当前位置:文档之家› 汽车转向系统的设计

汽车转向系统的设计

汽车转向系统的设计
汽车转向系统的设计

……………………. ………………. …………………

山东农业大学

毕 业 论 文

题目:汽车转向系统的设计

院 部 机械与电子工程学院

专业班级 2010级车辆工程2班 届 次 2014届 学生姓名 李琦 学 号 20100653 指导教师 张向阳 冯天涛

二О一四年六月十日

装 订 线 ……………….……. …………. …………. ………

目录

摘要 (Ⅰ)

Abstract (Ⅱ)

引言 (1)

1 汽车转向系方案的选择 (2)

1.1 转向系主要性能参数 (2)

1.1.1 转向器的效率 (2)

1.1.2 传动比的变化特性 (3)

1.1.3 转向器传动副的传动间隙 (5)

1.1.4 转向盘的总转动圈数 (5)

1.2转向系的选择 (6)

1.2.1 机械转向系 (6)

1.2.2 动力转向系 (6)

1.3机械式转向器的选择 (7)

1.3.1 齿轮齿条式转向器 (7)

1.3.2 循环球式转向器 (8)

1.3.3 蜗杆滚轮式转向器 (9)

1.3.4 蜗杆指销式转向器 (9)

1.4 转向传动机构的选择 (9)

1.4.1 与非独立悬架配用的转向传动机构 (9)

1.4.2 与独立悬架配用的转向传动机构 (10)

2 转向系的设计计算 (10)

2.1 螺杆—钢球—螺母传动副的设计 (11)

2.1.1 钢球中心距、螺杆外径和螺母内径 (11)

2.1.2 钢球直径及数量 (11)

2.1.3 滚道截面 (13)

2.1.4 接触角 (13)

2.1.5 螺距和螺旋线导程角 (13)

2.1.6 工作钢球圈数 (14)

2.1.7 导管内径 (14)

2.2 齿条、齿扇传动副的设计 (14)

2.3 循环球式转向器零件强度计算 (18)

2.4 转向系结构元件 (21)

结论 (22)

参考文献 (23)

致谢 (25)

Contents

Abstract (Ⅱ)

Introduction (1)

1 Selection of the automobile steering system (2)

1.1 The main performance parameters of the automobile steering system (2)

1.1.1 The efficiency of steering gear (2)

1.1.2 The change characteristics of transmission ratio (3)

1.1.3 The pair clearance of steering transmission (5)

1.1.4 The total number of rotating ring of steering wheel (5)

1.2 The choice of steering system (6)

1.2.1 Mechanical steering system (6)

1.2.2 Power steering system (6)

1.3 The selection of mechanical steering system (7)

1.3.1 The gear rack type steering gear (7)

1.3.2 The circulating ball type steering gear (8)

1.3.3 The worm wheel type redirector (9)

1.3.4 The worm pin type redirection (9)

1.4 The choice of steering transmission mechanism (9)

1.4.1 The independent suspension with steering transmission mechanism (9)

1.4.2 The dependent suspension with steering transmission mechanism (10)

2 The calculation in the design of steering system (10)

2.1 The setting of screw steel ball-nut vice (11)

2.1.1 The ball center distance, diameter and diameter of screw nut (11)

2.1.2 The ball diameter and number (11)

2.1.3 Raceway section (13)

2.1.4 Contact angle (13)

2.1.5 Pitch and helix lead angle (13)

2.1.6 The number of the working steel ball (14)

2.1.7 Tube diameter (14)

2.2 The setting of the rack tooth fan drive vice (14)

2.3 The circulating ball type steering parts strength calculation (18)

2.4 The steering system structure component (21)

Conclusion (22)

References (23)

Acknowledgement (25)

汽车转向系统的设计

作者:李琦指导老师:张向阳1 冯天涛2(1.枣庄市汽车运输有限公司维修中心助理工程师; 2.山东农业大学讲

师)

【摘要】汽车的转向系统是一套用来改变或恢复汽车行驶方向的专用机构。其最主要功能就是保证汽车能够按照驾驶员的意志进行转向行驶。本文针对的是与非独立悬架相匹配的整体式两轮转向机构。首先对汽车总体参数进行设计,在此基础上,对转向器进行设计,在对转向器的设计中,包括了螺杆—钢球—螺母传动副的设计和齿条—齿扇传动副的设计。设计过程中借鉴了同类汽车转向系设计的经验尺寸对转向系进行尺寸的初选。最后手绘完成转向系的设计图纸。

关键词:转向系统转向器传动副

The Design of Automobile Steering System

Author:Li Qi Supervisor: Zhang Xiangyang1 Feng Tiantao2

(1.Maintenance Center motor transport limited of Zaozhuang Assistant Engineer ; 2.

ShanDong Agriculture University Lecturer )

Abstract Vehicle steering system is used to change or restore a car in the direction of a dedicated agency.Its main function is to ensure that the car can be carried out in accordance with the driver steering.This article is aimed at non-independent suspension and would like to match the overall style of the two steering. First of all, the overall parameters of the vehicle design, in this basis, to the steering gear design.in the design of steering gear, including a screw - Ball - Vice-nut drive the design and rack - fan drive gear pair design .Through to the actual steering wheel in the maximum deflection angle with the steering wheel in the most ideal test of the difference of deflection angle and finally, hand-painted complete the design drawings.

Keywords: steering system; Steering Gear; Gearing

引言

汽车行驶过程中,按驾驶员的意志需经常改变其行驶方向,即所谓汽车转向。就轮式汽车而言,实现汽车转向的方法是,驾驶员通过一套专设的机构,是汽车转向桥上的车轮相对汽车纵轴线偏转一定角度。这一套用来改变或恢复汽车行驶方向的专设机构就称之为汽车转向系统[1]。汽车转向系统的最主要功能就是保证汽车能够按照驾驶员的意志进行转向行驶。转向系统是汽车底盘的重要组成部分,转向系统性能的好坏直接影响到汽车行驶的安全性、操纵稳定性和驾驶舒适性,它对于确保车辆的行驶安全、减少交通事故以及保护驾驶员的人身安全、改善驾驶员的工作条件起着重要作用。按转向力能源的不同,可将转向系分为机械转向系和动力转向系。

机械转向系的能量来源是人力,所有传力件都是机械的,由转向操纵机构(方向盘)、转向器、转向传动机构三大部分组成。其中转向器是将操纵机构的旋转运动转变为传动机构的直线运动的机构,是转向系的核心部件[2]。动力转向系除具有以上三大部件外,其最主要的动力来源是转向助力装置。转向助力装置最常用的是一套液压系统,因此也就离不开泵、油管、阀、活塞和储油罐,它们分别相当于电路系统中的电池、导线、开关、电机和地线的作用[3]。

早期的汽车转向是用舵柄或横杆进行操纵,汽车转向时的操作非常吃力。后来,带有齿轮减速比的转向机构很快被推广使用,但是,这种机构的方向盘要置放在汽车的左边或右边,这样也就触发了方向盘位置的争论,进而导致了今天的汽车分成了两大类方向盘装置法:一类以美国,中国,俄罗斯等世界上大多数国家和地区采用的左置方向盘,实行右上左下的汽车行驶规则;另一类以英国、日本等少数国家和地区采用的右置方向盘,实行右下左上的汽车行驶规则。几十年来,各种汽车都使用蜗杆扇形齿轮转向器,现在的循环球式转向器也是这种转向器的一种变型,汽车也经常使用。在这种转向器中,蜗杆与扇形齿轮之间嵌入了钢珠,大大降低了摩擦力,使汽车的转向操纵变得比较轻松。从70年代起汽车兴起了齿轮齿条转向机构,它由方向盘、方向轴、方向节、转动轴、转向器、转向传动杆和转向轮(前轮)等组成。方向盘操纵转向器内的齿轮转动,齿轮与齿条紧密啮合,推动齿条左移动或右移动,带动转向轮摆动,从而改变汽车行驶的方向[4]。这种转向机构与蜗杆扇形齿轮等其它类型的转向机构比较,省略了转向摇臂和转向主拉杆,具有构件简单,传动效率高的优点。而且它的逆传动效率也高,在车辆行驶时可以保证偏转车轮的自动回正,驾驶者的路感性强。后来,汽车转向器的型式被蜗杆一扇形齿轮型式所垄断,但由于齿轮齿条式转向机构具有构件少质量轻,成本低的优点,使人们特别是汽车制造商再次重视这种转向机构的简单实用性,现在大多数的汽车转向器都采用齿轮一齿条型。现代汽车马力大、速度快,为了操纵的轻便和灵敏,中高档次的汽车转向器都加装了转向动力装置,又称为液压动力转向器。它具有工作无噪声,灵触度高体积小,能够吸收来自不平路面的冲击力,在现代汽车上得到十分广泛的应用。

对汽车转向系统具有以下要求:汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,

任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,降低汽车的行驶稳定性;汽车转向行驶时,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶;汽车在任何行驶状态下,转向轮都不得产生自振,转向盘没有摆动;转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小;保证汽车有较高的机动性,具有迅速和小转弯行驶能力;操纵轻便;转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小;转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构;在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置;进行运动校核,保证转向轮与转向盘转动方向一致[4]。

