化而沿x 轴平移;

(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.

1.辨明两个易误点

(1)均值E (X )是一个实数,由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 值的取值平均状态.

(2)注意E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ).

2.正态分布的三个常用数据

(1)P (μ-σ<X ≤μ+σ)=0.682 6;

(2)P (μ-2σ<X ≤μ+2σ)=0.954 4;

(3)P (μ-3σ<X ≤μ+3σ)=0.997 4.

3.求离散型随机变量均值、方差的基本方法

(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;

(2)已知随机变量X 的均值、方差,求X 的线性函数Y =aX +b 的均值、方差和标准差,可直接用X 的均值、方差的性质求解;

(3)如能分析所给随机变量服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.

1

则X 的数学期望E (X )A.32

B .2 C.52

D .3 解析:选A.

E (X )=1×35+2×310+3×110=32

,故选A. 2.已知随机变量X 服从正态分布N (0,σ2).若P (X >2)=0.023,则P (-2≤X ≤2)=( )

A .0.477

B .0.628

C .0.954

D .0.977

解析:选C.因为μ=0,所以P (X >2)=P (X <-2)=0.023,

所以P (-2≤X ≤2)=1-2×0.023=0.954. 3.设随机变量X 的分布列为P (X =k )=15

(k =2,4,6,8,10),则D (X )等于( ) A .5 B .8

C .10

D .16

解析:选B.因为E (X )=15

(2+4+6+8+10)=6, 所以D (X )=15

[(-4)2+(-2)2+02+22+42]=8. 4.已知随机变量X 的分布列为:

且设Y =2X +3,则Y 解析:由分布列性质有12+13+a =1,即a =16

; E (X )=(-1)×12+0×13+1×16=-13

, 所以E (Y )=E (2X +3)=2E (X )+3=3-23=73. 答案:73

5.(选修2-3 P69习题2.3 B 组T1改编)抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________.

解析:抛掷两枚骰子,当两枚骰子不出现5点和6点时的概率为46×46=49

,所以至少有一次出现5点或6点的概率为1-49=59,用X 表示10次试验中成功的次数,则X ~B ????10,59,

E (X )=10×59=509

. 答案:509

考点一 离散型随机变量的均值(高频考点)[学生用书P202]

离散型随机变量的均值是高考命题的热点,多以解答题的形式呈现,多为中档题. 高考对离散型随机变量的均值的考查主要有以下两个命题角度:

(1)已知离散型随机变量符合的条件,求其均值;

(2)已知离散型随机变量的均值,求参数值.

(2014·高考湖南卷)某企业有甲、乙两个研发小组,他们研发新产品成功的概

率分别为23和35

.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;

(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.

[解] 记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知P (E )=23

,P (E -)=13,P (F )=35,P (F -)=25

,且事件E 与F ,E 与F -,E -与F ,E -与F -都相互独立. (1)记H ={至少有一种新产品研发成功},则H -=E -F -,

于是P (H -)=P (E -)P (F -)=13×25=215

, 故所求的概率为P (H )=1-P (H -)=1-215=1315

. (2)设企业可获利润为X 万元,则X 的可能取值为0,100,120,220.因为P (X =0)=P (E

-F -)=13×25=215

, P (X =100)=P (E -F )=13×35=315

, P (X =120)=P (E F -)=23×25=415

, P (X =220)=P (EF )=23×35=615

数学期望为E (X )=0×215+100×315+120×415+220×615=300+480+1 32015=2 10015

=140.

求离散型随机变量X 的均值的方法

(1)理解X 的意义,写出X 可能取的全部值;

(2)求X 取每个值的概率;

(3)写出X 的分布列;

(4)由均值的定义求E (X ).

1.(2016·沈阳教学质量监测)为向国际化大都市目标迈进,某市今年新建三

大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名工人相互独立地从这60个项目中任选一个项目参与建设.

(1)求这3人选择的项目所属类别互异的概率;

(2)将此3人中选择的项目属于基础设施类工程或产业建设类工程的人数记为X ,求X 的分布列和数学期望.

解:记第i 名工人选择的项目属于基础设施类、民生类、产业建设类分别为事件A i 、B i 、C i ,i =1,2,3.

由题意知A 1、A 2、A 3、B 1、B 2、B 3、C 1、C 2、C 3均相互独立.

则P (A i )=3060=12,P (B i )=2060=13,P (C i )=1060=16

,i =1,2,3, (1)3人选择的项目所属类别互异的概率:

P 1=A 33P (A 1B 2C 3)=6×12×13×16=16

. (2)任一名工人选择的项目属于基础设施类或产业建设类工程的概率:

P 2=30+1060=23

, 由X ~B ???

