当前位置:文档之家› 科宝Audio+Space+AS9SE电子管单声道后级放大器

科宝Audio+Space+AS9SE电子管单声道后级放大器

科宝Audio+Space+AS9SE电子管单声道后级放大器
科宝Audio+Space+AS9SE电子管单声道后级放大器

电子管功放交流声如何解决

电子管功放交流声如何解决 电子管功放,只接上最后的功放管,交流声就特别大,如何解决呢? 严格说来,任何音响放大器都是一台能量转换器,因此一个有利于提高音响系统各项指标的、低消耗高可靠性的电源对音响系统来说是相当重要的。在这一点上电子管放大器绝对不符合“绿色环保”的要求,当年笔者开始玩胆机时,笔者的姐夫好奇的一句“你怎么还玩这老古董?又笨重、又耗电,不过音质还不错。”那语气和表情给我留下永恒的记忆。 “笨重、耗电,音质还不错”刚好就是电子管放大器恰如其分的写照。然而“发烧友”们所追求的也就是这不错的音质,但是在新技术一日千里的今天,我们为什么不留下优美的音质而舍弃那“笨重和耗电”呢?当然,现在我们还无法改变电子管本身的缺点,但是在电源电路中我们是可以有所作为的。遗憾的是,近两年来笔者却看到,在电子管电源方面,尤其是在前级放大器电源方面,复古越来越严重。似乎是越古老的技术越好。 大家都知道:一个“大能量的、高速度的、无波纹的、零内阻的电源”是我们所追求的理想目标。只要能达到我们的目的你又何必在乎它是用什么做的呢? 误区之一,滤波非电感线圈不可。 不管是前级电源还是后级电源,这种做法所占比例非常大,占35.7%以上。由于电感线圈有“通直流、阻交流”的特点,用它来滤波效果确实不错。但是它也是一个非常笨重的耗能大户,它的工作原理是利用“感抗”的阻碍作用把各种高次谐波变成热和电磁波损耗掉。在一些电子管纯后级中,特别是六、七十年代的古董机中,常见到它的身影。那是在滤波电容的容量偏小,而且非常昂贵的情况下,前辈们无可奈何的选择(参看图1)。 但是现在,电容的瓶颈作用不存在了,一些“发烧友”和厂家还在用电感,我认为是不足取的。它的缺点非常明显,滤波和稳压的效果完全可以由现在的高质量电容和已经非常成熟的晶体管电源电路所取代。不少的“发烧友”认为用电感听感好、胆味浓,笔者不敢苟同,笔者曾经用过晶体管有源滤波电路和大电感滤波电路进行同一前级的听音对比,听不出音质的差异,只听得出噪声的大小不同。 事实上大多数“发烧友”都明白:所谓的胆味主要取决于电子管的特性和电路的设计、调试。之所以还有不少的朋友用电感滤波,也许是一种心理现象吧,而厂家总是要迎合顾客的。 误区二,在后级的影响下,电子管工作时不需要稳压,用RC滤波就可以了。 用RC滤波往往是一些对电源不太重视的“发烧友”所为,在使用中效果也还可以。 这是因为电子管有着与其它电子元器件不同的供电要求:电子管是靠热电子发射工作的,工作时灯丝要充分预热,否则寿命会大打折扣;它的绝大部分能量消耗在灯丝,灯丝要求工作在低电压、大电流的条件下。

电子管音频功率放大器,以其卓越的重放音质,广受HiFi发烧

电子管音频功率放大器,以其卓越的重放音质,广受HiFi发烧友的青睐。市售成品电子管功放动辄数千元,乃至上万元,如此高价是大多数爱好者无法企及的。爱好者说得好:“自己动手,丰衣足食”。只要你有一定的电子知识和一定的动手能力,自制一台物美价廉的电子管功放并非难事。电子管功放较之晶体管功放,看似庞大复杂,但当你了解了电子管电路的工作方式后,会发现,电子管劝放电路较之晶体管分立元件功放相对简洁,所用元件也少得多。除输出变压器自制有一定难度外,其他元器件只要选配得当,电路调试有方,一台靓声的电子管功放就会在你的手上诞生。 本章先对自制电子管功放的元件选配、安装程序、调试技巧及关键制作要领作一简要介绍。当你胸有成竹,跃跃欲试时,就可以动手操作了。 第一节电子管功放的装配与焊接技巧 一、搭棚焊接方式 国内外许多著名的电子管功率放大器过去和现在均采用搭棚式装配焊接方式。因为,搭棚式接法的优点是布线可走捷径,使走线最近,达到合理布线。另外,电子管功放的元件数量不多,体积较大,借助元件引脚,即可搭接,减少了过多引线带来的弊病。只要布局合理,易收到较好的效果。图8—1为搭棚式接法示意图。 搭棚式接法一般将功放机内的各种元器件分为3—4层,安装元件的步骤是由下而上。接地线与灯丝走线一般置于靠近底板的最下层,其地线贴紧底板,并保持最好的接触;第二层多为各电子管阴极与栅极接地的元器件。注意同一管子阴极与栅极的相关元件接地最好就近在同一点接地;第三层是各放大级之间的耦合电容等元件;最上层则为以高压架空接法连接的阻容等元件。高压元件置于上层可以有效地防止高压电场对各级电路造成的干扰。 二、关于一点接地 一点接地,在电子管功放电路的布线中是一项值得重视的措施。图8—2为一点