1 汽车转向系统总体方案的设计

1.1 转向系主要性能参数

转向系的主要性能参数有转向系的效率,转向系的角传动比与力传动比,转向器传动副的传动间隙特性,转向系的刚度以及转向盘的总转动圈数。 1.1.1 转向器的效率

转向系的效率η0由转向器的效率η和转向操纵机构的效率η′决定,即:

'0ηηη= (1-1)

转向器效率η又有正效率η+与逆效率η_之分。功率P 1由转向轴输入,经转向摇臂轴输出所求得的效率称为正效率,反之为逆效率。

121

()

P P P η+-= (1-2)

323

()P P P η--=

(1-3)

式中 P 1——作用在转向轴上的功率; P 2——转向器中的摩擦功率;

P 3——作用在转向摇臂轴上的功率[5]。

正效率η+:影响转向器正效率的因素有:转向器的类型、结构特点、结构参数和制造质量等。

转向器的类型、结构特点与效率:汽车上常用的转向器形式有循环球式、蜗杆滚轮式、齿轮齿条式和蜗杆指销式等几种。齿轮齿条式。循环球式转向器的正效率比较高,其正效率η+可达到85%。同一类型的转向器,因结构不同,效率也有较大差别。如蜗杆滚轮式转向器的滚轮与支持轴之间的轴承可以有滚针轴承、锥轴承和滚珠轴承三种结构。第一种结构除滚轮与滚针之间有摩擦损失外,滚轮侧翼与垫片之间还有滑动摩擦损失,故这种转向器的效率η+仅达54%左右。根据试验,其余两种转向器结构的效率分别为70%和75%[6]。

转向器的结构参数与效率:蜗杆滚轮式转向器的传动副存在较大滑动摩擦,效率较

低。对于蜗杆和螺杆类转向器,如果忽略轴承和其他地方的抹茶损失,只考虑啮合副的摩擦损失,其效率为

00t a n t a n ()αηαρ

+=

+ (1-4)

式中 α0——蜗杆或螺杆的螺线导程角;

ρ——摩擦角; ρ= arctanf ; f ——摩擦系数[6]。

转向器逆效率:跟据逆效率大小不同,转向器又有可逆式、极限可逆式和不可逆式之分。

路面作用在车轮上的力,经过转向系可大部分传递到转向盘,这种转向器是可逆式的。它能保证汽车转向后,转向轮和转向盘自动回正。这既减少驾驶员疲劳,又提高了行驶安全性。但是,在坏路上行驶时,车轮受到的冲击力,大部分都传给转向盘,驾驶员容易“打手”,使之精神状态紧张,如长时间在坏路上行驶,易使驾驶员疲劳,影响安全行驶。因此,这类转向器适用于在良好路面上行驶的车辆。齿轮齿条式和循环球式都属于可逆式转向器。

不可逆式转向器,是指车轮受到的冲击力,不能传到转向盘的转向器。该冲击力由转向传动机构的零件承受,因而这些零件容易损坏。同时,它不能保证车轮自动回正,驾驶员又缺乏路面感觉。因此,现代汽车基本不采用这种转向器。

极限可逆式转向器介于上述两者之间。当车轮受有冲击力作用时,此力只有较小的一部分传至转向盘。它的逆效率较低,因此在坏路上行驶时,驾驶员并不十分紧张,同时转向传动机构的零件,所受冲击力也比不可逆式转向器要小。

如果只考虑啮合副的摩擦,忽略轴承和其他地方的摩擦损失,则逆效率可以用下式计算:

00

t a n ()

t a n αρ

ηα--=

(1-5)

式(1-5)表明:增加导程角,逆效率也增大。因此,虽然增加导程角能提高正效率,但此时因为逆效率也增大,故导程角不应取得过大;当导程角小于或等于摩擦角时,逆效率为负值或者为零,此时表明该转向器是不可逆式转向器。为此,导程角的最小值必须大于摩擦角。通常螺线的导程角选在8°~10°之间[6]。

1.1.2 传动比的变化特性

转向系传动比:转向系的传动比包括转向系的角传动比i ?o 和转向系的力传动比i p 。 从轮胎接地面中心作用在两个转向轮上的合力2F ?与作用在转向盘上的手力F h 之比,称为力传动比。

转向盘角速度?w 与同侧转向节偏转角速度?k 之比,称为转向系角传动比i ?o ,即

0/W w k k k w d d t d

i w d d t d ??ββ=

== (1-6)

式中,d φ为转向盘转角增量;d βk 为转向节转角增量;dt 为时间增量。 i ?o 又由转向器角传动比i w 和转向传动机构角传动比i w ′所组成,即

'

0w w w i i i = (1-7)

转向盘角速度w w 与摇臂轴角速度w p 之比,称为转向器角传动比i w ,即

/W w P P P w d dt d i w d dt d ??

ββ=

==

(1-8)

式中,d βp 为摇臂轴转角增量[7]

此定义适用于除齿轮齿条式之外的转向器。

摇臂轴角速度w p 与同侧转向节偏转角速度w k 之比,称转向传动机构的角传动比i w ′,即

'/P P P

w K K K w d dt d i w d dt d ββββ=

==

(1-9)

力传动比与转向系角传动比的关系:轮胎与地面之间的转向阻力F ω和作用在转向节上的转向阻力矩M γ有如下关系:

r

M F a ω=

(1-10)

式中,α为主销偏移距,指从转向节主销轴线的延长线与支承平面的交点至车轮中心平面与支承平面的交线的距离[7]。

作用在转向盘上的手力F h 可用下式表示:

2h

h s M F D ω

=

(1-11)

式中,M h 为作用在转向盘上的力矩;D s ω为转向盘直径。

将式(1-10),式(1-11)代入

2p h

F i F ω=

后得到

r s p h M D i M a

ω

=

(1-12)

分析式(1-12)可知,主销偏移距a 越小,力传动比i p 越大,转向越轻便[8]。通常乘用车的a 值在0.4~0.6倍轮胎的胎面宽度尺寸范围内选取,而货车的a 值在40~60mm 范围内选取。转向盘直径D s ω对轻便性有影响,选用尺寸小写的转向盘,虽然占用的空间少,但转向时需要对转向盘施以较大的力,而选用尺寸大些的转向盘又会使驾驶员进出驾驶室时入座困难。根据齿形不同,转向盘直径D s ω在380~550mm 的标准系列内选取。

如果忽略摩擦损失,可以用下式表示:

2r h k

M d i M d ω?

β== (1-13)

将式(1-12)代入式(1-13)后得到

02s p i D i a ωω

=

(1-14)

若α和D s ω不变,力传动比i p 越大,虽然转向越轻,但i ω0也越大,表明转向不灵敏[9]

转向系的角传动比i ω0:转向传动机构的角传动比,还可以近似地用转向节臂臂长l 2与摇臂臂长l 1之比来表示,即:

2

1'p k

d l i d l ωββ=

(1-15)

在现代汽车结构中,l 2与l 1的比值大约在0.85~1.10之间,可粗略认为其比值为1,

即i ωˊ近似为1,则:

0p

d i i d ωω?β≈=

(1-16)

由此可见,研究转向系的传动比特性,需研究转向器的角传动比及其变化规律[10]。 转向器角传动比及其变化规律:式(1-14)表明:增大角传动比可以增加力传动比。当转向阻力F ω一定时,增大力传动比能减少作用在转向盘上的手力F h ,使操纵轻便。

考虑到i ω0≈i ω,由i ω0的定义可知:对于一定的转向盘转角,转向轮转角与转向器角传动比成反比。角传动比增加后,转向轮转角对同一转向盘转角的响应变的迟钝,操纵时间增长,汽车转向灵敏性降低,所以“轻”和“灵”构成了一队矛盾。为解决这对矛盾,可采用变传动比转向器。齿轮齿条式、循环球齿条齿扇式、蜗杆滚轮式及蜗杆指销式转向器都可以制成变速比转向器。对于循环齿条齿扇式转向器的角传动比i ω=2πR/P 。因结构原因,螺距P 不能变化,但可以用改变齿扇啮合半径r 的方法达到使循环球齿条齿扇式转向器实现变速比的目的。对于乘用车,推荐转向器角传动比i ω在17~25范围内选取;对于商用车,i ω在23~32范围内选取。 1.1.3 转向器传动副的传动间隙

转向器传动间隙特性:传动间隙是指各种转向器中传动副(如循环球式转向器的齿扇和齿条)之间的间隙。该间隙随转向盘转角打打小不同而改变,这种变化和转向器的使用寿命有关。如何获得传动间隙特性将在后面转向器的设计中介绍。 1.1.4 转向盘的总转动圈数

