当前位置:文档之家› 线性代数与矩阵分析 - 博士生入学专业基础

线性代数与矩阵分析 - 博士生入学专业基础

线性代数与矩阵分析 - 博士生入学专业基础
线性代数与矩阵分析 - 博士生入学专业基础

博士生入学专业基础考试大纲

科目名称:线性代数与矩阵分析

一、考试要求

要求考生全面系统地掌握线性代数与矩阵分析理论中的基本概念和基本方法,并能够灵活运用,具备较强的分析解决问题的能力。

二、考试内容

(1)行列式与方程组

●行列式基本理论与应用

●线性方程组理论与应用

(2)矩阵基础

●矩阵基本概念与性质

●二次型与对称矩阵

●线性空间与线性变换

●特征值、特征向量、 -矩阵与若当标准型

(3)矩阵分析

●内积空间

●矩阵与向量的范数

●矩阵函数

●矩阵微积分

三、试卷结构

考试时间180分钟,满分为100分

(1)题型结构

●概念与证明题(60分)

●计算题(40分)

(2)内容比例

●行列式与方程组(20分)

●矩阵基础(50分)

●矩阵分析(30分)

四、参考书目

1.北京大学数学系几何与代数教研室代数小组编,《高等代数》,高等教育出版社,第二版,1988。

2.史荣昌编著,《矩阵分析》,北京理工大学出版社,1996。

线性代数知识点总结第二章

线性代数知识点总结 第二章 矩阵及其运算 第一节 矩阵 定义 由m n ?个数()1,2, ,;1,2, ,ij a i m j n ==排成的m 行n 列的数表 11121212221 2 n n m m mn a a a a a a a a a 称为m 行n 列矩阵。简称m n ?矩阵,记作111212122 211 n n m m mn a a a a a a A a a a ?? ? ? = ? ??? ,简记为() ()m n ij ij m n A A a a ??===,,m n A ?这个数称为的元素简称为元。 说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。 扩展 几种特殊的矩阵: 方阵 :行数与列数都等于n 的矩阵A 。 记作:A n 。 行(列)矩阵:只有一行(列)的矩阵。也称行(列)向量。 同型矩阵:两矩阵的行数相等,列数也相等。 相等矩阵:AB 同型,且对应元素相等。记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。 单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可 表示为E )(课本P29—P31) 注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。 第二节 矩阵的运算 矩阵的加法 设有两个m n ?矩阵()() ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +, 规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++?? ? +++ ? += ? ? +++?? 说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。(课本P33) 矩阵加法的运算规律 ()1A B B A +=+; ()()()2A B C A B C ++=++

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值与特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都与特征值有关,在工程技术及其理论研究方面都有很重要的应用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值与特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数第二章矩阵试题及答案

第二章矩阵 一、知识点复习 1、矩阵的定义 由m n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m n型矩阵。例如 2 -1 0 1 1 1 1 1 0 2 2 5 4 -2 9 3 3 3 -1 8 是一个45矩阵. 一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。 元素全为0的矩阵称为零矩阵,通常就记作0。 两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。 2、 n阶矩阵与几个特殊矩阵 行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。 n阶矩阵的从左上角到右下角的对角线称为主对角线。 下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵: 对角线外的的元素都为0的n阶矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I). 数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E. 上三角矩阵: 对角线下的的元素都为0的n阶矩阵. 下三角矩阵: 对角线上的的元素都为0的n阶矩阵. 对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵. 反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。 (1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2 A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面。 ②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严 格单调递增。 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。 每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类 计算题中频繁运用的基本运算,必须十分熟练。 请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零 行数和台角位置是确定的。 3、矩阵的线形运算 (1)加(减)法:两个m n的矩阵A和B可以相加(减),得到的和(差)仍是m n 矩阵,记作A+B (A-B),运算法则为对应元素相加(减). (2)数乘: 一个m n的矩阵A与一个数c可以相乘,乘积仍为m n的矩阵, 记作c A,运算法则为A的每个元素乘c. 这两种运算统称为线性运算,它们满足以下规律: ①加法交换律:A+B=B+A. 2加法结合律:(A+B)+C=A+(B+C). ③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A. ④数乘结合律: c(d)A=(cd)A. ⑤ c A=0 c=0 或A=0. 4、矩阵乘法的定义和性质 (1)当矩阵A的列数和B的行数相等时,则A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量 和B的第j个列向量(维数相同)对应分量乘积之和.

