当前位置:文档之家› 对不定方程x_3_y_3_z_3_3的研究

对不定方程x_3_y_3_z_3_3的研究

对不定方程x_3_y_3_z_3_3的研究
对不定方程x_3_y_3_z_3_3的研究

一次不定方程的解法

一次不定方程的解法 我们现在就这个问题,先给出一个定理. 定理如果,a b 是互质的正整数,c 是整数,且方程 ax by c +=① 有一组整数解00,x y 则此方程的一切整数解可以表示为 其中0,1,2,3,t =±±±… 证因为00,x y 是方程①的整数解,当然满足 00ax by c +=② 因此 0000()()a x bt b y at ax by c -++=+=. 这表明0x x bt =-,0y y at =+也是方程①的解. 设,x y ''是方程①的任一整数解,则有 ax by c ''+=③ ③-②得00()()a x x b y y ''-=--④ 由于(,)1a b =,所以0a y y '-,即0y y at '=+,其中t 是整数.将0y y at '=+代入④,即得0x x bt '=-.因此,x y ''可以表示成0x x bt =-,0y y at =+的形式,所以0x x bt =-,0y y at =+表示方程①的一切整数解,命题得证. 有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解. 例1求11157x y +=的整数解. 解法1将方程变形得 因为x 是整数,所以715y -应是11的倍数.由观察得002,1x y ==-是这个方程的一组整数解,所以方程的解为 解法2先考察11151x y +=,通过观察易得

11(4)1531?-+?=, 所以 11(47)15(37)7?-?+??=, 可取0028,21x y =-=,从而 可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.将解中的参数t 做适当代换,就可化为同一形式. 例2求方程62290x y +=的非负整数解. 解因为(6,22)2=,所以方程两边同除以2得 31145x y +=① 由观察知,114,1x y ==-是方程 3111x y +=② 的一组整数解,从而方程①的一组整数解为 由定理,可得方程①的一切整数解为 因为要求的是原方程的非负整数解,所以必有 1801104530t t -≥??-+≥? ③ 由于t 是整数,由③得1516t ≤≤,所以只有15,16t t ==两种可能. 当15,15,0t x y ===;当16,4,3t x y ===.所以原方程的非负整数解是 150x y =??=? ,43x y =??=? 例3求方程719213x y +=的所有正整数解. 分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解. 解用方程

(完整版)常微分方程发展简史——解析理论与定性理论阶段3常微分

第三讲 常微分方程发展简史——解析理论 与定性理论阶段 3、常微分方程解析理论阶段:19世纪 19世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。 级数解和特殊函数 这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数. 常微分方程是17、18世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特别是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是陌生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程. 222 ()0x y xy x n y '''++-= 其中参数n 和x 都可以是复的. 对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703年Bernoulli Jacobi 给Leibnitz 的信中就已提到, 后来Bernoulli Daniel 、Euler 、Fourier 、Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由Bessel 在研究行星运动时作出的. 对每个n , 此方程存在两个独立的基本解, 记作()n J x 和()n Y x , 分别称为第一类Bessel 函数和第二类Bessel 函数, 它们都是特殊函数或广义函数(初等函数之外的函数). Bessel 自1816年开始研究此方程, 首先给出了积分关系式 20 ()cos(sin ).2n q J x nu x u du ππ=-? 1818年Bessel 证明了()n J x 有无穷多个零点. 1824年, Bessel 对整数n 给出了递推关系式 11()2()()0n n n xJ x nJ x xJ x +--+= 和其他的关于第一类Bessel 函数的关系式. 后来又有众多的数学家(研究天体力学的数学家)独立地得到了Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。 解析理论中另一重要内容是Legendre 方程的级数解和Legendre 多项式方面的结果. 1784年, Legendre 研究了Legendre 方程2 (1)20x y xy y λ'''-++=, 给出了幂级数形式的解, 得到

