当前位置:文档之家› 数理方程第五章1

数理方程第五章1

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

《数学物理方法》各章节作业题

《数学物理方法》各章节作业题 要求:每章讲完后的下一周同一时间将作业收齐并交到辅导教师(2016级硕士生刘璋诚、王俊超和2015级硕士生魏弋翔、 徐鹏飞)处。例如,第一周星期四讲完第一章,则第二周 星期四上课时交第一章的作业,以此类推。 说明:若无特别标注,下面的页码均指梁昆淼编《数学物理方法》。 (第三版的页码用红字标出,第四版的页码用蓝字标出) 希望:若对我的讲授和布置的作业有任何批评和建议,欢迎同学们及时指出和告知,不胜感激。(最好用E-mail:) 辅导答疑安排:待定 辅导答疑教师:刘璋诚、王俊超、魏弋翔、徐鹏飞 第一部分复变函数论 “第一章复变函数的一般概念”作业题(2月23日交)

第5页(第三版)第6页(第四版): 第1题中(1),(2),(4),(6),(10); 第2题中(1),(2),(3),(7); 第3题中(2),(3),(7),(8); 第9页(第三版)第8页(第四版): 第2题中(1),(3),(7),(9); 第3题。 “第二章复变函数的导数”作业题(2月27日交) 第13页(第三版)第12页(第四版):习题; 第18页(第三版)第16页(第四版): 第1题; 第2题中(2),(3),(4),(8),(10),(11); 第23页(第三版)第20页(第四版): 第1题 第3题。 “第三章复变函数的积分”作业题(3月6日交) 第38页(第三版)第31页(第四版): 第1题,第2题; 补充题1:有一无限长的均匀带电导线与Z轴平行,且与XY平面相交于 ,线电荷密度为λ,求此平面场的复势,并说明积分

?-l z dz α的物理意义。 补充题2:计算()?-l n z dz α,n为正整数,且n≠+1。 “第四章 复数级数”作业题(3月16日交) 第46页(第三版) 第37页(第四版):第3题,第4题; 第52页(第三版) 第41页(第四版):(1),(3),(4),(8); 第60页(第三版) 第47页(第四版): (1),(2),(4),(5),(9),(11),(15); 第64页(第三版) 第50页(第四版):习题。 “第五章 留数定理”作业题(3月23日交) 第71页(第三版) 第55页(第四版): 第1题中(1),(2),(3),(5),(9),(10); 第2题中(1),(4); 第3题; 第81页(第三版) 第63页(第四版): 第1题中(4),(5),(7),(8); 第2题中(4),(6); 第3题中(1),(2),(7),(8)。 第二部分 积分变换

数学物理方法第二次作业答案

第七章数学物理定解问题 1.研究均匀杆的纵振动。已知 x0端是自由的,则该端的边界条件为__。2.研究细杆的热传导,若细杆的x0 端保持绝热,则该端的边界条件为。3.弹性杆原长为 l ,一端固定,另一端被拉离平衡位置 b 而静止,放手任其振动,将其平衡位置选在 x 轴上,则其边界条件为u x 0 0 , u x l 0。 4.一根长为 l 的均匀弦,两端 x0 和 x l 固定,弦中张力为T0。在 x h 点,以横向力F0拉 弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f(0)=0,f(l)=0;_____。 5、下列方程是波动方程的是D。 A u tt a2u xx f ; B u t a2u xx f ; C u t a2u xx; D u tt a2u x。 6、泛定方程u tt a2u xx0要构成定解问题,则应有的初始条件个数为B。 A 1 个; B 2 个; C 3 个; D 4 个。 7.“一根长为 l 两端固定的弦,用手把它的中u h u 点朝横向拨开距离 h ,(如图〈 1〉所示)然后放0x l / 2 手任其振动。”该物理问题的初始条件为 ( D)。图〈 1〉 2h x, x[0, l ] u t h A .u t l2 l B.0 o u t0 2h(l x), x, l ]t 0 l [ 2 2h l x, x [ 0,] u t l2 C.u t0h D.02h l (l x), x [,l ] l2 u t t00 8.“线密度为,长为 l 的均匀弦,两端固定,开始时静止,后由于在点x0(0 x0l ) 受谐变力 F0 sin t 的作用而振动。”则该定解问题为(B)。 u tt a2 u xx F0 sin t(x x ) ,(0x l ) A . u