?3,23, 得P (X =k )=C k 3????23k ????1-233-k (k =0,1,2,3),

所以X 的分布列为

其数学期望为E (X )=3×23

=2. 考点二 均值与方差的实际应用[学生用书P202]

(2016·山西省四校联考)学校设计了一个实验学科的考查方案:考生从6道备

选题中一次随机抽取3道题,按照题目要求独立完成全部实验操作,并规定:在抽取的3道题中,至少正确完成其中2道题便可通过考查.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都为23

,且每题正确完成与否互不影响. (1)求考生甲正确完成题目个数X 的分布列和数学期望;

(2)用统计学知识分析比较甲、乙两考生哪位实验操作能力强及哪位通过考查的可能性大?

[解] (1)由题意知X 的可能取值为1,2,3, P (X =1)=C 14C 22C 36=15, P (X =2)=C 24C 12C 36=35, P (X =3)=C 34C 02C 36=15

, 所以,考生甲正确完成题目数的分布列为:

所以E (X )=1×15+2×35+3×15

=2. (2)设考生乙正确完成实验操作的题目个数为Y ,

因为Y ~B ????3,23,其分布列为:P (Y =k )=C k 3????23k ·???

?133-k ,k =0,1,2,3,

所以E (Y )=3×23=2. 又因为D (X )=(1-2)2×15+(2-2)2×35+(3-2)2×15=25

, D (Y )=3×23×13=23

, 所以D (X )<D (Y ).

又因为P (X ≥2)=35+15=0.8,P (Y ≥2)=1227+827

≈0.74, 所以P (X ≥2)>P (Y ≥2).

①从做对题数的数学期望来看,两人水平相当;从做对题数的方差来看,甲较稳定; ②从至少完成2道题的概率来看,甲获得通过的可能性较大,因此,可以判断甲的实验操作能力强.

均值与方差的实际应用

(1)D (X )表示随机变量X 对E (X )的平均偏离程度,D (X )越大表明平均偏离程度越大,说明X 的取值越分散;反之,D (X )越小,X 的取值越集中在E (X )附近,统计中常用D (X )来描述X 的分散程度.

(2)随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量取值偏离于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要的理论依据,一般先比较均值,若均值相同,再用方差来决定.

2.(2016·云南省第一次统一检测)甲、乙两名射击运动员进行射击比赛,射

击次数相同,已知两名运动员击中的环数稳定在7环、8环、9环、10环,他们比赛成绩的统计结果如下:

(1)估计甲、乙两名射击运动员击中的环数都不少于9环的概率;

(2)若从甲、乙运动员中只能挑选一名参加某大型比赛,请你从随机变量均值意义的角度,谈谈让谁参加比较合适?

解:(1)记甲运动员击中n 环为事件A n (n =7,8,9,10);乙运动员击中n 环为事件B n (n =7,8,9,10),甲运动员击中的环数不少于9环为事件A 9∪A 10,乙运动员击中的环数不少于9环为事件B 9∪B 10,根据已知事件A 9与事件A 10互斥,事件B 9与事件B 10互斥,事件A 9∪A 10与B 9∪B 10相互独立,则P (A 9∪A 10)=P (A 9)+P (A 10)=1-0.2-0.15=0.65,

P (B 9∪B 10)=P (B 9)+P (B 10)=0.2+0.35=0.55.

所以甲、乙两名射击运动员击中的环数都不少于9环的概率等于0.65×0.55=0.357 5.

(2)设甲、乙两名射击运动员击中的环数分别为随机变量X 、Y ,根据已知得X 、Y 的可能取值为:7,8,9,10.

甲运动员射击环数X 的分布列为:

甲运动员射击环数X E (X )=7×0.2+8×0.15+9×0.3+10×0.35=8.8.

乙运动员射击环数Y 的概率分布列为:

乙运动员射击环数Y E (Y )=7×0.2+8×0.25+9×0.2+10×0.35=8.7.

因为E (X )>E (Y ),

所以从随机变量均值意义的角度看,选甲去比较合适.

考点三 正态分布[学生用书P203]

(1)(2016·长春质检)已知随机变量X 服从正态分布N (1,σ2),若P (X >2)=0.15,

则P (0≤X ≤1)=( )

A .0.85

B .0.70

C .0.35

D .0.15

(2)(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )

(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)

A .4.56%

B .13.59%

C .27.18%

D .31.74%

[解析] (1)P (0≤X ≤1)=P (1≤X ≤2)=0.5-P (X >2)=0.35.

(2)由正态分布的概率公式知P (-3<ξ<3)=0.682 6,P (-6<ξ<6)=0.954 4,故P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=0.954 4-0.682 62

=0.135 9=13.59%,故选B. [答案] (1)C (2)B

正态分布下的概率计算常见的两类问题

(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,及曲线与x 轴之间的面积为1.

(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.

3.设随机变量X ~N (1,52),且P (X ≤0)=P (X ≥a -2),则实数a 的值为( )

A .4

B .6

C .8

D .10

解析:选A.由正态分布的性质可知P (X ≤0)=P (X ≥2),所以a -2=2,故a =4.

,[学生用书P203])

交汇创新——随机变量的均值与其他知识的交汇

(2015·高考湖北卷)某厂用鲜牛奶在某台设备上生产A ,B 两种奶制品.生产1

吨A 产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产A ,B 两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为

该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.

