当前位置:文档之家› 局放试验无功计算

局放试验无功计算

局放试验无功计算
局放试验无功计算

电力变压器感应耐压试验时无功的分析与计算

摘要:从变压器无功产生的原理出发,详细介绍了电力变压器感应耐压试验时感性无功和各部分容性无功的计算方法。对现有的几种无功估算方法进行了对比分析,并应用实例进行了验证。

关键词:变压器;感应耐压试验;容性无功;感性无功

中图分类号:TM406 文献标识码:B 文章编号:

Analysis and Calculation of Reactive Power in Transformer Induced

Overvoltage Withstand Test

SONG Dong-bo, YE Jian-tao, DING Guo-cheng, LIU-Zhen-shan, WU Xing-wang, YANG Hai-tao

(State Grid AnHui Electric Power Research Institute, Hefei 230022, China)

Abstract:Based on the principle of reactive power generated, the calculation method of inductive and capacitive reactive power under induced overvoltage withstand test of power transformer was introduced. The method was discussed compare with exiting methods and validated by calculations examples.

Key words:Transformer, Induced overvoltage withstand test, Capacitive reactive power, Inductive reactive power

1 引言

感应耐压试验可以考察分级绝缘变压器绕组的纵绝缘(匝间、层间、段间绝缘)以及绕组对地、对其他绕组和相间绝缘的电气强度。相关标准要求220KV及以上的变压器现场交接试验必须进行长时感应耐压带局部放电试验。由于变压器各绕组之间、绕组对地、绕组匝间和套管电容的存在需要消耗大量的容性无功,受现场试验电源容量的限制须采用电抗器进行无功补偿。为了合理的选择电抗器,就需要根据试验接线方式对变压器总的容性无功进行准确估算。

从已有的研究来看变压器容性无功的估算方法主要可以分为两种:集中电容法和分布电容法[1-4]。集中电容法将绕组的电容作为一个集中电容来考虑并假设各绕组的电容相等,电容两端的电压按绕组首尾电势差的一半来近似计算[1,5],该方法原理简单、思路清晰,但是其估算精度较差。变压器在感应耐压试验时绕组上各点的电位不同,流过各点电容的电流不同,因此各点电容消耗的无功也就不同,据此有学者从容性无功产生的机理出发,提出了分布电容法,该方法假设沿绕组高度电压和电容均匀分布并假设同侧各绕组的电容量相等,沿绕组高度对各绕组对地和绕组间的电流进行积分,求出各点的总电流然后与首端电压相乘求得对应的容性无功。该方法用等效的总电流与端电压相乘是不合理的,因为沿绕组高度流过电容的电流不同与之对应的电压也不同,将导致计算结果的偏大。另外,为了提高绕组抵御冲击电压的能力110KV及以上等级的绕组大多采用纠结式结构,该结构绕组的层间、饼间纵向电容较大,所消耗的无功不可忽略而文献[1-3]均未考虑纵向电容的无功效应。文献[4]在[1-3]的基础上提出了功率积分的算法,该算法更加确切的阐述了容性无功产生的机理和分布情况,并考虑了纵向电容消耗的无功,但却忽略了套管的容性无功和变压器励磁所消耗的感性无功,且其实例一即为文献[3]的例一,装置实测的无功功率并不是159.3Kvar 而是170Kvar。

本文在综合梳理各种容性无功功率计算方法的基础上,从变压器感应耐压试验时无功功率的来源出发,提出了一种结构完整、思路清晰的无功功率估算方法,且通过实例与其他方法进行了对比分析。

2 无功功率的估算原理

三相三绕组变压器感应耐压试验常用的试验接线图和对应的感应电压相量图如图1、2所示。

图1 感应耐压试验接线图

Fig.1 wiring diagram of induced overvoltage withstand

test

图2 各绕组感应电压相量图

Fig.2 induced voltage phasor diagram of windings 采用对称加压的方式,低压非被试相两端的电压为试验电压的一半,高、中压非被试相绕组首端对地的感应电压为被试相的一半。其H U 、L U 为中高、中压被试相首端感应的电压值。下面将以此接线方式为背景介绍各类无功功率的计算。 2.1 感性无功功率

变压器在进行感应耐压试验时不仅消耗容性无功,还需要消耗感性无功来建立励磁磁场,只不过感性无功小于容性无功,变压器对外整体呈现容性,其单相等效电路如图3所示。

Cx

图3 单相等效电路图

Fig.3 signal phase equivalent diagram 图中m R 表示铁芯的磁滞和涡流损耗,m L 为励磁电抗用来建立励磁磁场,消耗感性无功。感应耐压试验时感性无功功率为:

00H Q Q H '

'= (1)

其中0Q 为额定电压和频率下的感性无功。式中H 、H '分别为额定条件和试验时的磁场强度。0U 、0I 为低压侧额定电压和额定空载电流,0P 为额定空载损耗。 2.2 容性无功功率

感应耐压时变压器无功功率的消耗主要来自相间、相对地、和匝(段)间电容以及套管电容,其等效电路如图4所示。

X

图4 等效电容分布图

Fig.4 diagram of equivalent capacitance distribution 记绕组的高度为H ,绕组对地或其他绕组的电

容为C ,则对应dh 长度的电容值为

3C

dh H

;假设电压沿绕组高度均匀分布,则沿高度各点电压可表示为:()u h ah b =+,h H ∈(0,)。于是绕组对地或其

他绕组的容性无功可表示为:

2P 0()3H

C

Q u h dh H

ω

=? (2)

对于连续式结构的绕组其匝间的纵向电容可以忽略不计,对于采用纠结式结构的绕组其纵向电容较大所消耗的无功功率不可忽略。记绕组首末两端的电势差为MO U ,总的串联电容为S C ,则对应dh 长

度的电容值为

S C H

dh

,电压为MO U dh H ,绕组纵向总的

无功功率为:

22S MO S MO 0()H S C H U

Q dh C U dh H ωω==? (3)

对于总串联电容S C 的计算有[6]

