当前位置:文档之家› 除重金属材料NMC(纳米金属簇滤料)使用说明书

除重金属材料NMC(纳米金属簇滤料)使用说明书

除重金属材料NMC(纳米金属簇滤料)使用说明书
除重金属材料NMC(纳米金属簇滤料)使用说明书

附件

纳米金属簇滤料NMC使用说明书净易科技的新型净水材料――纳米金属簇滤料(NMC),是一种高效新型净水材料,可有效去除水中余氯、有害重金属离子、有机微污染物,抑菌效果好。

1,产品组成

组成:Al2O3≤30%, SiO2≤45%, Cu≥10%, Zn≥10%, 其它≤5%

分子式:Cu n-Zn m/(Al2O3)x(SiO2)y?H2O

2,物性参数

使用效率:NMC-IV> NMC-I> NMC-II> NMC-III

3, 用途

·本产品用于饮用水的深度净化,降低水中余氯、重金属离子、有害离子和消毒副产物、有机微污染物的浓度。有良好的抑菌性能。

·可单独用于家用净水器中,也可和活性炭混合使用,提高活性炭的使用寿命,有效控制活性炭使用过程细菌的滋生速度。

·用作超滤膜、反渗透膜的前置滤芯,可有效延长超滤膜、反渗透膜的使用寿命,提高其稳定性。

4,包装

纸桶,内衬塑料袋,25公斤/桶

5,使用时参考指标

(1)PH范围:6-9

(2)使用温度:5℃-95℃

(3)建议滤料层高度:一般重力渗漏式净水器≥10mm,家用净水器≥100mm(随滤料规格、水流速、进水水质、期望去除率和净水量不同而不同。)

(4)使用寿命:100~500L/g

(5)余氯去除率:50%-95%(随滤料用量、水流速、进水余氯浓度、进水水质和使用时间不同而不同)

(6)水质要求:市政自来水

6,使用方法

(1)根据您所需净化的水的水质和水流速度将一定量的纳米金属簇净水材料装入滤芯中,为防止水流将滤料颗粒带走,请在滤芯两端加装合适孔径的格网。

(2)将装填滤料后的滤芯装入净水装置中,打开进水开关,使需净化的水以一定流速流过滤料。

最初流出的水混浊,是多孔材料中的空气排出和颗粒表面的一些细粉脱落所致,属正常现象。

(3)长期使用后水流速降低、压降增加是由于水中污染物在净水材料表面和孔道吸附积聚所致,建议定时反冲。

7,使用注意事项

(1)从未使用的纳米金属簇净水材料第一次与水接触时有放热现象,滤料用量多、水流速小时,开始出水温热为正常现象,很快出水水温就会恢复正常。

(2)纳米金属簇除余氯、重金属离子等净水效果与滤料用量、水流速和装填方法有关。

(3)如果有反冲设计,滤料在滤芯中不装满,建议装填体积≤2/3滤芯体积.

8,储存和运输注意事项

(1)滤料密封干燥保存

(2)触摸滤料前,请将手擦干。不要用湿手触摸滤料。

9,净水原理

NMC的主体材料为氧化铝和氧化硅多孔陶瓷,利用先进纳米材料制备技术将铜锌金属以金属簇的形式引入主体材料的孔道中,在其丰富的表面和发达的孔道的每一微观局部,都由电位不等的多元金属以纳米金属簇的形式构成了具有强氧化还原作用的自发微原电池,当水流过这种净水材料时,水中溶解性重金属离子Pb2+、Cd2+、Cr6+、As3+、Hg+等被还原成不溶于水的金属附着于该净水材料上而被除去,余氯被还原成无害的氯离子Cl-,有机污染物被氧化降解成无害的CO2、H2O等无机小分子。