转向盘从一个极端位置转到另一个极端位置时所转过的圈数称为转向盘的总转动圈数。它与转向轮的最大转角及转向系的角传动比有关,并影响转向的操纵轻便性和灵敏

性。桥车转向盘的总转动圈数较少,一般约在3.6圈以内;货车一般不宜超过6圈。

1.2转向系的选择

汽车转向系可按转向能源的不同分为机械转向和动力转向两大类。本设计采用的是

机械式转向系。

1.2.1 机械转向系

机械转向系以驾驶员的体力作为转向能源,其中所有传力件都是机械的。机械转向

系由转向操纵机构、转向器和转向传动机构三部分组成。当汽车转向时,驾驶员对转向

盘施加一个转向力矩。该力矩通过转向轴和柔性联轴节输入转向器,经左右横拉杆,传给

固定于两侧转向节上的左右转向节臂,使转向节和它所支撑的转向轮绕主销轴线偏移一

定角度,实现转向。

目前,许多国内外生产的新车型在转向操纵机构中采用了万向传动装置。这有助于

转向盘和转向器等部件和组件的通用化和系列化。只要适当改变转向万向传动装置的几

何参数,便可以满足各种变型车的总布置要求。即使在转向盘与转向器同轴线的情况下,其间也可以采用万向传动装置,以补偿由于部件在车上的安装误差和安装基体(驾驶室、车架)的变形所造成的二者轴线实际上的不重合。转向盘在驾驶室内的安置位置与各国

交通法规规定车辆靠道路左侧还是右侧通行有关。包括我国在内的大多数国家规定车辆

右侧通行,相应地应将转向盘安置在驾驶室左侧。这样,驾驶员左方的视野较广阔,有

利于两车安全交会。相反,在一些规定车辆靠左侧通行的国家和地区使用的汽车上,转

向盘则应安置在驾驶室右侧。

1.2.2 动力转向系

为了减轻转向时驾驶员作用到转向盘上的手力和提高行驶安全,在有些汽车上装设了动力转向机构。发动机排量在2.5L以上的乘用车,由与对其操纵轻便性的要求越来越高,采用或者可供选装动力转向器的逐渐增多。转向轴轴载质量超过2.5t的货车,可以采用动力转向;当超过4t时,应该采用动力转向。动力转向系统是兼用驾驶员体力和发动机(或电动机)的动力作为转向能源的转向系统[11]。动力转向系统是在机械转向系统的基础上加设一套转向加力装置而形成的。在正常情况下,汽车转向所需能量,只有一小部分由驾驶员提供,而大部分是由发动机通过动力转向装置提供的。但在动力转向装置失效时,一般还应当能由驾驶员独立承担汽车转向任务。因此,动力转向系是在机械转向系的基础上加设一套动力转向装置而形成的。对最大总质量在50吨以上的重型汽车而言,一旦动力转向装置失效,驾驶员通过机械传动系加于万向节的力远不足以使转向轮偏转而实现转向。故这种汽车的动力转向装置应当特别稳定可靠。

液压式动力转向机构:液压式动力转向由于油压工作压力高,动力缸尺寸,质量小,结构紧凑,油液具有不可压缩性,灵敏度高以及油液的阻尼作用可以吸收路面冲击等优点二被广泛应用。

属于动力转向装置的部件是:转向油罐、转向油泵、转向控制阀和转向动力缸。当

驾驶员逆时针转动转向盘时,转向摇臂带动转向直拉杆前移,直拉杆的力作用于转向节

臂,并依次传到梯形臂和转向横拉杆,使之右移。与此同时,转向直拉杆还带动转向控制阀中的滑阀,使转向动力缸的右腔接通液面压力为零的转向油罐。油泵的高压油进入转向动力缸的左腔,于是转向动力缸的活塞上受到向右的液压作用力便经推杆施加在横拉杆上,也使之右移。这样驾驶员施于转向盘上很小的转向力矩,便能克服地面作用于转向轮上的转向阻力矩。

车速感应型动力转向机构:随着转向轴负荷的增加,为转动转向轮驾驶员作用在转向盘上的力增加得也越多。这不仅容易造成驾驶员疲劳,而且疲劳驾驶也极易引发交通事故。为了满足在任何行驶工况下转向行驶都能保证良好的操纵轻便性和操纵稳定性,就必须采用车速传感型动力转向机构。

1 转向动力缸

2 动力缸活塞

3 转向齿轮

4 转向齿条

5 流量控制阀

6 转向液压泵

7 转向油罐

8 回

油管路 9 进油管路 10 扭杆 11 转向轴 12 阀芯 13 阀套

图1-1 捷达式轿车动力转向系统示意图

1.3机械式转向器的选择

根据所采用的转向传动副的不同,转向器的结构形式有多种。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。

对转向器结构型式的选择,主要是根据汽车的类型,前轴负荷,使用条件等来决定,并要考虑其效率特性,角传动比变化特性等对使用条件的适应性以及转向器的其他性能,寿命,制造工艺等。

本设计选用的是循环球—齿条齿扇式转向器。

1.3.1 齿轮齿条式转向器

齿轮齿条式转向器由与转向轴做成一体的转向齿轮和常与转向横拉杆做成一体的齿条组成。与其他形式的转向器比较,齿轮齿条式式转向器最主要的优点是:结构简单,紧凑;壳体采用铝合金或镁合金压铸而成,转向器的质量比较少;传动效率高达90%;转向器占用的体积小,没有转向摇臂和直拉杆,所以转向轮转角可以增大;制造成本低。

齿轮齿条式式转向器最主要的缺点是:因逆效率高(60%~70%),汽车在不平路面上行驶时,发生在转向轮与路面之间冲击力的大部分能转至转向盘,称之为反冲。

1 转向齿轮

2 转向齿条

3 弹簧

4 调整螺钉

5 锁紧螺母

6 压块

7 防尘罩

8 油封

9 轴

承 10 壳体

图1-2齿轮齿条式转向器示意图

反冲现象会使驾驶员精神紧张,并难以准确控制汽车行驶方向,转向盘突然转动又会造成打手,同时对驾驶员造成伤害。

1.3.2 循环球式转向器

循环球式转向器由螺杆和螺母共同形成的螺旋槽内装钢球构成的传动副,以及螺母上齿条与摇臂轴上齿扇构成的传动副组成,如图1-3。

图1-3循环球式转向器示意图

循环球式转向器的优点是:在螺杆和螺母之间因为有可以循环流动的钢球,将滑动摩擦转变为滚动摩擦,因而传动效率可达到75%~85%;在结构和工艺上采取措施后,包括提高制造精度,改善工作表面的表面粗糙度和螺杆。螺母上的螺旋槽经淬火和磨削加工,使之有足够的硬度和耐磨损性能,可保证有足够的使用寿命;转向器的传动比可以变化;工作平稳可靠;齿条和齿扇之间的间隙调整工作容易进行;适合用来做整体式动力转向器。

循环球式转向器的缺点是:逆效率高,结构复杂,制造困难,制造精度要求高。

该种转向器在中高级轿车上应用较为广泛。

1.3.3 蜗杆滚轮式转向器

蜗杆滚轮式转向器由蜗杆和滚轮啮合而构成。其主要优点是:结构简单;制造容易;因为滚轮的齿面和蜗杆上的螺纹呈面接触,所以有较高的强度,工作可靠,磨损小,寿命长;逆效率低。

蜗杆滚轮式转向器主要缺点是:正效率低;工作齿面磨损以后,调整啮合间隙比较困难;转向器的传动比不能改变。

这种转向器在小型货车上有所应用。

1.3.4 蜗杆指销式转向器

蜗杆指销式转向器的销子若不能自转,称为固定销式蜗杆指销式转向器;销子除随同摇臂轴转动外,还能绕自身轴线转动的,称为旋转销式转向器。根据销子数量不同,又有单销和双销之分。

蜗杆指销式转向器的优点是:转向器的传动比可以做成不变的或者变化的;指销和蜗杆之间的工作面磨损后,调整间隙工作容易。

固定销蜗杆指销式转向器的结构简单,制造容易;但是因销子不能自转,销子的工作部位基本保持不变,所以磨损快,工作效率低。旋转销式转向器的效率高,磨损慢,但结构复杂[13]。

这种转向器应用较少。

1.4 转向传动机构的选择

从转向器到转向轮之间的所有传动杆件总称为转向传动机构。转向传动机构的功用是将转向器输出的力和运动传到转向桥两侧的转向节,使转向轮偏转,并使两转向轮偏转角按一定关系变化,以保证汽车转向时车轮与地面的相对滑动尽可能小。

1.4.1 与非独立悬架配用的转向传动机构

转向传动机构的组成:转向传动机构由转向摇臂、转向直拉杆、转向节臂和转向梯形等零部件共同组成,其中转向梯形由梯形臂、转向横拉杆和前梁共同构成。

1 转向器

2 转向摇臂

3 转向直拉杆

4 转向节臂

5 梯形臂

6 转向横拉杆

图1-4与非独立悬架配用的转向传动机构示意图

转向摇臂:循环球式转向器和蜗杆曲柄指销式转向器通过转向摇臂与转向直拉杆相连。转向摇臂的大端用锥形三角细花键与转向器中摇臂轴的外端连接,小端通过球头销

与转向直拉杆作空间铰链连接。

转向直拉杆:转向直拉杆是转向摇臂与转向节臂之间的传动杆件,具有传力和缓冲作用。在转向轮偏转且因悬架弹性变形而相对于车架跳动时,转向直拉杆与转向摇臂及转向节臂的相对运动都是空间运动,为了不发生运动干涉,三者之间的连接件都是球形铰链。