个例独解:“不定方程”解题思路

个例独解:“不定方程”解题思路 不定方程(组)是指未知数的个数多于方程的个数的一个(或几个)方程组成的方程(组)。 不定方程的解一般有无数个,而在这无数个解中要找出一个适合题意的解,则是行测出题 的思路。根据不定方程的这一特点可知,由题干条件推出结论的推理方式比较费时费力, 采用代入法则是不定方程的一般解法。代入法也分为选项代入法、特殊值代入法两种。 某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均分给各个老师带领刚好能够分完,且每位老师所带的学生数量都 是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?( )(2012年国家 考试行测第68题) A. 36 B.37 C.39 D.41 读题之后可以看出题干中存在两个明显的等量关系,而也没有其他较简单的做法,则考虑 列方程组,设每名钢琴教师带领x名学员,每名拉丁舞教师带领y名学员; 该方程组有三个未知数,只有两个方程,属于不定方程,用代入法较好。采用特殊值代入 法较好。用第一个方程:5x+6y=76,用奇偶性分析可得x应该为偶数,根据“每位老师所 带的学生数量都是质数”可得x只能为2,又可求的Y=11.再把X=2,Y=11代入方程二可 得4x+3y=41。 该题先列出方程组,再根据题干给出的特殊信息--奇偶性和质数特性,采用特殊值代入的 方式解题。 三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。 如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的 作品列为C等,则下列说法正确的是( )(2012年 考试 第72题) A、A等和B等共6幅 B、B等和C等共7幅 C、A等最多有5幅 D、A等比C等少5幅 读题之后可以看出题干中存在两个明显的等量关系,即画的张数是10,投票数总共为50. 则考虑列方程组,设A等、B等、C等作品的幅数分别为x、y、z张。可得方程组为: 化简得:2x+y=5,可得x=2,y=1,z=7,答案选D。或者得答案x=1,y=3,z=6,无答案,答案选D。

一次不定方程的解法

一次不定方程的解法

一次不定方程的解法 我们现在就这个问题,先给出一个定理. 定理 如果,a b 是互质的正整数,c 是整数,且方程 ax by c += ① 有一组整数解00,x y 则此方程的一切整数解可 以表示为 00x x bt y y at =-??=+? 其中0,1,2,3,t =±±±… 证 因为00 ,x y 是方程①的整数解,当然满足 00ax by c += ② 因此 0000()()a x bt b y at ax by c -++=+=. 这表明0x x bt =-,0y y at =+也是方程①的解. 设,x y ''是方程①的任一整数解,则有 ax by c ''+= ③ ③-②得 00()()a x x b y y ''-=-- ④ 由于(,)1a b =,所以0a y y '-,即0y y at '=+,其中t 是整数.将 0y y at '=+代入④,即得0x x bt '=-.因此,x y ''可以表示成0x x bt =-,0y y at =+的形式,所以0x x bt =-,0y y at =+表示 方程①的一切整数解,命题得证.

例2 求方程62290x y +=的非负整数解. 解 因为(6,22)2=,所以方程两边同除以2得 31145x y += ① 由观察知,114,1x y ==-是方程 3111x y += ② 的一组整数解,从而方程①的一组整数解为 0045418045(1)45 x y =?=??=?-=-? 由定理,可得方程①的一切整数解为 18011453x t y t =-??=-+? 因为要求的是原方程的非负整数解,所以必有 1801104530t t -≥??-+≥? ③ 由于t 是整数,由③得1516t ≤≤,所以只有15,16t t ==两种可能. 当15,15,0t x y ===;当16,4,3t x y ===.所以原方程的非负整数解是 150x y =??=? ,43x y =??=? 例3 求方程719213x y +=的所有正整数解. 分析 这个方程的系数较大,用观察法去求

不定方程及方程组

不定方程(组)及应用 【知识点拨】 不定方程式数论中的一个古老的分支,我国对不定方程的研究已有数千年的历史,“百鸡问题”、“中国剩余定理”等一直流传至今。 当方程的个数比方程中未知数的个数少的时候,我们就称这样的方程(或方程组)为不定方程(或不定方程组)。 为纪念古希腊数学家丢番图,不定方程也成为丢番图方程,之所以把它们叫不定方程,是因为他们的解不确定(不唯一)。一般情况下,如果不加以限制,不定方程的解有无限个,如果考虑到题中的一些条件所限制的范围后,它只能有几个解,甚至无解,解答这类方程,必须对题中明显或者隐蔽的条件加以推理,才能正确求解。 【典型例题】 例 1、 求不定方程5x +9y=104的整数解 【巩固训练】 1、在不定方程89-7a=4b 中,a 、b 均为自然数,求此不定方程的解。 例 2、求三元一次不定方程组 {56203412x y z x y z +-=-+=的正整数解。

【巩固训练】 1、求不定方程组{791168 210 x y z x y ++= +=的正整数解。 例3、甲级铅笔7分钱一支,乙级铅笔3分钱一支,问张明用6角钱恰好买两种铅笔共多少支? 【巩固训练】 装水瓶的盒子有大小两种,大的能装7个,小的能装4个,要把41个水瓶装入盒内。问需要大小盒子各多少个?