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

矩阵与线性代数计算

第三章 矩阵与线性代数计算 MATLAB ,即“矩阵实验室”,它是以矩阵为基本运算单元。因此,本章从最基本的运算单元出发,介绍MATLAB 的命令及其用法。 3.1矩阵的定义 由m×n 个元素a ij (i=1,2,…m;j=1,2,…n)排列成的矩形阵称为一个m 行n 列的矩阵,或m×n 阶矩阵,可以简记为A=(a ij ) m×n ,其中的a ij 叫做矩阵的第i 行第j 列元素。 ???? ??????=m n m m n n a a a a a a a a a A 2 1 222 21 11211 当m=n 时,称A 为n 阶方阵,也叫n 阶矩阵; 当m=1,n ≥2时,即A 中只有一行时,称A 为行矩阵,或行向量(1维数组); 当m ≥2,n=1时,即A 中只有一列时,称A 为列矩阵,或列向量; 当m=1,n=1时,即A 中只有一个元素时,称A 为标量或数量(0维数组)。 3.2矩阵的生成 1.实数值矩阵输入 MATLAB 的强大功能之一体现在能直接处理向量或矩阵。当然首要任务是输入待处理的向量或矩阵。 不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。如: 【例3-1】矩阵的生成例。 a=[1 2 3;4 5 6;7 8 9] b=[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9; 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9; 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9] Null_M = [ ] %生成一个空矩阵

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值和特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都和特征值有关,在 工程技术及其理论研究方面都有很重要的使用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值和特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。 当2λ=时,

线性代数第二章矩阵练习题

第二章 一、选择题 1、计算13230102-???? +? ??? ???? 的值为(C) A 、-5 B 、6 C 、3003?????? D 、2902-?? ???? 2、设,A B 都就是n 阶可逆矩阵,且AB BA =,则下列结论中不正确的就是(D) A. 11AB B A --= B 、 11A B BA --= C 、 1111A B B A ----= D 、11B A A B --= 3、初等矩阵(A) A. 都就是可逆阵 B 、所对应的行列式值等于1 C 、 相乘仍就是初等阵 D 、相加仍就是初等阵 4、已知,A B 均为n 阶矩阵,满足0AB =,若()2r A n =-,则(C) A. ()2r B = B 、()2r B < C 、 ()2r B ≤ D 、()1r B ≥ 二、判断题 1、若,,A B C 都就是n 阶矩阵,则()k k k k ABC A B C =、 (×) 2、若,A B 就是n 阶反对称方阵,则kA 与A B +仍就是反对称方阵、(√) 3、矩阵324113A ??=? ???与矩阵2213B ?? =?? ?? 可进行乘法运算、 (√) 4、若n 阶方阵A 经若干次初等变换后变成B ,则A B =、 (×) 三、填空题 1、已知[]456A =,123B ?? ??=?????? ,求AB 得_________ 。 2、已知1 2n a a A a ???? ??= ? ???? ? O (0,1,2,,i a i n ≠=K ),则1A -= (32) 12 11 1n a a a ????????????????????? ? O 12n +

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

刘三阳线性代数第二版第一章标准答案

刘三阳线性代数第二版第一章答案

————————————————————————————————作者:————————————————————————————————日期:

第一章矩阵及其应用习题解答 本章需要掌握的是: 1)矩阵的定义,以及矩阵的运算(加、减、数乘和乘法); 2)方阵的幂和多项式,以及矩阵转置的性质; 3)逆阵的定义,以及逆阵的4条性质; 4)分块矩阵的运算规则; 5)矩阵的三种初等变换及行阶梯矩阵和行最简矩阵; 6)三种初等矩阵,以及定理1.4(左乘行变,右乘列变)、1.5、1.6和1.7;7)求逆阵的方法:定义法和初等变换法。 1、设方阵A满足,求。 题型分析:此类题型考核的知识点是逆阵的定义,即。因此无论题中给出的有关矩阵A的多项式(如本题是)多么复杂,只 需要把该多项式配方成“(所求逆的表达式)*(配方后的因子)=E”即可,即本题是要配成(A-E)*(?)=E。 解: %配出2003A可提取的(A-E) %配出1998可提取的(A-E) %提取公因式(A-E) %将只有单位阵的那一项移至等式右端 %写成“AB=BA=E”的形式