转向横拉杆:转向横拉杆是转向梯形机构的底边,由横拉杆体和旋装在两端的横拉杆接头组成。其特点是长度可调,通过调整横拉杆的长度,可以调整前轮前束。

1 带锥度的三角形齿形花键

2 转向摇臂

3 球头销

4 摇臂轴

图1-5转向摇臂示意图

1.4.2 与独立悬架配用的转向传动机构

转向直拉杆:转向直拉杆是转向摇臂与转向节臂之间的传动杆件,具有传力和缓冲作用。在转向轮偏转且因悬架弹性变形而相对于车架跳动时,转向直拉杆与转向摇臂及转向节臂的相对运动都是空间运动,为了不发生运动干涉,三者之间的连接件都是球形铰链。

1 转向摇臂

2 转向直拉杆

3 左转向横拉杆

4 右转向横拉杆

5 左梯形臂

6 右梯形臂

7 摇杆

8 悬架左摆臂 9 悬架右摆臂 10 齿轮齿条式转向器

图1-6 断开式转向传动机构示意图

转向横拉杆:转向横拉杆是转向梯形机构的底边,由横拉杆体和旋装在两端的横拉

杆接头组成。其特点是长度可调,通过调整横拉杆的长度,可以调整前轮前束。

2 转向系的设计计算

转向器的结构型式选择及其设计计算循环球式转向器又有循环球-齿条齿扇式和另一种即循环球-曲柄销式两种。在传动副上前者为:螺杆、钢球和螺母传动副以及落幕上的齿条和摇臂轴上的齿扇传动副;后者为螺杆、钢球和螺母传动副以及螺母上的销座与摇臂轴的锥销或球销传动副。本设计选用的循环球-齿条齿扇式转向器。

2.1 螺杆—钢球—螺母传动副的设计

表2-1 各类汽车循环球转向器的齿扇模数[14]

齿扇模数m/mm 3.0 3.5 4.0 4.5 5.0 6.0 6.5

乘用车排量/mL

550 1000

1800

1600

2000

2000 2000

前桥负荷

/kN

3.5

3.8

4.7

7.35

7.0

9.0

8.3

11.0

10.0

11

商用车前桥负荷

/kN

3.0

5.0

4.5

7.5

5.5

18.5

7.0

19.5

9.0

24

17

37

23

44 最大装载

质量

/kg350 1000 2500 2700 4000 6000 8000 由设计要求可知最大载质量为2000kg,由前面的整体设计知满载时:前轴负荷为

1.3825t,即13548.5N,所以根据表3-1,齿扇模数选4.0mm。

2.1.1 钢球中心距、螺杆外径和螺母内径

钢球中心距是基本尺寸。螺杆外径D1、螺母内径D2及钢球直径d对确定钢球中心距D的大小有影响,而D又对转向器结构尺寸和强度有影响。在保证足够的强度条件下,尽可能将D值取小些。设计时先参考同类汽车的参数进行初选,经强度验算后,再进行修正。螺杆外径D1通常在20~38范围内变化,设计时应根据转向轴负荷的不同来选定。螺母内径D2应大于D1,一般要求D2 - D1=(5%~10%)D[15]。

根据表2-2,本设计初选钢球中心距为25mm,螺杆外径25mm,D2-D1=8%D,所以螺母内径D2为27mm。

2.1.2 钢球直径及数量

钢球直径尺寸d取得大,能提高承载能力,同时螺杆和螺母传动机构和转向器的尺

寸也随之增加。钢球直径应符合国家标准一般常在7~9mm范围内选用(表2-2)。

增加钢球数量n,能提高承载能力,但是钢球流动性变坏,从而使传动效率降低。

因为钢球直径本身有误差,所以共同参加工作的钢球数量并不是全部的钢球数。经验表明,每个环路中的钢球数以不超过60为好。为保证尽可能多的钢球都承载,应分组装配。

表2-2 循环球式转向器主要参数

[16]

齿扇模数/mm 3.0

3.5

4.0

4.5

5.0

6.0 6.5 摇臂轴直径/mm 22 26 30 32

32 35 38 40 42 45 钢球中心距/mm 20 23 25 25 28

60 32 35

40

螺杆外径/mm 20 23 25 25 28 29

34

38

钢球直径/mm 5.556 5.556 6.350 6.350 7.144

7.144 8.000

螺距/mm

7.938 8.731

9.525

9.525 10.000 10.000 11.000 工作圈数 1.5

1.2

2.5

2.5

环流行数 2

螺母长度/mm

41

45 52

46 47

58

56

59 62 72 78

80 82

齿扇齿数

3 5

5

齿扇整圆齿数 12 13

13 13 14 15

齿扇压力角 22°30′ 27°30′

切削角

6°30′

6°30′ 7°30′ 齿扇宽/mm

22 25

25 27

25 28

30

28~32

30

34 38

35 38

每个环路中的钢球数为

0cos DW DW

n d d

ππα=

(2-1)

式中,D 为钢球中心距;W 为一个环路着那个的钢球工作圈数;n 为不包括环流导管中的钢球数;α0为螺线导程角,常取α0=5°~8°,故cos α0≈1。

本设计中钢球直径d=7.144,工作圈数W=2.5,由公式(2-1)可得钢球数n 为27。 2.1.3 滚道截面

图2-1 滚道截面示意图

当螺杆和螺母的滚道截面各由两条圆弧组成,形成四段圆弧滚道截面时,如图2-1所示,钢球与滚道有四点接触,传动时轴向间隙最小,可满足转向盘自由行程小的要求。图2-1中滚道与钢球之间的间隙,除用来储存润滑油之外,还能储存磨损杂质。为了减少摩擦,螺杆和螺母沟槽的半径r c 应大于钢球半径d/2,一般取r c =(0.51~0.53)d [17][18]。螺杆滚道应倒角,用来避免该处被啮出毛刺而划伤钢球后降低传动效率。

本设计取r c =0.53d=3.786mm 。 2.1.4 接触角

钢球与螺杆滚道接触点的正压力方向与螺杆滚道法向截面轴线间的夹角称为接触角θ,θ角多取为45°,以使轴向力和径向力分配均匀。

本设计θ取为45°。 2.1.5 螺距和螺旋线导程角

转向盘转动φ角,对应螺母移动的距离s 为

/2s P π=? (2-2)

式中,P 为螺纹螺距[10]。

与此同时,齿扇节圆转过的弧长等于s ,相应摇臂转过βp 角,期间关系为

P s r

=β (2-3)

式中,r 为齿扇节圆半径[10]。

联立式(2-2)、(2-3),将φ对βp 求导,得循环球式转向器角传动比i ω为

2/w i r P

π= (2-4)

由式(2-4)可知,;螺距P 影响转向器角传动比的值。螺距P 一般在8~11mm 内选取。 本设计选取螺距P 为9.525mm 。

在已知螺旋线导程角α0和螺距t 的情况下,钢球中心距D 也可由下式求得:

tan P

D πα=

(2-5)

式中 P —螺杆与螺母滚道的螺距; α0—螺线导程角[17]。

因此根据式(2-5)反推出螺旋线导程角 α0为7° 根据式(2-4)得节圆半径r=30.33mm 。 2.1.6 工作钢球圈数

多数情况下,转向器用两个环路,而每个环路的工作钢球圈数W 又与接触强度有关:增加工作钢球圈数,参加工作的钢球数增多,能降低接触应力,提高承载能力;但钢球受力不均匀。螺杆增长使刚度降低。工作钢球圈数有1.5和2.5圈两种。一个环路的工作钢球圈数的选取见表2-2。

本设计选取工作钢球圈数W 为2.5圈。 2.1.7 导管内径

容纳钢球而且钢球在其内部流动的导管内径d 1=d+e,式中,e 为钢球直径d 与导管内径之间的间隙。e 不易过大,否则钢球流经导管时球心偏离导管中心的距离增大,并使流动阻力增大。推荐e=0.4~0.8mm 。导管壁厚取为1mm 。

本设计选取e 为0.5mm ,所以导管内径为7.644mm 。 2.2 齿条、齿扇传动副的设计

首先分析转向器的传动间隙,既齿扇和齿条之间的间隙。该间隙随转向盘转角φ的大小不同而改变,这种变化关系称为转向器传动副传动间隙特性。研究该特性的意义在于,他与直线行驶的稳定性和转向器的使用寿命有关[18]。

图2-2转向器传动副传动间隙特性

转向器传动副在中间及其附近位置因使用频繁,磨损速度要比两端快。在中间附近位置因磨损造成的间隙大到无法确保直线行驶稳定性时,必须经调整消除该处的间隙。调整后,要求转向盘能圆滑地从中间位置转到两端,而无卡住现象。

为此,传动副的传动间隙特性,应当设计成在离开中间位置以后呈图2-2所示的逐渐增大的形状。图2-2中,曲线1表明转向器在磨损前的间隙变化特性;曲线2表明使用并磨损后的间隙变化特性,并且中间位置已出现较大间隙;曲线3表明调整后并消除中间位置间隙的转向器传动间隙变化特性。

循环球式转向器的齿条齿扇传动副的传动间隙特性,可通过将齿扇齿做成不同厚度来获取必要的传动间隙,即齿扇由中间齿向两端齿的齿厚是逐渐减小的。为此可在齿扇的切齿过程中使毛坯绕工艺中心O 1转动,如图2-3所示,O 1相对于摇臂轴的中心O 有距离为n 的偏心。

图2-3 为获得变化的齿侧间隙齿扇的加工原理和计算简图

这样加工的齿扇在齿条的啮合中由中间齿转向两端的齿时,齿侧间隙Δs 也逐渐加大,Δs 可表达为

]

cos cos [tan 2tan 222

22n r n n r r s w w -+±-=?=?ββαα (2-6)