10,价格

注:款到发货,报价不含运费。

11,使用建议

1。NMC之前最好有初滤处理,避免泥沙等悬浮颗粒覆着在NMC颗粒上。定期反冲,清洗掉覆着在NMC上的杂质。

2.放在滤膜之前,可减轻水中余氯对膜的损害;但最好前面加上PP之类的初滤。

3.用量,可以根据流速、总处理水量,计算出初步用量,再根据测试,修正用量。

4.家用净水器采用NMC-Ⅲ即可,1g可处理100~200L水。如按总处理500吨计,可用3kg。5.具体的,可以贵司测试当地水质后,再确定。

几种吸附材料处理重金属废水的效果

摘要:用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词:吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法 [1];二是在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法[2]。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务。 1 材料与方法 1.1 试验材料 1.1.1 吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g硅藻土加入到0.1 mol/L的Na2CO3溶液中,边搅拌边慢慢地加入饱和的CaCl2溶液。反应结束后,过滤,置于烘箱内 105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100目筛,在850 ℃煅烧5 h后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处理7 h,4000转下离心分离30 min,洗涤,120 ℃下烘干过夜。改性高岭土的处理过程为:取5 g高岭土加入2 g SiO2,1 g Na2CO3,1 g KClO3放入研钵中研细,混匀,置于高温炉中,控制温度在800 ℃,恒温3 h。活性炭直接取自于资环实验室。黄褐土采自于安徽科技学院种植科技园,土壤样品采集后,风干,过100目筛备用[4]。

纳米材料应用特点

超细微粒、超细粉末,这些其实都是纳米材料的别称。它具有自己的一些性能特点,同时应用范围较广,例如生物医药、能源环保、化工等等行业。本文就给大家详细介绍一下。 一、应用 由于纳米颗粒粉体具有电、磁、热、光、敏感特性和表面稳定性等性能,显著不同于通常颗粒,故其具有广泛的应用前景。经过多年探索研究,已经在物理、化学、材料、生物、医学、环境、塑料、造纸、建材、纺织等许多领域获得广泛应用。下面为大家例举几个纳米材料的应用实例。 (1)纳米材料的用途十分的广泛,比如目前在许多医药领域使用了纳米技术,这样能使药品生产非常的精细,它直接利用原子或者分子的排布制造一些有特殊功能的药品。由于纳米材料所使用的颗粒比较小,所以这种药品在人体内的传输是相当方便的,有些药品会采用多层纳米粒子包裹,这种智能药物到人体后可直接并攻击癌细胞或者对有损伤的组织进行修复。纳米技术也可以用来监测诊少量血液,通过对人体中的蛋白质的分析诊断出许多种疾病。 (2)在家电方面,选用那么材料制成的产品有许多的特性,如具有抗菌性、防腐抗紫外线防老化等的作用。在电子工业方面应用那么材料技术可以从扩大其

产品的存储容量,目前是普通材料上千倍级的储器芯片已经投入生产并广泛应用。在计算机方面的应用是可以把电脑缩小成为“掌上电脑”,使电脑使用起来更为方便。在环境保护领域未来将出现多功能纳米膜。这种纳米膜能够对化学或生物制剂造成的污染进行过滤,从而改善环境污染。在纺织工业方面通过在原始材料中添加纳米ZnO等复配粉体材料,再通过经抽丝、织布,然后能够制成除臭或抗紫外线辐射等特殊功能的服装,这些产品可以满足国防工业要求。 (3)纳米材料技术现在已广泛应用于遗传育种中,该技术能够结合转基因技术并且已经在培育新品种方面取得了很大的进展。这种技术是通过纳米手段将染色体分解为单个的基因,然后对它们进行组装,这种技术整合成的基因产品的成功率几乎可以达到100%。经过实践证明,科研人员能够让单个的基因分子链展现精细的结构,并可以通过具体的操纵其实现分子结构改变其性能,从而形成纳米图形,这样就能使人们可以在更小的世界范围内、更加深的一种层次上进行探索生命的秘密。 (4)纳米材料技术在发动机尾气处理方面的应用,目前有一种新型的纳米级净水剂有非常强的吸附能力,它是一般净水剂的20倍左右。纳米材料的过滤装置,还能有效的去除水中的一些细菌,使矿物质以及一些微量元素有效的保留下来,经过处理后的污水可以直接饮用。纳米材料技术的为解决大气污染方面的问题提供了新的途径。这种技术对空气中的污染物的净化的能力是其它技术所不可替代的。 二、特点 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的

