当前位置:文档之家› 轻油冷却器的课程设计

轻油冷却器的课程设计

轻油冷却器的课程设计
轻油冷却器的课程设计

油气储运专业课程设计I 题目轻油冷却器的设计

教学院化工与材料工程学院

专业班级油气储运 1001

学生姓名 XXXXXX

学生学号 XXXXXXXX

指导教师 XXXXXXX

2010年 12 月 12 日

课程设计任务书

1、设计题目:轻油冷却器的设计

2、设计基本条件:

(1)处理能力 40000吨/年

(2)设备型式列管式换热器

(3)操作条件

a.轻油:入口温度140℃,出口温度40℃;

b.冷却介质:自来水,入口温度25℃,出口温度35℃;

c.允许压降:管程不大于0.1MPa,壳程不大于0.05MPa;

d.每年按300天计,每天24小时连续运行;

(4)物性参数

=760kg/m3

密度: ρ

=2.20kJ/kg℃

定压比热容: C

p0

=0.138W/m℃

热导率: λ

=0.536mPa﹒s

粘度: μ

3、设计任务:

(1)设计方案简介:对确定的工艺流程及换热器型式进行简要论述;

(2)完成换热器工艺设计计算;

(3)换热器设备计算;

(4)撰写设计说明书(word文档上机打印);

(5)绘制换热器装配图(A3图纸,可用计算机绘制)。

摘要

本设计为油气储运工程系的化工原理课程设计,其目的为锻炼设计者的独立设计工作能力;包括资料查阅、收集、筛选,数据及参数的计算,结果校核、选定,独立选择工艺技术,办公软件应用及排版,制图软件应用等。旨在培养设计者综合能力,为毕业设计以及以后的研究工作做好铺垫,使设计者对设计类工作有一定感性认识。

此说明书阐述的是处理量为4×104 吨/年轻油冷却器的设计方案,方案采用固定管板式换热器,以循环水为冷却剂,进行轻油冷却。

本设计完成了换热器的工艺计算,包括轻油和水的基础物性数据,换热器面积估算,换热器工艺结构尺寸的计算,并分别进行核算,绘制了带控制点的工艺流程图,换热器装配图。本设计除人工计算外还利用到一些电脑软件进行绘图,排版等。

关键字:轻油;水;换热器;固定管板式;课程设计。

Abstract

This design for oil &gas storage and transportation engineering principles of chemical engineering course design, the purpose of the exercise independent design work ability designer, Consult, including data collection, screening, data and parameter calculation, the results checking, selection, independent selection process technology, the office software application and typesetting, drafting software applications. Aimed at training designers comprehensive ability, for the graduation design and future research work on the blackboard, enables designers design kind of job have certain perceptual knowledge.

This manual is elaborated 40000 tons/year kerosene cooler, the design of scheme adopts with expansion joint fixed tube heat exchanger, to circulating water for cooling agent, kerosene cooling.

This design completed heat exchanger technical calculation, including kerosene and water based physical property data, heat exchanger area estimation, heat exchanger process structure size of calculation, and separately accounting, painted with control process flow diagram, heat exchanger assembly drawing.

This design except the artificial calculation are utilized to some computer software graphics, layout, etc.

Keywords:kerosene, water, heat exchanger, fixed tube plate, curriculum design。

目录

课程设计任务书 ................................................ 错误!未定义书签。

摘要........................................................................... II ABSTRACT ...................................................................... III 第1章绪论 .. (1)

1.1换热器技术概况 (1)

1.1.1固定管板式换热器: (1)

1.1.2浮头式换热器: (1)

1.1.3填料函式换热器: (2)

1.1.4 U型管式换热器: (2)

1.2换热器设备的发展 (3)

1.3换热器在工业生产中的应用 (4)

第2章设计方案 (6)

2.1换热器类型的选择 (6)

2.2流程的安排 (7)

2.2.1冷、热流体流动通道的选择 (7)

2.2.2流动方式的选择 (8)

2.2.3材质的选择 (8)

2.2.4流体流速的选择 (9)

2.2.5换热管的选择 (9)

第3章换热器的工艺计算 (10)

3.1基础物性数据 (10)

3.2换热器面积的估算 (10)

3.2.1热负荷计算 (10)

3.2.2 平均传热温差及其校正 (11)

3.2.3传热面积 (11)

3.2.4柴油的用量 (11)

3.3换热器工艺结构尺寸的计算 (11)

3.3.1管程e、流速及雷诺数的计算 (11)

3.3.2壳程流通截面积、流速及雷诺数的计算 (12)

3.3.3传热管排列方式的选择及管心距的计算 (13)

3.3.4折流板的选择 (13)

3.4换热器核算 (13)

3.4.1传热能力的核算 (13)

3.4.2传热面积核算 (14)

3.4.3换热器流体阻力计算 (15)

3.5换热器主要结构尺寸算结果汇总 (17)

3.6主要符号说明 (18)

设计过程的评述和有关问题的讨论 (19)

主要参考文献 (20)

附录 (21)

结束语 (27)

第1章绪论

1.1换热器技术概况

换热器是许多工业生产部门的通用工艺设备,尤其是石油、化工生产中应用更为广泛,在化工厂中换热器可用作加热器、冷却器、冷凝器、蒸发器和再沸器等。换热器的类型很多,性能各异,从早期发展起来的列管式换热器到近年来不断出现的新型、高效换热设备,各具特点。

列管式换热器是目前化工生产上应用最广的一种换热器,它结构简单、坚固,制造容易,材料广泛,处理能力强大,适用性强。列管式换热器主要由壳体、管板、换热管、封头、折流挡板等组成。所需材质,可分别采用普通碳钢、紫铜、或不锈钢制作。在进行换热时,一种流体由封头的连结管处进入,在管流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程

列管式换热器种类很多,目前广泛使用的按其温差补偿结构来分,主要有以下几种:

1.1.1固定管板式换热器:

这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。

为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。一般壳程压强超过0.6Mpa时由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其他结构。

1.1.2浮头式换热器:

换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不变

壳体约束,因而当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。

1.1.3填料函式换热器:

这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。

1.1.4 U型管式换热器:

U形管式换热器,每根管子都弯成U形,两端固定在同一块管板上,每根管子皆可自由伸缩,从而解决热补偿问题。管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。优点是结构简单,质量轻,适用于高温高压条件。

下面简单列举四种常用换热器的特性:

表1—1四种常用换热器特性

型特性固

填料

函式

U

形管

优点结

便

制造

方便

便于

洗、

维修

构简

量轻

缺点壳

耐压

不高

内清

洗困

修和清洗价

板利

用率

适用场合两

低压

场合

温、

高压

场合

1.2换热器设备的发展

20世纪20年代出现板式换热器,并应用于食品工业。以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。

60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。

长期以来,非接触式换热器一直是管壳式(列管式)换热器一国独大的局面。然而近几十年来,这种平衡有所改变。这种改变是由于各种板式类换热器的逐步开发和应用所带来的。板式类换热器能够被深入研究和开发,固然是有其历史必然的。回顾换热器发展历程,虽然板式换热设备的充分开发只是近些年的事情,但是其理论和技

术的出现却要早的多。但是人们最初舍弃了这种换热性能远远占优的换热器形式,而是选择并大量应用了管壳式换热器。

那么,既然是结构强度没有得到根本性的改变,近些年板式类换热器又是怎样被重视起来的呢?这种变化是与世界经济的发展环境,尤其是能源发展环境的变化息息相关的。世界能源的日益紧张与危机,使得“节能”与“高效”逐渐受到重视,加之“节能——减排——环保”的概念日益深入人心,各国政府和机构都逐年加大了这方面投入的人力和物力,同时也取得了许多可喜的成果。很显然,板式类换热器这种高效的换热方式,也就顺理成章地受到重视,并进行了再次开发,且在其强度范围所能允许的范围内大量应用遍地开花。其技术发展也达到了前所未有的时刻。制造规格越来越大,结构形式越来越多。并出现了不可拆的焊合一体式板式换热器,尽管不能方便地拆洗,强度却有所增加。

近年来国内各研究机构、高等院校对传热理论及高效换热法的研究一直非常重视,走过了从引进、消化、吸收、发展到自主研发的历程。现已应用在石油、化工、石油化工、冶金、电力、轻工、食品等行业中。随着换热器的不断改进,在节能、增效等方面改进换热器性能,在提高换热效率,减少传热面积,降低压降,提高装置热强度等方面的研究取得了显著成绩。国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面开发出表面多孔管、螺旋槽管、波纹管、纵横管等。流程优化软件技术的发展带来了换热器应用的增多。换热器的大量使用有效地提高了能源的利用率,使企业成本降低。效益提高。

在新材料、新结构、新领域的不断探索过程中,换热器正朝着多样化、专业化的方向发展,其制造手段有了长足进步,应用领域也由在哪里用向如何用好的方向转变。随着工业经济效益与社会中环境保护的要求,制造水平的不断提高,新能源的逐渐开发,研究手段日益发展,各种新思路与新结构的涌现,换热器将朝着更高效、经济、环保的方向发展。

1.3 换热器在工业生产中的应用

在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,并占有十分重要的地位。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用的35%~40%。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%~45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。目前,在换热设备中,使用量最

大的是管壳式换热器。管壳式换热器按用途分为无相变传热的换热器和有相变传热的冷凝器和重沸器。

换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可缺少的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化传热元件诞生。随着研究的深入,工业应用取得了令人瞩目的成果,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T形翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张状况。

如何提高产热效率,减少震动损失,是两项十分重要的课题。大面积的换热器制造难度大,使用要求高,安装困难更大。经过二十年的努力,在传热技术上国内已研制成功的双壳换热器、大型板壳式换热器,具有强化传热的高效换热器,有效的解决了传热效率低的问题;折流杆换热器的应用有效地克服管束的震动,延长了管子的寿命,解决了震动损坏,提高了工艺性能,降低了动力消耗,且宜用于较脏的场合。板翅式换热器的发展,使换热器的效率提高到新的水平,结构更紧凑。这种换热器的采用,满足了飞机发动机中间冷却的需要。由于具有体积小、重量轻、效率高、可处理两种以上介质的优点,这种换热器迅速在石油化工、乙烯装置中得到推广应用,随着铝及铝合金钎焊技术的日趋发展,应用场合及范围将越来越广泛。

国内各研究机构、高等院校对传热理论及高效换热器的研究一直非常重视,走过了从引进、消化、吸收、发展到自主开发的历程。从20世纪50~60年代的照搬发展到70年代消化和吸收,进入80年代以来国内又出现了自主开发传热技术的新趋势,大量的强化传热元件被推向市场,形成第一次传热开发浪潮。到90年代中期,大量的强化传热技术应用于工业装置中,带来了良好的社会效益和经济效益。近几年国内应用的强化传热技术基本上是80年代中期开发的,由于国内市场较大,使用者多不了解,认为很多技术都是新开发的。在90年代大量应用的基础上,积累了很多经验,预计在2005年以后将会再掀起一次传热技术开发的新高潮。国内80年代传热技术高潮时期的代表杰作有折流杆换热器、新结构高效换热器、高效重沸器、高效冷凝器、双壳程换热器、板壳式换热器、表面蒸发式空冷器等一批优良的高效换热器。

第2章设计方案

2.1换热器类型的选择

固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。其两端和壳体连为一体,管子侧固定于管板上,结构简单。由于管束和壳体间温差太大会产生膨胀,所以外壳上通常会焊接一膨胀节,但不完全消除由于温差而生的热应力。其特点为在相同的壳体直径内,排管较多,比较紧凑;壳侧层清洗困难,加上膨胀节的方法不能照到管子的相对移动。比较适合温差不大或温差大而壳层压力不高的场合。

1-折流挡板;2-管束;3-壳体;4-封头;5-接管;6-管板

图2-1固定管板式换热器

浮头式换热器的一端管板与壳体固定,而另一端的管板可在壳体内自由浮动,壳体和管束对膨胀是自由的,故当两张介质的温差较大时,管束和壳体之间不产生温差应力。浮头端设计成可拆结构,使管束能容易的插入或抽出壳体。(也可设计成不可拆的)。这样为检修、清洗提供了方便。但该换热器结构较复杂,而且浮动端小盖在操作时无法知道泄露情况。因此在安装时要特别注意其密封。

图2-2浮头式换热器

填料函式换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程中不应处理易挥发、易燃、易爆和有毒的介质。

图2-3填料函式换热器

U型管式换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。

图2-4 U型管式换热器

本次任务中两流体的温度变化:轻油从140℃加热到40℃;冷却介质采用自来水,自来水进口温度25℃,出口温度为35℃。该换热器的管壁温度和壳体壁温之差较大,通过上一步骤中对换热器形式及特点的陈述,选用固定管板式换热器。

2.2流程的安排

2.2.1冷、热流体流动通道的选择

对于流动通道的选择应基于传热效果好,结构简单,检修与清洗方便的原则:

⑴.易结垢流体应走易清洁的一侧,除U型管式换热器外一般应使易结垢流体流经管程。

⑵.在设计上需提高流体的流速以提高其传热膜系数。在这种情况下,应将需提高流速的流体放在管程。这是因为管程流通截面积较小,易于采用多管程结构以提高流速。

⑶.压力高的利益体应走管程。这是因为管子直径小,承受压力能力强,能够避免采用耐压的壳体和密封措施。

⑷.温度很高或很低的物料应走管内,以减少热量或冷量的散失。当然如果为了更好

散热也可以让被冷却的流体走壳程,以增强冷却效果。

⑸.粘度大的流体应走壳程。因为壳程内的流体在折流板的作用下,流通截面和方向都不断变化,在较低的雷诺数下就可以达到湍流的状态。

⑹.若两流体温差较大,传热膜系数较大的流体宜走壳程。因为壁温接近传热膜系数较大的流体温度可以减小管壁与壳壁的温度差。

另外需要指出的是,上述的各点常常不能同时满足,而且有时还会互相矛盾,因此在设计中要应根据具体情况,抓住主要方面做出适当的选择。

由以上的叙述,轻油应走壳程,冷却介质应走管程。

2.2.2流动方式的选择

当两流体温度相差较大时,α值大的流体走管间,这样可以减少管壁与壳壁间的温度差,因而也减少了管束与壳体间的相对伸长,故温差应力可以降低。

若两流体给热性能相差较大时,α值小的流体走管间,此时可以用翅片管来平衡传热面两侧的给热条件,使之相互接近。

黏度大的流体,管间的截面和方向都在不断变化,在低雷诺数下,管外给热系数比管内的大。

泄漏后危险大的流体,可以减少泄露机会,以保安全。

根据所查得的资料,不洁净或易于结垢的物料应流经易于清洗的一侧,对于直管一般走管内;故采用自来水走管程,轻油走壳程。

2.2.3材质的选择

在进行换热器设计时,换热器各种零部件的材料,应根据设备的操作压力、操作温度、流体的腐蚀性能以及对材料的制造工艺性能等地要求来选取的。当然,最后还要考虑材料的经济合理性。一般为了满足设备的操作压力和操作温度,即从设备的强度或刚性的角度来考虑,是比较容易达到的,但材料的耐腐蚀性能,有时往往成为一个复杂的问题。在这个方面考虑不周,选材不妥,不仅会影响到换热器的寿命,而且也大大提高设备的成本。至于材料的制造工艺性能,是与换热器的具体结构有着密切的关系的。

一般换热器的常用的材料有碳钢和不锈钢。

⑴碳钢价格低,强度较高,对碱性介质的化学腐蚀比较稳定,很容易被腐蚀,在无腐蚀性要求的环境中应用是合理的。

⑵不锈钢奥氏体不锈钢以1Cr18Ni9为代18-8奥氏体不锈钢,有稳定的奥氏体组织,具有良好的耐腐蚀性和冷加工性能

由上可以看出在本设计中换热器的选用材料使用碳钢比较合理。

2.2.4流体流速的选择

提高流体在换热器中的流速将增大对流传热系数,减少污垢在管中表面上沉积的可能。即降低了污垢热阻,使总传热系数增加,所需传热面积减少。设备费用降低。但是流速增加,流体的阻力相应增加,操作费用增加,并且流速在大于2m/s时还会引起设备振动,损坏设备。一般尽可能使管程流体的Re>104。高粘度流体按层流设计。

2.2.5换热管的选择

换热管的材料有钢、合金钢、铜、铝和石墨等,应根据操作压力、温度和介质的腐蚀性能选定不同材质的管子。目前我国常用的换热器管子规格有φ25mm×2.5mm和φ19mm×2mm 对于结晶的流体,可选择较小的管径:对于易结垢的或不清洁的流体可选择较大的管径。此外,小直径的管子可以承受更大的压力,而且管壁较薄;对于相同的壳径,可排列较多的管子。因此选择较小的管子单位体积所提供的产热面积更大,设备更紧凑,但管径小,流动阻力大,机械清洗困难,设计时可根据具体情况选用适宜的管径。通常在管程结垢不很严重以及压力降较高的情况下,采用φ19×2mm更为合适。如果管程走的是易结垢的流体,有时候也采用φ38mm×2.5mm或更大直径的管子。

由上,选择φ25mm×2.5mm极为适宜。

第3章 换热器的工艺计算

3.1基础物性数据

定性温度:可取流体进口温度的平均值。 管程自来水的定性温度 T=(25+35)/2=30C ?

壳程轻油的定性温度 T=(140+40)/2=90C ?

根据定性温度,分别查取管程和壳程流体的有关物性数据。

自来水的有关物性数据如下: 密度31995.7/kg m ρ=

定压比热容1 4.174/(.o p c kJ kg C =) 导热系数10.618/(o W m λ=?C ) 黏度310.801510Pa s μ-=?? 轻油的有关物性数据如下: 密度32760/kg m ρ=

定压比热容2 2.20/()o p c kJ kg C =? 导热系数20.138/(o W m λ=?C ) 黏度32 0.53610()Pa s μ-=??

3.2换热器面积的估算

3.2.1 热负荷计算

轻油的质量流量:7

24105555.6/30024

W kg h ?=

=? 热负荷:=Q 2221()W Cp T T - 5555.6 2.20(14040)1222232/=339.5kJ h kW =??-=

3.2.2 平均传热温差及其校正

'121

2

(14035)(4025)

46.2514035

ln ln 4025o m t t t C t t ?-?---?=

==?--? 2112114040103525T T R t t --=

==-- 21213525

0.08714025

t t P T t --===-- 查图求得温差修正系数t 0.94??=, 所以t '0.9446.2543.475C o m m t t ???=?=?=

3.2.3传热面积

初选2

o

K=290K/(m C)?,所以2399500

31.6829043.475

m Q A m K t =

==???

选用的换热器的面积一般应比计算值大10%—15%, 故2'115%115%31.6836.432A S m ==?=

3.2.4 自来水的用量

()

1111222232

29282/8.13/4.1743525Q W kg h kg s Cp t =

===??-

3.3换热器工艺结构尺寸的计算

3.3.1管程管径、流速及雷诺数、管程数和传热管数的计算

管径和管内流速:选用25 2.5φ?传热管(碳钢),

设取管内流速 1u 0.5m/s = 管程横截面积: 2

221104

0.7850.020.01634

2i N A d m Np π

=

=??= 雷诺数: 1113

1

0.5995.70.02

Re 124230.801510i

u d ρμ-??=

=

=?

传热管数: 22129282

995.73600520.020.544s i V

n d u ππ?===??

按单管程,所需传热管长度: 36.432

8.93.140.02552

o s S L m d n π=

==??