例4、某地按下列规定收取电费:每月用电不超过50度,每度收4角5分,如果超过50度,超过部分每度收8角,今年七月,甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?(电的度数按整数算) 【巩固训练】 1、某乡水电站发电了,电费规定是:如果每月用电不超过24度,就按每度电9角收费;如果超过24度,超过部分按每度电2元收费,已知在某月中,甲家比乙家多交了电费9元6角钱,甲乙两家各交多少电费?(电的度数按整数算) 例5、把1000拆成两个自然数的和,一个是7的倍数并且要使这个数尽可能大,一个是11的倍数,并且使这个数尽可能的小,这两个数分别是多少?

不定方程

第六节 不定方程 所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理 数、整数或正整数等等)的方程或方程组。不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。在本节我们来看一看不定方程的基础性的题目。 基础知识 1.不定方程问题的常见类型: (1)求不定方程的解; (2)判定不定方程是否有解; (3)判定不定方程的解的个数(有限个还是无限个)。 2.解不定方程问题常用的解法: (1)代数恒等变形:如因式分解、配方、换元等; (2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解; (3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解; (4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解; (5)无穷递推法。 以下给出几个关于特殊方程的求解定理: (一)二元一次不定方程(组) 定义1.形如c by ax =+(,,,,Z c b a ∈b a ,不同时为零)的方程称为二元一次不定方程。 定理1.方程c by ax =+有解的充要是c b a |),(; 定理2.若1),(=b a ,且00,y x 为c by ax =+的一个解,则方程的一切解都可以表示成 ??? ????-=+=t b a a y y t b a b x x ),(),(00t (为任意整数)。 定理3.n 元一次不定方程c x a x a x a n n =+++ 2211,(N c a a a n ∈,,,,21 )有解的充要条件是c a a a n |),,,(21 . 方法与技巧: 1.解二元一次不定方程通常先判定方程有无解。若有解,可先求c by ax =+一个特解,从而写出通解。当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减

不定方程的解法与应用

摘要 不定方程是初等数论的一个重要内容,在相关学科和实际生活中也有着广泛的应用.本文首先归纳了整数分离法、系数逐渐减小法和辗转相除法等几种常用的二元一次不定方程的解法;其次进一步讨论了求n元一次不定方程和二次不定方程整数解的方法;最后论述了不定方程在中学数学竞赛题、公务员行测试题和其他学科中的应用,并举例说明. 关键词:不定方程;二元一次不定方程;数学竞赛;公务员试题

Abstract The integral solutions of indeterminate equation solving method is an important content of elementary number theory, has been widely used in related disciplines and in real life. This paper summarizes the integer separation method, coefficient decreases and the Euclidean algorithm and several commonly used two element indefinite equation solution, secondly is further discussed. For n linear indeterminate equation and the method of two time indefinite equation integer solution, and finally discusses the indeterminate equation applied in secondary school mathematics, civil servants for test and other subjects, and illustrated with examples. Key words: i ndeterminate equation; two element indefinite equation; Mathematics contest; civil service examination.

一次不定方程的解法

精心整理 一次不定方程的解我们现在就这个问题,先给出一个定理 定理如是互质的正整数是整数,且方,①cby?ax?有一组整数解则此 方程的一切整数解可以表示为yx,00其中…3,??1,?2,t?0,证因为是方程①的整数解,当然满足y,x00②c?ax?by00因此 .cby?at)?ax?ba(x?bt)?(y?0000这表明,也是方程①的解.at?y??x?xbty00设是方程①的任一整数解,则有??y,x③??caxby???②得④③ ??)y(?)x(ax??by?00精心整理. 精心整理 t是整数.将,其中代入④,即得由于,所以,即??? atyy?y?at??y ya?y1)?,(ab000.因此可以表示成,的形式,所以, ???y?y?atx?x?x?x?btyy?x??x?btatbty,x00000表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解. 例1求的整数解.715y?11x?将方程变形得1解是这个方程的的倍数.由观察是整数,所应是因211组整数解,所以方程的解先考,通过观 察易得解11114所以 (7711,,从而可取21?x??28,y00可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于 求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是 t一样的.将解中的参数做适当代换,就可化为同一 形式.求方程的非负整数解.2例9022y??6x得因为,所以方程两边同