%由逆阵定义可知 巩固练习:教材第38页第13题 2、设,求。其中k为正整数。 题型分析:此类题型考核的知识点是矩阵的乘法和幂运算。解题思路为依次计算 最多到,通常这时已经可以看出规律,依此规律解题即可。 解:,,因此推论,用数学归纳法证明如下: 1)当k=1时,成立; 2)假设当k=n-1时,上式成立,即,则有 当k=n时,也成立。 所以 巩固练习:教材第41页二、填空题(3) 3、设A=E-uu T ,E为n阶单位阵,u为n维非零列向量,u T 为u的转置,证明:1)A2=A的充要条件是u T u=1; 2)当u T u=1时,A是不可逆的。 题型分析:这道题综合了矩阵这一章的大部分知识点,是个综合题,对于刚学了第一章的同学们来说也是一道难题。解题思路首先要明确u为n为非零向量是指u是一个只有一行 或一列的矩阵,题中有即告诉我们u是一个n*1阶列矩阵即列向量。

线性代数-相似矩阵

第五章相似矩阵及二次型 §1 向量的内积、长度、正交性一、向量空间的内积、长度和夹角1.内积的定义: 内积的符号:括号或方括号

: : 证(3)

二、向量空间的单位正交基 1.正交向量组定义 2.定理1 正交向量组线性无关 P113 解设a3= (x1, x2, x3), 由正交的定义, a3应满足 (a1,a3)= 0, (a2, a3)= 0 即x1 +x2 +x3 = 0, x1-2x2 +x3=0

这是一个齐次线性方程组AX= 0, 即??? ? ??=???? ? ?????? ??-00121111321x x x , 由??? ? ?????? ??-???? ??-=010101~030111~121111A , 得???=-=0231x x x ,方程组的通解为??? ??==-=c x x c x 3210,即????? ??-=????? ??101321c x x x 取c = 1, 则a3=??? ? ? ??-101即为所求。 3.正交基、规范正交基(单位正交基) 正交基——由正交向量组构成的基称为正交基。 规范正交基(单位正交基)——正交基中的向量是单位向量。 4.向量正交化 施密特方法:将基改造为正交基(P114)

例2 用施密特方法把基正交化(P114) 例3 已知 T a )1,1,1(1=,求一组非零向量32,a a ,使32,1,a a a 两两正交。 解 32,a a 应满足01 =x a T ,即 0321=++x x x 解这个齐次线性方程组得213 x x x --=,通解为 ?????--===2 13221 1c c x c x c x ,即? ?? ?? ??-+????? ??-=????? ??11010121321c c x x x ,基础解系为 ??? ? ? ??-=????? ??-=110,10121ξξ,把基础解系正交化 111212312) ,(),(,ξξξξξξξ-==a a ,于是得 ?? ???? ? ? ??--=??? ?? ??--????? ??-=????? ??-=2112110121110,101232a a 三、正交矩阵 1.定义4 因为 1A A E -= 所以 A 是正交矩阵←→1 T A A -= (充分必要) 2.正交矩阵的构造

自考04184线性代数(经管类)讲义第二章 矩 阵

第二章矩阵 2.1矩阵的概念 定义2.1.1由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成一个m行n列的数表 用 大小括号表示 称为一个m行n列矩阵。 矩阵的含义是:这m×n个数排成一个矩形阵列。 其中a ij称为矩阵的第i行第j列元素 (i=1,2,…,m;j=1,2,…,n),而i 称为行标,j称为列标。第i行与第j列的变叉位置记为(i,j)。 通常用大写字母A,B,C等表示矩阵。有时为了标明矩阵的行数m和列数n,也可记为 A=(a ij)m×n或(a ij)m×n或A m×n

当m=n时,称A=(a ij)n×n为n阶矩阵,或者称为n阶方阵。n阶方阵是由n2个数排成一个正方形表,它不是一个数(行列式是一个数),它与n阶行列式是两个完全不同的概念。只有一阶方阵才是一个数。一个n阶方阵A中从左上角到右下角的这条对角线称为A的主对角线。n阶方阵的主对角线上的元素a11,a22,…,a nn,称为此方阵的对角元。在本课程中,对于不是方阵的矩阵,我们不定义对角元。 元素全为零的矩阵称为零矩阵。用O m×n或者O(大写字)表示。 特别,当m=1时,称α=(a1,a2,…,a n)为n维行向量。它是1×n矩阵。 当n=1时,称为m维列向量。 它是m×1矩阵。 向量是特殊的矩阵,而且它们是非常重要的特殊矩阵。 例如,(a,b,c)是3维行向量,