电子管差分放大电路设计及优势解析

差分放大电路是为解决直流放大器的工作点漂移而出现的。由于集成电路中晶体管的一致性好,且大电容不易制造,差分电路已成为模拟集成电路中放大电路的主要形式。电子管差分放大器与晶体管差分放大器原理差不多,但在音频领域内实际应用并不多。其基本电路如上图所示。 当两个电子管的特性一致时,两管的屏流相等,两个输出端的电压幅值相等,相位相反。由于阴极电阻R5的作用,在电子管的栅极输入信号时,一个管子屏流的增加必然导致另一个管子屏流的减少,并且增加量与减少量相等,而输出电压则是二者之差,这正是差分电路名称的由来。 但当电子管的工作点选择不当时,仍可能出现一个管子的增加量不等于另一个管子减小量的情况,即放大器出现了失真。当双端输出时,失真被抵销一大部分,而单端输出时,失真并不能被抵销,与单管放大器(工作点相同)差不多。电子管差分放大电路对管子的配对要求也比较高,两管一致性越好,电路性能越好。此外还与阴极电阻R5有关,R5越大,电路性能越好。但阴极电阻大,相应要求负电源电压高。例如《电子报》2006年24期《电子管差分放大电路》一文阴极电阻高达68kΩ,若每管屏流为1mA,则负电源应达-134V)(栅负压-2V)功耗也增加。为此,也可采用在阴极电路接入恒流源的方法,如下图所示,但又增加了电路的复杂性,恒流源除可采用晶体管,也可采用恒流二极管或电子管,此时,阴极负电压只需10~20V。 在采用阴极电阻的情况下,电阻大小可用下式计算: R5=|VS|+|VG|/2I式中VS为阴极负电压,VG为栅负压,I为单管屏极电流。当|VS||VG|时,可按R5=VS2/2I选取电阻。当电阻接入电路后,其直流负反馈作用可自动提供适宜的栅负压稳定工作点(工作点可能与原选值略有差异,但不影响正常工作)。 较之单管放大器,电子管差分放大器有如下优点: 1.省去了阴极旁路电路,电路频响可至OHz,成为直流放大器,但高端频响不变。 2.具有高的共模抑制能力,对共模干扰、噪声及电源电压变化不敏感。 3.工作点十分稳定,阴极负电压越高,工作点越稳定。 4.输入、输出均可选择单端、双端任意搭配,十分灵活。如可实现单端输入,双端输出,且输出大小相等、相位相反的电压。 但同时也存在固有缺陷: 1.多用了一倍的电子管及元件,且选管配对要求高。 2.必须另设一组单独的较高质量阴极负电源。若负电源质量不高,反而引入干扰和噪声。 3.单端输入、单端输出时的尖真与单管放大器差不多,而其放大倍数减少一半。 通常,音频放大器并不需要放大直流信号,其输入、输出端大都为电容耦合,工作点轻微变动并不影响交流放大。同时,工作中的共模干扰也很少,加之又存在上述三个固有缺陷,决定了电子管差分放大电路在音频领域中应用并不很多。特别是一般前级放大器,根本没有必要采用差分放大器。当然,音响发烧进行试验及追求完美另当别论。电子管差分放大器在音频电路中应用主要有两个方面:一是作为平衡输入的前级放大器,以配合线路平衡传输时要求的双端输入及对共模干扰的抑制。二是作为末级推挽功放的倒相推动级,由于差分放大器双端输出的是相位相反的音频信号,故可通过电容耦合直接推动末级推挽功率电子管,较之常见的分负载倒相或变压器倒相有更好的性能。另外,电路上图、下图中的电位器是在两管特性不太一致时调平衡之用,以保证输入为零时双端输出为零。用于交流放大时,两管屏流的轻微不平衡不影响正常工作,此电位器可省去。也可在每个管子的阴极串一小电阻再接阴极电阻上,以提供适量的本级负反馈。

6SA7(6N5P)阴极输出耳放的制作

6SA7(6N5P)阴极输出耳放的制作 在95年的audio&techniek杂志上看到了一篇Rudy Van Stratum先生发表的一个电子管的耳机放大器电路,不过,Stratum先生也没有实作过,仅仅是一个电路,这个电路引起了我的注意,因为我发现他具有以下特点: 1。电路简洁,两个声道一个只需要2只双三极管,这个是我见到最简单的耳机放大器电路。 2。可以驱动低阻耳机。 3。两级放大之间使用直接偶合电路。 4。无大环路负反馈。 5。单端甲类输出。