通则0821重金属检查法

0821重金属检查法 本法所指的重金属系指在实验条件下能与硫代乙酰胺或硫化钠作用显色的金属杂质。 标准铅溶液的制备称取硝酸铅0.1599g,置1000ml量瓶中,加硝酸5ml 与水50ml溶解后,用水稀释至刻度,摇匀,作为贮备液。 精密量取贮备液10ml,置100ml量瓶中,加水稀释至刻度,摇匀,即得(每1ml相当于10μg的Pb)。本液仅供当日使用。 配制与贮存用的玻璃容器均不得含铅。 第一法 除另有规定外,取25ml纳氏比色管三支,甲管中加标准铅溶液一定量与醋酸盐缓冲液(pH3.5)2ml后,加水或各品种项下规定的溶剂稀释成25ml,乙管中加入按各品种项下规定的方法制成的供试品溶液25ml;丙管中加入与乙管相同重量的供试品,加配制供试品溶液的溶剂适量使溶解,再加与甲管相同量的标准铅溶液与醋酸盐缓冲液(pH3.5)2ml后,用溶剂稀释成25ml;若供试液带颜色,可在甲管中滴加少量的稀焦糖溶液或其他无干扰的有色溶液,使之与乙管、丙管一致;再在甲、乙、丙三管中分别加硫代乙酰胺试液各2ml,摇匀,放置2分钟,同置白纸上,自上向下透视,当丙管中显出的颜色不浅于甲管时,乙管中显示的颜色与甲管比较,不得更深。如丙管中显示出的颜色浅于甲管,应取样按第二法重新检查。 如在甲管中滴加稀焦糖溶液或其他无干扰的有色溶液,仍不能使颜色一致时,应取样按第二法检查。 供试品如含高铁盐影响重金属检查时,可在甲、乙、丙三管中分别加入相同量的维生素C0.5~1.0g,再照上述方法检查。 配制供试品溶液时,如使用的盐酸超过1 ml,氨试液超过2ml,或加入其他试剂进行处理者,除另有规定外,甲管溶液应取同样同量的试剂置瓷皿中蒸干后,加醋酸盐缓冲液(pH3.5)2ml与水15ml,微热溶解后,移置纳氏比色管中,加标准铅溶液一定量,再用水或各品种项下规定的溶剂稀释成25ml。 第二法 除另有规定外,当需改用第二法检查时,取各品种项下定量的供试品,按炽灼残渣检查法(通则0841)进行炽灼处理,然后取遗留的残渣;或直接取炽灼残渣项下遗留的残渣;如供试品为溶液,则取各品种项下规定量的溶液,蒸

纳米金属用途简介

纳米金属用途简介 钴(Co) 高密度磁记录材料:利用纳米钴粉记录密度高、矫顽力高(可达119.4KA/m)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材 料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 铜(Cu) 金属和非金属的表面导电涂层处理:纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 高效催化剂:铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。 导电浆料:用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。

铁 (Fe) 高性能磁记录材料:利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。 吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 导磁浆料:利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。 纳米导向剂:一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。 镍(Ni) 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。 高效催化剂:由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。

纳米金属材料—小论文

纳米孪晶金属材料 摘要:金属材料的高强度和良好的塑韧性是很多金属材料研究者追求的目标,本文总结了卢柯课题组金属材料中纳米孪晶对强度和塑韧性的影响,并阐明了孪晶界面的作用以及机械孪生对镁合金的影响。 关键词:强度塑韧性孪晶界面机械孪生 1.引言 近一个多世纪以来,金属材料强度水平的不断提高推动着相关工业技术的进步,也不断改善了我们的生活。轻质高强度铝合金的出现推动了飞机的诞生和发展,钢缆强度的不断提升使斜拉桥的跨度成倍增加,汽车的减重和降耗很大程度上依赖于高比强金属的发展和应用,强化金属材料是材料研究者不懈努力追求的目标,强度是材料科学与技术发展的一个重要标志,然而,在大多数情况下,伴随着强度升高,金属的塑性和韧性会下降,强度一塑性(或韧性)呈倒置关系。材料的强度愈高这种倒置就愈显突出。随着现代工业技术的发展,越来越多的构件要求材料既有高的强度又具有良好的塑性和韧性,高强度金属的低塑性和低韧性在一定程度上削弱了其工业应用的潜力,成为金属材料科学发展的瓶颈问题之一。 过去,人们对材料强度一塑(韧)性关系及强韧化规律的研究大多围绕相对简单的结构体系展开,材料的组织、相、成分等在空间上分布均匀,特征结构单元尺度单一且在微米以上。随着人们对自然界中很多天然生物材料认识的不断深入,发现具有优异综合力学性能和强韧性配合的天然生物材料往往具有比较复杂的结构要素特征,如不均匀几何形态及空间分布、多尺度、多相、非均匀成分分布、多层次藕合结构等。这些多层次多尺度的组织(或相)构筑为我们发展高强、高韧、耐损伤金属材料提供了有借鉴价值的线索。近年来对纳米结构材料研究的长足进步和各类纳米技术的迅猛发展,使人们在纳米一微米一宏观等不同尺度上对金属材料的结构设计与制备调控逐步成为可能,为金属材料强韧化研究提供了一个全新的契机。 2.孪晶促进强度和塑性的同时提高 如果两个相邻晶体(或同一晶体的两个部分)之间沿一个公共晶面形成镜面对称的位向关系,那么这两个晶体就互称为孪晶,公共晶面即为孪晶界面。一般说来,孪晶界面可以通过阻碍位错运动使材料得到一定程度的强化。但是,微米或亚微米尺度的孪晶,其强化效果并不显著,只有当孪晶片层细化至纳米量级时才开始表现出显著的强化效果和其他的特性。