式中 Δr ——径向间隙; α——啮合角;

r ω——齿扇的分度圆半径; β——摇臂轴的转角[9]。

当α,r ω确定后,根据上式可绘制如图2—4所示的线图,用于选择适当的n 值,以便使齿条、齿扇传动副两端齿啮合时,齿侧间隙Δs 能够适应消除中间齿最大磨损量所形成的间隙的需要。

齿条、齿扇传动副各对啮合齿齿侧间隙Δs 的改变也可以用改变齿条各齿槽宽而不

毕业论文设计转向系统设计

目录摘要2 第一章绪论3 1.1汽车转向系统概述3 1.2齿轮齿条式转向器概述9 1.3液压助力转向器概述10 1.4国内外发展情况12 1.5本课题研究的目的和意义12 1.6本文主要研究内容13 第二章汽车主要参数的选择14 2.1汽车主要尺寸的确定14 2.2汽车质量参数的确定16 2.3轮胎的选择17 第三章转向系设计概述18 3.1对转向系的要求18 3.2转向操纵机构18 3.3转向传动机构19 3.4转向器20 3.5转角及最小转弯半径20 第四章.转向系的主要性能参数22 4.1转向系的效率22 4.2传动比变化特性23 4.3转向器传动副的传动间隙△T25 4.4转向盘的总转动圈数26 第五章机械式转向器方案分析及设计26 5.1齿轮齿条式转向器26 5.2其他转向器28 5.3齿轮齿条式转向器布置和结构形式的选择29 5.4数据的确定29 5.5设计计算过程31 5.6齿轮轴的结构设计35 5.7轴承的选择35 5.8转向器的润滑方式和密封类型的选择35 5.动力转向机构设计36 5.1对动力转向机构的要求36 5.2动力转向机构布置方案36 5.3液压式动力转向机构的计算38 5.4动力转向的评价指标43

6. 转向传动机构设计45 6.1转向传动机构原理45 6.2转向传送机构的臂、杆与球销47 6.3转向横拉杆及其端部47 6.4杆件设计结果48 7.结论49 致谢49 摘要 本课题的题目是转向系的设计。以齿轮齿条转向器的设计为中心,一是汽车总体构架参数对汽车转向的影响;二是机械转向器的选择;三是齿轮和齿条的合理匹配,以满足转向器的正确传动比和强度要求;四是动力转向机构设计;五是梯形结构设计。因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。实现了转向器结构简单紧凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。在本文中主要进行了转向器齿轮齿条的设计和对转向齿轮轴的校核,主要方法和理论采用汽车设计的经验参数和大学所学机械设计的课程内容进行设计,其结果满足强度要求,安全可靠。 关键词:转向系;机械型转向器;齿轮齿条;液压式助力转向器 Abstract The title of this topic is the design of steering system. Rack and pinion steering gear to the design as the center, one vehicle parameters on the overall framework of the impact of vehicle steering; Second, the choice of mechanical steering; third rack gear and a reasonable match to meet the correct steering gear ratio and strength requirements; Fourth, power steering mechanism design; Fifth, the structural design of trapezoidal. Therefore, taking into account the above issues and factors that require study, based on the steering wheel rotary drive transmission shaft of the steering rack and pinion steering, through the universal joint drive shaft rotation gear shift, steering rack and steering gear shaft meshing, thereby encouraging steering rack linear motion to achieve steering. Simple structure to achieve the steering tight, short axial dimension, and the number of parts can increase the advantages of less power in order to achieve the vehicle steering stability and sensitivity. In this article a major design steering rack and pinion steering gear shaft and the check, the main methods and theoretical experience in the use of automotive design parameters and the University of mechanical design school curriculum design and the results meet the strength

汽车专业毕业论文资料

石家庄科技信息职业学院顶岗实习岗位技术工作论文 汽车转向器的故障分析 学号:131208038 姓名: 李鹤 专业:汽车检测与维修技术 年级:13 级 企业指导老师:王振华 校内指导老师:乔晓英

转向系是汽车行驶的指南针,它的好坏关系着汽车能否安全行驶。本文首先讲述了汽车动力转向系的整体结构;具体介绍了它的功用;分类和工作原理。然后具体对轿车动力转向系统常见的几种故障:一转向沉重,二转向时有噪声, 三方向盘自由行程过大,四左右转向时轻重不一,五转向时转向盘强烈抖动,六汽车直线行驶时,转向盘发飘或跑偏。最后讲述了轿车动力转向系中转向盘的自由行程,转向储液罐的液面高度,液压泵的泵送压力,液压系统的密封性, 转向柱的检查方法以及通过轿车动力转向系的故障现象进行了诊断分析和检修。对使用和维护汽车有着很现实的意义。 关键词轿车,转向器,故障分析,检查维修

引言 (4) 1汽车转向系统的简介 (5) 1.1汽车动力转向系的组成 (5) 1.2汽车动力转向系的工作原理 (6) 2轿车动力转向系故障诊断分析 (9) 2.1转向沉重 (9) 2.2 转向时有噪声 (10) 2.3方向盘自由行程过大 (10) 2.4左右转向时轻重不一 (11) 2.5转向时转向盘强烈抖动 (11) 2.6汽车直线行驶时,转向盘发飘或跑偏 (12) 3轿车动力转向系的检查与维修 (12) 3.1转向盘的自由行程的检查 (12) 3.2转向储液罐的液面高度的检查 (13) 3.3液压泵的泵送压力的检查 (13) 3.4液压系统的密封性的检查 (13) 3.5转向柱的检修 (13) 4 汽车故障事例分析 (14) 4.1故障事例一 (14) 4.2故障事例二 (15) 结论 (15) 参考文献 (16)

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

汽车设计课程设计

XX大学 汽车设计课程设计说明书设计题目:轿车转向系设计 学院:X X 学号:XXXXXXXX 姓名:XXX 指导老师:XXX 日期:201X年XX月XX日

汽车设计课程设计任务书 题目:轿车转向系设计 内容: 1.零件图1张 2.课程设计说明书1份 原始资料: 1.整车性能参数 驱动形式4 2前轮 轴距2471mm 轮距前/后1429/1422mm 整备质量1060kg 空载时前轴分配负荷60% 最高车速180km/h 最大爬坡度35% 制动距离(初速30km/h) 5.6m 最小转向直径11m 最大功率/转速74/5800kW/rpm 最大转矩/转速150/4000N·m/rpm 2.对转向系的基本要求 1)汽车转弯行驶时,全部车轮应绕顺时转向中心旋转; 2)操纵轻便,作用于转向盘上的转向力小于200N; 3)转向系的角传动比在15~20之间,正效率在60%以上,逆效率在50%以上;4)转向灵敏; 5)转向器和转向传动机构中应有间隙调整机构; 6)转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

目录 序言 (4) 第一节转向系方案的选择 (4) 一、转向盘 (4) 二、转向轴 (5) 三、转向器 (6) 四、转向梯形 (6) 第二节齿轮齿条转向器的基本设计 (7) 一、齿轮齿条转向器的结构选择 (7) 二、齿轮齿条转向器的布置形式 (9) 三、设计目标参数及对应转向轮偏角计算 (9) 四、转向器参数选取与计算 (10) 五、齿轮轴结构设计 (12) 六、转向器材料 (13) 第三节齿轮齿条转向器数据校核 (13) 一、齿条强度校核 (13) 二、小齿轮强度校核 (15) 三、齿轮轴的强度校核 (18) 第四节转向梯形机构的设计 (21) 一、转向梯形机构尺寸的初步确定 (21) 二、断开式转向梯形机构横拉杆上断开点的确定 (24) 三、转向传动机构结构元件 (24) 第五节参考文献 (25)

汽车电路系统设计要求规范

汽车电路系统设计规范 一、制图标准的制定: 1.1电器符号的定义: 电气图形符号、诊断系统图形符号世界各大公司所用不尽相同,我们根据ISO7639、DIN40900以及美、日主要汽车公司常用符号制定奇瑞公司的电气图形符号库,若有新的器

件没有相应的符号可以根据需要经电器部相关设计人员讨论通过后添加到该库里,以不断丰富更新符号库。

电路图的读图方式一般有正向读图和反向读图两种方法。正向读图一般是设计开发时计算电流分配,负荷计算时使用的一种思路、设计方法;反向读图一般是电路故障检修或优化局部电路时常用的方法,和正向读图方法基本相反。 正向读图法:由电源——电流分配盒——保险丝——控制开关——控制模块输入——控制模块输出——线路分流——用电设备(执行机构)——地。 二、整车电器开发设计输入 根据公司开发车型的市场定位、级别以及市场相关车型比较,电器项目负责人编制出VTS(Vehicle Technical Specify)报公司审批,批准后的VTS表作为整车电器开发的设计输入,各专业组根据VTS要求编写详细的产品功能定义,技术要求。 三、单元电路设计格式规范 3.1功能定义:①根据VTS的要求讨论并制定主要单元电路、电器件零部件组成, 比如空调需要确定蒸发器结构类型、风门控制机构数量、传感器数 量、电子调速器、压缩机类型、冷凝器类型等,并应开始编制初级 BOM表; ②电器件的额定电压、工作电压范围、额定功率的确定; ③额定工作电流、最大工作电流(电机阻转状态)、静态耗电电流的 确定(≤3mA)。 3.2电路原理图:根据各单元的功能确定需要整车输入的哪些信号,输出哪些信号, 信号的类型(触发信号,脉冲频率信号,高电平或者低电平信号), 信号参数。控制方面应该考虑继电器控制还是集成电路控制,对于 CAN-BUS需确定该单元的控制信息,系统状态实时检测信息,以 及故障检测信息需不需要在CAN上公布等。单元电路的设计输出