(1)求Z 的分布列和均值;

(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.

[解] (1)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为z ,

则有?????2x +1.5y ≤W ,x +1.5y ≤12,2x -y ≥0,x ≥0,y ≥0.

(*) 目标函数为z =1 000x +1 200y .

将z =1 000x +1 200y 变形为l :y =-56x +z 1 200,设l 0:y =-56

x .

当W =12时,(*)表示的平面区域如图①阴影部分所示,三个顶点分别为A (0,0),B (2.4,

4.8),C (6,0).

平移直线l 0知当直线l 过点B ,

即当x =2.4,y =4.8时,z 取最大值,

故最大获利Z =z max =2.4×1 000+4.8×1 200=8 160(元).

当W =15时,(*)表示的平面区域如图②阴影部分所示,三个顶点分别为A (0,0),B (3,

6),C (7.5,0).

平移直线l 0知当直线l 过点B ,

即当x =3,y =6时,z 取得最大值,

故最大获利Z =z max =3×1 000+6×1 200=10 200(元).

当W =18时,(*)表示的平面区域如图③阴影部分所示,

四个顶点分别为A (0,0),B (3,6),C (6,4),D (9,0).

平移直线l 0知当直线l 过点C ,

即当x =6,y =4时,z 取得最大值,

故最大获利Z =z max =6×1 000+4×1 200=10 800(元).

故最大获利Z

因此,E (Z )=8 160×(2)由(1)知,一天最大获利超过10 000元的概率p 1=P (Z >10 000)=0.5+0.2=0.7, 由二项分布,3天中至少有1天最大获利超过10 000元的概率为p =1-(1-p 1)3=1-0.33=0.973.

(1)本题是线性规划和离散型随机变量的分布列、均值交汇,考查了对数

学的应用意识.根据题目所给信息,需要提炼出线性约束条件和目标函数,考查了数据处理能力.在求Z 的值时,应用了数形结合思想.

(2)离散型随机变量的均值常与茎叶图、频率分布直方图、分层抽样、函数、数列、不等式等知识交汇,题目设计新颖,是近几年高考考查的热点.

(2016·云南省师大附中适应性考试)甲、乙两支球队进行总决赛,比赛采用

五场三胜制,即若有一队先胜三场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一.据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.

(1)求总决赛中获得门票总收入恰好为220万元的概率;

(2)设总决赛中获得的门票总收入为X ,求X 的分布列和数学期望E (X ).

解:(1)依题意,每场比赛获得的门票收入组成首项为40,公差为10的等差数列. 设此数列为{a n },则易知a 1=40,a n =10n +30,

故S n =n (10n +70)2

,令S n =220, 解得n =-11(舍去)或n =4,所以此决赛共比赛了四场.

则前三场的比分必为1∶2,且第四场比赛为领先的球队获胜,其概率为C 23×????122×12

=38

. (2)随机变量X 可取的值为S 3,S 4,S 5,即150,220,300.

又P (X =150)=2×????123=14,P (X =220)=C 23×????122×12=38

,P (X =300)=C 24×????122×????122=38

. 分布列如下: 所以X 的数学期望为E (X )=150×14+220×38+300×38

=232.5(万元).

1.(2016·茂名模拟)

则X 的数学期望E (X )=( A .2 B .2或12

C.12 D .1 解析:选C.因为分布列中概率和为1,所以a 2+a 2

2

=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12

. 2.(2016·潍坊质检)已知随机变量X 服从正态分布N (3,σ2),且P (X <5)=0.8,则P (1<X <3)=( )

A .0.6

B .0.4

C .0.3

D .0.2

解析:选C.由正态曲线的对称性可知,P (X <3)=P (X >3)=0.5,故P (X >1)=P (X <5)=0.8,所以P (X ≤1)=1-P (X >1)=0.2,P (1<X <3)=P (X <3)-P (X ≤1)=0.5-0.2=0.3.

3.(2016·嘉峪关质检)签盒中有编号为1,2,3,4,5,6的六支签,从中任意取3支,设X 为这3支签的号码之中最大的一个,则X 的数学期望为( )

A .5

B .5.25

C .5.8

D .4.6

解析:选B.由题意可知,X 可以取3,4,5,6,

P (X =3)=1C 36=120,P (X =4)=C 23C 36=320, P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12

. 由数学期望的定义可求得E (X )=3×120+4×320+5×310+6×12

=5.25. 4.设随机变量X 服从正态分布N (μ,σ2),且二次方程x 2+4x +X =0无实数根的概率

为12

,则μ等于( ) A .1 B .2

C .4

D .不能确定

解析:选C.因为方程x 2+4x +X =0无实数根的概率为12

, 由Δ=16-4X <0,得X >4,

即P (X >4)=12

=1-P (X ≤4), 故P (X ≤4)=12

,所以μ=4. 5.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.