几种吸附材料处理重金属废水的效果

几种吸附材料处理重金属废水的效果 摘要:用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理 效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词:吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法[1];二是 在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法[2]。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务 1材料与方法 1.1试验材料 1.1.1吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室 ,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g 硅藻土加入到0.1 mol/L 的Na2CO3 溶液中,边搅拌边慢慢地加入饱和的CaCl2 溶液。反应结束后,过滤,置于烘箱内105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100 目筛,在850 ℃煅烧5 h 后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处理7 h ,4000 转下离心分离30 min,洗涤,120 ℃下烘干过夜。改性高岭土的处理过程为:取5 g 高岭土加入2 g SiO2,1 g Na2CO3,1 g KClO3 放入研钵中研细,混匀,置于高温炉中,

金沙纳米超细铁粉在金刚石工具的应用

四川金沙纳米技术有限公司 超细铁粉在金刚石工具的应用 四川金沙纳米技术有限公司,成立于2008年,位于四川省攀枝花市钒钛产业园区内,交通便捷。厂区占地100余亩。是以综合利用攀枝花钛白粉厂副产的废弃物硫酸亚铁为原料,通过独有工艺技术生产纳米铁粉、微米铁粉、电池级草酸亚铁等新材料的民营企业。致力于资源综合利用、环境保护和新型材料研发。目标打造成国内以铁为主,涵盖钴、镍、铜、钼等金属粉末的重要综合生产企业。攀枝花有其独特的裂谷气候,气候干燥、空气湿度极低,雨季集中,全年降雨量低,这些独特的气候条件对于生产金属粉末有较大的先天优势。 1金沙纳米超细铁粉指标: 1)化学指标 2)物理指标 3)DWFe—1物理指标(适合金刚石工具使用)

根据用户具体需求,微米铁粉产品物理指标中松装密度、粒度及粒径分布范围均可按照要求进行调节。 2 应用 1)与一般铁粉的区别 一般铁粉指还原铁粉、电解铁粉、雾化铁粉等。粒度范围在-200目、-300目。一般铁粉所生产铁基胎体的变形性和耐磨性高,不易出锋,锋利度不够,胎体中低熔点金属易流失。 金沙纳米超细铁粉因其粒度细、纯度高、氧含量低以及其独特的沙琪玛形貌能极大的改善胎体的变形性,锋利度,对金刚石的把持力也能提高。在工具锋利度提高的同时增加其寿命。 2)与羰基铁粉的区别 现羰基铁粉主要分进口和国产,进口羰基铁粉以德国巴斯夫为代表,。其主要区别在于形貌的规则性、单颗粒的均匀性以及杂志含量。性能方面德国巴斯夫羰基铁粉远优于国产羰基铁粉。其平均粒径为6.2微米。 羰基铁粉拥有良好的球形形貌,中位粒径集中,流动性好。但其与其他粉末含合金粉的配合性能不理想,主要体现在成型性以及对金刚石的把持力方面。其对金刚石的把持力着力主要为点接触。羰基铁粉因含碳元素,对金刚石工具会带来不利影响。