:P

2

S =()C C H α,

其中P C 为绕组对地电容。H α的取值范围为1.5到3,其值的选取对纵向无功影响较大。

变压器套管的电容K C 是集中参数电容,其消耗

的无功功率可用通常的电容储能公式计算: 2K K K Q C U ω= (4) 式中K U 为套管所在绕组端感应的电压值。 综上所述,可求得感应耐压试验时变压器消耗

的总的容性无功:

P S K 0Q Q Q Q Q '=++- (5) 3 无功功率计算

应该指出变压器感应耐压试验采用不同的接线和接地方式时,绕组首末端感应电压的大小是不同的[6]

,此时变压器所消耗的无功功率也不同。本文以图1所示的常用接线方式为例进行无功功率的计算。 3.1 感性无功的计算

三相变压器单相加压试验时的感性无功功率为:

0022++3

H H Q H Q H H H ''''=() (6) 又E=4.44fNBS ,可等效得到:

00f U

H H f U '=? (7)

将式(7)带入(6)得:

000023Q f U

Q f U '=?? (8)

其中0f 为额定频率,f 为试验频率,U 为低压侧施压电压。

3.2 容性无功的计算

由图2所示的感应电压相量图可求得高、中压

绕组感应电压分布的表达式:

H Ah H Bh Ch M Am M Bm Cm 22U u h H U u u h

H

U u h

H U u u h H

?

=??

?==-???=??

?==-? (9)

其中H U 、M U 为被试相高、中压绕组首端感应的电压值。

低压绕组所施加的电压表达式:

L L Al L L Bl L Cl 2222U U u h H U U u h H U u h H ?=-??

?

=-??

?

=-??

(10)

其中L U 为低压被试绕组两端施加的电压。

根据上述电压公式还可求得绕组间的电压hl u 、ml u 、hm u 的表达式。将相应的电压公式带入式(2)

即可求得绕组对地及绕组间的分布电容消耗的无功功率P Q : 222HE

ME LE P H M L 22HL H L H L 22ML M L M L 2HM H M [(

+

)+3224

(2-)+

4 (2-)+

4 () ]

2

C C C

Q U U U C

U U U U C

U U U U C

U U ω=

+++- (11)

式中HE C 、ME C 、LE C 为三相绕组对地的总电容,HM C 、HL C 、ML C 为三相高-中、高-低、中-低压绕

组的总电容。

上述绕组对地和绕组间的电容值,可根据常规试验测得的H-MLE C 、M-HLE C 、L-HLE C 、HM-LE C 、HML-E C 的电容值,根据绕组的排列方式,建立方程组求解,

具体的求解方式文献[7]进行了详细说明,不再赘述。

对于绕组间纵向电容的无功功率S Q ,只考虑高压和中压绕组,低压绕组忽略,根据式(3)计算有:

22S H H M M 2

22

H M H

M 22H H M M 2

=[(+)+3(H)

2(+)]44

=(+)2(H)

Q C U C U U U

C C C U C U ωαω

α (12)

式中H HE HM HL =+C C C C +,M ME HM ML =+C C C C +。 对于套管消耗的无功功率K Q ,低压套管消耗的无功较小可以忽略,根据式(4)得:

2

2

H K KH H KH 22M KM M KM 22KH H KM M [(2)+

4 (+2)]4

=1.5()

U Q C U C U

C U C C U C U ωω=++ (13)

式中KH C 、KM C 为高、中压一相套管的电容量。 将上述求得的各部分无功容量的数值带入式(5)即可求得感应耐压试验时变压器消耗的总的容性无功Q 。另外根据2X L C U Q ω=,即可求得图3所示的等效电容X 2

L =

Q

C U ω,再依据试验选用的补偿电抗值L ,即可求得谐振频率:

f =

根据谐振频率和变压器的空载损耗,还可求得试验电压和频率下变压器所消耗的有功功率,进而求得完全补偿时线路流过的电流值,为试验所需电缆规格的选取提供依据。 4 计算实例 4.1实例一

以文献[3]的实例一为算例,对几种无功功率的计算方法进行对比分析。变压器参数:三绕组降压变压器,型号为SFSZ10-180000/220,额定电压为(230±8×1.25%)/115/10.5KV,联接组别为

YNyn0d11,绕组容量180MVA/180MVA/90MVA,空载电流0.14%,空载损耗68.6KW 。相关电容值如下: KH =0485nF C .,KM =0587nF C .,HE =419nF C .,ME =1208nF C .,LE =14675nF C .,HM =7505nF C .,HL =0C ,ML =7915nF C .,H-MLE 1315nF C .=,M-HLE 1839nF C .=,L-HME 2259nF C .=。

被试相高、中、低压绕组首端的电压为: H =218kV U ,M =109kV U ,L =1726kV U .,试验频率

为200Hz 。各种估算方法的计算数据如下表1所示:

表1三绕组变压器无功计算结果比较

本例取1.5 试验在加压侧测得有功功率为84.4kW ,试验电压为17.26kV,电流为11A,可求得实际消耗的无功功率为17007k .var 。从计算结果可知:集中电容法计算误差过大;文献[3]由于分析方法的不合理使绕组间及对地电容无功的计算结果偏大,其又忽略了纵向分布电容的无功,最终计算结果和试验结果相差不是特别大;文献[4]忽略了套管电容无功和铁芯励磁消耗的无功,恰巧这两种

无功对计算结果的影响相互补偿[8]

,使得其计算结果误差不是很大;本文更加合理全面的分析了变压器耐压试验时无功功率的各组成部分。 4.2实例二

对于双绕组变压器,当采用图2的接线方式时,

其计算方法一样,只要使前文计算过程中M 0U =,HM 0C =,ML 0C =即可。下面以一双绕组升压变压

器为例来进行验证。变压器参数:SFP-750000/500,

额定电压(525±2×2.5%)/20kV ,连接组别为YNd11,空载损耗286.9kW ,空载电流0.051%。相关电容值: HE 5135nF C .=、LE 32799nF C .=、HL 9065nF C .=、KH 0627nF C .=、KL 1065nF C .=,H-LE 1608nF C .=,L-HE 4504nF C .=。

试验频率为200Hz ,被试相高、低压端子电压:

H 476kV U =,L 31428kV U .=。各种估算方法的计

算数据如下表2所示:

表2双绕组变压器无功计算结果比较

本例取2.5

试验时在加压侧实际测得的电压为31.4kV ,电流为34A ,忽略系统消耗的有功,则总的无功功率为1067.6kvar 。由表二看出集中电容法已经不能正确反应系统消耗的无功功率,文献[3]、[4]的估算误差均较大,本文估算值与实测值的偏差为4.5%,有着较高的估算精度。 5 总结

通过全文的分析和验证可知:集中电容法虽然计算简单,但是其误差过大;已有文献论述的分布电容法要么计算不合理要么考虑不够全面。本文对变压器消耗的无功功率进行了全面的分析和计算,并通过了实例的验证,对现场试验容性无功的估算有着较好的参考价值。

参 考 文 献

[1] 穆世友,赵阳德. 大型变压器现场局部放电试验容性功率的计算[J].

