当前位置:文档之家› 数学模型第三版_课后习题答案

数学模型第三版_课后习题答案

数学模型第三版_课后习题答案
数学模型第三版_课后习题答案

《数学模型》作业解答

第二章(1)(2008年9月16日)

1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们

要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:

(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;

(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?

如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.

解:先考虑N=10的分配方案,

,432 ,333 ,235321===p p p ∑==3

1

.1000i i

p

方法一(按比例分配) ,35.23

1

11==

∑=i i

p

N

p q ,33.33

1

22==

∑=i i

p

N

p q 32.43

1

33==

∑=i i

p

N

p q

分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)

9个席位的分配结果(可用按比例分配)为:

4 ,3 ,2321===n n n

第10个席位:计算Q 值为

,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322

3=?=Q

3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n

方法三(d ’Hondt 方法)

此方法的分配结果为:5 ,3 ,2321===n n n

此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).

i

i

n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i i

i n p

尽量接近.

再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:

2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.

考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得

??

+=n

t

dn wkn r k vdt 0

)(2π

)22 2

n wk k(r n πvt +=∴ .2 22n v

k w n v rk t ππ+=∴

第二章(2)(2008年10月9日)

15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车

获得的功率P 与v 、S 、ρ的关系.

解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.

量纲矩阵为:

A=)

???????

???---ρ()()

()()()()(001310013212s v P T M L

齐次线性方程组为:

??

?

??=--=+=-++0

30

32221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y

由量纲i P 定理得 1131ρπs v P -=, 1

13ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系

数,用量纲分析方法给出速度v 的表达式.

解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0

[μ]=MLT -2

(LT -1L -1

)-1L -2

=MLL -2T -2

T=L -1

MT -1

,[g ]=LM 0T -2

,其中L ,M ,T 是基本量纲.

量纲矩阵为

A=)

()()()()()()

(210101101131g v T M L μρ??????????----- 齐次线性方程组Ay=0 ,即

???

??==+=+0

2y -y - y -0

y y 0y y -3y -y 431

324321 的基本解为y=(-3 ,-1 ,1 ,1)

由量纲i P 定理 得 g v μρπ1

3

--=. 3

ρ

μλg

v =∴,其中λ是无量纲常数. 16*

.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘

滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.

解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为

[v ]=LM 0T -1

,[ρ]=L -3

MT 0

,[μ]=MLT -2

(LT -1L -1

)-1L -2

=MLL -2T -2

T=L -1

MT -1

,[γ]=LM 0T 0 ,[g ]=LM 0T -2

其中L ,M ,T 是基本量纲. 量纲矩阵为

A=)

()()()()

()

()()(210010

11001

1311g v T M L μργ??????????----- 齐次线性方程组Ay=0 即

??

?

?

?=---=+=+--+020035414354321y y y y y y y y y y 的基本解为

??

???

---=--=)

21,1,1,23,0()21,0,0,21,1(21

y y

得到两个相互独立的无量纲量

???==-----2

/112/322

/12/11g g v μργ

πγπ 即 1212/12/31,--==

πμργπγg g v . 由0),(21=Φππ , 得 )(1

2

1-=π?π ∴ )(12/12/3-=μργ?γυg g , 其中?是未定函数.

20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为

0),,,,(=k g m l t f

其量纲表达式为:

1

12120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.

量纲矩阵为

A=)

()()()()()()()(120011010001

010k g m l t T M L ??????????-- 齐次线性方程组

???

?

?=--=+=+0

200541

5342y y y y y y y 的基本解为

??

???

--=-=)

1,21

,1,21,0()0,21,0,21,1(21

Y Y 得到两个相互独立的无量纲量

∴g l t =

1π, )(21π?π=, 2/12

/12mg kl =π ∴)(2

/12/1mg kl g l t ?=

,其中?是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为

t ,'

t ;l ,'

l ;m ,'

m . 又)(2/12/1g

m l k g l t '''=

'? 当无量纲量l l m

m '='时, 就有 l

l l g g l t

t '

=

?'='

. 《数学模型》作业解答

第三章1(2008年10月14日)

1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货

批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.

???==---2

2

/112/11

2/12/1ππk g m l g tl

解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.

01 对于不允许缺货模型,每天平均费用为:

kr rT c T c T C ++=

2

)(21

2221r c T

c dT dC

+-= 令

0=dT

dC

, 解得 r c c T 21

*2= 由rT Q = , 得2

12c r

c rT Q =

=*

*

与不考虑购货费的结果比较,T、Q的最优结果没有变.

02 对于允许缺货模型,每天平均费用为:

??

????+-++=kQ Q rT r c r Q c c T Q T C 2

3221)(221),(

222332

2221222T kQ rT Q c r c rT Q c T c T C

--+--=??

T

k rT Q c c rT Q

c Q C ++-=??332 令???????=??=??00Q

C

T

C

, 得到驻点:

???

?

??

?+-

+-+=-

+=

**

3

23222

2

3323213

22

33221)(22c c kr

c c c r k c c c c c r c Q c c k c c c rc c T

与不考虑购货费的结果比较,T、Q的最优结果减少.