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

纳米金属材料的发展与应用综述

纳米金属材料的发展与应用 摘要:纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。在纳米金属材料的研究中,它的制备、特性、性能和应用是比较重要的方面。本文概要的论述了纳米材料的发现发展过程,并结合当今纳米金属材料研究领域最前沿的技术和成果,简述了纳米材料在各方面的应用及其未来的发展前景。 关键词:纳米金属材料、纳米技术、应用 一、前言 纳米级结构材料简称为纳米材料(nanomater material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience &Technology),正式宣布纳米材料科学为材料科学的一个新分支。自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。 三、纳米材料的应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十

吸附重金属离子

几种吸附材料处理重金属废水的效果 来源:考试吧(https://www.doczj.com/doc/eb16314445.html,)2006-3-5 13:27:00【考试吧:中国教育培训第一门户】论文大全 摘要用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法[1];二是在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务。 1 材料与方法 1.1 试验材料 1.1.1 吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g硅藻土加入到0.1 mol/L的Na2CO3溶液中,边搅拌边慢慢地加入饱和的CaCl2溶液。反应结束后,过滤,置于烘箱内 105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100目筛,在850 ℃煅烧5 h后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处

2019届福建省漳州市高考化学二模试卷解析版

2019年福建省漳州市高考化学二模试卷 一、单选题(本大题共7小题,共42.0分) 1.铅霜(醋酸铅)是一种中药,具有解毒敛疮,坠痰镇惊之功效,其制备方法为将醋酸放入磁皿,投入 氧化铅,微温使之溶化,以三层细纱布趁热滤去渣滓,放冷,即得醋酸铅结晶,如需精制,可将结晶溶于同等量的沸汤,滴醋少许,过七层细布;清液放冷,即得纯净铅霜,制备过程中没有涉及的操作是() A. 萃取 B. 溶解 C. 过滤 D. 重结品 2.环化合物具有抗菌活性,用其制成的药物不易产生抗药性,螺[3,4]辛烷的结构 如图,下列有关螺[3,4]辛烷的说法正确的是() A. 分子式为C8H16 B. 分子中所有碳原子共平面 C. 与2?甲基?3?庚烯互为同分异构体 D. 一氯代物有4种结构 3.用下列装置完成相应的实验能达到实验目的是() A. 配制一定浓度的NaCl溶液 B. 除去CO中的CO2 C. 中和滴定 D. 制取并检验SO2 4.设阿伏加德罗常数的值为N A.下列说法正确的是() A. 0.1mol氧气与2.3g金属钠充分反应,转移的电子数为0.4N A B. 加热时,6.4g铜粉与足量浓硫酸反应,转移的电子数为0.2N A C. 将0.1mol乙烷和0.1molC12混合光照,生成一氯乙烷的分子数为0.1N A D. 0.2mol?L?1的NaAlO2溶液中A1O2?的数目小于0.2N A 5.短周期主族元素W、X,Y、Z的原子序数依次增大,四种原子的最外层电子数之和为18,W与Y同 主族,X原子的最外层电子数等于周期数,Z的单质在常温下为气体,下列说法正确的是() A. 最简单氢化物的稳定性:Z>W>Y B. 原子半径:Y>X>W C. X与Z形成的化合物的水溶液能使红色石蕊试纸变蓝 D. Y的氧化物既能与碱反应,也能与酸反应,属于两性氧化物 6.锂亚硫酰氯(Li/SOCl2)电池是实际应用电池系列中比能量最高的一种电池, 剖视图如图所示,一种非水的LiAlCl4的SOCl2溶液为电解液。亚硫酸氯既是 电解质,又是正极活性物质,其中碳电极区的电极反应式为 2SOCl2+4e-=4Cl-+S+SO2↑,该电池工作时,下列说法错误的是() A. 锂电极区发生的电极反应:Li?e?=Li+ B. 放电时发生的总反应:4Li+2SOCl2=4LiCl+SO2↑+S C. 锂电极上的电势比碳电极上的低 D. 若采用水溶液代替SOCl2溶液,电池总反应和效率均不变 7.常温下,用0.01mol?L-1的NaOH溶液滴定20mL同浓度的HCN溶液,滴定曲线如图所示,下列说法 正确的是() A. K a(HCN)的数量级为10?8 B. 点①时,向溶液中滴入几滴1mol?L?1的HCN溶液,溶液中c(H+) c(HCN) 的值增大 C. 点②时,溶液中微粒浓度大小关系:c(HCN)>c(Na+)>c(CN?)>c(OH?)>c(H+) D. 在标示的四种情况中,水的电离程度最大的是② 二、简答题(本大题共4小题,共49.0分)