变压器,1996,33(8):11-16

[2] 白国兴, 吴国良. 大型变压器对地感应耐压试验时容性功率的估算[J].

变压器, 2008, 45(1): 57-61.

[3] 白国兴, 吴国良.电力变压器局部放电试验时容性无功的分析与计算

[J] .江苏电机工程,2007,26(1):28-31

[4] 王伟,王楠,杨洪.利用功率求和法估算变压器感应耐压实验中的容性

无功[J] .变压器,2013,50(5):43-46

[5] 西南电业管理局试验研究所,高压电气设备试验方法[M].北京:水利水电出版社,1984.

[6] 王琪.感应耐压试验电位分布向量图画法浅见[J].变压器,2006,43(11):27-30.

[7]刘辉.变压器感应耐压及局部放电试验时的功率估算[J].广西电力技术,1994,(2),38-43.

[8] 尹宝训,冯争人.电力变压器励磁状态下的入口电容计算方法[J].变压器,2013,50(7):11-15.i

电机常用计算公式和说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

负荷计算及无功补偿

第三章 负荷计算及无功补偿 广东省唯美建筑陶瓷有限公司 刘建川 3.1 负荷曲线与计算负荷 负荷曲线(load curve )是指用于表达电力负荷随时间变化情况的函数曲线。在直角坐标糸中,纵坐标表示负荷(有功功率和无功功率)值,横坐标表示对应的时间(一般以小时为单位) 日负荷曲线 年负荷曲线 年每日最大负荷曲线 年最大负荷和年最大负荷利用小时数 3.1.2 计算负荷 计算负荷是按发热条件选择电气设备的一个假定负荷,其物理量含义是计算负荷所产生的恒定温升等于实际变化负荷所产生的最高温升。通常将以半小时平均负荷依据所绘制的负荷曲线上的“最大负荷”称为计算负荷,并把它作为按发热条件选择电气设备的依据。 3.2 用电设备额定容量的确定 3.2.1 用电设备的一作方式 (1)连续工作方式 在规定的环境温度下连续运行,设备任何部份温升不超过最高允许值,负荷比较稳定。 (2)短时运行工作制 (3)断续工作制 用电设备以断续方式反复进行工作,其工作时间与停歇时间相互交替。取一个工作时间内的工作时间与工作周期的百分比值,称为暂载率,即 *100%%100%0 t t T t t ε==+ 暂载率亦称为负荷持续率或接电率。根据国家技术标准规定,重复短暂负荷下电气设备的额定工作周期为10min 。吊车电动机的标准暂载率为15%、25%、40%、60%四种,电焊设备的标准暂载率为50%、65%、75%、100%,其中草药100%为自动焊机的暂载率。 3.2.2 用电设备额定容量的计算 (1)长期工作和短时工作制的设备容量 等于其铭牌一的额定功率,在实际的计算中,少量的短时工作制负荷可忽略不计。 (2)重复短时工作制的设备容量 ○ 1吊车机组用电动机的设备容量统一换算到暂载率为ε=25%时的额定功 率,若不等于25%,要进行换算,公式为:2Pe Pn ==Pe 为换算到ε=25%时的电动机的设备容量 εN 为铭牌暂载率

三相电力系统中的广义瞬时无功功率理论

三相电力系统中的广义瞬时无功功率理论 摘要该篇论文讲述了三相电力系统中广义上的瞬时无功功率理论。该理论给出了瞬时无功功率的一般定义,适用于任何三相电力系统,不论正弦或非正弦,平衡或不平衡以及是否含有零序电流和电压。并且详细论述了新定义的瞬时无功功率的特性和物理意义,然后又以含零序的三相滤波器为例来说明如何用该理论来计算和补偿无功功率。 1.引言 对于正弦电压和正弦电流的单相电力系统来说,有功功率,无功功率,有功电流,无功电流、功率因数等参数都是基于平均值的概念。很多学者都试图重新定义上述参数来处理不平衡以及电压、电流发生畸变的三相系统。 其中,引入了一个有用的瞬时无功功率的概念,它提供了一个有效的方法可以不用储存能量就能补偿三相电力系统的瞬时无功功率分量。但是这个瞬时无功功率理论仍然在概念上仍然受[2]中所列出的限制,即该理论只是对于不含零序电流和零序电压的三相系统是完整的。为了解决这个限制和其他问题,提出了一个新方法来定义瞬时有功电流和瞬时无功电流。但是,他的方法是把电流分解成正交的分量,而不是分解功率。 这篇论文提出了三相电力系统的瞬时无功功率的一般理论,该理论给出了瞬时无功功率的一般定义,适用于任何三相电力系统,不论正弦或非正弦,平衡或不平衡,以及是否含有零序电流和电压。下面介绍这个理论的一些性能。

2.三相系统的瞬时无功功率的定义 图1 三相电路的结构 对于图1所示的三相电力系统,瞬时电压和瞬时电流表 示成瞬时空间矢量v和i ,也就是 图2 三相的相量图 图2给出了互相垂直的三相坐标图,依次记为a相,b相,c相。这个三相电路的瞬时有功功率p可以写成 这里表示点乘或者矢量的内积。 公式(2)也可以写成传统的定义式 这里,我们定义一个新的瞬时空间矢量为