2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,

r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的

一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.

解:由题意可得贮存量)(t g 的图形如下:

贮存费为 ∑?=→??-==?

i T

i i t T

T r k c dt t g c t g c 1

02

20

22

))()(lim

ξ

又 )()(00T T r T r k -=- ∴ T k r T =

0 , ∴ 贮存费变为 k

T

T r k r c 2)(2?-=

于是不允许缺货的情况下,生产销售的总费用(单位时间内)为

k

T

r k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=

k r k r c T

c dT dC 2)(221-+-=. 0=dT dC

, 得)

(221r k r c k c T -=

* 易得函数处在*

T T C )(取得最小值,即最优周期为: )

(221r k r c k

c T -=

*

r

c c ,T

r k 21

2≈

>>*

时当 . 相当于不考虑生产的情况. ∞→≈*

,T

r k 时当 . 此时产量与销量相抵消,无法形成贮存量.

第三章2(2008年10月16日)

3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.

解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1

)(+=

b k

b λ, 分母∞→→+λ时是防止中的011

b b 而加的. 总费用函数()x

c b kx b x t c b kx b t c t c x C 3122121211)

1()(2)1(2+--++--++=β

ββββββ

最优解为 []

k b k c b b b c kb

c x β

β)1(2)1()1(22

322

1

+++++=

5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设

t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售

期分为T t T

T t <<<<2

20和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,

使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为

??

???<<-<<-=T t T bp a T t bp a x 2,2

0,21

又 t q t q β+=0)(.于是总利润为

[][]?

?--+--=2

2

221121)()()()(),(T

T

T dt bp a t q p dt bp a t q p p p

=2

2)(022)(20222011T T

t t q t p bp a T t t q t p bp a ??????

---+??????---ββ

=)8

322)(()822)((2

0222011T t q T p bp a T T q T p bp a ββ---+--- )(2

)822(12011bp a T T T q T p b p -+---=??β

)(2

)8322(22022bp a T T t q T p b p -+---=??β 0,02

1=??=??p p 令

, 得到最优价格为: ???

???

???????++=???

???++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为

??+-

=-+-=20

2

21210)(2

)()(T T

T p p bT

aT dt bp a dt bp a Q 于是得到如下极值问题:

)8

322)(()822)((),(m ax 2

022201121T t q T p bp a T T q T p bp a p p ββ---+---=

t s . 021)(2

Q p p bT

aT =+-

利用拉格朗日乘数法,解得:

??

???+

-=--=88

0201T

bT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.

第三章3(2008年10月21日)

6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?

解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天)

根据不允许缺货的贮存模型:kr rT c T c T C ++=212

1

)( 得:k T T

T C 10092500

)(++=

0=dT

dC

, 解得:3

50

92500*==T 由实际意义知:当350*

=

T (即订货周期为3

50)时,总费用将最小. 又k T C 10035095025003)(*

+?+?==300+100k

k T C 10030930

2500

)(0+?+==353.33+100k

)(0T C -)(*T C =(353.33+100k )-(300+100k )32

=53.33.

故应改变订货策略.改变后的订货策略(周期)为T *=3

50

,能节约费用约53.33元.

《数学模型》作业解答

第四章(2008年10月28日)

1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用

A 原料2千克,

B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价

分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:

max S=20x+30y

s.t. ??

?

??∈≥≤+≤+Z y x y x y x y x ,,0,7045202

这是一个整线性规划问题,现用图解法进行求解

可行域为:由直线1l :x+2y=20, 2l :5x+4y =70

2l

以及x=0,y=0组成的凸四边形区域.

92500

2+-=T

dT dC

直线l :20x+30y=c 在可行域内

平行移动.

易知:当l 过1l 与2l 的交点时, x S 取最大值.

由???=+=+7045202y x y x 解得?

??==510

y x

此时 m ax S =2053010?+?=350(元)

2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:

已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.

解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为

211020 m ax x x z +=

???

??∈≥≤+≤+Z y x x x x x x x st ,,0,135224452

12121

这是一个整线性规划问题. 用图解法求解. 可行域为:由直线

2445:211=+x x l

1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内

平行移动.

2l

l

1x

1l

2x

易知:当l 过l 1与l 2的交点时,z 取最大值 由??

?=+=+13

52244521

21x x x x 解得 ??

?==1

42

1x x

90110420max =?+?=z .

3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.

解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:

max S=3x +2y

s.t. ??

?

??∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032

这是一个整线性规划问题 用图解法进行求解

可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.

直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.

由?

?

?=+=+12024100

32y x y x 解得

??

?==20

20

y x .

m ax S =320220?+?=100.