我按照这个电路实作了一台,经过这段时间的试听(超过三个月时间,使用CD、磁带等不同信号源)我可以告诉大家,这是一台非常好的耳机放大器。经过我略微修正的电路如图1所示,它第一级使用双三极管ECC88中的一个作共阴极放大,第二级使用双三极管6AS7G中的一个作阴极输出,两级之间直接藕合,在原来电路图上我加了一个音量电位器和ECC88的栅漏电阻,输出电容也由100uF增加到200uF,增加电容容量的原因很简单,一个是我要使用低阻抗的32-60欧的耳机,另外我手中也恰好有这种电容,经过测试,使用60欧耳机,-3db的下降点在12Hz,使用32欧耳机,-3db的下降点在22Hz。这台机器的外观处理很简单,我的第一台原型机使用了装饰用的宝丽板作机壳,我几乎是立刻就喜欢上了它,他的声音细节非常精确,可以听出更多的细节和空气感,本来阴极输出器有声音暗淡的名声,令人厌烦不敢恭维,但是这个电路改变了我的认识,呈现一种与之完全相反的并能紧紧抓住你注意力的声音,弱音之间的区别变得非常明显,举个例子,你可以听出不同大提琴之间音色的区别,我的晶体管耳机放大器与之比较,就显得声音发硬,呆滞,高频有毛刺感,结像力不足,我想这是因为这台电子管耳放电路简洁,并且没有大环路负反馈的结果,当然本机为单端输出,而那台晶体管机器电路为推挽也是原因之一。通过一段时间的试听,我非常满意这种声音风格,最后我使用了一个4*8*1英寸的铝合金壳子作为我这台机器的机壳,制作我使用了搭棚焊接,没有使用商品机常见的PCB电路板形式,经过搭配使用森海塞尔HD465,HD580,AKG K240,松下EAH-S30试听,低阻抗耳机的表现要比高阻耳机好,说明本电路适合搭配低阻耳机使用。因为本机电路简单,所以电源对声音的影响至观重要,最初我认为稳压电路效果会好一点,使用了复杂的晶体管稳压电路提供能量,用了两个BC459作稳压调整管,发现使用稳压电路对声音并没有带来想像中的改善,甚至声音风格也变得和我的那台晶体管的一样,只好放弃这种想法,采用了传统的电子管整流,不过整流管EZ81非常不好找,最后我定型的电源电路使用了如图的晶体管整流滤波电路,抛弃了稳压部分,电路虽然简单,效果却非常好,和使用电子管整流区别不大。灯丝使用直流供电,这里我使用了可调稳压集成块LT1084CP来作调整,这块IC 要消耗大约10瓦的功率,必须要加散热器来散热,可以把他固定在铝机壳上,整流二极管因为通过电流大,也会变得很热,最好安装空间宽敞一些,有足够的空间通风散热,1K的电阻用于调整输出电压为6.3V。在电源电路中,我没有列出电源变压器的详细资料,可以根据手中的变压器参数变通,保险管使用恰当的数值,开关我使用了两个,主开关控制交流电输入和灯丝接通,次开关控制电子管的高压接入,大约在主开关打开后30秒打开即可。电源电路也使用了搭棚焊接,放在另外的机箱中,与主放大电路分体,尺寸为12*6*2英寸。 测量数据:因为我条件所限,以下列出我所能测量的参数结果: 1、频率响应:10-100KHz-1db(0.775V输出,负载电阻在60-600欧,我的信号发生器所提供的频带就是这个范围,因此我怀疑如果加大输出电容的话,它的参数可能更好); 2、最大输出功率170mW600欧28mW60欧; 3、电压增益8倍(负载600欧,输入100mV输出800mV,音量电位器拨到最大位置)1KHz,10KHz,20KHz 的曲线看起来非常完美,而低频和极高频(小于100Hz,大于50KHz)的曲线和所用输出电容的品质有很大的关系。我想这些数据表明这台耳机放大器的品质很好,但是最好的测量仪器还是人的耳朵。 元件选择:放大电路:P1-ALPS RK-27112100K电位器R1-1M/1瓦炭质电阻R2-33欧/0.5瓦金属膜电阻R3-47K/1瓦炭质电阻R4-820欧/1瓦炭质电阻R5-4.7K/5瓦线绕电阻R6-3.3K/10瓦阻C1,C2-220uF/400V,日本Nichicon电解电容C3-220uF/100V,日本Nichicon电解电容C4-0.22uF/250V,聚丙烯电容V1-E88CC/Brimar V2-6AS7G/RCA其他元器件尽量使用性能较好的,这个对声音的影响也不可忽视。需要注意以下几点:1.C1,R5,C2为两声道共用。2.灯丝供电不要悬浮起来,要良好接地以避免引入交流哼声。当短路输入端子或者接一个低阻抗的信号源,可以发现本机的信噪比非常高,几乎没有交流哼声和噪声,音量电位器转到最大,事实上,噪声增加也不多。电源电路P2-1K可调电阻R8,R9-6.8欧/1瓦炭质电阻R10,R11-180欧/0.25瓦金属膜电阻C5,C6-22nF/1000V聚丙烯电容C7,C8-100uF/450V F&T电解C9-1uF/250V飞利浦聚丙烯电容C10-22000uF/25V思碧电解C11-10uF/63V飞利浦电解C12-100uF/35V Roederstein电解IC1-LT1084CP Linear Technology公司产D1,D2-IN4007D3-D6-P600A 6A/50V T1-30瓦电源变压器,次级2×115V T2-50瓦电源变压器,次级9V L1-扼流圈,10H/90mA,直流电阻270欧www.ShareDIY线绕电阻R7-10K/0.5瓦炭质电阻。

电子管基础知识(最适合初学者)

一起来学习电子管基础知识(最适合初学者) 常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要1 20W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列) 目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,F U50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照 以下链接:/dispbbs.asp?boardID=10&ID=15516&replyID=154656&skin=0 三极管及多极管的推挽功放由于牵涉到工作点,电路程式,负载阻抗,推动情况

功放制作——胆前级

功放制作——胆前级 今天终于把毕业论文交出了。两周前开始画功放的电路图,心里一直想着这件事情,已经拖了不少时间了。主要原因是一直没有找到漂亮的电路图绘制工具。总觉得 Protel、Visio 画出来的电路不好看。Protel 元件比例不协调,Visio 有些格点自动捕捉功能太霸道了,而且在两条导线交叉时会自动加上难看的桥形跳线符号(可能是我不会用)。也试过SmartDraw,觉得也是自动捕捉功能太要命,鼠标一靠近元件就被捕捉过去了,得非常小心才行。后来,还是决定使用 Johns Hopkins University 开发的 Xcircuit。它必须在 Linux、Unix 下用,所以为此还学了 Linux。从而也就改变了以前觉得 Linux 特费事的观点,装一个 ubuntu 比装 windows 还省事,office、播放器什么都不用单独装,系统装完就完全可以用了。杀毒软件也免了。使用后发现,用 Xcircuit 可以直接画出 ps 的文档,全都是矢量图,缩放没有失真,而且自己觉得看上去和国家半导体、德州仪器元件数据手册上的电路图风格有些相似了,嘿嘿。 言归正传,上次介绍的功放采用了如下的电子管前级电路。 该电路事实上是一个SRPP电路和阴极输出器的级联,两者之间直接耦合。对于我们这一代人来说,晶体管电路已经先入为主,一下子可能还不能接受电子管电路。实际上,电子管电路实现的是和晶体管电路同样的功能。下图是实现同样功能的电子管共阴极放大器和晶