电网无功功率计算.docx

电网中的许多用电设备是根据电磁感应原理工作的。它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫无功功率。电力系统中,不但有功功率平衡,无功功率也要平衡。 有功功率、无功功率、视在功率之间的关系如图1所示 式中 S——视在功率,kVA P——有功功率,kW Q——无功功率,kvar φ角为功率因数角,它的余弦(cosφ)是有功功率与视在功率之比即cosφ=P/S称作功率因数。 由功率三角形可以看出,在一定的有功功率下,用电企业功率因数cosφ越小,则所需的无功功率越大。如果无功功率不是由电容器提供,则必须由输电系统供给,为满足用电的要求,供电线路和变压器的容量需增大。这样,不仅增加供电投资、降低设备利用率,也将增加线路损耗。为此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止无功倒送。还规定用户的功率因数应达到相应的标准,否则供电部门可以拒绝供电。因此,无论对供电部门还是用电部门,对无功功率进行自动补偿以提高功率因数,防止无功倒送,从而节约电能,提高运行质量都具有非常重要的意义。 无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。 当前,国内外广泛采用并联电容器作为无功补偿装置。这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。 采用并联电容器进行无功补偿的主要作用: 1、提高功率因数 如图2所示图中

P——有功功率 S1——补偿前的视在功率 S2——补偿后的视在功率 Q1——补偿前的无功功率 Q2——补偿后的无功功率 φ1——补偿前的功率因数角 φ2——补偿后的功率因数角 由图示可以看出,在有功功率P一定的前提下,无功功率补偿以后(补偿量Qc=Q1-Q2),功率因数角由φ1减小到φ2,则cosφ2>cosφ1提高了功率因数。 2、降低输电线路及变压器的损耗 三相电路中,功率损耗ΔP的计算公式为 式中 P——有功功率,kW; U——额定电压,kV; R——线路总电阻,Ω。 由此可见,当功率因数cosφ提高以后,线路中功率损耗大大下降。 由于进行了无功补偿,可使补偿点以前的线路中通过的无功电流减小,从而使线路的供电能力增加,减小损耗。 例:某县电力公司某配电所,2005年1月~2月份按实际供售电量情况进行分析。该站1~2月份,有功供电量152.6万kW·h,无功供电量168.42万kvar·h,售电量133.29万kW·h,功率因数0.67,损耗电量19.31万kW·h,线损率12.654%。装设电容器进行无功补偿后,如功率因数由原来的0.67提高到0.95 时, (1)可降低的线路损耗

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

变压器长时感应电压带局部放电试验改进方案

摘要:近年来,我国电网迅猛发展,超高压、特高压电网技术快速发展,超高压、特高压变压器也陆续投产、投运,这对变压器现场交接试验尤其是变压器长时感应电压带局部放电试验提出了挑战,对试验环境、试验设备、试验条件、加压方式等都提出了更高的要求,因此针对超高压、特高压变压器长时感应电压带局部放电试验改进已刻不容缓。 关键词:750kV变压器特殊试验局部放电 1背景 1.1常见的变压器事故类型一般分为两类:一类为过热性故障,另一类为放电性故障。而后者在大型变压器事故中所占比例较大。特别是随着变压器电压等级的提高,绝缘电场强度也随之增大,如果制造设计不当,使用材料不良或工艺控制环节出现缺陷,都会导致局部放电 的发生。发生局部放电的危害:在主绝缘电场集中的地方发生沿面爬电;在匝间发生绝缘击穿放电,最终导致变压器烧损事故。因此,开展变压器局部放电试验的目的,就是确定在运和新投运变压器:1)内部有无放电性缺陷;2)局部放电量是否满足标准要求。这对保证变压器安全投运和正常运行均有着十分重要的意义。局部放电试验是一种灵敏度高、能成功地检测出绝缘中微小缺陷的有效方法,在现场进行此项试验是十分必要的。 1.2近年来,我国电网迅猛发展,超高压、特高压电网技术快速发展,超高压、特高压变压器也陆续投产、投运,这对变压器现场交接试验尤其是变压器长时感应电压带局部放电试验提出了挑战,对试验环境、试验设备、试验条件、加压方式等都提出了更高的要求,因此针对超高压、特高压变压器长时感应电压带局部放电试验改进已刻不容缓。 2技术原理 2.1串联谐振试验原理图

f0是RLC串联谐振电路的固有频率,只与电路的参数有关,与信号源无关。由此可得使串联电路发生谐振的方法: ①调整信号源的频率,使它等于电路的固有频率; ②信号源频率不变,调整L和C值的大小,使电路中的固有频率等于信号源的频率。 2.2并联谐振(补偿)原理图

什么是有功功率、无功功率、视在功率、功率三角形及三相电路的功率如何计算

什么是有功功率、无功功率、视在功率及功率三角形? 三相电路的功率如何计算? 什么是有功功率、无功功率、视在功率及功率三角形? 三相电路的功率如何计算? 一、有功功率 在交流电路中,凡是消耗在电阻元件上、功率不可逆转换的那部分功率(如转变为热能、光能或机械能)称为有功功率,简称“有功”,用“P”表示,单位是瓦(W)或千瓦(KW)。 它反映了交流电源在电阻元件上做功的能力大小,或单位时间内转变为其它能量形式的电能数值。实际上它是交流电在一个周期内瞬时转变为其他能量形式的电能数值。实际上它是交流电在一个周期内瞬时功率的平均值,故又称平均功率。它的大小等于瞬时功率最大值的1/2,就是等于电阻元件两端电压有效值与通过电阻元件中电流有 效值的乘积。 二、无功功率 在交流电路中,凡是具有电感性或电容性的元件,在通过后便会建立起电感线圈的磁场或电容器极板间的电场。因此,在交流电每个周期内的上半部分(瞬时功率为正值)时间内,它们将会从电源吸收能量用建立磁场或电场;而下半部分(瞬时功率为负值)的时间内,其建立的磁场或电场能量又返回电源。因此,在整个周期内这种功率