汽车转向系统设计计算匹配方式方法

1 汽车转向系统的功能 1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。 对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘 转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。这时, 基本上是角输入。而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有 一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。 1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。这种反馈,通常称为路感。 驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、 身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车 的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路 感是优良的操稳性中不可缺少的部分。 反馈分为力反馈和角反馈 从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。 2 转向系统设计的基本要求 转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。转向系的基本要求如下: 2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。 不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。实际上,没有哪 一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向 角(轮15°~25°围)使转向外轮运动关系逼近上述要求。 2.2 良好的回正性能 汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。转向轮的回正力矩的大小主要由悬架系统所决定的前 轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销倾角、 主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的 逆效率等。 2.3汽车在任何行驶状态下,转向轮不得产生自振,方向盘没有摆动。 2.4 转向机构与悬架机构的运动不协调所造成的运动干涉应尽可能小,由于运动干涉使转向轮产生的摆动应最小。 汽车转弯行驶时,作用在汽车质心处的离心力的作用,轮载荷减小,外轮载荷

汽车转向器毕业设计

汽车转向器毕业设计 【篇一:毕业设计汽车转向系统】 摘要 本设计课题为汽车前轮转向系统的设计,课题以机械式转向系统的齿轮齿条式转向器设计及校核、整体式转向梯形机构的设计及验算 为中心。首先对汽车转向系进行概述,二是作设计前期数据准备, 三是转向器形式的选择以及初定各个参数,四是对齿轮齿条式转向 器的主要部件进行受力分析与数据校核,五是对整体式转向梯形机 构的设计以及验算,并根据梯形数据对转向传动机构作尺寸设计。在转向梯形机构设计方面。运用了优化计算工具matlab进行设计 及验算。matlab强大的计算功能以及简单的程序语法,使设计在参数变更时得到快捷而可靠的数据分析和直观的二维曲线图。最后设 计中运用autocad和catia作出齿轮齿条式转向器的零件图以及装配图。 关键词:转向机构,齿轮齿条,整体式转向梯形,matlab梯形abstract the title of this topic is the design of steering system. rack and pinion steering of mechanical steering system and integrated steering trapezoid mechanism gear to the design as the center. firstly make an overview of the steering system. secondly take a preparation of the data of the design. thirdly, make a choice of the steering form and determine the primary parameters and design the structure of rack and pinion steering. fourthly, stress analysis and data checking of the rack and pinion steering. fifthly, design of steering trapezoid mechanism, according to the trapezoidal data make an analysis and design of steering linkage. in the design of integrated steering trapezoid mechanism the computational tools matlab had been used to design and checking of the data. the powerful computing and intuitive charts of the matlab can give us accurate and quickly data. in the end autocad and catia were used to make a rack and pinion steering parts diagrams and assembly drawings keywords: steering system,mechanical type steering gear and gear rack, integrated steering trapezoid,matlab trapezoid

汽车转向系统毕业设计说明

摘要 本课题的题目是转向系的设计。以齿轮齿条转向器的设计为中心,一是汽车总体构架参数对汽车转向的影响;二是机械转向器的选择;三是齿轮和齿条的合理匹配,以满足转向器的正确传动比和强度要求;四是动力转向机构设计;五是梯形结构设计。因此本课题在考虑上述要求和因素的基础上研究利用转向盘的旋转带动传动机构的齿轮齿条转向轴转向,通过万向节带动转向齿轮轴旋转,转向齿轮轴与转向齿条啮合,从而促使转向齿条直线运动,实现转向。实现了转向器结构简单紧凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。在本文中主要进行了转向器齿轮齿条的设计和对转向齿轮轴的校核,主要方法和理论采用汽车设计的经验参数和大学所学机械设计的课程容进行设计,其结果满足强度要求,安全可靠。 关键词:转向系;机械型转向器;齿轮齿条;液压式助力转向器 1.绪论 1.1汽车转向系统概述 转向系统是汽车底盘的重要组成部分,转向系统性能的好坏直接影响到汽车行驶的安全性、操纵稳定性和驾驶舒适性,它对于确保车辆的行驶安全、减少交通事故以及保护驾驶员的人身安全、改善驾驶员的工作条件起着重要作用。随着现代汽车技术的迅速发展,汽车转向系统已从纯机械式转向系统、液压助力转向系(HPS)、电控液压助力转向系统(EHPS),发展到利用现代电子和控制技术的电动助力转向系统(EPS)及线控转向系统(SBW)。 按转向力能源的不同,可将转向系分为机械转向系和动力转向系。 机械转向系的能量来源是人力,所有传力件都是机械的,由转向操纵机构(方向盘)、转向器、转向传动机构三大部分组成。其中转向器是将操纵机构的旋转运动转变为传动机构的直线运动(严格讲是近似直线运动)的机构,是转向系的核心部件[2]。 动力转向系除具有以上三大部件外,其最主要的动力来源是转向助力装置。由于转向助力装置最常用的是一套液压系统,因此也就离不开泵、油管、阀、活

越野车转向系统的设计

毕业设计 题目:越野车转向系统设计与优化学生姓名: 学号: 专业: 年级: 指导老师: 完成日期:

目录 第一章电动转向系统的来源及发展趋势 (1) 第二章转向系统方案的分析 (3) 1.工作原理的分析 (3) 2. 转向系统机械部分工作条件 (3) 3.转向系统关键部件的分析 (4) 4.转向器的功用及类型 (5) 5.转向系统的结构类型 (5) 6.转向传动机构的功用和类型 (7) 第三章转向系统的主要性能参数 (8) 1. 转向系的效率 (8) 2. 转向系统传动比的组成 (8) 3. 转向系统的力传动比与角传动比的关系 (8) 4. 传动系统传动比的计算 (9) 5. 转向器的啮合特征 (10) 6. 转向盘的自由行程 (11) 第四章转向系统的设计与计算 (12) 1. 转向轮侧偏角的计算(以下图为例) (12) 2. 转向器参数的选取 (12) 3. 动力转向机构的设计 (12) 4. 转向梯形的计算和设计 (14)

第五章结论 (16) 谢辞 (17) 参考文献 (18) 附录 (19)

转向系统设计与优化 摘要 汽车在行驶过程中,需要按照驾驶员的意志经常改变行驶方向,即所谓汽车转向。用来改变或保持汽车行驶方向的机构称为汽车转向系统。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全是至关重要的。因此需要对转向系统进行优化,从而使汽车操作起来更加方便、安全。本次设计是EPS电动转向系统,即电动助力转向系统。该系统是由一个机械系统和一个电控的电动马达结合在一起而形成的一个动力转向系统。EPS系统主要是由扭矩传感器、电动机、电磁离合器、减速机构和电子控制单元等组成。驾驶员在操纵方向盘进行转向时,转矩传感器检测到转向盘的转向以及转矩的大小,将电压信号输送到电子控制单元,电子控制单元根据转矩传感器检测到的转距电压信号、转动方向和车速信号等,向电动机控制器发出指令,使电动机输出相应大小和方向的转向助力转矩,从而产生辅助动力。汽车不转向时,电子控制单元不向电动机控制器发出指令,电动机不工作。该系统由电动助力机直接提供转向助力,省去了液压动力转向系统所必需的动力转向油泵、软管、液压油、传送带和装于发动机上的皮带轮,既节省能量,又保护了环境。另外,还具有调整简单、装配灵活以及在多种状况下都能提供转向助力的特点。因此,电动助力转向系统是汽车转向系统的发展方向。 关键词:机械系统,扭矩传感器,电动机,电磁离合器,减速机构,电子控制单元。

大客车底盘系统设计概念及方案技术要求 上

城市客车底盘 系统设计概念及方案技术要求 (上半部分)

目录一.概述 二.系统设计概念及技术要求 1.车架 2.前后桥 3.前后桥悬架系统 4.轮胎 5.转向系统 6.制动系统 7.底盘自动集中润滑系统

一.概述 本稿所涉及的车型是传统城市客车。车辆主要实施动力系统及其附件系统更改、增加动力电池系统和动力系统电控系统等;所牵涉的其它相关系统,以最大限度的保持对基本型的继承性为原则,进行设计更改或重新设计。整车造型根据实际情况作适应性改进。 以下内容只涉及除动力系统(包括动力装置、电池、电控)以外的以底盘为主的系统设计概念及主要技术要求。 所有相关的设计人员应通过了解设计概念最终达成一致意见,并且将特殊要求的信息给予及时反馈。系统概念给出的是依据法规、国标要求以及相应整车技术规范而形成的框架类描述和基本要求。这些要求必须在后续开发工作中得到响应,并且可能应个别特殊要求做必要的调整和补充。