取传热管长 4.5l m =,则管程数: 8.9

24.5

p N =

≈ 传热管总根数: 522104

N =?=(根) 3.3.2壳程流通截面积、流速及雷诺数的计算

横过管束中心线的管束:12.1c n === 取12根

壳程内径:

1.05 1.0532409.5D mm ==?= 采用弓形折流板,取弓形折流板圆缺高度为壳体内径为25%,则切去 圆缺高度为h=0.25×450=11

2.5mm ,可取h=110mm

取折流挡板间距 0.30.3409.5122.85B D ==?= 可取 0.15B m =

故流通截面积: 22A =D c o n -??(d )B=(0.41-120.02)0.15=0.0255m

流速: 22225555.6

u ==0.08m/s 3600A 36007600.0255

W ρ=

??

当量直径

: 2222)0.7850.025)242d 0.0203.140.025

o e o d mm d ππ--?=

==? 雷诺数: 22232

0.087600.020

Re 2268.70.53610e

u d ρμ-??=

=

=?

'

2223

2

0.087600.025

Re 2835.80.53610o

u d ρμ-??=

=

=?

由以上核算看出,初选的换热器,管程、壳程的流速和雷诺数都是合适的。

3.3.3传热管排列方式的选择及管心距的计算

传热管排列方式为正三角形排列

管心距: 1.25 1.252531.2532o t d mm =?=?=≈

3.3.4折流板的选择

折流板数: 4500

1129150

B l N B =

-=-=(块)

3.4 换热器核算

3.4.1传热能力的核算

3.4.1.1管程的对流传热系数

0.80.31

1111

0.023

Re Pr d λα=

(3—1)

雷诺数 41Re 1242310=>

普兰特准数 3311110.801510 4.17410Pr 5.4130.618

Cp μλ-???=== 0.80.3

1

1110.023

Re Pr i

d λα=

0.80.3

0.6180.023(12423)0.02

=?

??(5.413)

22223.8W/(m C)o

=?

3.4.1.2壳程的对流传热系数

对弓形折流板,可采用克恩公式

0.55132

22

20.36

Re Pr e

d μλα?= (3—2) 雷诺数2R

e 2268.7=

普兰特准数 33

22220.53610 2.2010Pr 8.540.138Cp μλ-???=== 因壳程流体被冷却,故取粘度校正=1.05μ? 0.5512

22

20.36

Re Pr e

d μλα?= 0.5513

0.138=0.36(2268.7) 1.050.020

?

???(8.54) ()2373.7/o W m C =?

3.4.1.3污垢热阻和管壁热阻

污垢热阻 :20.000344/W si R m K =?

管壁热阻 : 2=0.000172/W so R m K ? 3.4.1.4总传热系数

si 12

1

1

i i i so o o m K d d bd R R d d d αλα=

++++ (3—3)

1

0.020.020.00250.021

0.0003440.0001722223.80.0250.025450.0225373.7

=

?++++

??

()2315/o W m C =?

3.4.2 传热面积核算

传热面积: 2339500

29.231543.475

m Q A m K t ===?? 该换热器的实际传热面积:

'A o d lN π= (3—4)

2

3.140.025

4.510436.738()

m =???=

该换热器的面积裕度:

热水冷却器的设计

化工原理课程设计 热水冷却器的设计 姓名:李响 学号:2011033216 班级:化学工程与工艺112班

一、设计题目: (4) 二、设计目的: (4) 三、设计任务及操作条件: (4) 四、设计内容: (5) 五、课程设计说明书的内容 (5) 四、参考书目: (5) 前言 (6) 一、设计方案简介: (6) 1.1换热器的选择: (6) 一、方案简介 (7) 二、方案设计 (8) 1.确定设计方案 (8) 2、确定物性数据 (9) 3.初选换热器规格 (9) (2)冷却水用量 (9) 5.工艺结构尺寸 (10) 5.1管径和管内流速及管长 (10) 5.2管程数和传热管数 (10) 5.3平均传热温差校正及壳程数 (11) 5.4传热管排列和分程方法 (11) 5.5壳体内径 (11) 5.6折流板 (12) 5.7接管 (12) 6换热器核算 (13) 6.1热量核算 (13) 6.2换热器内流体的压力降 (15) 三、设计结果一览 (17)

任务书 一、设计题目: 热水冷却器的设计 二、设计目的: 通过对热水冷却的列管式换热器设计,达到让学生了解该换热器的结构 特点,并能根据工艺要求选择适当的类型,同时还能根据传热的基本原理,选择流程,确定换热器的基本尺寸,计算传热面积以及计算流体阻力。 三、设计任务及操作条件 : 1.处理量 5 105.2?/年热水 2.设备型式列管换热器 3.操作条件 : (1)热水:入口温度 80 ℃,出口温度 60 ℃ (2)冷却介质:循环水,入口温度 25 ℃,出口温度 35 ℃ (3)允许压降:≦105 Pa (4)水在定性温度70℃下的物性数据: 3/7.995m Kg h =ρ S Pa h ??=-410061.4μ )/(187.4C Kg KJ C ph ?= )/(6676.0C m W h ??=λ (5)水在定性温度70℃下的物性数据:

推荐-煤油冷却器的课程设计课程设计 精品

x x x x x大学 化工原理课程设计题目煤油冷却器的设计 教学院 专业班级 学生姓名 学生学号 指导教师 20XX年6月8日 目录

第一章绪论 (1) 第二章方案设计说明 (1) 2.1换热器的选型 (1) 2.1.1 换热器的分类 (1) 2.1.2 间壁式换热器 (1) 2.1.3 管壳式换热器 (1) 2.1.4 换热器的选型 (2) 2.2材质的选择 (2) 2.3换热器其他结构设计 (2) 2.3.1 管程机构 (2) 2.3.2 壳程结构 (2) 第三章管壳式换热器的设计计算 (3) 3.1确定设计方案 (3) 3.1.1 选择换热器类型 (3) 3.3.2 流动空间及流苏确定 (3) 3.2 确定物性参数 (3) 3.3 计算总传热系数 (4) 3.3.1 热流量 (4) 3.3.2 平均传热温差 (4) 3.3.3 冷却水用量 (4) 3.3.4 总传热系数 (4) 3.4 计算传热面积 (5) 3.5 工艺结构尺寸 (5) 3.5.1 管径和管内流速 (5) 3.5.2 管程数和传热管数 (5) 3.5.3 平均传热温差校正及壳程 (6) 3.5.4 传热管排列和分程方法 (6) 3.5.5 壳体内径 (6) 3.5.6 折流板 (7) 3.5.7 接管 (7) 3.6 换热器核算 (7)