的平均值等于零。就是说,电源的能量与磁场能量或电场能量在进行着可逆的能量转换,而并不消耗功率。 为了反映以上事实并加以表示,将电感或电容元件与交流电源往复交换的功率称之为无功功率。 简称“无功”,用“Q”表示。单位是乏(Var)或千乏(KVar)。 无功功率是交流电路中由于电抗性元件(指纯电感或纯电容)的存在,而进行可逆性转换的那部分电功率,它表达了交流电源能量与磁场或电场能量交换的最大速率。 实际工作中,凡是有线圈和铁芯的感性负载,它们在工作时建立磁场所消耗的功率即为无功功率。如果没有无功功率,电动机和变 压器就不能建立工作磁场。 三、视在功率 交流电源所能提供的总功率,称之为视在功率或表现功率,在数值上是交流电路中电压与电流的乘积。 视在功率用S表示。单位为伏安(VA)或千伏安(KVA)。 它通常用来表示交流电源设备(如变压器)的容量大小。 视在功率即不等于有功功率,又不等于无功功率,但它既包括有功功率,又包括无功功率。能否使视在功率100KVA的变压器输出100KW的有功功率,主要取决于负载的功率因数。 四、功率三角形

各种电机电流计算方法

各种电机额定电流的计算 1、电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号3 UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 三相的计算公式: P=1.732×U×I×cosφ (功率因数:阻性负载=1,感性负载≈0.7~0.85之间,P=功率:W) 单相的计算公式: P=U×I×cosφ 空开选择应根据负载电流,空开容量比负载电流大20~30%附近。P=1.732×IU×功率因数×效率(三相的) 单相的不乘1.732(根号3) 空开的选择一般选总体额定电流的1.2-1.5倍即可。

经验公式为: 380V电压,每千瓦2A, 660V电压,每千瓦1.2A, 3000V电压,4千瓦1A, 6000V电压,8千瓦1A。 3KW以上,电流=2*功率;3KW及以下电流=2.5*功率 2功率因数(用有功电量除以无功电量,求反正切值后再求正弦值)功率因数cosΦ=cosarctg(无功电量/有功电量) 视在功率S 有功功率P 无功功率Q 功率因数cosΦ 视在功率S=(有功功率P的平方+无功功率Q 的平方)再开平方 而功率因数cosΦ=有功功率P/视在功率S 3、求有功功率、无功功率、功率因数的计算公式,请详细说明下。(变压器为单相变压器) 另外无功功率的降低会使有功功率也降低么?反之无功功率的升高也会使有功功率升高么? 答:有功功率=I*U*cosφ即额定电压乘额定电流再乘功率因数 单位为瓦或千瓦 无功功率=I*U*sinφ,单位为乏或千乏. I*U 为容量,单位为伏安或千伏安. 无功功率降低或升高时,有功功率不变.但无功功率降低时,电流要降低,线路损耗降低,反之,线路损耗要升高. 4、什么叫无功功率?为什么叫无功?无功是什么意思?

三相电路瞬时无功功率理论首先1983年由赤木泰文提出,此后该理论经不断研究逐渐完善。赤木最初提出的理

三相电路瞬时无功功率理论首先1983年由赤木泰文提出,此后该理论经不断研究逐渐完善。赤木最初提出的理论亦称pq 理论,是以瞬时实功率p 和瞬时虚功率q 的定义为基础,其主要的一点不足是未对有关的电流量进行定义。下面将要介绍的是以瞬时有功电流p i 和瞬时无功电流q i 为基础的理论体系,以及它与传统功率定义之间的关系。 设三相电路各相电压和电流的瞬时值分别为a e 、b e 、c e 和a i 、b i 、c i 。为分析问题方便,把它们变换到βα-两相正交的坐标系上研究。由下面的变换可以得到α、β两相瞬时电压αe 、βe 和α、β两相瞬时电流αi 、βi ??????e e βα??????i i βα式中=32C 在图6-1 e e e α+=i i i βα+=式中,e 【定义 cos i i p =?sin i i q = (6-6) 式中,i e ???-=。βα-平面中的p i 、q i 如图6-1所示。 【定义6-2】三相电路瞬时无功功率q (瞬时有功功率p )为电压矢量的模和三相电路瞬时无功电流q i (三相电路瞬时有功电流p i )的乘积。即 p ei p = (6-7)

q ei q = (6-8) 把式(6-5)、式(6-6)及i e ???-=代入式(6-7)、式(6-8)中,并写成矩阵形式得出 ??????=????????????-=??????βαβααβ βαi i C i i e e e e q p pq (6-9) 式中?? ????-=βββα e e e e C pq 。 把式(6-1)、式(6-2)代入上式,可得出p 、q 对于三相电压、电流的表达式 a a i e p +=([q =3 1从式(【定义q i (瞬i i p p α=i i p p β=i i q q α=i i q q β-=图6-1从定义3(1) 2 22p p p i i i =+βα (6-13a ) 222q q q i i i =+βα (6-13b ) αααi i i q p =+ (6-14a ) βββi i i q p =+ (6-14b ) 上述性质(1)是由α轴和β轴正交而产生的。

变压器局部放电试验方案

变压器局部放电试验方案批准:日期: 技术审核:日期: 安监审核:日期: 项目部审核:日期: 编写:日期: 2017年4月

1概述 变压器注油后已静置48小时以上并释放残余气体,且电气交接试验、油试验项目都已完成,并确认达到合格标准。 2试验地点 三明110kV双江变电站 3试验性质:交接试验 4试验依据 DL/T417-2006《电力设备局部放电现场测量导则》 GB1094.3-2003《电力变压器第三部分:绝缘水平绝缘试验和外绝缘空气间隙》GB50150-2006《电气装置安装工程电气设备交接试验标准》 DL/T596-1996《电力设备预防性试验规程》 Q/FJG 10029.1-2004《电力设备交接和预防性试验规程》 合同及技术协议 5试验仪器仪表 6、人员组织 6.1、项目经理: 6.2、技术负责: 6.3、现场试验负责人及数据记录:黄诗钟 6.4二次负责人: 6.5、试验设备接线及实际加压操作负责人: 6.6、专责安全员: 6.7、工器具管理员: 6.8、试验技术人员共4人,辅助工若干人 6.9、外部协助人员:现场安装人员,监理,厂家及业主代表等人员