体管共射极放大器。 而下图是实现同样功能的电子管阴极跟随器和射级跟随器。 虽然说功能相同,但是电路上还是有很多不同。 首先,电子管的工作电压比晶体管高得多,前者为数百伏,后者仅需几伏。显然两者不能直接替换。 第二,电子管依靠阴极受热后发射电子,屏极(阳极)加有高正电压,可以收集这些电子。如果屏极相对阴极加负电压则屏极排斥电子,没有电流产生,这就是电子管二极管的整流原理。所以,电子管要工作需要加热,这一般通过给靠近阴极的灯丝通电来实现,否则电子管不能工作。这也是电子管发热大的原因。 第三,三极管工作原理是是在阴极和屏极间用细金属丝网加了一个栅极,屏极加正高压时,栅极上加一个很小的负电压就能够使减小屏极电流,达到控制屏极电流的目的。所以于NPN型晶体管放大电路需要在基极加正向偏置不同,电子管正常工作时栅极和阴极之间的电

6N11电子管前级放大器

6N11电子管前级放大器 2018年2月21日17:06 6N11电子管前级放大器电子管放大器的音色是发烧友们 所喜好的,下面介绍一个用6N11制作的胆前级。放大器分前级和后级,我们常说的功放是将两者合二为一的机器。前级主要作用是对输入的微弱信号进行电压放大,以推动后续的功率放大管。一般情况下。前级放大器因工作电流较小,元器件比较简单,材料容易购买而制作相对容易。自制放大器时线路的选取很重要,考虑到业余条件的限制,DIY时选取简洁线路较容易取得成功。在设计电压放大级时主要考虑是有足够的增益,频响和失真、噪声等特性。在晶体管(俗称“石”)和电子管(俗称“胆”)放大器中,由于电子管的放大因数(μ)很大,往往用一个电子管就相当于用几个晶体管构成的电路,因此两者比较电子管功放制作的成功率远高于晶体管机。用于前级电压放大的电子管,一般有6N1、6N3、6N11、12AX7、12AT7、12AU7、6SL7、6SN7、6SJ7和EF86等多种三极管和五极管。由于等效输入噪声较大,6SJ7、EF86等五极管现在一般已不常采用。了解一只电子管的特点和衡量它的性能,常用跨导(S)、内阻(Ri)、放大因数(μ)表示,其中跨导是电子管栅压对屏流的控制能力;内阻是当栅极电压为定值时,屏极电压的变化量与相应的屏极电流变化量之比,内阻

越小,电子管的负载能力、频响方面要好些,应优先采用;放大因数是用来表示放大品质的量。跨导、内阻、放大因数三者的关系是:μ=S×Ri。前级电压放大用电子管,常常按它们的放大因数分成高μ、中μ、低μ类型。μ值大于35的叫高μ管。如以上列举的12AX7、12AT7、6SL7。μ值大的管子,放大倍数较大,但输入范围较小。适合做小信号前级和功放的第一级。μ值在20-35之间的称为中μ管.如12AU7、6SN7、6N3、6N11等,它们的特点是输入范围要大一些,有相对较小的失真。6N11(国外同类产品称为6DJ8或6922)是高频低噪声双三极九脚电子管。它的板极为非封闭形,两片板极的中间部分贴近栅极,两三极管之间有屏蔽板隔离,所以使用时。米勒效应引起输入电容的增加部分较少,频响容易做得很宽。由于这一特点,6N11以前主要用于高频电压放大。常被用于示波器的X、Y轴偏向放大。6N11的内阻比12A系列电子管低,兼之它的跨导大,噪声低,既能充分体现电子管的大动态长处,又有晶体管频响宽、速度高的特点,因此近年来在高保真音响设备中被广泛使用。国内外很多功放的输入级,甚至在CD唱机的数码转换器中都能看到它的踪影。下面是采用一个6N11电子管即能完成立体声左右声道放大的前级放大器它以Simpleisbest(简洁是好)的宗旨设计,线路非常简洁实用,而且音质水平较高,非常适合爱动手的入门爱好者制作。该线路为经典的阻容耦合单级