数理方程第二版 课后习题答案教学教材

数理方程第二版课后 习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕 3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。 证:设,为定义在区间上的向量函数,因为

在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是 因为,故,从而 为常向量,于是,,即具有固定方向。证毕

6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与 不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念 1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,, ,于是切线的方程为:

数理方程练习题

第二章 定解问题与偏微分方程理论 习题2.1 1. 密度为ρ均匀柔软的细弦线x =0端固定,垂直悬挂,在重力作用下,于横向拉它一下,使之作微小的横振动。试导出振动方程。 2. 长为L ,均匀细杆,x = 0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆作自由振动。试写出振动方程的定解条件。 3. 长为L 、密度为ρ的底半径为R 的均匀圆锥杆(轴线水平)作纵振动,锥的顶点固定在x =0处。导出此杆的振动方程。 4. 一根长为L 、截面面积为1的均匀细杆,其x =0端固定,以槌水平击其x =L 端,使之获得冲量I 。试写出定解问题。 习题2.2 1. 一半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同截面上的温度相同,其侧面与温度为u 1的介质发生热交换,且热交换的系数为k 1。试导出杆上温度u 满足的方程。 4. 设有一根具有绝热的侧表面的均匀细杆,它的初始温度为)(x ?,两端满足下列边界条件之一: (1)一端(x =0)绝热,另一端(x = L )保持常温u 0; (2)两端分别有热流密度q 1和q 2进入; (3)一端(x =0)温度为u 1(t ),另一端(x = L )与温度为)(t θ的介质有热交换。 试分别写出上述三种热传导过程的定解问题。 习题2.4 1. 判断下列方程的类型: (1)04=+++++u cu bu au au au y x yy xy xx ; (2)02=+++++u cu bu au au au y x yy xy xx ; (3)02222=+++++u au bu au au au y x yy xy xx ; (4)0=+yy xx xu u 。 2. 求下列方程的通解 (1)0910=++yy xy xx u u u ; (3)0384=++yy xy xx u u u 。 第三章 分离变量法 习题3.1 2. 求解下列定解问题

矢量分析与数理方程总复习题

矢量分析与场论,数理方程与特殊函数总复习题 矢量和矢性函数 1、 求下列两个矢量的加法、减法、标量积(点乘)和矢量积(叉乘) k j i A 32++= k j i B 654++= 2、 求下列两个矢性函数的加法、减法、标量积(点乘)和矢量积(叉乘) ()k t j t i t t A ++=sin cos , ()k t j e i t t B t 2++= 3、设k t j i t A 23+-=,k j i B 22+-=,k j t i C -+=3,求() C B A ?? 4、如果 ()k t j t i t t A ++=sin cos ,()k t j e i t t B t 2++= 求 ()dt t A d 和 ()dt t B d 5、如果 ()j i e ???sin cos += ① 求 ()()? ??d e d e =1 , ② 证明 ()?e ⊥()?1e . 6、如果 ()j i e ???cos sin 1+-= 证明 ()()?? ?e d e d -=1 7、求不定积分 ()? ??d e , ()? ??d e 1 。 8、计算不定积分 () ? +???d e 122 . 9、求矢量 k j i r -+=22的单位矢量 0r 。 方向导数和梯度 1、求 k j i l 22++= 的方向余弦 2、写出矢径 k z j y i x r ++=的单位矢径0r ,用方向余弦表示0r 3、求矢性函数 () k z j xy i x z y x l 4232,,+-= 的方向余弦 4、求函数2 2 2 z y x u ++=在() 1,0,1M 处沿k j i l 22++=的方向导数 5、求数量场 z y z x u 2 322+= 在点 () 1,0,2-M 处沿 k z j xy i x l 4232+-= 方向的方向导数 6、求下列数量场的梯度 ① 2 2 2 z y x r ++=, ② ??? ? ? ?++=2 221 1z y x r , ③ 223z xy z x u +-= ③ 3 2 z y x u =, ④ xz yz xy u ++=, ⑥ z y x xy z y x u 623322 2 2 --++++=.