《数学模型》作业解答

第五章1(2008年11月12日)

1.对于5.1节传染病的SIR 模型,证明: (1)若处最大先增加,在则σ

σ

1

)(,1

0=

s t i s ,然后减少并趋于零;)(t s 单调减少

至.∞s

(2).)()(,1

0∞s t s t i s 单调减少至单调减少并趋于零,则若σ

解:传染病的SIR 模型(14)可写成

?????-=-=i s dt

ds s i dt di

λσμ)

1(

.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dt

ds

i s dt ds λ

.)(∞s t s 单调减少至故

(1).s s(t) .s(t) .1

00≤∴单调减少由若σ

s

;)(,0 .01,1

0单调增加时当

t i dt

di

s s s ∴

-σσ

.)(,0 .01,1单调减少时当t i dt

di

s s ∴-σσ

.0)(lim .0)18(t ==∞

→∞t i i 即式知又由书上

.)( .0,

1

m i t i dt

di

s 达到最大值时当∴==

σ

(2)().0 0.1-s

,1,10 dt

di

t s s σσσ从而则若 ()().0.0lim ==∴∞∞

→i t i t i t 即单调减少且

4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=b

a

初始兵力00y x 与相同.

(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.

(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.

解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:

()()()???

????==-=-=000,01 ,y

y x x bx dt

dy

ay dt dx

现求(1)的解: (1)的系数矩阵为?

?

?

?

??--=00b a A ab ab b a

A E ±=∴=-==

-1,22 .0λλλ

λλ ???

?

??????

??-1212,21,对应的特征向量分别为λλ ()()()t

ab t ab e

C e C t y t x -

???

? ??+???

?

??-=???? ??∴1212121的通解为.

再由初始条件,得

()()2 220000 t

ab t

ab e y x e

y x t x -??

? ??++??

? ??-=

又由().1ay

bx dx dy =可得

其解为 ()3 ,2

02022 bx ay k k bx ay -==-而

(1) ()().2

3

1000202011y a b y a bx ay a

k t y t x =-=-==

=时,当

即乙方取胜时的剩余兵力数为

.2

3

0y 又令().0222,01

1

00001=-??

?

??++??

?

??-=t ab t ab e y x e y x t x )得由(

注意到0

00020022,1

x y y x e

y x t ab -+=

=得. .43

ln ,312

1

b

t e

t ab =

∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则

()()???

????==-=+-=000,)0(4 y

y x x bx dt

dy

r ay dt dx

().,4rdy aydy bxdx bx

r

ay dy dx -=-+-=即得

由 相轨线为,222k bx ry ay =-- .222

2

20.020k a r bx a r y a bx ry ay k =--??

? ??---=或 此相轨线比书图11中的轨线上移了

.a r 乙方取胜的条件为.,022202

0a r x a b a r y k +??? ?

?

- 亦即 第五章2(2008年11月14日)

6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.

解: 设给药速率为()()(),,,,0V t C t x t f 容积为血药浓度为中心室药量为

()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数

(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e V

D

t C V D C t f -==

=解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得

()()()()?????-≤≤-=----τττ t e e Vk

k t e Vk

k t C t k kt kt

,10 ,10

(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010t

k e

D k t f -=

()()()

???????=≠--=---0101

01001 ,,01k k te V

kD k k e e k k V D k t C kt t k kt

3种情况下的血药浓度曲线如下:

第五章3(2008年11月18日)

8. 在5.5节香烟过滤嘴模型中,

(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ

求./21Q Q Q 和

(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.

)(857563.229102.07.050103.01508002.07.0502008.0/01

/

2毫克≈???? ??-???=???

? ?

?-=??-?---

e e e e

b

a v aw Q v bl a v

l β ()10/10==l M w 其中,

()()97628571.050

20

02.008.02

1

2

===?--

--e

e Q Q v

l b β

(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为???

?

?

?

-=-v

bl a e b a v aw Q '

103‘ 只吸到1l 处就扔掉的情况下的毒物量为???

? ?

?-=--v

bl a v bl

e e b a v aw Q 1

'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'

≈--=--=--=???

? ??-??

?? ??-=??????--

e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a v

bl 44.235,84.2954

3≈≈ Q

Q

4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=b

a

初始兵力00y x 与相同.

(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.

(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.

解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:

()()()???

????==-=-=000,01 ,y

y x x bx dt

dy

ay dt dx

现求(1)的解: (1)的系数矩阵为?

?

?

?

??--=00b a A ab ab b a

A E ±=∴=-==

-1,22 .0λλλ

λλ ???

?

??????

??-1212,21,对应的特征向量分别为λλ ()()()t

ab t ab e

C e C t y t x -

???

? ??+???

?

??-=???? ??∴1212121的通解为.

再由初始条件,得

()()2 220000 t

ab t

ab e y x e

y x t x -??

? ??++??

? ??-=

又由().1ay

bx dx dy =可得

其解为 ()3 ,2

02022 bx ay k k bx ay -==-而

(1) ()().2

3

1000202011y a b y a bx ay a

k t y t x =-=-==

=时,当 即乙方取胜时的剩余兵力数为

.2

3

0y 又令().0222,01

1

00001=-??

?

??++??

?

??-=t ab t ab e y x e y x t x )得由(

注意到0

00020022,1

x y y x e

y x t ab -+=

=得. .43

ln ,312

1

b

t e

t ab =

∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则

()()???