解析:记不发芽的种子数为Y ,则Y ~B (1 000,0.1),

所以E (Y )=1 000×0.1=100.又X =2Y ,所以E (X )=E (2Y )=2E (Y )=200.

答案:200

6.(2016·贵州省七校第一次联考)在某校2015年高三11月月考中理科数学成绩X ~

N (90,σ2)(σ>0),统计结果显示P (60≤X ≤120)=0.8,假设该校参加此次考试的有780人,那么试估计此次考试中,该校成绩高于120分的有________人.

解析:因为成绩X ~N (90,σ2),所以其正态曲线关于直线x =90对称.又P (60≤X ≤120)

=0.8,由对称性知成绩在120分以上的人数约为总人数的12

(1-0.8)=0.1,所以估计成绩高于120分的有0.1×780=78人.

答案:78

7.(2015·高考山东卷)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.

(1)写出所有个位数字是5的“三位递增数”;

(2)若甲参加活动,求甲得分X 的分布列和数学期望E (X ).

解:(1)个位数字是5的“三位递增数”有

125,135,145,235,245,345.

(2)由题意知,全部“三位递增数”的个数为C 39=84,

随机变量X 的取值为:0,-1,1,因此

P (X =0)=C 38C 39=23

, P (X =-1)=C 24C 39=114

, P (X =1)=1-114-23=1142

. 所以X 的分布列为

则E (X )=0×23+(-1)×114+1×1142=421

. 8.甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约,乙、丙约定两人面试都合格就一同签约,否则两个人都不签约.设甲面试

合格的概率为12,乙、丙面试合格的概率都为13

,且面试是否合格相互不影响. (1)求至少有一人面试合格的概率;

(2)求签约人数X 的分布列和数学期望.

解:(1)用A ,B ,C 分别表示事件甲、乙、丙面试合格.由题意知A ,B ,C 相互独立,

且P (A )=12,P (B )=P (C )=13

,所以至少有一人面试合格的概率为 1-P (A - B -C -)=1-????1-12????1-13????1-13=79

. (2)由题意可知,X 的可能取值为0,1,2,3.

P (X =0)=P (A - B -C -)+P (A -B C -)+P (A - B -C )=49

; P (X =1)=P (A B -C )+P (AB C -)+P (A B -C -)=49

; P (X =2)=P (A -BC )=118;P (X =3)=P (ABC )=118

. 所以X 的分布列为

E (X )=0×49+1×49+2×118+3×118=1318

. 9.袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4),现从袋中任取一球,X 表示所取球的标号.

(1)求X 的分布列、期望和方差;

(2)若Y =aX +b ,E (Y )=1,D (Y )=11,试求a ,b 的值.

解:(1)X

所以E (X )=0×12+1×120+2×110+3×320+4×15

=1.5, D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15

=2.75.

(2)由D (Y )=a 2D (X )得2.75a 2=11,得a =±2,

又E (Y )=aE (X )+b ,

所以当a =2时,由1=2×1.5+b ,得b =-2;

当a =-2时,由1=-2×1.5+b ,得b =4,

所以?????a =2,b =-2或?

????a =-2,b =4.

1.(2016·南昌第一次模拟)某市教育局为了了解高三学生体育达标情况,对全市高三学

生进行了体能测试,经分析,全市学生体能测试成绩X 服从正态分布N (80,σ2)(满分为100分),已知P (X <75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取3位同学.

(1)求抽到的3位同学该次体能测试成绩在区间[80,85),[85,95),[95,100]内各有1位同学的概率;

(2)记抽到的3位同学该次体能测试成绩在区间[75,85]内的人数为Y ,求随机变量Y 的分布列和数学期望E (Y ).

解:(1)由题知,P (80≤X <85)=12

-P (X <75)=0.2, P (85≤X <95)=0.3-0.1=0.2,

所以所求概率P =A 33×0.2×0.2×0.1=0.024.

(2)P (75≤X ≤85)=1-2P (X <75)=0.4,

所以Y 服从二项分布B (3,0.4),

P (Y =0)=0.63=0.216,

P (Y =1)=3×0.4×0.62=0.432,

P (Y =2)=3×0.42×0.6=0.288,

P (Y =3)=0.43=0.064,

所以随机变量Y

E (Y )=3×0.4=2.(2016·西安地区八校联考)某公司准备将1 000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目供选择.若投资甲项目一年后可获得的利润ξ1(万元)的概率分布列如下表所示:

且ξ1的期望E (ξ1)=120ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为p (0<p <1)和1-p .若乙项目产品价格一

年内调整次数X (次)与ξ2的关系如下表所示:

(1)求m ,n 的值;

(2)求ξ2的分布列;

(3)若E (ξ1)<E (ξ2),则选择投资乙项目,求此时p 的取值范围.

解:(1)由题意得?

????m +0.4+n =1,110m +120×0.4+170n =120, 解得m =0.5,n =0.1.