3.6.1 热量核算 (7) 3.6.2 换热器内流体的流动阻力 (9) 第四章计算结果一览表 (11) 课程设计心得与体会 (12) 参文文献 (14) 附录(1)油冷却器的设计任务书 (15) 附录(2)符号说明 (16)

第一章绪论 工程设计是工程建设的灵魂,又是科研成果转化为现实生产力的桥梁和纽带,它决定了工业现代化水平。设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业、多学科的交叉、综合和相互协调,是集体性的劳动。先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。而化工原理课程设计,是将所学的化工原理理论知识联系实际生产的重要环节。一方面,它要求综合运用物理,化学,化工原理,工程制图的理论知识,确定生产工艺流程和计算设备的尺寸;另一方面,又要求根据设计对象的具体特征,凭借设计者的经验(或借鉴前人的经验),灵活运用设计的诀窍,对所选设备,工艺过程以及各种参数进行合理的筛选,校正和优化,达到经济合理的生产要求。 第二章设计方案说明 2.1换热器的选型 2.1.1换热器的分类 换热器是化工,炼油工业中普遍应用的工艺设备,用来实现热量的传递,使热量由高温流体传给低温流体。根据传热方式可分为混合式换热器,蓄热式换热器,和间壁式换热器,其中间壁式换热器是工业中应用最为广泛的一类。其主要特点为:冷热流体被一固体间壁隔开,通过壁面进行转热。考虑到间壁式换热器设计技术比较成熟,而且国家在该类换热器的设计,制造,检验和验收等方面已有较为完善的设设计资料和系列化标准,因此选择间壁式换热器。 2.1.2间壁式换热器 按照传热面的形状和结构特点,间壁式换热器又可细分为管式换热器,如套管式,螺旋管式,管壳式,热管式;板面式换热器,如板式,螺旋式,板壳式等;扩展面式换热器,如板翅式,管翅式,强化的传热管等。在管式换热器中,管壳式换热器是应用最广泛的一种,该类换热器结构相对简单,造价不高,壳选用多种结构材料,管内清洗方便,处理量大,在高温条件下也能应用。考虑其诸上优点,以及生产任务均符合管式换热器的要求,选择管壳式换热器。 2.1.3 管壳式换热器 管壳式换热器又称列管式换热器,是一种通用的标准换热设备。它因结构简单、耐用、造价低廉、用材广泛、清洗方便、适应性强等优点而在换热设备中占据主导地位。管壳式换热器根据其结构特点分为:固定管板式换热器,浮头式换热器,U形管式换热器。以下主要介绍固定管板式换热器。 固定管板式换热器,管端以焊接或胀接的方法固定在两块管板上,而管板则以焊接的方法与壳体连接,与其他形式的管壳式换热器相比,结构简单,当壳体

锯齿形板式热水冷却器的设计

化工原理课程设计 题目:热水冷却器的设计 学生姓名:肖俊 学号:0911401035 系别:化学与化学工程系 专业:制药工程 指导教师:刘艳 起止日期:2011年5月23日 2011年6月6日

目录 1概述 (4) 1.1板式换热器简介 (4) 1.1.1板式换热器的基本结构 (4) 1.1.2板式换热器的特点 (5) 1.1.3板型选择 (6) 1.1.4流程和流道的选择 (6) 1.2 设计方案简介 (7) 1.2.1板型选择 (7) 1.2.2流程和流道的选择 (7) 1.2.3 压降校核 (7) 2 设计任务书 (8) 2.1设计题目 (8) 2.2设计参数 (8) 2.3设计内容及要求 (8) 2.3.1首先计算定性温度,并查取定性温度下的物性数据 (8) 2.3.2计算热负荷 (9) 2.3.3计算平均温差 (9) 2.3.4初估换热面积及初选板型 (9) 2.3.5核算总传热系数K (10) 2.3.6 计算传热面积S (12) 2.3.7 压降计算 (12) 3 工艺流程草图及说明 (14) 3.1设计流程图: (14) 3.2工艺流程草图及说明: (15) 4工艺计算及主要设备设计 (16) 4.1热量衡算 (16) 4.2换热器工艺尺寸的计算 (16) 4.3结构设计图.................................. 错误!未定义书签。5辅助设备的计算和选型 (17) 5.1泵的选择 (17) 5.1.1对热水所需的泵进行选择计算: (18) 5.1.2对冷水所需的泵进行计算选择: (18)

6主要技术参数和计算结果列表 (19) 6.1换热器参数表 (19) 6.2辅助设备参数表 (20) 7设计评述 (21) 8参考文献 (23) 9 主要符号说明 (24)

课程设计换热器-煤油

《化工过程设备设计Ⅰ(一)》 说明书 设计题目:换热器的设计 专业: 班级: 学号: 姓名: 指导教师: 设计日期: 设计单位:青海大学化工学院化学工程系

目录 前言 (4) 任务书 (5) 目的与要求 (6) 一、工艺设计方案 (8) 二、确定物性数据 (9) 三、估算传热面积 (9) 四、工艺结构尺寸 (10) 五、换热器核算 (12) 六、设计结果概要一览表 (17) 七、参考文献 (19)

前言 化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。 化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。围绕以某一典型单元设备(如板式塔、填料塔、干燥器、蒸发器、冷却器等)的设计为中心,训练学生非定型设备的设计和定型设备的选型能力。设计时数为3周,其基本内容为: (1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。 (2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。 (3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。 (4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。 (5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。 (6)设计说明书的编写。设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参考文献。 整个设计由论述,计算和图表三个部分组成,论述应该条理清晰,观点明确;计算要求方法正确,误差小于设计要求,计算公式和所有数据必需注明出处;图表应能简要表达计算的结果。 设计者: 2015年月日

煤油冷却器的设计----原版.doc

课程设计任务书

一、摘要 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。在换热器中,至少有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。 在化工、石油、动力、制冷、食品等行业中广泛使用各种换热器,且它们是上述这些行业的通用设备,占有十分重要的地位。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,对换热器的要求也日益增强。换热器的设计制造结构改进以及传热机理的研究十分活跃,一些新型高效换热器相继问世。根据不同的目的,换热器可以是热交换器、加热器、冷却器、蒸发器、冷凝器等。由于使用条件的不同,换热器可以有各种各样的形式和结构。在生产中,换热器有时是一个单独的设备,有时则是某一工艺设备的组成部分。 衡量一台换热器好的标准是传热效率高、流体阻力小、强度足够、结构合理、安全可靠、节省材料、成本低,制造、安装、检修方便、节省材料和空间、节省动力。 二、关键字 煤油,换热器,列管式换热器,固定管板式