????==-=+-=000,)0(4 y

y x x bx dt

dy

r ay dt dx

().,4rdy aydy bxdx bx

r

ay dy dx -=-+-=即得

由 相轨线为,222k bx ry ay =-- .222

2

20

.02

k a r bx a r y a bx ry ay k =--??? ?

?---=或 此相轨线比书图11中的轨线上移了

.a r 乙方取胜的条件为.,022202

0a r x a b a r y k +??? ?

?

- 亦即

《数学模型》作业解答

第六章(2008年11月20日)

1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .

(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.

(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.

解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为

h N

x

rx dt t dx --=)1()( 记h N

x

rx x F --

=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--

h N

x

rx . 即

()102

=+-h rx x N

r )4(42N

h

r r N rh r -=-

=? , (1)的解为:2

412,1N rN

h

N x -

±=

①当4/rN h >,0

0N x =

. N

rx

r N rx N x r x F 2)1()('-

=--

=,0)(0'=x F 不能断定其稳定性. 但0x x ? 及0x x 均有04)1()( rN

N x rx x F --= ,即0 dt

dx .∴0x 不稳定;

③当4/rN h <,0>?时,得到两个平衡点:

2411N rN

h

N x --=

, 2

412N rN

h N x -

+=

易知:21N x <

, 2

2N x > ,0)(1'

>x F ,0)(2'

(2)最大持续产量的数学模型为

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学模型第三版课后习题答案.doc

《数学模型》作业解答 第七章( 2008 年 12 月 4 日) 1.对于节蛛网模型讨论下列问题: ( 1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第 k 1时段的价格y k 1由第k 1 和第 k 时段的数量x k 1和x k决定,如果仍设x k 1仍只取

决于 y k ,给出稳定平衡的条件,并与节的结果进行比较 . ( 2)若除了 y k 1 由 x k 1 和 x k 决定之外, x k 1 也由前两个时段的价格 析稳定平衡的条件是否还会放宽 . 解:( 1)由题设条件可得需求函数、供应函数分别为: y k 1 f x k 1 x k ) ( 2 x k 1 h( y k ) 在 P 0 (x 0 , y 0 ) 点附近用直线来近似曲线 f , h ,得到 y k 1 y 0 ( x k 1 x k x 0 ), 2 x k 1 x 0 ( y k y 0 ) , 由( 2)得 x k 2 x 0 ( y k 1 y 0 ) ( 1)代入( 3)得 x k 2 x 0 ( x k 1x k x 0 ) 2 2x k 2 x k 1 x k 2x 0 2 x 0 对应齐次方程的特征方程为 2 2 ( ) 2 8 特征根为 1, 2 4 y k 和 y k 1 确定 . 试分 (1) ( 2) (3) 当 8 时,则有特征根在单位圆外,设 8 ,则

1,2 ( ) 2 ( ) 2 8 42 2 4 1,2 1 2 即平衡稳定的条件为 2与 P 207 的结果一致 . ( 2)此时需求函数、供应函数在 P 0 (x 0 , y 0 ) 处附近的直线近似表达式分别为: y k 1 y 0 ( x k 1 x k x 0 ), ( 4) 2 x k 1 x 0 ( y k y k 1 y 0 ) , ( 5) 2 由( 5)得, (x x 0 ) β(y y y k 1 y 0 ) ( 6 ) 2 k 3 k 2 将( 4)代入( 6),得 2( x k 3 x 0 ) ( x k 2 x k 1 x 0 ) ( x k 1 x k x 0 ) 2 2 4 x k 3x k 2 2 x k 1 x k 4 x 0 4 x 0 对应齐次方程的特征方程为 4 3 2 2 0 (7) 代数方程( 7 )无正实根,且 αβ , , 2 4 不是( 7)的根 . 设( 7)的三个非零根分 别为 1, 2, 3,则 1 2 3 4 1 2 2 3 3 1 2 1 2 3 4 对( 7)作变换: , 则 12 3 q 0, p 其中 p 1 (2 2 2 ), q 1(833 2 2 ) 4 12 4 123 6

数学模型习题解答解读

上机练习题一 班级: 姓名: 学号: 1.建立起始值=3,增量值=5.5,终止值=44的一维数组x 答案: x=(3:5.5:44) 2.写出计算 Sin(30o )的程序语句. 答案: sin(pi*30/180) 或 sin(pi/6) 3.矩阵??????????=187624323A ,矩阵???? ??????=333222111B ;分别求出B A ?及A 与B 中对应元素之间的乘积. 答案:A = [3,2,3; 4,2,6; 7,8,1] B = [1,1,1; 2,2,2; 3,3,3] A*B ;A.*B 4计算行列式的值1 876243 23=A 。答案:det(A) 5对矩阵 ???? ??????=187624323A 进行下述操作。 (1)求秩。答案:rank(A) (2)求转置。答案:A' (3) 对矩阵求逆,求伪逆。答案:inv(A) ,pinv(A) (4) 左右反转,上下反转。答案:fliplr(A),flipud(A) (5) 求矩阵的特征值. 答案:[u,v]=eig(A) (6) 取出上三角和下三角. 答案:triu(A) tril(A) (7)以A 为分块作一个3行2列的分块矩阵。答案:repmat(a) 6 计算矩阵??????????897473535与???? ??????638976242之和。 >> a=[5 3 5;3 7 4;7 9 8]; >> b=[2 4 2;6 7 9;8 3 6]; >> a+b 7 计算??????=572396a 与?? ????=864142b 的数组乘积。 >> a=[6 9 3;2 7 5]; >> b=[2 4 1;4 6 8];