6p3p电子管功放制作心得

电子报/2013年/7月/14日/第015版 音响技术 6P3P电子管功放制作心得 江苏陈洪伟 胆机是音响放大器中古老而又经久不衰的长青树,其显著的优点是声音甜美柔和自然,尤其动态范围之大,线性之好,绝非其他放大器所能轻易替代。对于刚刚接触电子管放大器的爱好者来说,选择简洁、优秀的单端甲类电路为首选。单端甲类电子管功放具有音色圆润、甜美,制作成功率高的特点。本文介绍的线路采用524P整流,6N1前级输入,6P3P功率放大,采用标准接法。6P3P为入门级产品,品质相当出众,低廉的价格使制作成本较低。只要设计合理,精心制作,也能将6P3P玩到发烧境界。更重要的是,本线路让那些刚刚喜欢上电子管功放的初级发烧友,通过尝试逐步熟悉电子管功放的制作。 一、电路原理 如图1所示。该电路具有失真小、噪声低、频响宽等特点,是目前电子管功放电路中常见的优秀线路之一。功率管6P3P采用标准接法,信号由控制栅极(⑤脚)输入,帘栅极(④脚)与电源相连。这种接法的特点是放大效率高。6P3P栅-负压19V,屏极电压300V,屏级电流60mA。输出功率约7.5W,能够满足一般家居环境放音要求。 电源电路采用传统的电子管整流,CLC型滤波器,使整机音色达到和谐与平衡。电子管整流在开机时的预热过程具有保护功率电子管的作用,这一点在使用天价电子管时显得尤为重要。CLC型滤波方式滤波效果好,电源内阻低,对降低噪音,提高整机动态有极大的益处。 输出变压器是电子管功放电路的重要部件,如果自制条件不具备,可以构买成品。本机所用输出变压器铁芯为32mmx65mm,初极3300圈,分两层。线径为Φ0.82mm;次级共172圈,分三层,所用线径为Φ0.82mm。硅钢片空气隙0.08mm,工作电流70mA、功率10W。 二、装配 本机线路简洁,所用元件较少,可采用搭棚焊接,制作调试简单,成功率高。制作时可以三焊接电源与灯丝供电部分,电源正常之后再焊接放大电路,要注意的是,电源空载时,电压稍高,电容耐压一定要满足要求。 三、检测与调试 首先检查电路焊接有无质量问题,有无虚焊,漏焊,短路,断路,焊渣线头是否清理干净。 通电前测直流高压电源对地(高压电路两端)电阻,数值应接近或等于泄放电阻的阻值。测量交流进电电路与地之间的阻值,数值应该无穷大。测量输出有无开路(阻值无穷大)或短路(阻值约为零),正常数值应接近负载的直流电阻。测量电压放大级、推动级电源对地电阻,数值应大于泄放电阻。 通电测量:不插功放管通电测量功放管阳极直流电压值,空载数值应是交流电压有效直的1.2~1.4倍。测量次高压电压,空载直流电压应接近或等于阳极电压。测量功放管栅极偏压,数值应接近预定电压值。同时应将每只功放管的栅极负压调至最大值(负)。测量电压放大级、推动级电压值,每级阳极电压应接近或等于设置的工作电压值。 调整功放管静态电流插上功效管接好音箱,断开环路负反馈电路。开机,将直流电压表红表笔接阴极,黑表笔插在机箱的螺丝孔内,调整固定栅偏压可调电阻,边调边观察电压读数。这个过程中一定要细心,动作要慢,每次调整电位器的幅度一定要小。用电压读数除以阴极电阻值,即是管子的静态电流。 四、注意事项

自制OTL(电子管)耳机放大器

自制OTL(电子管)耳机放大器 近期因工作需要购买了森海塞尔的一款HD600耳机做*,它的阻抗为300Ω,算是高阻耳机,用CD机的耳放输出接口推动它时,虽然声压也达到一定的水平,但由于驱动功率太小,开大音量时,失真较大,声音不耐听,发挥不了HD600的高音质特性,故决定自己制作一个耳机放大器。 过去几年里,自己也制作过几款不同的电子管放大器,单从听音感觉去比较,我认为电子管放大器的声音要比晶体管放大器更动听,因此耳机放大器也打算用电子管制作。上网看了一些耳机发烧友的制作经验并研究了很多不同种类的电子管耳机放大器线路后,再考虑自己的电子管存货,我决定选用Morgan Jones(摩根·琼斯)设计的电子管耳机放大器。 电路原理 该电路原理图见图1。它是一个无输出变压器(OTL)电路,没有环路反馈,电路十分简洁,非常适合初级耳机发烧友仿制。这个耳机放大器只用6N1一种型号的双三极电子管,左右双声道共用3枚6N1电子管,6N1有很好的参数曲线,社会库存量较大,而且售价不高,有利于降低成本。虽然声音特色和特性会有所差异,但6N1原则上可与6N11(6922、6DJ8、ECC82、E88CC)兼容和互换,当然如果使用6N11,线路的相关元件和屏压要作相应改变,图2就是改用6N11电子管制作的该耳机放大器,供感兴趣的朋友参考。

在这里我采用的是北京电子管厂生产的6N1T(特级)电子管。这个6N1 OTL放大器线路最大特点是采用不对称输出,它其实和前一段时间很流行的禾田茂氏放大器的线路有几分相似,它去掉了禾田茂氏放大器的线路输入级,信号经100k的音量控制电位器控制后输入V1的栅极,其屏阴输出使各种阻抗尤其是高阻抗耳机有较充裕的音量输出。不过,6N1的OTL 输出在驱动低阻抗耳机的表现可能不如它驱动高阻抗耳机。由于它的末级采用仿如SRPP般的不对称输出,需要较高电压的电源供电。图3为电源部分。 在笔者的经验中,简单的线路要有良好的音效,电源部分要下很大的功夫。笔者制作的这款耳机放大器的电源不算复杂,但滤波作用很好。其中高压部分采用经典的π型LC线路滤波,后经两只电阻作RC滤波,有良好的减噪音特性。该线路的高压为350V,阴极与灯丝间电压超出了6N1规格书上要求的不大于100V,我在这里用一个0.33uF/400V的CBB电容将灯丝电源与地之间悬浮起来,这样整个线路与地的连接是通过这个接地电容。高压电源的输出部分有一个1.5kΩ/ 3W和一个2kΩ/5w 可变电阻串联,使用时可以通过调整2kΩ/5w可变电阻的阻值调节输出电压。在这里的灯丝供电是采用经整流后用7805K金属壳三端稳压器作直流稳压供电;同时6N1的第9