目录 一、概述 (1) 二、工艺流程草图及设计标准 (1) 2.1工艺流程草图 (1) 2.2设计标准 (2) 三、换热器设计计算 (2) 3.1确定设计方案 (2) 3.1.1选择换热器的类型 (2) 3.1.2流体溜径流速的选择 (2) 3.2确定物性的参数 (3) 3.3估算传热面积 (3) 3.3.1热流量 (3) 3.3.2平均传热温差 (3) 3.3.3传热面积 (3) 3.3.4冷却水用量 (4) 3.4工艺结构尺寸 (4) 3.4.1管径和管内流速 (4) 3.4.2管程数和传热管数 (4) 3.4.3平均传热温差校正及壳程数 (4) 3.4.4传热管排列和分程方法 (5) 3.4.5壳体内径 (5) 3.4.6折流板 (5)

热水冷却器课程设计

南京工业大学 《材料工程原理B》课程设计 设计题目:热水冷却器的设计 _________________________ 专业:_______________________________________________ 班级:高材__________________________________________ 学号:____________ 姓名: __________________ 日期:__________________________________________ 指导教师:_______________________________________ 设计成绩:_____________ 日期:____________________

设计任务书 (一)设计题目 热水冷却器的设计 (二)设计任务及操作条件 1. 处理能力 5.0 104t/a 热水 2. 设备型式锯齿形板式换热器 3. 操作条件 (1)热水:入口温度80C,出口温度60C (2)冷却介质:循环水,入口温度32C,出口温度40 C (3)允许压强降:不大于5X 105Pa ( 4)每年按330 天计,每天24 小时连续运行 4. 建厂地址天津地区 (三)设计要求选择适宜的锯齿形式板式换热器并进行核算。

目录 1 概述 1.1 板式换热器的基本结构 (4) 1.2 板式换热器的优缺点 (6) 1.3 板式换热器与管式换热器的比较 (7) 1.4 板式换热器的实际应用 (8) 2 设计方案简介 2.1 板式换热器的选型 (9) 2.2 板式换热器的优化设计方向 (10) 2.3 工艺流程简图 (13) 3 热水冷却器的设计工艺计算 3.1 符号说明 (14) 3.2 定性温度下的物性数据 (14) 3.3 计算热负荷. (15) 3.4 计算平均温度差 (15) 3.5 初估换热面积及初选板型 (15) 3.6 核算总传热系数K (16) 3.7 估算传热面积 (18) 3.8 计算压力降 (18) 4 辅助设备的选择与计算 4.1 泵的选择 (19) 5 设计结果概要 (21) 附录

煤油冷却器的设计说明

煤油冷却器的设计 一前言 1列管式换热器的种类 固定管板式换热器 管板式换热器浮头式换热器 填料涵式换热器 U型管换热器 2换热器的特点 列管式换热器,是一种通用的标准换热设备,它具有结构简单,坚固耐用,造价低廉,用材广泛,清洗方便,适应性强等优点,应用最为广泛。管壳式换热器根据结构特点分为以下几种: 固定管板式换热器:固定管板式换热器两端的管板与壳体连在一起,这类换热器结构简单,价格低廉,但管外清洗困难,宜处理两流体温差小于50℃且壳方流体较清洁及不易结垢的物料。带有膨胀节的固定管板式换热器,其膨胀节的弹性变形可减小温差应力,这种补偿方法适用于两流体温差小于70℃且壳方流体压强不高于600Kpa的情况。 浮头式换热器:浮头式换热器的管板有一个不与外壳连接,该端被称为浮头,管束连同浮头可以自由伸缩,而与外壳的膨胀无关。浮头式换热器的管束可以拉出,便于清洗和检修,适用于两流体温差较大的各种物料的换热,应用极为普遍,但结构复杂,造价高。 填料涵式换热器:填料涵式换热器管束一端可以自由膨胀,与浮头式换热器相比,结构简单,造价低,但壳程流体有外漏的可能性,因此壳程不能处理易燃,易爆的流体。 U型管换热器:U型管换热器的管子两端固定在同一管板上,管子两端可以自由伸缩,与其他管子机壳体无关。这种换热器结构比较简单,重量轻,适用于高温高压场合,但管清洗比较困难且管板利用率较差。 几种换热器的结构

3换热器的发展趋势 70年代的世界能源危机,有力地促进了传热强化技术的发展。为了节能降耗,

提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备。这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高。所以,这些年来,换热器的开发与研究成为人们关注的课题。最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,并向低温差设计和低压力损失设计的方向发展。同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系。近年来,随着制造技术的进步,强化传热元件的开发,使得新型高效换热器的研究有了较大的发展,根据不同的工艺条件与换热工况设计制造了不同结构形式的新型换热器,并已在化工、炼油、石油化工、制冷、空分及制药各行业得到应用与推广,取得了较大的经济效益。 二设计任务及操作条件 1设计任务 生产能力(进料量) 80000 吨/年 2操作条件 1、煤油:入口温度:140℃ 出口温度:40℃ 2、冷却介质:自来水 入口温度:30℃出口温度:40℃,水压力为0.3MPa 3、允许压降:不大于105Pa 4、每年按330天计算,每天24小时运行 三设计方案 1换热器的类型 浮头式换热器如右图所示,两端管板之一不与外壳固定连接,该端称为浮头。当管子受热(或受冷)时,管子连同浮头可以自由伸缩,而与外壳的膨胀无关。浮头式换热器不但可以补偿热膨胀,而且固定端的管板是以法兰与壳体相连接的,因此管束可以从壳体抽出,便于清洗和检修,故浮头式换热器应用比较普

锯齿形板式换热器热水冷却器

南京工业大学《材料工程原理B》课程设计设计题目: 专业:班级: 学号:姓名: 日期: 指导教师: 设计成绩:日期:

设计任务书 (一)设计题目 热水冷却器的设计 (二)设计任务及操作条件 (1)处理能力410 5.5 t/a热水 (2)设备型式锯齿形板式换热器 (3)操作条件 a热水:入口温度C 80,出口温度C 60 b冷却介质:循环水,入口温度C 32,出口温度C 40 c冷却压降:不大于Pa 5 10 d每年按330天计,每天24小时连续运行 (4) 建厂地区:天津地区 (三)设计要求 选择适宜的锯齿形板式换热器进行核算