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

重金属检查法

重金属检查法 1.目的:建立重金属检查(药典中第一、二法)的标准规程。 2.范围:QC化验室。 3.责任:QC化验员。 4.内容: 4.1简述: pH值是3.0-3.5,选用醋酸盐缓冲液(pH3.5)2ml调节pH 较好,显色剂硫代乙酰胺试液用量经实验也以2ml为佳,显色时间一般为2分钟。以10-20μgPb与显色剂所产生的颜色为最佳目视比色范围。在规定实验条件下,与硫代乙酰胺试液在弱酸条件下产生的硫化氢呈色的金属离子有银、铅、汞、铜、镉、铋、锑、锡、砷、锌、钴与镍等。 4.2仪器与用具:纳氏比色管,应注意选择各管之间的平行 性,玻璃色泽一致,内径、刻度、标线高度一致。比色管洗涤时避免划伤内壁。 4.3试药和试液: ℃干燥至恒重的硝酸铅0.160g,置1000m1量瓶中,加硝酸5ml与水50ml溶解后,用水稀释至刻度,摇匀,作为贮备液。临用前,精密量取贮液10m1置100ml量瓶中,加

水稀释至刻度,摇匀,即得(每1ml相当于10μg的pb)。 4.4操作方法: pH3.5)2ml,加水或该药品项下规定的溶剂稀释成25ml。 μm)滤过,然后甲管中加入标准铅溶液一定量,水或该药品项下规定的溶剂使成25ml,再在乙管中加硫代乙酰胺试液2ml,甲管中加水2ml,照上述方法比较,即得。pH3.5)2ml与水15ml溶解以后,移置甲管中,加标准铅溶液一定量,再加水稀释成25ml。 ℃灼烧的炽灼残渣项下遗留的残渣,加硝酸0.5ml蒸干,至氧化氮蒸汽除尽后,放冷,加盐酸2ml,置水浴上蒸干后加水15m1,滴加氨试液至酚酞指示液显中性,再加醋酸盐缓冲液(pH3.5)2m1,微热溶解后,移至乙管中,加水稀释成25m1。 -1.0ml,使恰湿润,用低温加热至硫酸除尽后,加硝酸0.5ml,蒸干,至氧化氮蒸气除尽后,放冷,在500-600℃“…放冷,加盐酸2m1...”起,至加水稀释成25ml。 4.5注意事项: pH3.5)时,要用PH计调节,硫代乙酰胺试液加入量以2ml 时呈色最深;硫代乙酰胺试液显色剂的最佳显色时间为2分钟,第一、第二法均为放置2分钟。 μg的Pb)为宜。小于1ml或大于3m1,呈色太浅或太深均

浙江高三2020年4月暨阳联考化学科试题卷(附答案)

2020年4月暨阳联考化学科试题卷 本试题卷分选择题和非选择题两部分,共页,满分100分,考试时间90分钟。考生须知: 1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷纸和答题纸上。 2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试卷上的作答一律无效。选择题的答案须用2B铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净。 3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效。 4.相对原子质量:C-12 H-1 O-16 S-32 N-14 Cl-35.5 Cu-64 Na-23 Zn-65 Si-28Mg -24Al- 27 选择题部分 一、选择题(本大题共25小题,每小题2分,共50分。每个小题列出的四个备选项中只有一个是 符合题目要求的,不选、多选、错选均不得分) 1.下列属于强电解质的共价化合物是 A H2SO4 B NaCl C CH3COOH D Mg3N2 2.配制一定物质的量浓度的溶液的实验中可不选用的仪器是 A.B. C.D. .下列属于有机物,且水溶液能导电的是 A.碳化硅B.乙酸C.葡糖糖D.乙醇 4.洁厕灵和84消毒液混合使用时发生反应:NaClO+2HCl=NaCl+Cl2↑+H2O,生成有毒的氯气。下列说法正确 ..的是 A.84消毒液的有效成分是HCl B.氯气既是氧化产物又是还原产物,氯化钠是还原产物 C.HCl只表现还原性 D.若有0.1molHCl被氧化,生成的氯气在标准状况下的体积为2.24L 5.下列物质名称或化学式正确 ..的是 A.Na2SiO3:水玻璃B.:硝化甘油 C.芒硝:Na2SO4·7H2O D.(CH3)2CHCH2C (CH3)3:2,4,4–三甲基戊烷 6.下列表示正确 ..的是 A.甲醛的分子式:HCHO B.聚氯乙烯的结构简式:—H2C—CHCl—