是3维列向量。 几种常用的特殊矩阵: 1.n阶对角矩阵 形如或简写 为(那不是A,念“尖”)的矩阵,称为对角矩阵, 例如,是一个三阶对角矩阵, 也可简写为。 2.数量矩阵 当对角矩阵的主对角线上的元n阶数量矩阵

线性代数第二章矩阵(答案解析)

线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第一节 矩阵及其运算 一.选择题 1.有矩阵23?A ,32?B ,33?C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)2 1 ,0,0,21( =C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T + (B )E (C )E - (D )0 3.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + (B )T A A - (C )T AA (D )A A T 二、填空题: 1.? ?? ? ??---=???? ??--+???? ??-1212561432102824461 2.设????? ??=432112122121A ,????? ??----=101012121234B ,则=+B A 32??? ?? ??--56125252781314 3.=????? ??????? ??-127075321134???? ? ??49635 4.=????? ? ? ??---???? ??-20413121013 143110412???? ? ?---6520876 三、计算题: 设???? ? ? ?--=11 1111 111 A ,4

??? ? ? ??--=150421321B ,求A AB 23-及B A T ;2294201722213 2222222222092650850311111111 1215042 132111111111 1323???? ? ??----=???? ? ? ?---????? ??-=?? ??? ??---????? ? ?--????? ??--=-A AB .09265085015042132111111111 1???? ? ??-=????? ??--????? ??--===AB B A A A A T T ,则对称,由 线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第二节 逆 矩 阵 一.选择题 1.设* A 是n 阶矩阵A 的伴随矩阵,则 [ B ] (A )1 -* =A A A (B )1 -* =n A A (C )* * =A A n λλ)( (D )0)(=* *A 2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B | 3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A ) A A λλ= ( B )A A λλ= ( C )A A n λλ= ( D )A A n λλ= 4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ]

线性代数习题第三章 矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1、用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形、 2、用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵、 3、设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =、 4、设A就是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B、 (1) 证明B可逆(2)求1 AB-、

习题 3-2 矩阵的秩 1、求矩阵的秩: (1)310211211344A ????=--????-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????L L L L L L L 01,2,,i i a b i n ≠????=?? L 2、设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =、

3、 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系就是 、 .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4、 矩阵???? ??????-------815073*********的秩R= 、 a 、1; b 、 2; c 、 3; d 、 4、 5、 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = 、 a 、 1; b 、 n -11; c 、 –1; d 、 1 1-n 、 6、设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

线性代数习题相似矩阵及二次型

5-1向量的内积与方阵的特征值 1.设λ为矩阵A 的特征值,且0≠λ,则 λ A 为 的特征值。 ;.; .; .; .1*1--A d A c A b A a λλ 2.设A 为n 阶实对称阵,21,x x 为A 的不同特征值对应的特征向量,则 。 1.21=x x a T 1.x b 与2x 线性相关; 1.x c 与2x 线性无关; 0.21=+x x d 3.设21,λλ都为n 阶矩阵A 的特征值)(21λλ≠,且21,x x 分别为对应于21,λλ的特征向量,则当 满足时,2211x k x k x +=必为A 的特征向量。 0.1=k a 且02=k ; 0.1=k b 且02≠k ; 0.1≠k c 且02≠k ; 0.21=?k k d 4.设n 阶方阵A 的特征值全不为零,则 。 n A r d n A r c n A r b n A r a <≤≠=)(.;)(.;)(.;)(. 5.设矩阵??? ? ? ??--=314020112A ,求A 的特征值及特征向量.

6.试用施密特法把向量组?? ??? ???? ???---=011 101110 11 1),,(321a a a 正交化。 7.设A 与B 都为n 阶正交阵,证明:AB 也是正交阵。 8.证明:正交阵的行列式必定等于1或—1。 9.设x 为n 维列向量且1=x x T ,而T xx E H 2-=,试证H 是对称的正交矩阵。

习题5-2 相似矩阵与对称矩阵的对角化 1.设A 与B 为n 阶方阵,则B A =是A 与B 相似的 。 .a 充分条件; .b 必要条件; .c 充要条件; .d 无关 条件 2.对实对称阵?? ? ???-=???? ??=10 01,10 01 B A ,有A 与B 。 .a 互为逆矩阵; .b 相似; .c 等价; .d 正交 3. n 阶矩阵A 与对角阵相似的充要条件是 。 a. 矩阵A 有n 个特征值; b. 矩阵A 有n 个线性无关的特 征向量; c. 矩阵A 的行列式0≠A ; d. 矩阵A 的特征多项式有重根 4. 设n 阶矩阵A 与B 相似,则 。 a.A 与B 正交; b. A 与B 有相同的特征向量; c. A 与B 等价; d. A 与B 相同的特征值。 5.若A 与B 是相似矩阵,证明T A 与T B 也相似。