除以解2?(6,22)2①45?3x?11y由观察知,是方程1??yx?4,11②1?11y?x3 的一组整数解,从而方程①的一组整数解为 由定理,可得方程①的一切整数解为精心整理. 精心整理 因为要求的是原方程的非负整数解,所以必有 180?11t?0?③??45?3t?0?由于是整数,由③得,所以只有两种可能.16?t?15,tt16t?15?当;当.所以原方程的非负整数解是 3??4,yy?0?t16,xt?15,x?15,x?415x???,??y?3y?0??求方的所有正整数解211?分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解 解用方 211?的最小系除方程①的各项,并移项 211y②?30?2y?x?77y?53.化简得到是整数,故因为也是整数,于是?u yx,3?7u5y?7③3??7u5y3?2u(整数),由此得令?v5④35v?2u?u??1u??1??是方程④的一组解.将代入③得,再将由观察知代入②得 2?2y?y??v?1v?1??x?25x?25?19t??t为整数,所以它的一切解为.于是方程①有一组解025x???y?2y?2?7t??0由于要求方程的正整数解,所以 解不等式,得只能取.因此得原方程的正整数解为0,1t精心整理.精心整理 x?25x?6??,??y?2y?9??当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明.

(完整word版)初中数学几种不定方程和方程组的解题技巧和方法

初中数学几种不定方程和方程组的解题技巧和方法 凯里市大风洞正钰中学曾祥文 摘要:教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。在初中数学教学中不定方程与方程(组)占很大的比例,是中学生经常出错和不懂的部分。本文主要探讨几种不定方程和方程组的解题技巧和方法。 关键词:初中数学不定方程方程 教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。有效教学是教师在达成教学目标和满足学生发展需要方面都很成功的教学行为,它是教学的社会价值和个体价值的双重体现。数学是人们对客观世界定性把握和定量刻画、逐渐抽象、形成方法和理论,并进行广泛应用的过程。数学教学是教师对学生进行数学思维培养的一种认知过程。 方程(组)中,未知数的个数多于方程的个数时,它的解往往有无数多个,不能唯一确定,因此这类方程常称为不定方程(组),解不定方程没有固定的方法,需具体问题具体分析,经常用到整数的整除、奇数偶数的特性、因数分解、不等式估值、穷举、分离整数、配方等知识与方法,解不定方程的技巧是对方程适当变形,灵活运用相关知识。本文就几类常见的不定方程与方程做如下浅析。 1 非负数的巧用 在初中数学中,经常用的非负数有:①a2 ≥0 ;②|a|≥0;③a≥0若干个非负数的和为0,那么每个非负数均为0, 例1:已经x2 + y2-x+2y+5/4= 0 ,求x 、y的值。 评析:方程左边配方可变为非负数之和 解:由x2 + y2-x+ 2y+5/4= 0 得( x—1/2 ) 2+ ( y +1 ) 2= 0 所以( x—1/2 ) 2≥0,( y + 1 )2≥≥0 一般地,几个非负数之和为0,则每个非负数均为0。所以x=1/2, y=1 2 二元一次方程的整数解

不定方程的求解方法汇总

不定方程的求解方法汇总 行测数量运算的考查中,不定方程是计算问题的常考题型,难度不大,易求解。但是想要快速正确的求解出结果,还是需要一些技巧和方法的。专家认为,掌握了技巧和方法,经过大量练题一定可以实现有效的提升,不定方程的题目必定成为你的送分题。 一、不定方程的概念 在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。 在这里解释一下独立方程。看个例子大家便可以明白了: 4x+3y=26①,8x+6y=52② 因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。 二、求解不定方程的方法 1、奇偶性 奇数+奇数=偶数奇数×奇数=奇数 偶数+偶数=偶数偶数×偶数=偶数 奇数+偶数=奇数奇数×偶数=偶数 性质:奇偶奇 7x为奇数,x也为奇数。x可能的取值有1、3、5。当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。