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

纳米铁粉-碳纳米管的光点燃特性

燃烧科学与技术 Journal of Combustion Science and Technology 2019,25(1):083-087 DOI 10.11715/rskxjs.R201804022 收稿日期:2018-04-20. 基金项目:国家自然科学基金资助项目(51576100). 作者简介:刘彦雄(1994— ),男,硕士研究生,hurrican0215@https://www.doczj.com/doc/eb16314445.html,. 通信作者:刘 冬,男,博士,教授,dongliu@https://www.doczj.com/doc/eb16314445.html,. 纳米铁粉/碳纳米管的光点燃特性 刘彦雄,刘冠楠,刘 冬 (南京理工大学能源与动力工程学院,先进燃烧实验室,南京 210094) 摘 要:为了研究碳纳米管与纳米铁粉复合材料的光点火燃烧特性,首先用普通物理混合的方式在纳米铁粉中添加不同质量含量的碳纳米管制备了复合材料,利用普通闪光灯对材料进行曝光,然后利用高速摄像机研究闪光点火瞬间的燃烧现象,发现材料被点燃发出明亮的红光并产生白烟.通过分析燃烧过程中火焰传播的方式,发现材料的着火点出现在样品边缘,火焰由外向内进行扩散.利用双色法测量了纳米铁粉及其复合材料燃烧时温度场的分布,发现添加碳纳米管能够提高平均燃烧温度,改变碳纳米管的含量对温度场的影响不大.最后利用微观检测手段分析燃烧后的产物,发现纳米铁粉熔融成片状的三氧化二铁. 关键词:闪光点火;纳米铁粉;碳纳米管;温度场分布 中图分类号:TK11 文献标志码:A 文章编号:1006-8740(2019)01-0083-05 Flash Ignition Characteristics of Iron Nanoparticles and Carbon Nanotubes Liu Y anxiong ,Liu Guannan ,Liu Dong (Advanced Combustion Laboratory ,School of Energy and Power Engineering ,Nanjing University of Science and Technology ,Nanjing 210094,China ) Abstract :In this study ,we investigated the flash ignition characteristics of iron nanoparticles (NPs) and carbon nanotubes (CNTs). First ,we manually mixed different contents of CNTs with iron NPs and then exposed the mix-tures to a common flash and recorded the combustion phenomenon by high-speed camera.We found the mixture to be ignited with a bright red light and white smoke ,and observed that the ignition point first occurred at the edge of the sample and the flame then propagated to the inner part. We determined the temperature distribution of mixtures with different contents of CNTs using the two-color method and found that the addition of CNTs can promote the combu stion of iron NPs. There was no difference in temperatu re distribu tion by changing the CNT contents. Finally ,we determined the oxidation products to be Fe 2O 3 sheets by using micro-measurement. Keywords :flash ignition ;iron nanoparticle ;carbon nanotube ;temperature distribution 闪光点火作为一种新型的非接触点火方式,具有 多点着火、反应迅速等特点,目前已经发现碳纳米管 (CNTs )[1-4]、氧化石墨烯[5]、金属纳米粒子[6-10]都可以 利用闪光灯进行点燃.Ajayan 等[1]在研究单壁碳纳米管(SWNTs )时意外地发现,当使用传统拍摄用闪光灯对其进行曝光,SWNTs 能够被点燃.但是多壁碳 万方数据

相关主题
文本预览
相关文档 最新文档