几款经典电子管前级线路的特色2

几款经典电子管前级线路的特色 2007-03-12 16:39:26来源:詹海峰《音响技术》关键字: 电子管前级几款经典电子管前级线路的特色 电子管在音响应用方面,最简单又最实用的莫过于作前级放大,因为前级不需要昂贵又复杂的输出变压器,同时也由于它需要的工作电源电压高,这使得讯号的放大倍数较大、动态裕量高,即使是放大到几十伏电压也不会因为供电压的限制而造成削波失真。 我十年前的音源是飞利浦早期的16bit CD机,出于电子管前级能给干硬的数码声增添音乐韵味和改善听感,也由于因它较易制作和回报率高,这些年来也制作过不少不同线路几款前级,当然这不是想研究出什么伟大的经典之作,但边学边玩的制作乐趣也让人得到一定享受和进步。前一段时间笔者再从收藏箱中将这几部前级取出来并略经改良以重温旧梦。这几部前级各具特色,值得电子管爱好者他细玩赏聆听,为了吸引更多读者制作胆机,也期望能抛砖引玉,笔者在这里向各位介绍和比较这些前级线路及它们的音效特色,以供读者作参考。 6N11一级共阴极放大线路 6N11的国外型号为6DJ8,用6N11制作一级共阴极放大的前级线路如图1.此机是笔者制作的第一部电子管前级,当年为了求简单和制作容易,高压不设稳压线路,当然采用稳压供电时效果更好,现为了取得较好的音效,笔者给它加了一个简单的三端稳压电源,并且原来串在电源中的5W2.5K电阻也用一个小型扼流圈替换,这使得滤波效果更好,电源的质量得到简单的提高。灯丝用稳压直流供电时可减低交流噪声,而用交流供电时,虽对电子管寿命有益,但对信噪比的影响较大,而且灯丝接地点须反复试验才有较好的效果,结果灯丝还是采用了直流稳压供电。

音频放大器原理图

音频放大器原理图 音频放大器已经有快要一个世纪的历史了,最早的电子管放大器的第一个应用就是音频放大 器。然而直到现在为止,它还在不断地更新、发展、前进。主要因为人类的听觉是各种感觉中的相当重要的一种,也是最基本的一种。为了满足它的需要,有关的音频放大器就要不断地加以改进。 音频放大器简介 进入21世纪以后,各种便携式的电子设备成为了电子设备的一种重要的发展趋 势。从作为通信工具的手机,到作为娱乐设备的MP3播放器,已经成为差不多人人 具备的便携式电子设备。陆续将要普及的还有便携式电视机,便携式DVD等等。所 有这些便携式的电子设备的一个共同点,就是都有音频输出,也就是都需要有一个音频放大器;另一个特点就是它们都是电池供电的。都希望能够有较长的使用寿命。就是在这种需求的背景下,D类放大器被开发出来了。它的最大特点就是它能够在保持 最低的失真情况下得到最高的效率。 高效率的音频放大器不只是在便携式的设备中需要,在大功率的电子设备中也需 要。因为,功率越大,效率也就越重要。而随着人们的居住条件的改善,高保真音响设备和更高档的家庭影院也逐渐开始兴起。在这些设备中,往往需要几十瓦甚至几百瓦的音频功率。这时,低失真、高效率的音频放大器就成为其中的关键部件。 音频放大器背景 音频放大器的目的是在产生声音的输出元件上重建输入的音频信号,信号音量和 功率级都要理想一一如实、有效且失真低。音频范围为约20Hz?20kHz,因此放大 器在此范围内必须有良好的频率响应(驱动频带受限的扬声器时要小一些,如低音喇 叭或高音喇叭)。根据应用的不同,功率大小差异很大,从耳机的毫瓦级到TV或PC 音频的数瓦,再到迷你”家庭立体声和汽车音响的几十瓦,直到功率更大的家用和商 用音响系统的数百瓦以上,大到能满足整个电影院或礼堂的声音要求。 音频放大器的一种简单模拟实现方案是采用线性模式的晶体管,得到与输入电压 成比例的输出电压。正向电压增益通常很高(至少40dB)。如果反馈环包含正向增益, 则整个环增益也很高。因为高环路增益能改善性能,即能抑制由正向路径的非线性引起的失真,而且通过提高电源抑制能力(PSR)来降低电源噪声,所以经常采用反馈。 音频放大器类别 长期以来,高品质音频放大器的工作类别,只限于A类(甲类)和AB类(甲乙类)。

电子管功放电路大全

电子管功放电路大全

本贴图纸都经过实做验证,转载请注明出处。 6L6G(6P3P推挽1,输出功率25W THD=0.3% EL84(6P14)推挽,输出功率15W

前级 1(12AX7+12AU7) Lin XU in. 1G0/3V 4.71 迁 imv V4/V7 Fl 再4 ETB5 CT/C1D 卜 0血. mny FT 翻 B20 /I23 WB0 6SK Rir/Tr ' F=,制 1? R1/E2 ■=20 I 3LIK .K22 ^TOK CJ L/D12 seouF EUd^TJl ^L.D Lkai t i bv Jul a 6h hifidir Cft/ra F 「I -; T WO'/ ㈣ 3K Lfb/'Rfl