数学建模习题及答案课后习题

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

数学模型课后答案

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q值方法; (3).d’Hondt方法:将A、B、C各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, , 432 ,333 ,235321 ===p p p ∑==3 1 . 1000i i p 方法一(按比例分配) , 35.23 1 11 == ∑=i i p N p q , 33.33 1 22 == ∑=i i p N p q 32 .43 1 33 == ∑=i i p N p q 分配结果为: 4 ,3 ,3321 ===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分 配)为: 4 ,3 ,2321===n n n 第10个席位:计算Q 值为

2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ??+=n t dn wkn r k vdt 0 )(2π ) 2 2 2 n wk k(r n πvt +=∴ . 2 2 2n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日) 1. 在 3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.

数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。 关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法 蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。 一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。本文给出算例, 并用MA TA LA B 实现。 1蒙特卡罗计算重积分的最简算法-------均匀随机数法 二重积分的蒙特卡罗方法(均匀随机数) 实际计算中常常要遇到如()dxdy y x f D ??,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。 定理 1 )1( 设式()y x f ,区域 D 上的有界函数, 用均匀随机数计算()??D dxdy y x f ,的方法: (l) 取一个包含D 的矩形区域Ω,a ≦x ≦b, c ≦y ≦d , 其面积A =(b 一a) (d 一c) ; ()j i y x ,,i=1,…,n 在Ω上的均匀分布随机数列,不妨设()j i y x ,, j=1,…k 为落在D 中的k 个随机数, 则n 充分大时, 有

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3 1 .1000i i p 方法一(按比例分配) ,35.23 1 11== ∑=i i p N p q ,33.33 1 22== ∑=i i p N p q 32.43 1 33== ∑=i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n

第10个席位:计算Q 值为 ,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322 3=?=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ?? +=n t dn wkn r k vdt 0 )(2π )22 2 n wk k(r n πvt +=∴ .2 22n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日)

数学建模典型例题

一、人体重变化 某人得食量就是10467焦/天,最基本新陈代谢要自动消耗其中得5038焦/天。每天得体育运动消耗热量大约就是69焦/(千克?天)乘以她得体重(千克)。假设以脂肪形式贮存得热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化得规律. 一、问题分析 人体重W(t)随时间t变化就是由于消耗量与吸收量得差值所引起得,假设人体重随时间得变化就是连续变化过程,因此可以通过研究在△t时间内体重W得变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存得热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重得变化就是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重得变化量为W(t+△t)—W(t); 身体一天内得热量得剩余为(10467—5038-69*W(t)) 将其乘以△t即为一小段时间内剩下得热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467—5038-69*W(t))dt; 四、模型求解 d(5429—69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即:

W(t)=5429/69—(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间得最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i得开始买进汽车并在年j得开始卖出汽车,将有净成本aij(购入价减去折旧加上运营与维修成本).以千元计数aij得由下面得表给出: 请寻找什么时间买进与卖出汽车得最便宜得策略。 二、问题分析 本问题就是寻找成本最低得投资策略,可视为寻找最短路径问题.因此可利用图论法分析,用Dijkstra算法找出最短路径,即为最低成本得投资策略。 三、条件假设 除购入价折旧以及运营与维护成本外无其她费用; 四、模型建立 二 5 11 7 三6 4

数学建模课后习题答案

第一章 课后习题6. 利用1.5节药物中毒施救模型确定对于孩子及成人服用氨茶碱能引起严重中毒和致命的最小剂量。 解:假设病人服用氨茶碱的总剂量为a ,由书中已建立的模型和假设得出肠胃中的药量为: )()0(mg M x = 由于肠胃中药物向血液系统的转移率与药量)(t x 成正比,比例系数0>λ,得到微分方程 M x x dt dx =-=)0(,λ(1) 原模型已假设0=t 时血液中药量无药物,则0)0(=y ,)(t y 的增长速度为x λ。由于治疗而减少的速度与)(t y 本身成正比,比例系数0>μ,所以得到方程: 0)0(,=-=y y x dt dy μλ(2) 方程(1)可转换为:t Me t x λ-=)( 带入方程(2)可得:)()(t t e e M t y λμμ λλ ----= 将01386=λ和1155.0=μ带入以上两方程,得: t Me t x 1386.0)(-= )(6)(13866.01155.0---=e e M t y t 针对孩子求解,得: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 87.494=; 致命中毒时间及服用最小剂量:h t 876.7=,mg M 8.4694= 针对成人求解: 严重中毒时间及服用最小剂量:h t 876.7=,mg M 83.945= 致命时间及服用最小剂量:h t 876.7=,mg M 74.1987= 课后习题7. 对于1.5节的模型,如果采用的是体外血液透析的办法,求解药物中毒施救模型的血液用药量的变化并作图。