二.系统设计概念及技术要求 1. 车架 车架采用传统成熟的三段式整体结构,适应不同的系统安装要求,做相应的结构变动和设计调整,同时力求结构可靠和轻量化相结合,以满足底盘配置和可靠性要求。 结构型式参加下图: 主要尺寸参数—— 总长度(m):TBD 最大宽度(m):TBD 前悬(m):TBD 轴距(m):TBD 后悬(m):TBD

2. 前后桥 2.1 前桥 前桥总成采用两级落差前桥总成,其基本参数如下: (1) 额定负荷:7500Kg; (2) 轮距:2101mm,空气弹簧支座中心距:1180mm; (3)主销孔基准与空气弹簧支座安装平面参考距离:75mm;空气 弹簧支座安装平面与前轴中部工字梁上平面参考距离:130mm; (4)前轴定位系数:前轮外倾角0°、主销内倾角8°、主销后倾 角3.5°、前轮前束0~1.5mm; (5)最大转角:内轮为55°,外轮为相应值; (6)转向节臂回转半径:R263.3mm; (7)适用轮辋:8.25×22.5 (8)适用轮胎:11R22.5-16PR、295/80R22.5 (9)制动器规格:盘式制动器22.5″ 结构型式参见下图 2.2 后桥 后桥总成采用13吨级后桥总成,其基本参数如下: (1) 额定负荷:13000kg

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

车辆工程毕业设计81轿车前轮主动转向系统机械结构设计

第1章绪论 主动转向系统保留了传统转向系统中的机械构件,包括转向盘、转向柱、齿轮齿条转向机以及转向横拉杆等。其最大特点就是在转向盘和齿轮齿条转向机之间的转向柱上集成了一套双行星齿轮机构,用于向转向轮提供叠加转向角。主动转向系统通过一组双行星齿轮机构实现了独立于驾驶员的转向叠加功能,完美地解决了低速时转向灵活轻便与高速时保持方向稳定性的矛盾,并在此基础上通过转向干预来防止极限工况下车辆转向过多的趋势,进一步提高了车辆的稳定性。同时,该系统能方便地与其他动力学控制系统进行集成控制,为今后汽车底盘一体化控制奠定了良好的基础。 与常规转向系统的显著差别在于,主动转向系统不仅能够对转向力矩进行调节,而且还可以对转向角度进行调整,使其与当前的车速达到完美匹配。其中的总转角等于驾驶员转向盘转角和伺服电机转角之和。低速时,伺服电机驱动的行星架转动方向与转向盘转动相同,叠加后增加了实际的转向角度,可以减少转向力的需求。高速时,伺服电机驱动的行星架转动方向与转向盘转动相反,叠加后减少了实际的转向角度,转向过程会变得更为间接,提高了汽车的稳定性和安全性。 1.1转向系统综述 1、蜗杆曲柄销式转向器 它是以蜗杆为主动件,曲柄销为从动件的转向器。蜗杆具有梯形螺纹,手指状的锥形指销用轴承支承在曲柄上,曲柄与转向摇臂轴制成一体。转向时,通过转向盘转动蜗杆、嵌于蜗杆螺旋槽中的锥形指销一边自转,一边绕转向摇臂轴做圆弧运动,从而带动曲柄和转向垂臂摆动,再通过转向传动机构使转向轮偏转。这种转向器通常用于转向力较大的载货汽车上。 2、循环球式转向器 循环球式:这种转向装置是由齿轮机构将来自转向盘的旋转力进行减速,使转向盘的旋转运动变为涡轮蜗杆的旋转运动,滚珠螺杆和螺母夹着钢球啮合,因而滚珠螺杆的旋转运动变为直线运动,螺母再与扇形齿轮啮合,直线运动再次变为旋转运动,使连杆臂摇动,连杆臂再使连动拉杆和横拉杆做直线运动,改变车轮的方向。这是一种古典的机构,现代轿车已大多不再使用,但又被最新方式的助力转向装置所应用。它的原理相当于利用了螺母与螺栓在旋转过程中产生的相对移动,而在螺纹与螺纹之间夹入了钢球以减小阻力,所有钢球在一个首尾相连的封闭的螺旋曲线

Q-FDA 010-2016汽车转向横拉杆总成性能要求及台架试验方法(最终版本)修订20160121——A汇总

ICS 点击此处添加中国标准文献分类号Q/FD 北京福田戴姆勒汽车有限公司企业标准 Q/FD XXXXX—XXXX 汽车转向桥系统横拉杆总成结构、 性能要求及台架试验方法 点击此处添加标准英文译名 点击此处添加与国际标准一致性程度的标识 文稿版次选择 2016-XX-XX发布2016-XX-XX实施

目录 前言............................................................................... III 汽车转向桥系统横拉杆总成结构、性能要求及台架试验方法 (1) 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 横拉杆零部件尺寸及结构要求 (3) 4.1 球接头总成尺寸及螺纹 (3) 4.2 横拉杆与球接头总成螺纹连接精度 (3) 4.3 横拉杆总成紧固装置结构技术要求 (3) 4.4 转向横拉杆卡箍螺栓螺母技术要求 (4) 5 转向横拉杆总成装配技术要求 (4) 5.1 装配技术要求 (4) 5.2 横拉杆球头防尘罩装配密封要求 (4) 5.3 横拉杆总成润滑介质要求 (4) 5.4 外观及防护要求 (4) 6 台架试验项目 (5) 7 台架试验设备及条件 (6) 8 台架试验方法 (6) 8.1 球接头相关试验 (6) 8.1.1 球接头总成最大摆角测定 (6) 8.1.2 球接头总成摆动力矩T1测定 (6) 8.1.3 球接头总成旋转力矩T2测定 (7) 8.1.4 最大轴向位移量δ1测定 (8) 8.1.5 最大径向位移量δ2测定 (8) 8.1.6 球销锥面配合面积检测 (9) 8.1.7 球接头总成球销拔出力 (9) 8.1.8 球接头总成球销压出力 (9) 8.1.9 球接头总成常温耐久性试验 (10) 8.1.10 球接头总成高温耐久性试验 (10) 8.1.11 球接头总成低温耐久性试验 (11) 8.1.12 球接头总成泥水环境耐久性试验 (11) 8.1.13 球接头防尘罩泥水环境耐久性试验 (12) 8.1.14 球接头防尘罩臭氧环境耐久性试验 (13) 8.1.15 球接头总成球销弯曲疲劳 (14) 8.1.16 球接头总成盐雾试验 (14) 8.2 转向直拉杆臂与转向横拉杆臂疲劳试验 (14) 8.2.1 转向直拉杆臂疲劳试验 (14) 8.2.2 转向横拉杆臂疲劳试验 (15)

汽车转向系统EPS设计(论文)

汽车转向系统EPS设计

毕业设计外文摘要

目录 错误!未定义书签。 1 引言?1 1.1汽车转向系统简介?1 1.2汽车转向系统的设计思路 (3) 1.3EPS的研究意义?4 2 EPS控制装置的硬件分析 (5) 2.1汽车电助力转向系统的机理以及类别 (5) 2.2 电助力转向机构的主要元件 (8) 11 3 电助力转向系统的设计? 3.1 动力转向机构的性能要求..................................... 11 3.2 齿轮齿条转向器的设计计算...................................... 11 3.3 转向横拉杆的运动分析[9]21? 3.4 转向器传动受力分析......................................... 22 4转向传动机构优化设计?24 4.1传动机构的结构与装配.......................................... 24 4.2利用解析法求解出内外轮转角的关系............................ 25 4.3 建立目标函数?27

5控制系统设计? 29 29 5.1 电助力转向系统的助力特性? 30 5.2 EPS电助力电动机的选择? 5.3 控制系统框图设计........................................... 3132 结论? 致谢................................................ 错误!未定义书签。参考文献......................................... 错误!未定义书签。

汽车转向系统毕业论文

目录 汽车转向系统故障诊断与维修 (2) 摘要 (2) 绪论 (3) 1 概述 (4) 1.1 什么是汽车转向系统 (4) 1.2 汽车转向系统概述 (4) 1.3 转向系统简介及工作原理 (4) 2 汽车转向系统的故障诊断 (7) 2.1 机械转向系故障诊断 (7) 2.2 动力转向系故障诊断 (10) 2.3 转向系仪器检测 (13) 3对汽车转向系统的故障进行维修 (16) 3.1机械转向系的维修 (16) 3.2动力转向系的维修 (19) 4结论 (22) 谢辞 (23) 参考文献 (24)

摘要 本文阐述了汽车转向系统各个部分的作用、组成、主要构造、工作原理、及可能出现的故障,同时提出了对出现的故障进行维修的可行方案;采用了理论与实际相结合的方法,对每个问题都有良好的认识,对所学内容进行了良好的总结归纳,以此进一步熟悉掌握汽车转向系统的各方面知识,深化巩固所学知识,做到理论与实际相结合,在理论学习的前提下,用实际更好的理解所学内容。 关键词:汽车转向系统,工作原理,故障,维修。

绪论 汽车转向系统是用于改变或保持汽车行驶方向的专门机构。起作用是使汽车在行驶过程中能按照驾驶员的操纵要求而适时地改变其行驶方向,并在受到路面传来的偶然冲击及汽车意外地偏离行驶方向时,能与行驶系统配合共同保持汽车继续稳定行驶。因此,转向系统的性能直接影响着汽车的操纵稳定性和安全性。