Lin /Kir 150K R3/R7 15K R2/R6 1.2K稳庄 10u 22K-- RW5 150K L _ 1 0.1 u0.1 U J-. C1/C2 厂。眈4 厂 信号 输入 R1/R8 IM R12R13 /R1 7 470K75tJ 4-30 CIV C5 lOu* 385/ + R14 /R15 56K 12/IU7 1U 05)06豔Xt RI9 /R19 4 7 Oik 1DK R12 R10/R11 前级2(12AX7+6DJ8) Gir o 4K +30(V Lin 信号 /Kin辆天 2K ZIOK R5 R4卜 /R41 3.3K 270K R2 ZR2 ‘ 3 " 1 $4 压 至 r VI, V2^12AX7; V3=E36CC/6S2£ C3/C3P 4.TuF Lout /Rout R9 4.70K lOuf RIO IO皿 Ell LOOK CUD

一基于WCF线路的电子管耳放的设计制作

一款基于和田茂氏线路构架的电子管耳放的设计与制作 和田茂氏线路是一个比较经典的电子管前级设计,最早发表于1969年2月,虽然现在这种线路设计似乎被吹的神乎其神,但究其本质这个线路并没有太多创新的地方,只是将单元电路重新组合优化后的产物,但不可否认这个线路构架与当时主流的一些电子管前级线路比如C22、M7相比确实是有一些优势的,其电路图如下。

该线路采用三级放大设计,输入级和第二级使用高增益管12AX7组成共阴极放大线路,输出级则与常见的阴极输出不同,使用12AU7接成WCF线路,和

田茂氏线路的精髓也就在于此。其实在不使用输出变压器的情况下,电子管耳放/前级的输出级只有四种线路可以选择,即阴极跟随线路(Cathode Follower)、SRPP线路(Shunt Regulated Push-Pull)、SEPP线路(Single Ended Push-Pull)、WCF线路(White Cathode Follower)。近些年来虽然也有类似Grounded Grid AMP(共栅极放大)等较为创新的设计,但大多是在输入级上下功夫。 在这四种输出级线路中,如使用同型号电子管,阴极跟随线路的电压增益最低,输出阻抗比WCF线路略低一点,但可通过使用屏耗较高的功率管或并管来降低输出阻抗,常见的电子管耳放很多都是这种设计,输出管则多用6N5P(即6080、6AS7)。SEPP线路的电压增益是最高的,但输出阻抗同样也是最高的。较高的输出阻抗显然是不利于驱动中低阻抗的耳机的,但在电子管OTL功放中似乎用的比较多。SRPP线路的电压增益和输出阻抗比较适中,价格高昂的EARMAX PRO这款耳放输出级就是用6922接成SRPP线路,但和WCF线路相比它的输出阻抗还是要高很多的。WCF线路兼顾电压增益与输出阻抗,电压增益接近1比阴极跟随线路高,而输出内阻却与阴极跟随线路差不多,同时可以与第二级电路进行直接耦合,我认为是比较优秀的输出级线路,唯一美中不足的是每台双声道单端机器都需要使用四枚双三极管,与C22之类的线路比多了一个管子。但这是对于当年的条件来说的,就现在来看,多了几W的灯丝功耗和一枚电子管是没有什么大影响的。

常见的电子管功放是由 功率放大

常见的电子管功放是由功率放大,电压放大和电源供给三部分组成。电压放大和功率放大组成了放大通道,电源供给部分为放大通道工作提供多种量值的电能。 一般而言,电子管功放的工作器件由有源器件(电子管,晶体管)、电阻、电容、电感、变压器等主要器件组成,其中电阻,电容,电感,变压器统称无源器件。以各有源器件为核心并结合无源器件组成了各单元级,各单元级为基础组成了整个放大器。功放的设计主要就是根据整机要求,围绕各单元级的设计和结合。 这里的初学者指有一定的电路理论基础,最好有一定的实做基础 且对电子管工作原理有一定了解的 (1)整机及各单元级估算 1,由于功放常根据其输出功率来分类。因此先根据实际需求确定自己所需要设计功放的输出功率。对于95db的音箱,一般需要8W输出功率;90db的音箱需要20W左右输出功率;84db音箱需要60W左右输出功率,80db音箱需要120W左右输出功率。当然实际可以根据个人需求调整。 2,根据功率确定功放输出级电路程式。 对于10W以下功率的功放,通常可以选择单管单端输出级;10-20W可以选择单管单端功放,也可以选择推挽形式;而通常20W以上的功放多使用推挽,甚至并联推挽,如果选择单管单端或者并联单端,通常代价过高,也没有必要。 3,根据音源和输出功率确定整机电压增益。 一般现代音源最大输出电压为2Vrms,而平均电压却只有0.5Vrms左右。由输出功率确定输出电压有效值:Uout=√ ̄(P·R),其中P为输出功率,R为额定负载阻抗。例如某8W 输出功率的功放,额定负载8欧姆,则其Uout=8V,输入电压Uin记0.5V,则整机所需增益A=Uout/Uin=16倍 4,根据功率和输出级电路程式确定电压放大级所需增益及程式。(OTL功放不在讨论之列)目前常用功率三极管有2A3,300B,811,211,845,805 常用功率束射四极管与五极管有6P1,6P14,6P6P,6P3P(807),EL34,FU50,KT88,EL156,813 束射四极管和五极管为了取得较小的失真和较低的内阻,往往也接成三极管接法或者超线性接法应用。下面提到的“三极管“也包括这些多极管的三极管接法。 通常工作于左特性曲线区域的三极管做单管单端甲类功放时,屏极效率在20%-25%,这里的屏极效率是指输出音频电功率与供给屏极直流电功率的比值。 工作于右特性曲线区域的三极管,多极管超线性接法做单管单端甲类功放时,屏极效率在25%-30%。 而标准接法的多极管做单管单端甲类功放时,屏极效率可以达到35%左右 关于电子管特性曲线的知识可以参照