解:已知血液透析法是自身排除率的6倍,所以639.06==μu t e t x λ-=1100)(,x 为胃肠道中的药量,1386.0=λ )(6600)(t t e e t y λμ---= 1386.0,639.0,5.236)2(,1100,2,====≥-=-λλλu z e x t uz x dt dz t 解得:()2,274.112275693.01386.0≥+=--t e e t z t t 用matlab 画图: 图中绿色线条代表采用体外血液透析血液中药物浓度的变化情况。 从图中可以看出,采取血液透析时血液中药物浓度就开始下降。T=2时,血液中药物浓度最高,为236.5;当z=200时,t=2.8731,血液透析0.8731小时后就开始解毒。 第二章 1.用 2.4节实物交换模型中介绍的无差别曲线的概念,讨论以下的雇员和雇主之间的关系: 1)以雇员一天的工作时间和工资分别为横坐标和纵坐标,画出雇员无差别曲线族的示意图,解释曲线为什么是那种形状; 2)如果雇主付计时费,对不同的工资率画出计时工资线族,根据雇员的无差别曲线族和雇主的计时工资线族,讨论双方将在怎样的一条曲线上达成协议; 3)雇员和雇主已经达成了协议,如果雇主想使用雇员的工作时间增加到t 2,他有两种

(完整版)数学模型第二章习题答案

15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系. 解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-T ML , [v ]=1-LT ,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲. 量纲矩阵为: A=) ??????? ???---ρ()() ()()()()(001310013212s v P T M L 齐次线性方程组为: ?? ? ??=--=+=-++0 30 32221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y 由量纲i P 定理得 1131ρπs v P -=, 1 13ρλs v P =∴ , 其中λ是无量纲常数. 16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系 数,用量纲分析方法给出速度v 的表达式. 解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0 , [μ]=MLT -2 (LT -1L -1 )-1L -2 =MLL -2T -2 T=L -1 MT -1 ,[g ]=LM 0T -2 ,其中L ,M ,T 是基本量纲. 量纲矩阵为 A=) ()()()()()() (210101101131g v T M L μρ??????????----- 齐次线性方程组Ay=0 ,即 ??? ??==+=+0 2y -y - y -0 y y 0y y -3y -y 431 324321 的基本解为y=(-3 ,-1 ,1 ,1) 由量纲i P 定理 得 g v μρπ1 3 --=. 3 ρ μλg v =∴,其中λ是无量纲常数.

数学建模知识竞赛题库

数学建模知识竞赛题库 1.请问计算机中的二进制源于我国古代的哪部经典? D A.《墨经》 B.《诗经》 C.《周书》 D.《周易》 2.世界上面积最大的高原是?D A.青藏高原 B.帕米尔高原 C.黄土高原 D.巴西高原 3.我国海洋国土面积约有多少万平方公里? B A.200 B.300 C.280 D.340 4.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是B A.猫 B.飞鸽 C.海鸥 D.鹰 5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?B A.红色 B.蓝色 C.灰色 D.绿色 6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D ) A. [1 0 1] B. [1 1 1] C. [0 0 1] D. [0 0 0] 7.秦始皇之后,有几个朝代对长城进行了修葺? A A.7个 B.8个 C.9个 D.10个 8.中国历史上历时最长的朝代是?A A.周朝 B.汉朝 C.唐朝 D.宋朝 9我国第一个获得世界冠军的是谁?C A 吴传玉 B 郑凤荣 C 荣国团 D 陈镜开 10.我国最早在奥运会上获得金牌的是哪位运动员?B A.李宁 B.许海峰 C.高凤莲 D.吴佳怩

11.围棋共有多少个棋子?B A.360 B.361 C.362 D.365 12下列属于物理模型的是:A A水箱中的舰艇 B分子结构图 C火箭模型 D电路图 13名言:生命在于运动是谁说的?C A.车尔尼夫斯基 B.普希金 C.伏尔泰 D.契诃夫 14.饱食后不宜剧烈运动是因为B A.会得阑尾炎 B.有障消化 C.导致神经衰弱 D.呕吐 15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?A A.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役 17色盲患者最普遍的不易分辨的颜色是什么?A A.红绿 B.蓝绿 C.红蓝 D.绿蓝 18下列哪种症状是没有理由遗传的? A.精神分裂症 B.近视 C.糖尿病 D.口吃 19下面哪个变量是正无穷大变量?(A )

数学建模课后答案

第一章 4.在1、3节“椅子能在不平的地面上放稳不”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。试构造模型并求解。 答:相邻两椅脚与地面距离之与分别定义为)()(a g a f 和。f 与g 都就是连续函数。椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。不妨设0)0(,0)0(g >=f 。当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。这样,改变椅子的位置使四只脚同时着地。就归结为证明如下的数学命题: 已 知 a a g a f 是和)()(的连续函数,对任意 0)π/2()0(,0)()(,===?f g a g a f a 且,0)π/2(,0)0(>>g f 。证明存在0a ,使0)()(00==a g a f 证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也就是连续函数。 根据连续函数的基本性质, 必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=?a g a f ,所以0)()(00==a g a f