目录 第一章:设计方案简介 1.1概述 (3) 1.1.1 换热器 (3) 1.1.2 三种换热器的比较 (3) 1.1.3 板式换热器 (5) 1.2方案设计和拟定 (9) 1.3确定设计方案 (12) 第二章:工艺流程简图 2.1锯齿形板式换热器的组装形式 (12) 2.2工艺流程 (14) 第三章:工艺计算和整体设备计算 3.1符号说明 (14) 3.2 计算定性温度 (15) 3.3计算热负荷 (16) 3.4计算平均温差 (16) 3.5初估板式换热面积S和板型 (16) 3.6核算总传热系数K (18) 3.6.1计算热水测的对流给热系数 (18) 3.6.2计算冷水测的对流给热系数 (18) 3.6.3金属板热阻 (19) 3.6.4污垢热阻 (19) 3.6.5总传热系数 (20) 3.6.6估算总传热系数S (20) 3.7计算压力降Δp (21) 第四章:设计结果概要和设计一览表 (23) 第五章:附图 5.1: 工艺流程图 (25) 5.2:主体设备工艺图 (26) 第六章:设计小结 (27) 参考文献 (28)

煤油冷却器的设计

南京工业大学《材料工程原理B》课程设计 设计题目: 煤油冷却器的设计 专业:高分子材料科学与工程 班级:高材0801 学号: 1102080104 姓名: 夏亚云 指导教师: 周勇敏 日期: 2010/12/30 设计成绩:

目录 一.任务书 (3) 1.1.设计题目 1.2.设计任务及操作条件 1.3.设计要求 二.设计方案简介 (3) 2.1.换热器概述 2.2列管式换热器 2.3.设计方案的拟定 2.4.工艺流程简图 三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 四.工艺结构设计…………………………………………………………………………………………..-8- 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.传热管排列和分程方法 4.5.壳程内径及换热管选型汇总 4.6.折流板 4.7.接管 五.换热器核算………………………………………………………………………………………….-13- 5.1.热量核算 5.2.压力降核算 六.辅助设备的计算和选择……………………………………………………………………………17 6.1.水泵的选择 6.2.油泵的选择 七.设计结果表汇 (20) 八.参考文献. (20) 九.心得体会………………………………………………………………………………….…………… 21附图:(主体设备设计图,工艺流程简图)

§一.化工原理课程设计任务书 1.1设计题目 煤油冷却换热器设计 1.2设计任务及操作条件 1、处理能力 15.8×104t/y 2、设备型式列管式换热器 3、操作条件 (1)煤油: 入口温度140℃,出口温度40℃ (2)冷却介质:工业硬水,入口温度20℃,出口温度40℃ (3)油侧与水侧允许压强降:不大于105 Pa (4)每年按330天计,每天24小时连续运行 (5)煤油定性温度下的物性参数: 1.3设计要求 选择合适的列管式换热器并进行核算 1.4绘制换热器装配图 (见A4纸另附) §二.设计方案简介 2.1换热器概述 换热器是化工,炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门,如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的意义。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

热水冷却器的设计

华东交通大学 课程设计说明书 设计题目:热水冷却器的设计 学院:基础科学学院专业班级:应用化学一班学生姓名:王业贵 学号:211 指导教师:周枚花老师 完成日期:2013.6.28

目录 任务书 (3) 一、设计题目: (3) 二、设计目的: (3) 三、设计任务及操作条件 (3) 四、设计内容 (3) 五、课程设计说明书的内容 (4) 六、主要参考书 (4) 七、设计时间 (4) 前言 (5) 一、设计方案简介 (6) 1.1换热器的选择 (6) 1.2设计概述 (7) 1.3设计方案 (7) 1.4管程安排 (8) 二、确定物性数据 (8) 三、主要工艺参数计算 (9) 3.1热负荷 (9) 3.2平均传热温差 (9) 3.3冷却水用量 (9) 3.4初算传热面积 (9) 3.5工艺结构尺寸 (10) 3.5.1管径和管内流速 (10) 3.5.3平均传热温差校正及壳程数 (10) 3.5.4传热管排列和分程方法 (11) 3.5.5壳体直径 (11) 3.5.6折流板 (11) 3.5.7接管 (12) 四、压降核算 (12) 4.1传热面积校核 (12) 4.1.1管程传热膜系数 (12) 4.1.2壳程传热膜系数 (13) 4.1.3污垢热阻和管壁热阻 (14) 4.1.4总传热系数K (14) 4.1.5传热面积校核 (14) 4.2换热器内压降的核算 (15) 4.2.1管程阻力 (15) 4.2.2壳程阻力 (16) 五、主要结构尺寸和计算结果 (17) 六、心得体会 (18) 七、参考文献 (18) 八、附图(工艺流程、主体设备工艺条件图) (18)

煤油冷却器设计.docx

河西学院 Hexi University 化工原理课程设计 题目 :煤油冷却器设计 学院 :化学化工学院 专业 :化学工程与工艺 学号 : 姓名 :张冠雄 指导教师 :王兴鹏 2016 年 11 月 21 日

化工原理课程设计任务书一、设计题目 煤油冷却器的设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量)25000吨 / 年 操作周期7200小时 / 年 2. 操作条件 煤油入口温度120 ℃,出口温度40 ℃ 冷却介质自来水,入口温度20 ℃,出口温度40 ℃ 允许压降≦ 105Pa 冷却水温度20℃ 饱和水蒸汽压力( 表压 ) 3. 设备型式列管式换热器 4.厂址上海(压力: 1atm ) 三、设计内容 1.设计方案的选择及流程说明 2.换热器的工艺计算 3.换热器的主要尺寸设计 4.辅助设备选型 5.设计结果汇总 6.绘制换热器总装配图:主视图、俯视图、剖面图、两个局部放大图 7.设计评述

目录 1 概述 .................................................. 化工原理课程设计的目的、要求...........................列管式换热器及其分类................................... 换热器的设计要求....................................... 符号说明 ............................................... 2 确定设计方案 .......................................... 设计任务 ............................................... 列管式换热器形式的选择................................. 管壳程的选择 ........................................... 流体流速的选择......................................... 3 列管式换热器的结构.................................... 管程结构 ............................................... 壳程结构 .............................................. 4 列管式换热器的设计计算................................ 计算步骤 ............................................... 计算传热系数 ........................................... 计算传热面积 ........................................... 5 工艺结构尺寸的计算.................................... 管径和管内流速......................................... 管程数和传热管数....................................... 平均传热温差校正系数................................... 传热管排列和分程方法................................... 壳体内径 ............................................... 折流板 ................................................. 接管 ................................................... 6 换热器核算 ............................................ 热量核算 ............................................... 面积核算 ...............................................错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。错误 ! 未指定书签。