2、尾数法 当看到未知数前面的系数为0或者5结尾时,考虑尾数法。任何正整数与5的乘积尾数只有两种可能0或5。 性质:奇偶奇 5x 为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。 3、整除法 当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。 4、特值法 当题目考察不定方程组,且一般情况下,求解(x+y+z)之和时考虑特值法。不定方程组拥有无数组解,而(x+y+z)的结果是唯一的,那么我们便可以随便找一组解代入即可。同时要使计算相对简单,便可以将系数较为复杂的未知数设为特值0,简化运算。

不定方程及不定方程组

不定方程及不定方程组集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第二十七讲 不定方程、方程组 不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是解往往有无穷多个,不能惟一确定. 对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,加上条件限制后,解就可确定. 二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常转化为二元一次不定方程问题加以解决,与之相关的性质有: 设d c b a 、、、为整数,则不定方程c by ax =+有如下两个重要命题: (1)若(a ,b)=d ,且d 卜c ,则不定方程c by ax =+没有整数解; (2)若00y x ,是方程c by ax =+且(a ,b)=1的一组整数解(称特解),则为整数) t at y y bt x x (00???-=+=是方程的全部整数解(称通解). 解不定方程(组),没有现成的模式、固定的方法可循,需要依据方程(组)的特点进行恰当的变形,并灵活运用以下知识与方法;奇数偶数,整数的整除性、分离整系数、因数分解。配方利用非负数性质、穷举,乘法公式,不等式分析等. 举例 【例1】 正整数m 、n 满足8m+9n=mn+6,则m 的最大值为 . (新加坡数学竞赛题) 思路点拔 把m 用含n 的代数式表示,并分离其整数部分(简称分离整系数法).再结合整除的知识,求出m 的最大值. 注:求整系数不定方程c by ax =+的整数解。通常有以下几个步骤: (1)判断有无整数解;(2)求一个特解;(3)写出通解;(4)由整数t 同时要满足的条件(不等式组),代入(2)中的表达式,写出不定方程的正整数解. 分离整系数法解题的关键是把其中一个未知数用另一个未知数的代数敷式表示,结合整除的知识讨论. 【例2】 如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志.问下一个同时设置这两种标志的地点的千米数是( ). A .32千米 B .37千米 C .55千米 D .90千米 (河南省竞赛题) 思路点拨 设置限速标志、照相标志千米数分别表示为3+4x 、10十9y(x ,y 为自然数),问题转化为求不定方程3+4x=0+9y 的正整数解. 【例3】 (1)求方程15x+52y=6的所有整数解. (2)求方程x+y =x 2一xy+y 2的整数解. (莫斯科数学奥林匹克试题) (3)求方程 6 5 111=++z y x 的正整数解. (“希望杯”邀请赛试题)

小学奥数 不定方程与不定方程组.教师版

不定方程与不定方程组 教学目标 1.利用整除及奇偶性解不定方程 2.不定方程的试值技巧 3.学会解不定方程的经典例题 知识精讲 一、知识点说明 历史概述 不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来. 考点说明 在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。 二、不定方程基本定义 1、定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。 2、不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。

3、研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数; ③求出所有的解 三、不定方程的试值技巧 1、奇偶性 2、整除的特点(能被2、 3、5等数字整除的特性) 3、余数性质的应用(和、差、积的性质及同余的性质) 模块一、利用整除性质解不定方程 【例 1】求方程 2x-3y=8的整数解 【考点】不定方程【难度】2星【题型】解答 【解析】方法一:由原方程,易得 2x=8+3y,x=4+3 2 y,因此,对y的任意一个值,都有一个x与之对应,并且,此时x与y的值必定满足原方 程,故这样的x与y是原方程的一组解,即原方程的解可表为: 3 4 2 x k y k ? =+ ? ? ?= ? ,其中k为任意数.说明由y取值的任意性,可知上述不定方程有无 穷多组解. 方法二:根据奇偶性知道2x是偶数,8为偶数,所以若想2x-3y=8 成立,y必为偶数, 当y=0,x=4;当y=2,x=7;当y=4,x=10……,本题有无穷多个解。 【答案】无穷多个解 【巩固】求方程2x+6y=9的整数解 【考点】不定方程【难度】2星【题型】解答 【解析】因为2x+6y=2(x+3y),所以,不论x和y取何整数,都有2|2x+6y,但29,因此,不论x和y取什么整数,2x+6y都不可能等于9,即 原方程无整数解. 说明:此题告诉我们并非所有的二元一次方程都有整数解。 【答案】无整数解 【例 2】求方程4x+10y=34的正整数解 【考点】不定方程【难度】2星【题型】解答 例题精讲