8 第二章

10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章 5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设 kx q x q -=0)( (1)k 就是产量增加一个单位时成本的降低 , 销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出 ka q kbp pa bp x r --++-=02)( 当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为 b a kb ka q p 2220*+--=

数学模型第三版课后习题答案

数学模型第三版课后习 题答案 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

《数学模型》作业解答 第二章(1)(2008年9月16日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住 在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, 方法一(按比例分配) 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为:

第10个席位:计算Q 值为 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的, i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得 ,2)(kdn wkn r vdt π+=两边积分,得 ??+=n t dn wkn r k vdt 0 )(2π 第二章(2)(2008年10月9日) 15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.

数学建模例题及解析

。 例1差分方程—-资金的时间价值 问题1:抵押贷款买房——从一则广告谈起 每家人家都希望有一套(甚至一栋)属于自己的住房,但又没有足够的资金一次买下,这就产生了贷款买房的问题。先看一下下面的广告(这是1991年1月1日某大城市晚报上登的一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心的是:如果一次付款买这栋房要多少钱呢?银行贷款的利息是多少呢?为什么每个月要付1200元呢?是怎样算出来的?因为人们都知道,若知道了房价(一次付款买房的价格),如果自己只能支付一部分款,那就要把其余的款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说的房子作出决策了。现在我们来进行数学建模。由于本问题比较简单无需太多的抽象和简化。 a。明确变量、参数,显然下面的量是要考虑的: 需要借多少钱,用记; 月利率(贷款通常按复利计)用R记; 每月还多少钱用x记; 借期记为N个月。 b.建立变量之间的明确的数学关系。若用记第k个月时尚欠的款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总的欠款为 k=0,1,2,3, 而一开始的借款为.所以我们的数学模型可表述如下 (1) c. (1)的求解。由

(2)这就是之间的显式关系。 d.针对广告中的情形我们来看(1)和(2)中哪些量是已知的。N=5年=60个月,已知;每月还款x=1200元,已知A.即一次性付款购买价减去70000元后剩下的要另外去借的款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策的困难.然而,由(2)可知60个月后还清,即,从而得 (3) A和x之间的关系式,如果我们已经知道银(3)表示N=60,x=1200给定时0 A。例如,若R=0.01,则由(3)可算得行的贷款利息R,就可以算出0 53946元。如果该房地产公司说一次性付款的房价大于70000十53946=123946元的话,你就应自己去银行借款。事实上,利用图形计算器或Mathematica这样的 数学软件可把(3)的图形画出来,从而可以进行估算决策。以下我们进一步考虑下面两个问题。 注1问题1标题中“抵押贷款”的意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子的产权)作抵押,即万一你还不出钱了,就没收你的不动产。 例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清。假设这对

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

数学建模习题答案

数学建模部分课后习题解答 中国地质大学 能源学院 华文静 1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解: 模型假设 (1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度就是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情 况),即从数学角度来瞧,地面就是连续曲面。这个假设相当于给出了椅子能放稳的必要条件 (3) 椅子在任何位置至少有三只脚同时着地。为了保证这一点,要求对于椅脚的间距 与椅腿的长度而言,地面就是相对平坦的。因为在地面上椅脚间距与椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使就是连续变化的),此时三只脚就是无法同时着地的。 模型建立 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法就是不能解决问题的。于就是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。 注意到椅脚连线呈长方形,长方形就是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。于就是,旋转角度θ这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。 设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。 其次,把椅脚就是否着地用数学形式表示出来。当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置就是θ的函数,因此,椅脚与地面的竖直距离也就是θ的函数。 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都就是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD 就是对称中心图形,绕其对称中心O 沿逆时针方向旋转180度后,长方形位置不变,但A,C 与B,D 对换了。因此,记A,B 两脚与地面竖直距离之与为)(θf ,C,D 两脚之与为)(θg ,其中[] πθ,0∈,使得)()(00θθg f =成立。 模型求解 如果0)0()0(== g f ,那么结论成立。 如果)0(与) 0(g f 不同时为零,不妨设.0)0(,0)0(=>g f 这时,将长方形ABCD 绕点O