线性代数第二章矩阵(答案)

线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第一节 矩阵及其运算 一.选择题 1.有矩阵23?A ,32?B ,33?C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)2 1 ,0,0,21( =C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T + (B )E (C )E - (D )0 3.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + ( B )T A A - (C )T AA (D )A A T 二、填空题: 1.? ?? ? ??---=???? ??--+???? ??-1212561432102824461 2.设????? ??=432112122121A ,????? ??----=101012121234B ,则=+B A 32??? ?? ??--56125252781314 3.=????? ??????? ??-127075321134???? ? ??49635 4.=????? ? ? ??---???? ??-20413121013 143110412???? ? ?---6520876 三、计算题: 设???? ? ? ?--=11 1111 111 A ,4

??? ? ? ??--=150421321B ,求A AB 23-及B A T ;229 42017222132222222222092650850311111111 1215042 132111111111 1323???? ? ? ?----=???? ? ? ?---????? ??-=?? ??? ??---????? ? ?--????? ??--=-A AB .09265085015042132111111111 1???? ? ??-=????? ??--????? ??--===AB B A A A A T T ,则对称,由 线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第二节 逆 矩 阵 一.选择题 1.设* A 是n 阶矩阵A 的伴随矩阵,则 [ B ] (A )1 -* =A A A (B )1 -* =n A A (C )**=A A n λλ)( (D )0)(=* *A 2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B | 3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A ) A A λλ= ( B )A A λλ= ( C )A A n λλ= ( D )A A n λλ= 4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ]

线性代数知识点总结

第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在;

线性代数第二章矩阵(答案).docx

线性代数练习题第二章矩阵 系专业班姓名学号 第一节矩阵及其运算 一.选择题 1.有矩阵A3 2,B23, C 3 3,下列运算正确的是[B]( A) AC( B) ABC( C) AB- BC( D) AC+BC 2.设C (1 , 0 ,0 , 1 ),A E C T C , B E 2C T C ,则AB[ B ] 22 ( A)E C T C( B)E(C)E( D)0 3.设 A 为任意 n 阶矩阵,下列为反对称矩阵的是[ B] ( A)A A T(B)A A T( C)AA T( D)A T A 二、填空题: 164201165 1. 282342112 4 12124321141387 2.设A 2 1 2 1, B 2 1 2 1,则 2A 3B2525 123401012165 431735 3.12326 570149 131 2140012678 4. 1341312056 1 402 三、计算题: 111 设 A111,4 111

123 B124,求 3AB2A 及 A T B 051 111123111 3AB 2 A 3 111124 2 111 111051111 058222 3 056222 290222 21322 21720 ; 4292 111123058 由 A对称, A T A,则 A T B AB11112405 6 . 111051290 线性代数练习题第二章矩阵 系专业班姓名学号 第二节逆矩阵 一.选择题 1.设A是 n 阶矩阵A的伴随矩阵,则[B] ( A)AA A 1( B)A n 1 ( C)( A)n A( D)( A )0 A 2.设 A,B 都是 n 阶可逆矩阵,则[C]( A) A+B 是 n 阶可逆矩阵( B)A+B 是 n 阶不可逆矩阵 ( C)AB 是 n 阶可逆矩阵( D)| A+B| = | A|+| B| 3.设 A 是 n 阶方阵,λ为实数,下列各式成立的是 ( A)A A(B)A A(C)A n A(D)A [ C] n A 4.设 A, B, C 是 n 阶矩阵,且ABC = E ,则必有[ B]( A) CBA = E(B)BCA = E(C)BAC = E(D)ACB = E 5.设 n 阶矩阵 A,B, C,满足 ABAC = E,则[ A]