7试验过程 7.1试验接线图(根据现场实际情况采用不同的试验原理图) 7.2试验加压时序 图2中,当施加试验电压时,接通电压并增加至 U3,,持续5min ,读取放电量值;无异常则增加电压至U2,持续5min ,读取放电量值;无异常再增加电压至U1,进行耐压试验,耐压时间为(120×50/?)s ;然后,立即将电压从U1降低至U2,保持30min (330kV 以上变压器为60min ),进行局部放电观测,在此过程中,每5min 记录一次放电量值;30min 满,则降电压至U 3,持续5min 记录放电量值;降电压,当 图1变压器局部放电试验原理图 图2 局部放电试验加压时序图

基于旋转空间矢量分析的瞬时无功功率理论及应用

基于旋转空间矢量分析的瞬时无功功率理论及应用 Instantaneous Reactive Power Theory Based on Space Vector Analysis and Its Applications 刘进军 王兆安 西安交通大学 Liu Jinjun Wang Zhaoan ( Xi’an Jiaotong University ) 摘要 本文建立了瞬时无功功率理论基于旋转空间矢量的分析方法借以深入分析瞬时无功功率理论与传统功率理论统一关系的内在本质并探讨了瞬时无功功率理论中功率脉动现象的实质原因最后在对瞬时无功功率理论的深入认识的基础上分析了其应用范围并给出了应用实例 叙词无功功率 功率理论 空间矢量 Abstract This paper established a space vector method for the analysis of instantaneous reactive power theory. By this method , the inner nature of the uniform relationship between the instantaneous reactive power theory and the conventional theory is revealed, and the origins of the power oscillation phenomenon in the instantaneous reactive power theory can be easily investigated. Based on the above analysis and the understanding of the uniform relationship, the application area of the theory is well enlarged. This is discussed in detail in the final part and experimental results are shown. Keywords: Reactive power Power theory Space vector . 引言 自日本学者赤木泰文提出三相电路瞬时无功功率理论以来[,]12不少文献进行了跟踪研 究并成功地应用于实际当中[] 15?但仍存在作者在文献[6]中所指出的问题使其应用范围 也难以扩展文献[6]深入分析了瞬时无功功率理论与传统功率理论的统一关系揭示了其物理意义该文的分析是基于由传统功率定义引申来的统一数学描述结果与赤木瞬时无功功率理论描述结果的对照本文将首先建立瞬时无功功率理论基于旋转空间矢量的分析方法然后借以分析这种统一关系的内在本质并探讨瞬时无功功率理论中功率脉动现象的实质文献[6]及本文对瞬时无功功率理论的深入认识大大扩展了其原有的应用范围本文最后将对此进行讨论并给出应用实例 . 三相电路电压和电流的旋转空间矢量表示法 图1 三相电路电压和电流的旋转空间矢量表示法

变压器局部放电试验基础与原理

变压器试验基础与原理 1.概述 随着电力系统电压等级的不断提高,为使输变电设备和输电线路的建设和使用更加经济可靠,就必须改进限制过电压的措施,从而降低系统中过电压(雷电冲击电压和操作冲击电压)的水平。这样,长期工作电压对设备绝缘的影响相对地显得越来越重要。 电力产品出厂时进行的高电压绝缘试验(如:工频电压、雷电冲击电压、操作冲击电压等试验),其所施加的试验电压值,只是考核了产品能否经受住长期运行中所可能受到的各种过电压的作用。但是,考虑这种过电压值的试验与运行中长期工作电压的作用之间并没有固定的关系,特别对于超高电压系统,工作电压的影响更加突出。所以,经受住了过电压试验的产品能否在长期工作电压作用下保证安全运行就成为一个问题。为了解决这个问题,即为了考核产品绝缘长期运行的性能,就要有新的检验方法。带有局部放电测量的感应耐压试验(ACSD 和ACLD)就是用于这个目的的一种试验。 2.局部放电的产生 对于电气设备的某一绝缘结构,其中多少可能存在着一些绝缘弱点,它在-定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性的击穿。这种导体间绝缘仅被局部桥接的电气放电被称为局部放电。这种放电可以在导体附近发生也可以不在导体附近发生(GB/T 7354-2003《局部放电测量》)。 注1:局放一般是由于绝缘体内部或绝缘表面局部电场特别集中而引起的。通常这种放电表现为持续时间小于1微秒的脉冲。 注2:“电晕”是局放的一种形式,她通常发生在远离固体或液体绝缘的导体周围的气体中。 注3:局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。 高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空气)的绝缘强度却比绝缘材料低。这样,当外施电压达到某一数值时,绝缘内部

无功功率计算

第四章电力系统的无功功率平衡和电压调整 例4-1 某变电站装设一台双绕组变压器,型号为SFL-31500/110,变比为110±2×2.5%/38.5kV,空载损耗△P0=86 KW,短路损耗△P K=200KW,短路电压百分值U k%=10.5,空载电流百分值I0%=2.7。变电站低压侧所带负荷为S MAX=20+j10MV A,S MIN=10+j7MV A,高压母线电压最大负荷时为102KV,最小负荷时为105KV,低压母线要求逆调压,试选择变压器分接头电压。 解计算中略去变压器的励磁支路、功率损耗及电压降落的横分量。变压器的阻抗参数R T=(△P K U N2)/(1000S N2)=(200×1102)/(1000×31.52)=2.44(Ω) X T=(U K%U N2)/(100S N)=(10.5×1102)/(100×31.5)=40.3(Ω)变压器最大、最小负荷下的电压损耗为 △U Tmax= max max 1max 20 2.441040.3 4.43() 102 T T P R Q X KV U +?+? == △U Tmin= min min 1min 10 2.44740.3 2.92() 105 T T P R Q X KV U +?+? == 变压器最大、最小负荷下的分接头电压为 U1tmax=(U1max-△U tmax) 2 2max N U U=(102-4.43) 38.5 35105% ?=102.2(kV) U1tmin=(U1min-△U tmin) 2 2min N U U=(105-2.92) × 38.5 35=112.3(kV) U1t=(102.2+112.3)/2=107.25(kV) 选择与最接近的分接头为110-2.5%即分接头电压为107.25KV。此时,低压母线按所选分接头电压计算的实际电压为 U2tmax=(U1max-△U Tmax) 2 1 N t U U=97.57× 38.5 107.25=35(kV)<35× 105%=36.7(kV) U2tmin=(U1min-△U Tmin) 2 1 N t U U=102.08 × 38.5 107.25=36.6(kV)>35(kV) 可见,所选分接头满足调压要求。 例4-2 有一条35kV的供电线路,线路末端负荷为8+j6MV A,线路