数学模型期末考试试题及答案

试卷学期《数学模型》期末考试A山东轻工业学院08/09学年II 页)本试卷共4< 题说明总号考次开试分考卷试,参加考试的同学可以携带任何资料,可以 使用计算器,但上述物品严禁相互借用。16分,每小题8分)一、简答题<本题满分得分)式,写出与§2.2录像机计数器的用途中,仔细推算一下<11、在阅卷人<2)式的差别,并解释这个差别;中不允许缺货的存储模型中为什么没有考虑生产 费用,在什么条件下可2、试说明在§3.1 以不考虑它;8分)二、简答题<本题满分16分,每小题得分1阅卷人?s)(ti的变化情时、对于1§5.1传染病的SIR 模型,叙述当0?况并加以证明。 E 2、在§6.1捕鱼业的持续收获的效益模型中,若单位捕捞强度的费用为捕捞强度的减函数,)0?0,b?c?a?bE,(a即,请问如何达到最大经济效益?本题满分16分,每小题8分)三、 简答题<得分s程是法图解说明为什么方策、1在§9.3 随机存储略中,请用)S?(x)?cI(I的最小正根。阅卷人0、请结合自身特点谈一下如何培养数学建模 的能力?2 分)四、<本题满分20得分219人,二年级有某中学有三个年级共1000名学生,一年级有人。现要选20名校级优秀学生,请用下列办316人,三年级有465 阅卷人Q ;<2))按比例加惯例的方法法分配各年级的优秀学生名额:<1值法。另外如果校级优秀学个,重新进行分配,并按照席位分配的理想生名额增加 到21化准则分析分配结果。得分分)16五、<本题满分阅

卷人大学生毕业生小李为选择就业岗位建立了层次分析模型,影响就业的因素考虑了收入情况、发展空间、社会声誉三个方面,有三个层次结构图如图,已知准则层。 选可业就岗位供择对目标层的成对比较矩阵1 / 4 选择就业岗位 71/1/43511????????23111/2/AB??41,比较矩阵分别为成,方案层对准则层的对 ????1????22171/51/1????117463????????3112/B?3B?1/41。,JhYEQB29bj ????32????1/21/6111/71/3????请根据层次分析方法为小李确定最佳的工作岗位。 16分)六、<本题满分得分某保险公司欲开发一种人寿保险,投保人需要每年缴纳一定数的阅卷人<额保险费,如果投保人某年未按时缴纳保费则视为保险合同终止保险公司需要对投保人的健康、疾病、死亡和退保的情况作出评估,从而制退保)。 定合适的投保金额和理赔金额。各种状态间相互转移的情况和概率如图。试建立马氏链模型分析在投保人投保时分别为健康或疾病状态下,平均需要经过多少年投保人就会出现退保或死亡的情况,以及出现每种情况的概率各是多少?5Y944Acbad 退保死亡II 学期《数学模型》期末考试A试卷解答山东轻工业 学院08/09学年0.05 0.03 分)分,每小题8一、简答题<本题满分160.15 0.07 m(m?1)???2mr?vt2?)得4分1、答:由<1,。。。。。。。。。。。。。。。。。。。。20.1 健康疾病2???knk2?)t?2r?n?(knm?代入得。。。。。。。。。。。。。。。。。。。。,6分将 vv0.6 ???2r?r2??r,则得<2因为)。所以。。。。。。。。。。。。。。。。。。。。8分 crc,每天的平均费用是,则平均每天的生产费用为2、答:假设每件产品的生产费用为 33ccrT112??crC(T)?4分,。。。。。。。。。。。。。。。。。。。。 1132T1)TdC()TdC(11)T(TC?下面求最小,发现使,所以111dTdT12c1??TT,与生产费用无关,所以不考虑。。。。。。。。。。。。。。。。。。。。。81cr2分 二、简答题<本题满分16分,每小题8分) 1di??s?),(1s??i,1、答:由<14若)0?dtdi1s)(t??s,?0i时,4增 加; 。。。。。。。。。。。。。。。。。。。。分当0?dtdi1?i(ts),?0i时,达到最大值当;

数学模型(第四版)课后详细答案

数学模型作业 六道题 作业一 1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 解: 要求鱼的体重,我们利用质量计算公式:M=ρV。我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。我们假设鱼的体积和鱼身长的立方成正比。即:V=k 1 L3,因此,模型为: 33 111 M V k l K L ρρ ===……………………………模型一 利用Eviews软件,用最小二乘法估计模型中的参数K 1 ,如下图1所示: 图1 从图1结果可以得到参数K 1 =0.014591,所以模型为: 3 1 M0.014591 L = 上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。因此,有必要改进模型。如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成 正比,即:V=k 2 d2L,因此,模型为: 身长 /cm 36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1 质量 /g 765 482 1162 737 482 1389 652 454 胸围 /cm 24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.6

22222M V k d K d L L ρρ===……………………………… 模型二 利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示: 图2 从图2可以得到参数K 2=0. 032248,所以模型为: 22M 0.032248d L = 将实际数据与模型结果比较如表1所示: 实际数 据M 765 482 1162 737 482 1389 652 454 模型一M 1 727.165 469.214 1226.061 727.165 482.629 1338.502 675.108 482.619 模型二M 2 729.877 465.248 1099.465 729.877 482.960 1470.719 607.106 483.960 2.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。每个销售代理点只能向本区和一个相邻区的大学生售书,这两个代理点应该建在何处,才能使所能供应的大学生的数量最大?建立该问题的整数线性规划模型并求解。 解: 将大学生数量为34、29、42、21、56、18、71的区分别标号为1、2、3、4、5、6、7区,画出如下区域区之间的相邻关系: 2 5

相关主题
文本预览
相关文档 最新文档