10秒钟解不定方程的方法

10秒钟解不定方程的方法 一、不定方程常用解法汇总 1、利用奇偶性求解 自然数分为奇数和偶数,而加和、做差和乘积也存在一定规律: 奇数+奇数=偶数;偶数+偶数=偶数;奇数+偶数=奇数; 奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数。 例题1:x,y为自然数,2x+3y=22,求y=? A.1 B.2 C.3 D.5 【答案】B。解析:22是偶数,2x是偶数,偶数加偶数才能得到偶数,所以3y一定是偶数,又因为3是奇数,所以只能是y为偶数,答案选B。 2、利用尾数法求解 适用环境:一个未知数系数尾数是5或0。 例题2:现有139个同样大小的苹果往大、小两个袋子中装,已知大袋每袋装17个苹果,小袋每袋装10个苹果。每个袋子都必须装满,则需要大袋子的个数是? A.5 B.6 C.7 D.8 【答案】C解析:设需要大袋子x个,小袋子y个,得到17x+10y=139,由于小袋子每袋装10个苹果,所以无论有多少个小袋子,所能装的苹果数的尾数永远为0,即10y的尾数为0;而大袋每袋装17个苹果,17x的尾数为9,所以x的尾数为7,选C。 3、利用整除特性求解 适用环境:等式右边的常数和某个未知数系数能被同一个数整除(1除外),即有除了1以外的公约数。 例3:x,y为自然数,3x+4y=129,求y=? A.11 B.12 C.13 D.14 【答案】B。解析:发现129和x的系数3都能被3整除,所以4y也必定被3整除,而4不能被3整除,所以只能y被3整除,答案选B。 二、真题演练 1、超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个? A.3 B.4 C.7 D.13 【答案】D解析:此题条件比较单一,没有直接可以利用的数量关系。因此,要优先考虑方程法,利用方程来理清数量间的特殊关系。 设大包装盒有x个,小包装盒有y个,则12x+5y=99,其中x、y之和为十

不定方程及不定方程组

第二十七讲 不定方程、方程组 不定方程(组)就是指未知数的个数多于方程的个数的方程 (组),其特点就是解往往有无穷多个,不能惟 一确定. 对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,加上条件限制后,解就可确定? 二元一次不定方程就是最简单的不定方程 ,一些复杂的不定方程(组)常常转化为二元一次不定方程问题 加以解决,与之相关的性质有: 设a 、b 、c 、d 为整数,则不定方程ax by c 有如下两个重要命题: (1)若(a ,b )=d ,且d 卜c ,则不定方程ax by c 没有整数解; x x 0 bt , ⑵若X 。,y o 就是方程ax by c 且(a ,b )=1的一组整数解(称特解),则 (t 为整数)就是方程 的 y y o at 全部整数解(称通解). 解不定方程(组),没有现成的模式、固定的方法可循 ,需要依据方程(组)的特点进行恰当的变形,并灵活运 用以下知识与方法;奇数偶数,整数的整除性、分离整系数、因数分解。配方利用非负数性质、 穷举,乘法公式, 不等式分析等. 举例 【例1】 正整数m 、n 满足8m+9n=mn+6,则m 的最大值为 _______________ . (新加坡数学竞赛题) 思路点拔 把m 用含n 的代数式表示,并分离其整数部分(简称分离整系数法).再结合整除的知识,求出m 的最大值. 注:求整系数不定方程 ax by c 的整数解。通常有以下几个步骤 : (1)判断有无整数解;(2)求一个特解;(3)写出通解;(4)由整数t 同时要满足的条件(不等式组),代入⑵中的表 达式,写出不定方程的正整数解. 分离整系数法解题的关键就是把其中一个未知数用另一个未知数的代数敷式表示 ,结合整除的知识讨 论. 【例2】 如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔 9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志 .问下一个同时设置这两种标志的地点 的千米数就是( ). 1115 (3)求方程 的正整数解. x y z 6 (“希望杯”邀请赛试题) p 1 思路点拨 设置限速标志、照相标志千米数分别表示为 定方程3+4x=0+9y 的正整数解. 【例3】(1)求方程15x+52y=6的所有整数解. (2)求方程x+y = x 2 一 xy+y 2 的整数 (河南省竞赛题) 3+4x 、10十9y (x,y 为自然数),问题转化为求不 A.32千米 B.37千米 C.55千米 D.90千米