(2)ξ2的可能取值为41.2,117.6,204,

P (ξ2=41.2)=(1-p )[1-(1-p )]=p (1-p ), P (ξ2=117.6)=p [1-(1-p )]+(1-p )(1-p )=p 2+(1-p )2, P (ξ2=204)=p (1-p ),

所以ξ2的分布列为:

(3)由(2)E (ξ2)=41.2p (1-p )+117.6[p 2+(1-p )2]+204p (1-p )=-10p 2+10p +117.6, 由E (ξ1)<E (ξ2),得120<-10p 2+10p +117.6, 解得:0.4<p <0.6,

即当选择投资乙项目时,p 的取值范围是(0.4,0.6).

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

知识讲解离散型随机变量的均值与方差

知识讲解离散型随机变量的均值与方差(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有 =1p =2p …n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有 b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为

于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系:

常用离散型和连续型随机变量

常用离散型随机变量的分布函数 (1) 离散型随机变量 [1] 概念:设X 是一个随机变量,如果X 的取值是有限个或者 无穷可列个,则称X 为离散型随机变量。其相应的概 率()i i P X x p ==(12)i =、……称为X 的概率分 布或分布律,表格表示形式如下: [2] 性质: ? 0i p ≥ ?11n i i p ==∑ ?分布函数()i i x x F x p == ∑ ?1{}()()i i i P X x F x F x -==- (2) 连续型随机变量 [1] 概念:如果对于随机变量的分布函数()F x ,存在非 负的函数 ()f x ,使得对于任意实数x ,均有: ()()x F x f x dx -∞= ? 则称X 为连续型随机变量,()f x 称为概率密度函 数或者密度函数。

[2] 连续型随机变量的密度函数的性质 ?()0f x ≥ ? ()1f x dx +∞ -∞=? ?{}()()()P a X b F b F a f x dx +∞ -∞<≤=-= ? ?若()f x 在x 点连续,则()()F x f x '= (3) 连续型随机变量和离散型随机变量的区别: [1] 由连续型随机变量的定义,连续型随机变量的定义域是 (),-∞+∞,对于任何x ,000 {}()()0P X x F x F x ==--=;而对于离散型随机变量的分布函数有有限个或可列个间 断点,其图形呈阶梯形。 [2] 概率密度()f x 一定非负,但是可以大于1,而离散型随 机变量的概率分布i p 不仅非负,而且一定不大于1. [3] 连续型随机变量的分布函数是连续函数,因此X 取任何 给定值的概率都为0. [4] 对任意两个实数a b <,连续型随机变量X 在a 与b 之间 取值的概率与区间端点无关,即:

2.5 随机变量的均值和方差

2.5随机变量的均值和方差 扬州市新华中学查宝才 教学目标: 1.通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; 2.能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点: 取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学方法: 问题链导学. 教学过程: 一、问题情境 1.情景. 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.怎样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用X1,X2表示,X1,X2的概率分布如下. 2.问题. 如何比较甲、乙两个工人的技术? 二、学生活动 1.直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,

似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2.学生联想到“平均数”,如何计算甲和乙出的废品的“平均数”? 3.引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三、建构数学 1.定义. 在《数学3(必修)》“统计”一章中,我们曾用公式x1p1+x2p2+…+x n p n 计算样本的平均值,其中p i为取值为x i的频率值. 类似地,若离散型随机变量X的分布列或概率分布如下: X x1x2…x n P p1p2…p n 其中,p i≥0,i=1,2,…,n,p1+p2+…+p n=1,则称x1p1+x2p2+…+x n p n为随机变量X的均值或X的数学期望,记为E(X)或μ. 2.性质. (1)E(c)=c;(2)E(aX+b)=aE(X)+b.(a,b,c为常数) 四、数学应用 1.例题. 例1高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色之外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望. 分析从口袋中摸出5个球相当于抽取n=5个产品,随机变量X为5个球中的红球的个数,则X服从超几何分布H(5,10,30). 例2从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X表示这10件产品中的不合格品数,求随机变量X的数学期望E(X). 说明例2中随机变量X服从二项分布,根据二项分布的定义,可以得到:当X~B(n,p) 时,E(X)=np. 例3设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场, 那么比赛宣告结束,假定A,B在每场比赛中获胜的概率都是1 2 ,试求需要比赛 场数的期望.