无功补偿计算公式

1、无功补偿需求量计算公式: 补偿前:有功功率:P 1= S 1 *COS 1 ? 有功功率:Q 1= S 1 *SIN 1 ? 补偿后:有功功率不变,功率因数提升至COS 2 ?, 则补偿后视在功率为:S 2= P 1 /COS 2 ?= S 1 *COS 1 ?/COS 2 ? 补偿后的无功功率为:Q 2= S 2 *SIN 2 ? = S 1 *COS 1 ?*SIN 2 ?/COS 2 ? 补偿前后的无功差值即为补偿容量,则需求的补偿容量为: Q=Q 1- Q 2 = S 1*( SIN 1 ?-COS 1 ?*SIN 2 ?/COS 2 ?) = S 1*COS 1 ?*(1 1 1 2 - ? COS —1 1 2 2 - ? COS ) 其中:S 1-----补偿前视在功率;P 1 -----补偿前有功功率 Q 1-----补偿前无功功率;COS 1 ?-----补偿前功率因数 S 2-----补偿后视在功率;P 2 -----补偿后有功功率 Q 2-----补偿后无功功率;COS 2 ?-----补偿后功率因数

2、据此公式计算,如果需要将功率因数提升至0.9,在30%无功补偿情况下,起始功率因数为: Q=S*COS 1?*(1112-?COS —112 2-?COS ) 其中Q=S*30%,则: 0.3= COS 1?* (111 2-?COS —19.012-) COS 1?=0.749 即:当起始功率因数为0.749时,在补偿量为30%的情况下,可以将功率因数正好提升至0.9。 3、据此公式计算,如果需要将功率因数提升至0.9,在40%无功补偿情况下,起始功率因数为: Q=S*COS 1?*(1112-?COS —112 2-?COS ) 其中Q=S*40%,则: 0.4= COS 1?* (111 2-?COS —19.012-) COS 1?=0.683 即:当起始功率因数为0.683时,在补偿量为40%的情况下,可以将功率因数正好提升至0.9。

有功功率与无功功率计算资料

有功功率与无功功率 计算

有功功率和无功功率参数计算 在交流电路中,由电源供给负载的电功率有两种;一种是有功功率,一种是无功功率。 有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。比如:5.5千瓦的电动机就是把5.5千瓦的电能转换为机械能,带动水泵抽水或脱粒机脱粒;各种照明设备将电能转换为光能,供人们生活和工作照明。有功功率的符号用P表示,单位有瓦(W)、千瓦(kW)、兆瓦(MW)。 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。 无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。为了形象地说明这个问题,现举一个例子:农村修水利需要开挖土方运土,运土时用竹筐装满土,挑走的土好比是有功功

率,挑空竹筐就好比是无功功率,竹筐并不是没用,没有竹筐泥土怎么运到堤上呢? 在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。 无功功率对供、用电产生一定的不良影响,主要表现在: (1)降低发电机有功功率的输出。 (2)降低输、变电设备的供电能力。 (3)造成线路电压损失增大和电能损耗的增加。 (4)造成低功率因数运行和电压下降,使电气设备容量得不到充分发挥。 从发电机和高压输电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。这就是电网需要装设无功补偿装置的道理。 电压电流同相位,电源向负载供电,负载把电能转换成其他能量,叫有功。

无局放高压试验变压器装置使用说明书

YDJ/T(W)系列 无局放工频试验变压器 装置 使用手册 武汉市合众电气设备制造有限公司

欢迎使用武汉市合众电气设备制造有限公司产品尊敬的顾客 感谢您使用本公司的产品。在您初次使用设备前,请您详细地阅读本使用说明书,将可帮助您熟练地使用我公司设备。 我们的宗旨是不断地改进和完善公司的 产品,因此您所使用的设备可能与使用说明书有少许的差 别。如果有改动的话,我们会用附页方式告知,敬请谅解! 您有不清楚之处,请与公司售后服务部联络,我们定会满足 您的要求。 由于试验设备均有可能带电压,您在插拔测试线、电源插座时,会产生电火花,小心电击,避免触电危险,注意人 身安全! ◆慎重保证 本公司生产的产品,在发货之日起三个月内,如产品出现缺陷,实行包换。三年内如产品出现缺陷,实行免费维修。三年以上如产品出现缺陷,实行有偿终身维修。如有合同约定的除外。 ◆安全要求 请阅读下列安全注意事项,以免人身伤害,并防止本产品或与其相连接的任何其它产品受到损坏。为了避免可能发生的危险,本产品只可在规定的范围内使用。 只有合格的技术人员才可执行维修。 —防止火灾或人身伤害 使用适当的电源线。只可使用本产品专用、并且符合本产品规格的电源线。 正确地连接和断开。当设备连线处联机状态时,请勿随意连接或断开测试导线。 产品接地。本产品除通过电源线接地导线接地外,产品外壳的接地

欢迎使用武汉市合众电气设备制造有限公司产品 柱必须接地。为了防止电击,接地导体必须与地面相连。在与本产品做联机试验前,应确保本产品已正确接地。 注意所有终端的额定值。为了防止火灾或电击危险,请注意本产品的所有额定值和标记。在对本产品进行连接之前,请阅读本产品使用说明书,以便进一步了解有关额定值的信息。 请勿在无产品盖板时操作。如盖板或面板已卸下,请勿操作本产品。 使用适当的保险丝。只可使用符合本产品规定类型和额定值的保险丝。 避免接触裸露电路和带电金属。产品有电时,请勿触摸裸露的接点和部位。 在有可疑的故障时,请勿操作。如怀疑本产品有损坏,请本公司维修人员进行检查,切勿继续操作。 请勿在潮湿环境下操作。 请勿在易爆环境中操作。 保持产品表面清洁和干燥。 -安全术语 警告:警告字句指出可能造成人身伤亡的状况或做法。