不定方程的解法

基本介绍编辑本段 不定方程是数论的一个分支,它有着悠 久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。 古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969 年,莫德尔较系统地总结了这方面的研究成果。 2 发展历史编辑本段

希腊的丢番图早在公元3 世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus ,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus 方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189 个问题及其答案,而许多都是不定方程组(变量的个数大于方程的个数)或不定方程式(两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。 研究不定方程要解决三个问题:①判断何时有解。②有解时决定解的个数。③求出所有的解。中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5 世纪的《张丘建算经》中的百鸡问题标志中国对不定方程理论有了系统研究。秦九韶的大衍求一术将不定方程与同余理论联系起来。百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何”。设x,y,z 分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。 3 常见类型编辑本段

小学数学不定方程与不定方程组的解法

不定方程与不定方程组 知识框架 一、知识点说明 历史概述 不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来. 考点说明 在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。 二、不定方程基本定义 (1)定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。 (2)不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。(3)研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解 三、不定方程的试值技巧 (1)奇偶性 (2)整除的特点(能被2、3、5等数字整除的特性) (3)余数性质的应用(和、差、积的性质及同余的性质) 重难点 (1)b利用整除及奇偶性解不定方程 (2)不定方程的试值技巧 (3)学会解不定方程的经典例题

例题精讲 一、利用整除性质解不定方程【例 1】求方程2x-3y=8的整数解 【考点】不定方程 【解析】方法一:由原方程,易得2x=8+3y,x=4+3 2 y,因此,对y的任意一个值,都有一个x与之对 应,并且,此时x与y的值必定满足原方程,故这样的x与y是原方程的一组解,即原方程的解 可表为: 3 4 2 x k y k ? =+ ? ? ?= ? ,其中k为任意数.说明由y取值的任意性,可知上述不定方程有无穷多 组解. 方法二:根据奇偶性知道2x是偶数,8为偶数,所以若想2x-3y=8成立,y必为偶数,当y=0,x=4;当y=2,x=7;当y=4,x=10……,本题有无穷多个解。 【答案】无穷多个解 【巩固】求方程2x+6y=9的整数解 【考点】不定方程 【解析】因为2x+6y=2(x+3y),所以,不论x和y取何整数,都有2|2x+6y,但29,因此,不论x和y取什么整数,2x+6y都不可能等于9,即原方程无整数解. 说明:此题告诉我们并非所有的二元一次方程都有整数解。 【答案】无整数解 【例 2】求方程4x+10y=34的正整数解 【考点】不定方程 【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得2x+5y=17,5y的个位是0或5两种情况,2x是偶数,要想和为17,5y的个位只能是5,y为奇数即可;2x的个位为2,所以x的取值为1、6、11、16…… x=1时,17-2x=15,y=3, x=6时,17-2x=5,y=1, x=11时,17-2x=17 -22,无解

解三元一次不定方程组

题目:小明的妈妈去超市购物,已知买13个鸡蛋,5个鸭蛋,9个鹌鹑蛋需付9.25元,买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋需付3.20元,小明妈妈想买一个鸡蛋一个鸭蛋一个鹌鹑蛋需付多少钱? 分析:此方程组是三元一次不定方程组,由于只有两个三元一次方程,因而要分别求出x、y、z的值是不可能的,但注意到所求的是x+y+z的代数和,因此,可通过变形变换得到多种解法. 解:设鸡、鸭、鹌鹑三种蛋的单价分别为x、y、z元,则根据题意,得13x+5y+9z=9.25 ① 2x+4y+3z=3.20 ② (1)凑整法 解法1: (①+②)/3: 5x+3y+4z=4.15 ③ ∴②+③,得 7(x+y+z)=7.35 ∴ x+y+z=1.05 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需1.05元。 解法2: 原方程组可变形为 13(x++y+z)-4(2y+z)=9.25 ① 2(x++y+z)+4(2y+z)=3.20 ② 解之得x+y+z=1.05 (2)主元法 解法3: 视x、y为主元,视z为常数,解①、②得x=0.5-0.5z,y=0.55-0.5z.∴x+y+z=0.55+0.5-z+z=1.05. 解法4: 视y、z为主元,视x为常数,解①、②得y=0.05+x,z=1-2x. ∴x+y+z=1.05+x-2x+x=1.05. 解法5: 视z、x为主元,视y为常数,解①、②得x=y-0.05,z=1.1-2y ∴x+y+z=y-0.05+y+1.1-2y=1.05. (3)参数法 解法6: 设x+y+z=k,则 13x+5y+9z=9.25 ① 2x+4y+3z=3.20 ② x+y+z=k ③ ∴①-②×3,得x-y=-0.05 ④ ③×3-②,得x-y=3k-3.2 ⑤