离散型随机变量的分布列综合题精选(附答案)

离散型随机变量的分布列综合题精选(附答案) 1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从 盒中抽取两张都是“世博会会徽”卡的概率是 18 5 ,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及ξξ,D E 的值。 解:(I )设“世博会会徽”卡有n 张, 由,18 5292 =C C n 得n=5, 故“海宝”卡有4张,抽奖者获奖的概率为6 1 2924=C C …………5分 (II )) 1 ,4(~B ξ的分布列为)4,3,2,1,0()5()1()(44===-k C k P k k k ξ 0.9 )61(4,364=-?==? =∴ξξD E …………12分 2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。 假设每个运动员完成每个系列中的K 和D 两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K 和D 两个动作的情况如下表: 表1:甲系列 表2:乙系列 动作 K 动作 D 动作 得分 90 50 20 0 概率 10 910 110910 1 动作 K 动作 D 动作 得分 100 80 40 10 概率 4 3 4 1 4 341

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案) 一、选择题 1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =, 0.1p = 【答案】B 【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得 6n =,0.4p =. 考点:二项分布的数学期望与方差. 【难度】较易 2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13 B .23 C .15 D .25 【答案】A 考点:二项分布的数字特征. 【题型】选择题 【难度】较易 3.若随机变量),(~p n B ξ,9 10 3 5==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52 D. 5 3 【答案】A 【解析】由题意可知,()5,3 101,9E np D np p ξξ? ==????=-=?? 解得5,1,3n p =???=??故选A. 考点:n 次独立重复试验.

【题型】选择题 【难度】较易 4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( ) ξ 0 1 P m n A .()()3 ,E m D n ξξ== B .()()2 ,E m D n ξξ== C .()()2 1,E m D m m ξξ=-=- D .()()2 1,E m D m ξξ=-= 【答案】C 考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易 5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( ) A. 7 1 B. 6 1 C. 5 1 D. 4 1 【答案】A 【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴1 49,7 n p ==,故选A. 考点:二项分布的期望与方差. 【题型】选择题 【难度】较易 6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )

离散型随机变量的方差教案教学内容

精品文档 精品文档 离散型随机变量的方差 一、三维目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 期望的一个性质: b aE b a E +=+ξξ)( 5、如果随机变量X 服从二项分布,即X ~ B (n,p ),则EX=np (二)、讲解新课: 1、(探究1) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少? (探究2) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少? 2、离散型随机变量取值的方差的定义: 设离散型随机变量X 的分布为: 则(x i -EX)2描述了x i (i=1,2,…n)相对于均值EX 的偏离程度,而 DX 为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度。我们称DX 为随机变量X 的方差,其算术平方根DX 叫做随机变量X 的标准差. 随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度的平均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。 (三)、基础训练 求DX 和 解:00.110.220.430.240.12EX =?+?+?+?+?= 104332221111+++++++++=X 2101 4102310321041=?+?+?+?=] )()()[(122212x x x x x x n s n i -++-++-=ΛΛ1 ])24()23()23()22()22()22()21()21()21()21[(10 1 22222222222=-+-+-+-+-+-+-+-+-+-=s 2 2222)24(101)23(102)22(103)21(104-?+-?+-?+-?=s ∑=-=n i i i p EX x 1 2)(DX

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

离散型随机变量的方差()

离散型随机变量的方差(一) 白河一中 邓启超 教学目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:会利用离散型随机变量的均值(期望)和方差对所给信息进行整合和分析,得出相应结论。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,也称为随机变量的均值。 3. 期望的一个性质: b aE b a E +=+ξξ)( 4、常见特殊分布的变量的均值(期望) (1)如果随机变量X 服从二项分布(包括两点分布),即X ~ B (n,p ),则 E ξ=np (2)如果随机变量X 服从超几何分布,即X ~H (N ,M ,n ),则 E ξ= N M n (二)、讲解新课: 1、(探究1):A ,B 两种不同品牌的手表,它们的“日走时误差”分别为X ,Y (单位: S ),X A 型手表 B 型手表 np EX =

问题:(1)分别计算X,Y 的均值,并进行比较; (2)这两个随机变量的分布有什么不同,如何刻画这种不同 分析:EX=EY,也就是说这两种表的平均日走时误差都是0. 因此,仅仅根据平均误差,不能判断出哪一种品牌的表更好。 进一步观察,发现A品牌表的误差只有01.0±而B品牌的误差为±0.05 结论:A品牌的表要好一些。 探究(2):甲、乙两名射手在同一条件下射击,所得环数X1, X2分布列 2 8 9 10 0.4 0.2 0.4 分析: 甲和乙射击环数均值相等,甲的极差为2,乙的极差也为2,该如何比较? 思考:怎样定量刻画随机变量的取值与其均值的偏离程度呢? 样本方差: 类似的,随机变量X 的方差: 222221)(......)......()()(EX X EX X EX X EX X DX n i -+-+-+-= =2)(EX X E i - 思考:离散型随机变量的期望、方差与样本的期望、方差的区别和联系是什 9 ,921==EX EX ? ? ????-++-+-=---2 n 22212)x (x )x (x )x (x n 1s ...n 1)x (x n 1)x (x n 1)x (x s 2n 22212? -++?-+?-=---...