一部电子管放大器组装完成

一部电子管放大器组装完成,试音正常,还只是完成了工作量的一部分,要想出好声,还有大量细致的工作要做,那就是调 试和校声,因为只有经过仔细、合理的调整、校验,使放大器各级放大管均工作在最佳的工作点上,并且再经过校声,使放大器 的音色圆润,音乐感丰富,动态凌厉、频响宽阔,才会乐声细致、清澈、悦耳动听。校声工作需要多花精力,需要的时间较长, 甚至几个月才能完成,因此要有毅力,有耐心。下面就谈谈电子管放大器的调试和校声的方法。 发烧友焊机时,一般是根据手中现有的元件,再选择优秀线路或照名机的线路按图索骥,进行焊接,元件的规格、数值虽然 与线路图上的要求相差不大,甚至有的元件档次还要高级一些,但元件的排、走线的长短、焊接的质量,或其他方面的差异,如 B+电压的高低,电流的大小等,都会影响放音的效果,所以焊出胆机不一定开声就靓,需要经过精心的调试,使各放大器工作在 量佳的工作状态,才能充分发挥每只胆管和线路的魅力,达到满意的放音效果。 胆机的调整和校声的内容包括:将噪音、交流声降低到可以接受的水平;调整电子管的屏压、屏流和栅负压,使电子管工作 在较佳的工作点上;更换级间耦合电容的容量和品牌,更换B+滤波电容的容量和品牌,甚至更换机内小信号线、电阻、电子管的 品牌等,使放音系统放出好声。 关于交流声的消除方法,过去已有较多文章介绍,本文不再重复。如果音量电位器开大后有“咝、咝”声,说明电路有自激 的现象,是元件排列、走线不合理引起的交连感应。可拨动某些导线或元件听有无反应,要逐根引线,逐个元件的查找,然后改 换位置消除感应。当音量电位器开度小时放音系统并无噪音,但扭到某一位置时突然有噪音,过了这个位置再开大,噪音反而消 失,这是输入部分的元件排列不合理造成的。消除的办法是输入部分的元件重新排列,改变走线。 三极管的工作点由屏压和栅负压决定。屏压确定后可调整栅负压来调工作点。五极管的屏压升高到一定程度后,帘栅压的变 化会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。当电源的容量较大,内阻较低时,调整屏流的大小,B+ 电压一般不会有变化,若电源的富裕量不大,屏流调得较大时B+电压会有较大的下降。 一、栅负压电路 电子管的栅极一般是接负压,习惯上称“栅负压”或“栅偏压”。栅负压的供给有两种方法:一种是利用电子管屏流(或屏 流加帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,称自给式栅负压,一般用于屏流较稳定的甲类放大器电路上。另 一种是在电源部分设一套负压整流电路(电源来自变压器的单独绕组或者从B+电源的负端抽取)供给栅负

45W晶体管电子管混合式功率放大器

45W晶体管电子管混合式功率放大器 EL34(6CA7)是飞利浦公司于1956年率先推出的音频功率五极电子管,当年,它的出现给音频放大器的声音质量带来了一场改良,其设计阳极耗散功率为25W(工作数据如附表)。如今,由中国曙光电子管厂生产的该管,畅销海内外。EL34再生的声音之美,是晶体管放大器还望尘莫及的。在晶体管放大器一统天下的今天,它宝刀不老、雄风犹在也正是因为这个原因。 一,电子管特点 电子管是人类历史上的第一种电子放大器件。说到电子管工作原理,对于现在的爱好者来说,是一个既古老而又时新的话题。由于某些导向上的偏见和能源关系的原因,我国在70年代以后一刀切地停止了电子管的介绍和应用,这无疑给现在的胆管发烧带来困难。在此,有必要对电子管的一些常识加以表述。 电子管是种利用电场原理工作的真空器件,在分析它的工作时,我产可以按现在常见的N沟道结型场效应管工件方式去理解就很容 易入门。只是电子管的阴极电子发射需要加热罢了。两者的栅极控制特性和工作原理是极为相似的。 比较现在的晶体管放大器,电子管功放有其自身特点: 一是管子本身的温度稳定,不需要在晶体管机中必不可少的巨型散热器:

二是负载能力较强,而且,不象晶体管那么娇气。真要烧掉一只管子也要以数十分钟以上计,所以,实验时器件比较安全,三是电子管放大器由器件特性决定,需要通过变压器连接负载扬声器。在机器万一发生故障时,是不会象晶体管机那样祸及到昂贵的扬声器系统。 制作和使用电子管机时要注意: 机内高压,小心触电!元件的耐压可靠性要高,严禁带电焊接。再有,电子管饥严禁空载,在试机时一定要连接好扬声器。 电子管是一种高电压工作的、具有相当大内阻的真空电子放大器件。它的最大长处是具有近似理想的放大线性.这个优点是目前已出现的晶体管还无法达到的,这使它的运用电路非常简洁,不必象晶体管放大器要用很多的有源器件作“共基一共射”连接。这正好对应了发烧界“简洁为上”的信条,这是在90年代电子技术高度发展的今天,它能独领响坛的一个最重要的原因。 二,电子管输出变压器 电子管的输出阻抗较高,它的等效阻值比现在广泛运用的电动式扬声器的阻抗要高出几个数量级,从阻抗匹配的角度说,采用输出变压器作阻抗变换是必需的:而且,电子管放大器的功率是以高电压、小电流的形式,从驱动低阻扬声器需要的低压大电流能量来看,使用降压变压器也是非常必要的。

相关主题
文本预览
相关文档 最新文档