三相功率计算公式

三相功率计算公式 P=1.732×U×I×COSφ (功率因数COSφ一般为0.7~0.85之间,取平均值0.78计算) 三相有功功率 P=1.732*U*I*cosφ 三相无功功率 P=1.732*U*I*sinφ 对称负载,φ:相电压与相电流之间的相位差 cosφ为功率因数,纯电阻可以看作是1,电容、电抗可以看作是0 有功功率的计算式:P=√3IUcosΦ (W或kw) 无功功率的公式: Q=√3IUsinΦ (var或kvar) 视在功率的公式:S=√3IU (VA或kVA) ⑴有功功率 三相交流电路的功率与单相电路一样,分为有功功率、无功功率和视在功率。不论负载怎样连接,三相有功功率等于各相有功功率之和,即: 当三相负载三角形连接时: 当对称负载为星形连接时因

UL=根号3*Up,IL= Ip 所以P== ULILcosφ 当对称负载为三角形连接时因 UL=Up,IL=根号3*Ip 所以P== ULILcosφ 对于三相对称负载,无论负载是星形接法还是三角形接法,三相有功功率的计算公式相同,因此,三相总功率的计算公式如下。 P=根号3*Ip ULILcosφ ⑵三相无功功率: Q=根号3*Ip ULILsinφ (3)三相视在功率 S=根号3*Ip ULIL 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相B 相C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 电流和相电流与钳式电流表测量无关,与电机定子绕组接线方式有关。 当电机星接时:线电流=根3相电流;线电压=相电压。 当电机角接时:线电流=相电流;线电压=根3相电压。 所以无论接线方式如何,都得乘以根3。 电机功率=电压×电流×根3×功率因数

设备功率-负荷计算公式

专 设备功率确定 负荷计算公式 一、计算 设备功率的确定 进行负荷计算时,需将用电设备按其性质分为不同的用电设备组,然后确定设备功率。 用电设备的额定功率r P 或额定容量r S 是指铭牌上的数据。对于不同负载持续率下的额定功率或额定容量,应换算为统一负载持续率下的有功功率,即设备功率 N P 。 (1)连续工作制电动机的设备功率等于额定功率。 (2)短时或周期工作制电动机(如起重机用电动机等)的设备功率是指将额定功率换算为统一负载持续率下的有功功率。 当采用需要系数法和二项式法计算负荷时,应统一换算到负载持续率ε为25%下的有功功率。 ,225 .0r r r r N P P P εε==kW (5-2-1) 当采用利用系数法计算负荷时,应统一换算到负载持续率ε为100%下的有功功率。 r r N P P ε= (5-2-2) 式中 r P ——电动机额定功率,kW ; r ε——电动机额定负载持续率。 (3)电焊机的设备功率是将额定容量换算到负载持续率ε为100%时的有功功率。 ,cos ?εr r N S P = kW (5-2-3) 式中 r S ——电焊机的额定容量,kV A ; ?cos ——功率因数。 (4)电炉变压器的设备功率是指额定功率因数时的有功功率。 ,cos ?r N S P = kW (5-2-4) 式中 r S ——电炉变压器的额定容量,kV A 。 (5)整流器的设备功率是指额定直流功率。 (6)成组用电设备的设备功率是指不包括备用设备在内的所有单个用电设备的设备功率之和。 (7)白炽灯的设备功率为灯泡额定功率。气体放电灯的设备功率为灯管额定功

HVFS(P)-200kW型无局放变频电源成套装置现场试验作业指导书

HVFP HVFP( (S )-200kW 成套装置现场试验作业指导书目录 一、试验依据一、试验依据 (2) ........................................................2二、试验项目二、试验项目. (2) .........................2三、试验前的准备工作三、试验前的准备工作. (2) ...........................................2四、试验步骤四、试验步骤.... .......................................................2五、试验接线简图、加压方式及峰值表读数五、试验接线简图、加压方式及峰值表读数 (3) ...............3六、启动变频电源前的准备工作六、启动变频电源前的准备工作.. (12) .............................12七、成套装置操作流程七、成套装置操作流程........ ........................................12八、使用注意事项八、使用注意事项............................... (15)

一、试验依据 1、电力设备试验规程: GB50150-2006电气装置安装工程电气设备交接试验标准; GB1094.3-2003电力变压器第3部分绝缘水平、绝缘试验和绝缘空气间隙; DL417-2006电力设备局部放电现场测量导则; 2、试验方案及作业指导书。 二、试验项目 1、220kV(容量240MVA)及以下电压等级电力变压器的局部放电和感应耐压试验; 2、110kV截面630mm23km交联聚乙烯电缆的交流耐压试验; 3、220kV及以下的GIS、开关、互感器等设备的交流耐压。 4、220kV截面630mm20.8km交联聚乙烯电缆的交流耐压试验; 三、试验前的准备工作 1、变压器局部放电试验: ①现场查勘,制定试验方案。 ②选取合适的试验电源。 ③被试品(变压器)出厂资料。 ④主变本体各侧悬空,并加载均压冒。 ⑤短接电流互感器二次端子,并可靠接地。 ⑥试验的组织措施:三方人员到场。 ⑦各单元连接导线规格及绝缘工具。 ⑧通讯设备。 ⑨防雨设施。 ⑩按照我公司事先提供的试验设备配置清单,清点好设备并装车。 2、220kV及以下电气设备的交流耐压试验 ①现场查勘,制定试验方案。 ②选取合适的试验电源。 ③被试品出厂资料。 ④落实被试电力电缆具备加压条件。(避雷器、PT是否已退出) ⑤短接电力电缆接地箱中的高压护层保护器和GIS组合电气中CT二次端子并可靠接地。 ⑥试验的组织措施:三方人员到场。 ⑦各单元连接导线规格及绝缘工具。 ⑧通讯设备。 ⑨防雨设施。 ⑩按照我公司事先提供的试验设备配置清单,清点好设备并装车。 四、试验步骤 1、变压器局部放电试验: ①清场并核对试验的安全措施; ②试验前进行成套装置的空载调试。 ③校核电压。 ④局部放电加压程序:见图一 ⑤完成试验数据的记录。 =248kV =218kV =160kV

相关主题
文本预览
相关文档 最新文档