随机变量的均值与方差

随机变量的均值与方差 一、填空题 1.已知离散型随机变量X 的概率分布为 则其方差V (X )=解析 由0.5+m +0.2=1得m =0.3,∴E (X )=1×0.5+3×0.3+5×0.2=2.4,∴V (X )=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44. 答案 2.44 2.(优质试题·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 设没有发芽的种子有ξ粒,则ξ~B (1 000,0.1),且X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=2×1 000×0.1=200. 答案 200 3.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________. 解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6,0.4 4.随机变量ξ的取值为0,1,2.若P (ξ=0)=1 5,E (ξ)=1,则V (ξ)=________. 解析 设P (ξ=1)=a ,P (ξ=2)=b , 则????? 15+a +b =1,a +2b =1, 解得????? a =3 5,b =1 5,

所以V(ξ)=(0-1)2×1 5+(1-1) 2× 3 5+(2-1) 2× 1 5= 2 5. 答案2 5 5.已知随机变量X+η=8,若X~B(10,0.6),则E(η),V(η)分别是________.解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,V(η)=(-1)2V(X)=10×0.6×0.4=2.4. 答案 2.4 6.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是________. 解析由题意知,X可以取3,4,5,P(X=3)=1 C35= 1 10, P(X=4)=C23 C35= 3 10,P(X=5)= C24 C35= 6 10= 3 5, 所以E(X)=3×1 10+4× 3 10+5× 3 5=4.5. 答案 4.5 7.(优质试题·扬州期末)已知X的概率分布为 设Y=2X+1,则 解析由概率分布的性质,a=1-1 2- 1 6= 1 3, ∴E(X)=-1×1 2+0× 1 6+1× 1 3=- 1 6, 因此E(Y)=E(2X+1)=2E(X)+1=2 3. 答案2 3 8.(优质试题·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列 1.离散型随机变量的分布列 (1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: (2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ② 11 =∑=n i i p 2.两个特殊分布列 (1)两点分布列 如果随机变量X 的分布列是 P (X =1)为成功概率. (2)超几何分布列 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为 P (X =k )=n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布 列 如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布. (3)公式P (X =k )=C k M C n - k N -M C n N 的推导 由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有n N C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有k n M N k M C C --个基本事件,由古典概 型的概率公式可知P (X =k )=C k M C n - k N -M C n N . [知识点拨]1.离散型随机变量分布列表格形式的结构特征 分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点 (1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.

离散型随机变量及其分布列练习题和答案

高二理科数学测试题(9-28) 1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( ) ()A 33710(1)C p p - ()B 33 310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概 率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( ) ()A 23332()55C ? ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是 15 4,刮三级以上风的概率为152,既 刮风又下雨的概率为10 1,则在下雨天里,刮风的概率为( ) A. 225 8 B.2 1 C.8 3 D.4 3 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ). A.15 B.25 C.35 D.45 6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(?C B.83)85()83(29911?C C.29911)83()85(?C D. 29911)85()83(?C

随机变量的均值与方差的计算公式的证明

随机变量的均值与方差的计算公式的证明 姜堰市励才实验学校 姜近芳 组合数有很多奇妙的性质,笔者试用这些性质证明了随机变量的均值与方差的两组计算公式。 预备知识: 1. ()()()()11!!1!1! !!--=-?--?=-??=k n k n nC k n k n n k n k n k kC 2. k k n C 2=()1111111-------+=k n k n k n C k n nC nkC =()22111-----+k n k n C n n nC 3.N 个球中有M 个红色的,其余均为白色的,从中取出n 个球,不同的取法有: n N l n M N l M n M N M n M N M n M N M C C C C C C C C C =++++------- 22110 ()()M n l ,m i n =. 公式证明: 1.X ~()p n B , ()()X E 1.np =()()X V 2().1p np -= 证明:()n n p x p x p x p x X E ++++= 332211 ()()()n n n n n n n n n p nC p p C p p C p p C ++-+-+-?=-- 222110012110 ()()[] n n n n n n n p C p p C p p C n 11221110111------++-+-= ()[] 11-+-=n p p np .np = ()()()()n n p x p x p x X V 2 222121μμμ-++-+-= n n p x p x p x p x 2323222121++++= ()n n p x p x p x p x ++++- 3322112μ ()n p p p p +++++ 3212μ ()() 2222222112121μμ+-++-+-=--n n n n n n n p C n p p C p p C ()()[]11121110111-------++-+-=n n n n n n n p C p p C p C np ()()()[] 22223122022111μ-++-+--+-------n n n n n n n p C p p C p C p n n

随机变量的均值和方差学习资料

随机变量的均值和方 差

随机变量的均值和方差 自主梳理 1.离散型随机变量的均值与方差 若离散型随机变量 (1)均值 μ=E (X )=________________________________为随机变量X 的均值或______________,它反映了离散型随机变量取值的____________. (2)方差 σ2=V (X )=_________________________________=∑n i =1 x 2i p i -μ2为随机变量X 的方差, 它刻画了随机变量X 与其均值E (X )的______________,其________________________为随机变量X 的标准差,即σ=V (x ). 2.均值与方差的性质 (1)E (aX +b )=________. (2)V (aX +b )=________(a ,b 为实数). 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=____,V (X )=

____________________________________. (2)若X ~B (n ,p ),则E (X )=____,V (X )=________. 1.若η=aξ+b ,则E (η)=aE (ξ)+b ,V (η)=a 2V (ξ). 2.若ξ~B (n ,p ),则E (ξ)=np ,V (ξ)=np (1-p ). 自我检测 1.若随机变量X 2.已知随机变量X n ,p 的值分别为________和________. 3.(2010·课标全国改编)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 4.(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简 历.假定该毕业生得到甲公司面试的概率为2 3 ,得到乙、丙两公司面试的概率均为p ,且三 个公司是否让其面试是相互独立的,记X 为该毕业生得到面试的公司个数.若P (X =0)=1 12 ,则随机变量X 的数学期望E (X )=________.