线性代数教案_第二章_矩阵

授课章节第二章矩阵§2.1矩阵§2.2矩阵的运算 目的要求理解矩阵的定义,掌握矩阵的运算 重点矩阵的运算 难点矩阵的乘法 §2.1矩阵 前面介绍了利用行列式求解线性方程组的方法,即Cramer法则。但是Cramer法则有它的局限性: 1. 系数行列式 ; 2. 方程组中变量的个数等于方程的个数。 接下来要学习的还是关于解线性方程组,即Cramer法则无法用上的-――用“矩阵”的方法解线性方程组。本节课主要学习矩阵的概念及其运算。 一、矩阵的概念 矩阵是线性代数的核心,矩阵的概念、运算和理论贯穿线性代数的始终。矩阵是一个表格,它的运算与数的运算是既有联系又有区别;矩阵与行列式也有很大的关联,但二者不能等同混淆。对于分块矩阵,它在矩阵乘法、求逆、向量的线性表出、线性相关与秩、线性齐次方程组的解等方面,都有很大的用处。矩阵是本课程的一个重要概念,在生产活动和日常生活中,我们常常用数表表示一些量或关系,如工厂中的产量统计表,市场上的价目表等等 例1 某种物资有3个产地,4个销地,调配量如表1所示 表 1 产地销地调配情况表 销地 产地 B1 B2 B3 B4 A1 1 6 3 5 A2 3 1 2 0 A3 4 0 1 2

那么,表中的数据可以构成一个矩形数表: 在预先约定行列意义的情况下,这样的简单矩形数表就能表明整个产销调配的状况。不同的问题,矩形数表的行列规模有所不同,去掉表中数据的实际含义,我们得到如下矩阵的概念。 定义2.1 由 个数 排成的 行 列数表 (2.1) 称为一个 行 列矩阵,简称 矩阵。这 个数称为矩阵的元素,其中

称为矩阵的第 行第 列元素.(2.1)式也简记为 或 . 有时 矩阵A也记作 . 注 1.元素是复数的矩阵称为复矩阵,元素是实数的矩阵称为实矩阵,本书中的矩阵除特别说明外,都指实矩阵. 2.当 时,称 矩阵为长方阵(长得像长方形); 3.当 时,称矩阵为 阶方阵(长得像正方形),简称方阵; 4. 两个矩阵的行数、列数均相等时,就称它们是同型矩阵. 如果 与 是同型矩阵,并且它们的对应元素相等,即

判定线性代数中矩阵相似关系的原理和方法

一[收稿日期]2018G09G28;一[修改日期]2018G12G04一[基金项目]国家自然科学基金青年项目(11601470);云南省高等学校卓越青年教师特殊培养计划项目(C 6152704) ;云南大学校级教改项目(WX 162072);云南大学校级本科教材建设项目(WX 162072 )一[作者简介]李源(1978-),男,硕士,副教授,从事计算数学和大学数学课程的教学和研究.E m a i l :l i y u a n @y n u .e d u .c n 第35卷第2期大一学一数一学V o l .35,?.22019年4月C O L L E G E MA T H E MA T I C S A p r .2019判定线性代数中矩阵相似关系的 原理和方法 李一源1,一郝小枝2(1.云南大学数学与统计学院,昆明650500;一2.云南中医药大学信息学院,昆明650021 )一一[摘一要]指出教育部考试中心2019版考研数学考试分析中关于矩阵相似试题解答中的一个错误. 系统梳理了高等代数和线性代数课程中关于相似矩阵刻画的角度和方法,明确了在线性代数课程体系中3类可以作出相似判定的矩阵类别及其对应的判别方法,给出不能一般判定相似关系的第4类矩阵的基本特征,并结合实例给出在特殊情形下解决第4类矩阵相似关系判定的方法.[关键词]线性代数;相似矩阵;相似对角化;特征多项式[中图分类号]O 177.5一一[文献标识码]C 一一[文章编号]1672G1454(2019)02G0122G05 1一引一一言 矩阵相似的判定是近年考研数学命题的热点问题,也是线性代数教学中的难点之一.由于所需方法 具有较高的综合性,学生在判定矩阵相似时的各种错误逻辑频现,甚至在教育部考试中心2019年版的数学考试分析中对2018年全国硕士研究生招生考试数学科考试( 数学一二二二三)中的一道试题的解答均出现疏误!为明确起见,将其摘录如下: 下列矩阵中,与矩阵110011001?è?????÷÷÷相似的为[1](一一)(A )11-1011001?è?????÷÷÷.一(B )10-1011001?è?????÷÷÷.(C )11-1010001?è?????÷÷÷.一(D )10-1010001?è????? ÷÷÷.解一易知矩阵110011001?è?????÷÷÷的特征值为λ=1(3重),其线性无关的特征向量只有1个,即ξ1=100?è????? ÷÷÷.对于选项中的4个矩阵,都是以λ=1为3重特征值的矩阵.选项(A )中的矩阵11-1011001?è?????÷÷÷只有1个线性无关的特征向量ξ1=100?è????? ÷÷÷;

相关主题
文本预览
相关文档 最新文档