二元一次不定方程的解法总结与例题

探究二元一次不定方程 (Inquires into the dual indefinite equation) 冯晓梁(XiaoLiang Feng)(江西科技师范学院数计学院数一班 330031)【摘要】:二元一次不定方程是最简单的不定方程, 一些复杂的不定方程常常化为二元一次不定方程问题加以解决。我们讨论二元一次方程的整数解。 The dual indefinite equation is the simple the indefinite equation, some complex indefinite equations change into the dual indefinite equation question to solve frequently. We discuss the dual linear equation the integer solution. 【关键字】:二元一次不定方程初等数论整数解 (Dual indefinite equation Primary theory of numbers Integer solution) 二元一次方程的概念:含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程。一个方程是二元一次方程必须同时满足下列条件;①等号两边的代数式是整式; ②具有两个未知数;③未知项的次数是1。 如:2x-3y=7是二元一次方程,而方程4xy-3=0中含有两个未知数,且两个未知数的次数都是1,但是未知项4xy的次数是2,所以,它是二元二次方程,而不是二元一次方程。 定理1.形如(不同时为零)的方程称为二元一次不定方程。 [1] 二元一次方程的解和解二元一次方程:能使一个二元一次方程两边的值相等的未知数的一组值叫做这个方程的一个解,但若对未知数的取值附加某些限制,方程的解可能只有有限个。 通常求一个二元一次方程的解的方法是用一个未知数的代数式表示另一个未知数,如x-2y=3变形为x=3+2y,然后给出一个y的值就能求出x的一个对应值,这样得到的x、y的每对对应值,都是x-2y=3的一个解。 定理2.方程有解的充要是;[2] 若,且为的一个解,则方程的一切解都可以表示成: (t为任意整数)

人教版七年级下册数学期末专项复习题:简单的不定方程、方程组【含答案】

人教版七年级下册数学期末专项复习题:简单的不定方程、方程组【含答 案】 阅读与思考 如果方程(组)中,未知数的个数多于方程的个数,那么解往往有无穷多个,不能唯一确定,这样的方程(组)称为不定方程(组). 对于不定方程(组),我们常常限定只求整数解,甚至只求正整数解.加上这类限制后,解可能唯一确定,或只有有限个,或无解.这类问题有以下两种基本类型: 1.判定不定方程(组)有无整数解或解的个数; 2.如果不定方程(组)有整数解,求出其全部整数解. 二元一次不定方程是最简单的不定方程,一些不定方程(组)常常转化为二元一次不定方程求其整数解. 解不定方程(组),没有固定的方法可循,需具体问题具体分析,经常用到整数的整除、奇数偶数、因数分解、不等式分析、穷举、分离整数、配方等知识与方法.根据方程(组)的特点进行适当变形,并灵活运用相关知识与方法是解不定方程(组)的基本思路. 例题与求解 【例1】满足222219981997m n +=+ (0<m <n <1 998)的整数对(m ,n )共有_______对. (全国初中数学联赛试题) 解题思路:由方程特点,联想到平方差公式,利用因数分解来解答. 【例2】电影票有10元,15元,20元三种票价,班长用500元买了30张电影票,其中票价为20元的比票价为10元的多( ). A .20张 B .15张 C .10张 D .5张 (“希望杯”邀请赛试题) 解题思路:设购买10元,15元,20元的电影票分别为x ,y ,z 张.根据题意列方程组,整体求出的z -x 值. 【例3】某人家中的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14 405,将前三位数组成的数与后五位数组成的数相加得16 970,求此人家中的电话号码.

相关主题
文本预览
相关文档 最新文档