1 概述 1.1什么是汽车转向系统 用来改变或保持汽车行驶或倒退方向的一系列装置称为汽车转向系统(steering system)。汽车转向系统的功能就是按照驾驶员的意愿控制汽车的行驶方向。汽车转向系统对汽车的行驶安全至关重要,因此汽车转向系统的零件都称为保安件。汽车转向系统和制动系统都是汽车安全必须要重视的两个系统。 1.2汽车转向系统概述 汽车在行驶的过程中,需按驾驶员的意志改变其行驶方向。就轮式汽车而言,实现汽车转向的方法是, 驾驶员通过一套专设的机构,使汽车转向桥(一般是前桥)上的车轮(转向轮)相对于汽车纵横线偏转一定角度。这一套用来改变或恢复汽车行驶方向的专设机构,即称为汽车转向系统。 汽车转向系统分为两大类:机械转向系统和动力转向系统。 机械转向系统:完全靠驾驶员手力操纵的转向系统。 动力转向系统:借助动力来操纵的转向系统。动力转向系统又可分为液压动力转向系统和电动助力动力转向系统。 1.3转向系统简介及工作原理 机械转向系以驾驶员的体力作为转向能源,其中所有传力件都是机械的。机械转向系由转向操纵机构、转向器和转向传动机构三大部分组成(如图1-1)。

汽车转向机构设计

目录 中文摘要、关键词 (1) 英文摘要、关键词 (2) 引言 (3) 第1章轿车转向系统总述 (4) 1.1轿车转向系统概述 (4) 1.1.1转向系统的结构简介 (4) 1.1.2轿车转向系统的发展概况 (4) 1.2轿车转向系统的要求 (5) 第2章转向系的主要性能参数 (7) 2.1转向系的效率 (7) 2.1.1转向器的正效率 (7) 2.1.2转向器的逆效率 (8) 2.2 传动比变化特性 (9) 2.2.1 转向系传动比 (9) 2.2.2 力传动比与转向系角传动比的关系 (9) 2.2.3 转向器角传动比的选择 (10) 2.3 转向器传动副的传动间隙 (10) 2.4 转向盘的总转动圈数 (11) 第3章轿车转向器设计 (12) 3.1 转向器的方案分析 (12) 3.1.1 机械转向器 (12) 3.1.2 转向控制阀 (12)

3.1.3 转向系压力流量类型选择 (13) 3.1.4 液压泵的选择 (14) 3.2 齿轮齿条式液压动力转向机构设计 (14) 3.2.1 齿轮齿条式转向器结构分析 (14) 3.2.3 参考数据的确定 (20) 3.2.4 转向轮侧偏角计算 (21) 3.2.5 转向器参数选取 (21) 3.2.6 选择齿轮齿条材料 (22) 3.2.7 强度校核 (22) 3.2.8 齿轮齿条的基本参数如下表所示 (23) 3.3 齿轮轴的结构设计 (23) 3.4 轴承的选择 (23) 3.5 转向器的润滑方式和密封类型的选择 (24) 3.6 动力转向机构布置方案分析 (24) 第4章转向传动机构设计 (26) 4.1 转向传动机构原理 (26) 4.2 转向传送机构的臂、杆与球销 (27) 4.3 转向横拉杆及其端部 (28) 第5章转向梯形机构优化 (30) 5.1 转向梯形机构概述 (30) 5.2整体式转向梯形结构方案分析 (30) 5.3 整体式转向梯形机构优化分析 (31) 5.4整体式转向梯形机构优化设计 (34) 5.4.1 优化方法介绍 (34) 5.4.2 优化设计计算 (35)

制动系统设计开题报告

毕业设计(论文)开题报告

1 选题的背景和意义 1.1 选题的背景 在全球面临着能源和环境双重危机的严峻挑战下世界各国汽车企业都在寻求新的解决方案一一如开发新能源技术,发展新能源汽车等等然而. 新能源汽车在研发过程中已出现!群雄争霸的局面在能源领域. 有压缩天然气,液化石油气,煤炼乙醇,植物乙醇,生物乙醇,,生物柴油,甲醇,二甲醚,合成油等等新能源动力汽车在转换能源方面有燃料电池汽车氢燃料汽车纯电动汽车轮毅电机车等等。选择哪种新能源技术作为未来汽车产业发展的主要方向是摆在中国汽车行业面前的重要课题。据有关专家分析进入新世纪以来,以汽车动力电气化为主要特征的新能源电动汽车技术突飞猛进。其中油电混合动力技术逐步进入产业化锂动力电池技术取得重大突破。新能源电动汽车技术的变革为我国车用能源转型和汽车产业化振兴提供了历史机遇[1]。 作为 21 世纪最清洁的能源———电能,既是无污染又是可再生资源,因此电动汽车应运而生,随着人民生活水平和环保觉悟的提高电动汽车越来越受到广泛关注[2]。传统车辆的转向、驱动和制动都通过机械部件连接来操纵,而在电动汽车中,这些系统操纵机构中的机械部件(包括液压件)有被更紧凑、反应更敏捷的电子控制元件系统所取代的趋势。加上四轮能实现± 90°偏转的四轮转向技术,车辆可实现任意角度的平移,绕任意指定转向点转向以及进行原地旋转。线控和四轮转向的有机结合,是当今汽车新技术领域的一大亮点,其突出特点就是操纵灵活和行驶稳定[3]。轮毂电机驱动电动车以其节能环保高效的特点顺应了当今时代的潮流,全方位移动车辆是解决日益突出的城市停车难问题的重要技术途径,因此,全方位移动的线控转向轮毂电机驱动电动车是未来先进车辆发展的主流方向之一。全方位移动车辆可实现常规行驶、沿任意方向的平移、绕任意设定点、零半径原地转向等转向功能[4]。 1.2 国内外研究现状及发展趋势 电动汽车的出现得益于19世纪末电池技术和电机技术的发展较内燃机成熟,而此时石油的运用还没有普及,电动车辆最早出现在英国,1834年Thomas Davenport 在布兰顿演示了采用不可充电的玻璃封装蓄电池的蓄电池车,此车的出现比世界上第一部内燃机型的汽车(1885年)早了半个世纪。1873年英国人Robert Davidson制造的一辆三轮车,它由一块铁锌电池向电机提供电力,这被认为是电动汽车的诞生,这也比第一部内燃机型的汽车早出现了13年。到了1881年,法国人Gustave Trouve 使用铅酸电池制造了第一辆能反复充电的电动汽车。此后三四十年间,电动汽车在当时的汽车发展中占据着重要位置,据统计,到1890年在全世界4200辆汽车中,有

客车底盘总布置设计规范

长春北车电动汽车有限公司设计规范 CBD-YF-DP-GF.1 客车底盘总布置设计规范

目录 1 范围 (2) 2 规范性文件引用 (2) 3 术语和定义 (3) 4 设计准则 (3)

1 范围 本标准主要介绍了客车底盘总布置的简要设计流程,规范了设计步骤,明确了底盘总布置的设计结构等。 本标准适用于我公司6--12米的大中型营运客车的底盘总布置设计。 2 规范性文件引用 GB/T 13053-2008 客车车内尺寸 GB 12676-1999 汽车制动系统结构、性能和试验方法 GB 17675-1999 汽车转向系基本要求 GB/T 5922-2008 汽车和挂车气压制动装置压力测试连接器技术要求 GB/T 6326-2005 轮胎术语及其定义 GB/T 13061-1991 汽车悬架用空气弹簧橡胶气囊 QC/T 29082-1992 汽车传动轴总成技术条件 QC/T 29096-1992 汽车转向器总成台架试验方法 QC/T 29097-1992 汽车转向器总成技术条件 QC/T 293-1999 汽车半轴台架试验方法 QC/T 294-1999 汽车半轴技术条件 QC/T 299-2000 汽车动力转向油泵技术条件 QC/T 301-1999 汽车动力转向动力缸技术条件 QC/T 302-1999 汽车动力转向动力缸台架试验方法

QC/T 303-1999 汽车动力转向油罐技术条件 QC/T 304-1999 汽车转向拉杆接头总成台架试验方法 QC/T 305-2013 汽车液压动力转向控制阀总成性能要求与试验方法 QC/T 465-1999 汽车机械式变速器分类的术语及定义 QC/T 470-1999 汽车自动变速器操纵装置的要求 QC/T 479-1999 货车、客车制动器台架试验方法 QC/T 483-1999 汽车前轴疲劳寿命限值 QC/T 491-1999 汽车筒式减振器尺寸系列及技术条件 QC/T 494-1999 汽车前轴刚度试验方法 QC/T 513-1999 汽车前轴台架疲劳寿命试验方法 QC/T 523-1999 汽车传动轴总成台架试验方法 QCT 529-2013 汽车液压动力转向器技术条件与试验方法 QCT 533-1999 汽车驱动桥台架试验方法 QCT 545-1999 汽车筒式减振器台架试验方法 3 术语和定义 上述标准中确立的符号、代号、术语均适用于本标准。 4 设计准则 4.1应满足的安全、环保和其它法规要求及国际惯例 客车底盘总成中各部分的主要性能、尺寸等应符合相应的标准规定。详参相应的标准。

相关主题
相关文档 最新文档