(完整版)化工原理课程设计---煤油冷却器的设计

课程设计 课程名称化工原理课程设计题目名称煤油冷却器的设计

专业班级08级食品科学与工程(2)班学生姓名纪平平 学号50806022006 指导教师赵大庆 二O一O年十二月三十日

目录 1 《化工原理》课程设计任务书.......................................................................................................... - 1 - 1.1 设计题目..................................................................................................................................... - 1 - 1.2 原始数据及操作条件................................................................................................................. - 1 - 1.3 设计要求..................................................................................................................................... - 1 - 2 《化工原理》课程设计说明书.......................................................................................................... - 2 - 2.1 前言............................................................................................................................................. - 2 - 2.2 工艺流程图及说明..................................................................................................................... - 3 - 3 生产条件的确定.................................................................................................................................. - 4 - 4 换热器的设计计算.............................................................................................................................. - 4 - 4.1 选择换热器类型......................................................................................................................... - 4 - 4.2 流动空间及流速的确定............................................................................................................. - 4 - 4.3 确定物性数据............................................................................................................................. - 4 - 4.4 计算总传热系数......................................................................................................................... - 5 - 4.4.1 热流量............................................................................................................................ - 5 - 4.4.2 平均传热温差................................................................................................................ - 5 - 4.4.3 冷却水用量.................................................................................................................... - 6 - 4.4.4 总传热系数.................................................................................................................... - 6 - 4.5 计算传热面积............................................................................................................................. - 7 - 4.6 工艺结构尺寸............................................................................................................................. - 7 - 4.6.1 管径和管内流速............................................................................................................ - 7 - 4.6.2 管程数和传热管数........................................................................................................ - 7 - 4.6.3 平均传热温差校正及壳程数 ........................................................................................ - 7 - 4.6.4 传热管排列和分程方法................................................................................................ - 8 - 4.6.5 壳体内径........................................................................................................................ - 8 - 4.6.6 折流板............................................................................................................................ - 8 - 4.6.7 接管................................................................................................................................ - 9 - 4.7 换热器核算................................................................................................................................. - 9 - 4.7.1热量核算......................................................................................................................... - 9 - 4.7.2 换热器内流体的流动阻力...........................................................................................- 11 - 5 设计结果汇总表................................................................................................................................ - 13 - 6 设计评述............................................................................................................................................ - 14 - 7 心得体会.............................................................................................................................................. - 15 - 8 参考文献............................................................................................................................................ - 16 -

化工课程设计热水冷却器

《化工原理课程设计》 2013-2014第二学期 设计题目:热水冷却器的设计 姓名: 学号: 班级: 指导教师: 日期:

目录 1.确定设计方案 (3) 1.1 选择换热器的类型 (3) 1.2 设计要求 (3) 1.3 符号说明 (3) 2热水冷却器的设计工艺计算 (4) 2.1 设计原始数据 (5) 2.2 设计计算 (6) 2.3 初估换热面积及初选版型 (6) 2.4 计算总传热系数K (8) (1) 计算热水侧的对流给热系数 (8) (2) 计算冷水侧的对流给热系数 (8) (3) 金属板的热阻 (8) (4) 污垢热阻 (9) (5) 总传热系数K (9) 2.5 计算传热面积 (10) 2.6 压降计算 (10) 3设计结果评价 (11) [参考文献] (12)

1. 确定设计方案 1.1 选择换热器的类型 两流体温度变化情况:热流体进口温度85℃,出口温度55℃;冷流体人口温度32℃,出口温度40℃。该换热器用循环冷却水冷却,初选BJ0.2锯齿形波纹板片的板式热水冷却器。 1.2设计要求 处理能力: a t 4 1027.1? 热水 设备形式:锯齿形板式换热器 操作条件 热水:入口温度80℃,出口温度:60℃,压力为0.2Mpa 。 冷却介质:循环水,入口温度32℃,出口温度40℃,压力为0.3Mpa 。 允许压降:不大于5 10 Pa 每年按330天计,每天24 小时连续运行 1.3符号说明

2. 热水冷却器的设计工艺计算 2.1设计原始数据 出入换热器的流体温度及流量、设计压力如表所示: 表介质的温度及流量 查化工原理附录,两流体在定性温度下的物性数据如下表: 表介质的定性温度及物性数据

煤油冷却器 设计

河西学院 HexiUniversity 化工原理课程设计题目:煤油冷却器设计 学院:化学化工学院 专业:化学工程与工艺 学号: 姓名:张冠雄 指导教师:王兴鹏 2016年11月21日

化工原理课程设计任务书一、设计题目 煤油冷却器的设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量)25000吨/年 操作周期7200小时/年 2.操作条件 煤油入口温度120℃,出口温度40℃ 冷却介质自来水,入口温度20℃,出口温度40℃ 允许压降≦105Pa 冷却水温度20℃ 饱和水蒸汽压力0.25Mpa(表压) 3.设备型式列管式换热器 4.厂址上海(压力:1atm) 三、设计内容 1.设计方案的选择及流程说明 2.换热器的工艺计算 3.换热器的主要尺寸设计 4.辅助设备选型 5.设计结果汇总 6.绘制换热器总装配图:主视图、俯视图、剖面图、两个局部放大图 7.设计评述

目录

附图

煤油冷却器设计 作者:张冠雄 摘要:换热器在许多行业中有非常重要的地位,尤其是在化工、石油、等行业中。本次课程设计的任务是设计年处理25000吨煤油的煤油冷却器,采用列管式换热器。设计过程包括方案确定、换热器结构选择、主要换热设计计算并绘制列管式换热器的装配图。通过热量核算,压力降的核算以及面积裕度的求解,该换热器能够完成设计任务。 关键词:列管式换热器折流板法兰管板煤油水 1概述 1.1化工原理课程设计的目的、要求 课程设计是化工原理课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性的初步尝试,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工设计的初步训练通过课程设计,要求学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。同时,通过课程设计,还可以使学生树立正确的设计思路,培养实事求是、严肃认真、高度负责的科学作风。 课程设计是学生展示创新能力的有益实践。在设计中需要学生作出决策,即自己确定方案、选择流程、查阅资料、进行过程和设备计算,并要对自己的选择做出论证和核算,经过反复的分析和比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力、增强学生创新意识的环节。 通过课程设计,应该提高以下几个方面的能力: 熟悉查阅文献资料、搜索有关数据、正确选用公式。当缺乏必要数据时,尚需通过实验测定或到生产现场实际查定。 在兼顾技术上先进性、可靠性、经济上合理性的前提下,综合分析设计任务的要求,确定化工工艺流程,进行设备选型,并提出保证过程正常。安全运行所需要的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 准确而迅速地进行过程设计计算及主要设备的工艺设计计算。 用精练的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算结果。1.2列管式换热器及其分类 列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。所需材质,可分别采用普通碳钢、紫铜或不

相关主题
文本预览
相关文档 最新文档