常见离散型随机变量的分布列

4.常见离散型随机变量的分布列 (1>两点分布像 这样的分布列叫做两点分布列. 如果随机变量X的分布列为两点分布列,就称X服从分布,而称p=P(X=1> 为成功概率. (2>超几何分布列 一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则事件{X=k}发生的概率为 P(X=k>=错误!,k=0,1,2,…,m, 其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.称分布列为超几何分布列.如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布. 1设离散型随机变量X 求:(1>2X+1的分布列; (2>|X-1|的分布列. 【思路启迪】利用p i≥0,且所有概率之和为1,求m;求2X+1的值及其分布列;求|X-1|的值及其分布列. 【解】由分布列的性质知: 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 首先列表为: 4 9 3 则常数c=________,P(X=1>=________.X的所有可能取值x i(i=1,2,…,>; (2>求出取各值x i的概率P(X=x i>;(3>列表,求出分布列后要注意应用性质检验所求的结果是否准确.常用类型有:(1>由统计数据求离散型随机变量的分布列,关键是由统计数据利用事件发生的频率近似表示该事件的概率,由统计数据得到的分布列可以帮助我们更好地理解分布列的作用和意义.(2>由古典概型来求随机变量的分布列,这时需利用排列、组合求概率.(3>由相互独立事件同时发生的概率求分布列无

论是何种类型,都需要深刻理解随机变量的含义及概率分布.3.(2018年福建>受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下: (1>从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; (2>若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;(3>该厂预计今后这两种品牌轿车销量相当,因为资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.【解】(1>设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P (A >=错误!=错误!.(2>依题意得,X 1的分布列为 X 2的分布列为 (3>由(2>得,E (X 1>=1×错误!+2× 错误!+3×错误!=2.86(万元>, E (X 2>=1.8×错误!+2.9×错误!=2.79(万元>.因为E (X 1>>E (X 2>,所以应生产甲品牌轿车. 4.(2018年湖南>某商店试销某种商品20天,获得如下数据: 试销结束后(2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1>求当天商店不进货的概率; (2>记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望. 解:(1>P (“当天商店不进货”>=P (“当天商品销售量为0件”>+P (“当天商品销售量为1件”> =错误!+错误!=错误!. (2>由题意知,X 的可能取值为2,3. P (X =2>=P (“当天商品销售量为1件”>=错误!=错误!;P (X =3>=P (“当天商品销售量为0件”>+P (“当天商品销售量为2件”>+P (“当天商品销售量为3件”>=错误!+错误!+错误!=错误!.故X 的分布列为

数学百大经典例题——离散型随机变量分布列(新课标)

耗用子弹数的分布列 例 某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 分析:确定ξ取哪些值以及各值所代表的随机事件概率,分布列即获得. 解:本题要求我们给出耗用子弹数ξ的概率分布列.我们知道只有5发子弹,所以ξ的取值只有1,2,3,4,5.当1=ξ时,即9.0)1(==ξP ;当2=ξ时,要求第一次没射中,第二次射中,故09.09.01.0)2(=?==ξP ;同理,3=ξ时,要求前两次没有射中,第三次射中,009.09.01.0)3(2=?==ξP ;类似地,0009.09.01.0)4(3=?==ξP ;第5次射击不同,只要前四次射不中,都要射第5发子弹,也不考虑是否射中,所以41.0)5(==ξP ,所以耗用子弹数ξ的分布列为: 说明:搞清5=ξ的含义,防止这步出错.5=ξ时,可分两种情况:一是前4发都没射中,恰第5发射中,概率为0.14×0.9;二是这5发都没射中,概率为0.15,所以, 5 41.09.01.0)5(+?==ξP .当然, 5 =ξ还有一种算法:即 0001.0)0009.0009.009.09.0(1)5(=+++-==ξP . 独立重复试验某事件发生偶数次的概率 例 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________. 分 析 : 发 生 事 件 A 的 次 数 () p n B ,~ξ,所以, ),,2,1,0,1(,)(n k p q q p C k p k n k k n =-===-ξ其中的k 取偶数0,2,4,…时,为二项式 n q p )(+ 展开式的奇数项的和,由此入手,可获结论. 解:由题,因为 ()p n B ,~ξ且ξ取不同值时事件互斥,所以,

相关主题
相关文档 最新文档