数学物理方法第05章习题

第五章 习题答案 5.1-1一长为l 的均匀细杆,0=x 端固定,另一端沿杆的轴线方向被拉长d 而静止(假定拉长在弹性限度内)。突然放手使其振动,试写出振动方程与定解条件。 解:振动方程的形式与自由杆的振动方程一样。 ()l x u a u xx tt ≤≤=-00 2 ρ Y a = 2 初始条件:()()l x x l d x U ≤≤= 00, ()00,=x U t 边界条件:()0,0=t U ()0,0=t U x (右端自由振动) 5.1-2 长为l 的弦两端固定,密度为ρ,开始时在ε<-c x 处受到冲量I 的作用,写出初始条件。 解: ()00,=x U 在ε≥-c x 处 ()00,=x U t 在ε<-c x 处 由动量定理有: [] ερ ερ2)0,(0)0,(2I x U x U I t t = ?-?= 即:()??? ??<-≥-=ε ερ εc x I c x x U t 200, 5.1-3 长为l 的均匀细杆,在振动过程中,0=x 固定,另一端受拉力0F 的作用。试写出边界条件。(横截面积S ,杨氏模量Y )。 解:()0,0=t U 2 20),(t U S S t l P F ????=?--ρεε 当0→ε时有YS F t l U x U Y S F x l x 0 0),(= ???? ?==

5.1-4线密度为ρ,长为l 的弦两端固定,在某种介质中作阻尼振动,单位长度受阻力 t u h F ??-=,试写出其运动方程。 解:如图,取微元x d ,它的两端与x 轴间的夹角分别为21αα、,两端受力分别为 ()()t x T t x x T ,,d 、+,受力分析如下: x 轴方向: ()()0cos ,cos ,d 21=-+ααt x T t x x T 21,αα很小,则()()t x T t x x T ,,d =+, 即弦上张力不变。 y 轴方向:()()2221d d d sin ,sin ,d t u x g x x F t x T t x x T ????=??=?+-+ρραα 略去重力x g d ρ 有: x t u h x x u T t u x d d d 2222???-????=??ρ 所以:02 222=???+???-??t u h x u T t u ρρ 设2 a T =ρ 有:02 =+-t xx tt u h u a u ρ 5.1-5一均匀细圆锥杆作纵振动,锥的顶点固定在0=x 处,试导出此杆的振动方程。 解:设体密度为ρ,取微元x d (s 与s '中间一段) 则质量()?? ? ????-'?+??=s x s x x m 31d 31d ρ 而2 22 d 2d x x x x x x x s s +≈??? ??+=' 故()x s s x x x x m d d 31d 2 3 ??≈??? ?? ??-+??=ρρ 纵向上由牛顿定律有:s t x P s t x x P t u m ?-'?+=???),(),d (d 22 ()s x t x u x x x x t x x u Y t u x s ???? ???????-??? ??+??+??=???),(d ,d d 222ρ 1α 2α x l ()t x x T ,d + ()t x T , ()t x u , x x x d + x s s '

数学物理方法第二章习题及答案整理

第二章答案 一、 简述 1. 简述状态空间描述与输入/输出描述的不同。 解:输入/输出描述是系统的外部描述,是对系统的不完全描述,用微分方程及其对应传递函数表征;状态空间描述是系统的内部描述,是对系统的完全描述,用状态空间表达式表征。 2. 线性定常系统经非奇异线性变换哪些量和性质不变?(至少列举3项) 解:特征值不变,传递矩阵不变,可控性及可观测性不变。 二、 多选题 1.对于n 阶线性定常系统 x Ax Bu =+&,下列论述正确的是( ABD ) A 当系统矩阵A 具有n 个线性无关的特征向量12,,,n υυυL 时,则矩阵A 可化为对角线规范形; B 系统矩阵A 的n 个特征值12,,,n λλλL 两两互异,则矩阵A 可化为对角 线规范形; C 系统矩阵A 有重特征值,则矩阵A 不能化为对角线规范形; D 系统矩阵A 有重特征值,但重特征值的几何重数等于其代数重数,则 矩阵A 可以化为对角线规范形。 三、 求状态空间描述 1、 给定系统的传递函数为 1 ()(4)(8)G s s s s = ++ (1)写出系统的可控标准型状态空间描述。 解:由传递函数 32 11 ()(4)(8)1232g s s s s s s s ==++++ 可写出原系统的能控标准形 01000010032121u ???????????? ????--????x =x +& 2.已知系统的传递函数为 2325 ()1510 s s G s s s ++=++ 分别写出系统的能控、能观状态空间表达式。 解:

能控标准型: 01000010101501[521]x x u y x ???? ????=+????????--????=& (2分) 能观标准型: 00105101520101[0 01]x x u y x -???? ????=-+????????????=& 3.已知系统的传递函数为 2323 ()510 s s G s s s ++=++ 分别写出系统的能控、能观状态空间表达式。 解:能控标准型: 0100001010501[321]x x u y x ???? ????=+????????--???? =& (2分) 能观标准型: 010*********[0 01]x x u y x -???? ????=-+???????????? =& 3.已知系统的传递函数为 32 20 ()43G s s s s = ++ (1)写出系统的可控标准型状态空间描述。 解:(1)由传递函数 3220 ()43G s s s s =++可写出原系统的可控标准型 []01 00001003412000u y x ???? ????????????--????=&x =x + 4.已知系统的传递函数为 210 ()1 G s s = +

数理方程作业答案

1.一根水平放置长度为L 的弦(两端被固定) ,其单位长 度的重力为ρ g ,其ρ 中是弦的线密度,g 是重力加速 度。若弦的初始形状如图所示: (1)推导出弦的微振动方程; (2)写出定解问题。 解:(1)设弦的微震动方程为:22222(,)u u f x t t x α??=+?? 依题意(,)f x t =-g , 所以弦的微震动方程为:22222u u g t x α??=-?? (2)根据所给图形,利02()(,)|t L x u x t h L =-= 依题意,刚开始时,v=0.,所以0(,)|0t u x t t =?=? 又弦的两端固定,所以0(,)|0x u x t ==,(,)|0x L u x t == 所以定解问题为: 22222u u g t x α??=-?? 02(,)|t x u x t h L == 02 L x ≤≤ 02()(,)|t L x u x t h L =-= 2 L x L ≤≤ 0(,)|0t u x t t =?=? 用相似三角形,得:当02L x ≤≤,02(,)|t x u x t h L ==;

当2 L x L ≤≤时, 0(,)|0x u x t ==,(,)|0x L u x t == 2.设有一个横截面积为S ,电阻率为r 的匀质导线,内有电流密度为j 的均匀分布 的直流电通过。试证明导线内的热传导方程为:222u u cp k j r t x ??-=?? 其中c ,ρ ,k 分别为导线的比热,体密度,及热传导系数 解:设导线内的热传导方程为:22 (,)u k u f x t t c x ρ??=+?? 依题意,(,)f x t =2j r c ρ 将其代入得 222u u cp k j r t x ??-=?? 3.长度为L 的均匀杆,侧面绝热,其线密度为ρ、 热传导系数为k 、比热为c 。 (1)推导出杆的热传导方程; (2)设杆一端的温度为零,另一端有恒定热流 q 进入(即单位时间内通过单位面积流入 的热量为q ),已知杆的初始温度分布为 ()2x L x - ,试写出相应的定解问题。 解:(1)根据热传导方程可得,导出杆的热传导方程为

数理方程练习题(作业)

数理方程练习题一(2009研) 1. 设(,)u u x y =,求二阶线性方程 20u x y ?=?? 的一般解。 2. 设 u f = 满足Laplace 方程 222 2 0u u x y ????+ = 求函数u. 3. 求Cauchy 问题 2 2000(,)(0,)cos tt xx t t t u a u x t u x u x x ==?-=∈?∞??==∈ ? ? 的解. 4. 求解Cauchy 问题 200cos (,)(0,)cos 010tt xx t t t u a u t x x t x x u x u x ==?-=∈?∞? ≥?? ==???

2 1||()0 ||a x a x x a ≤?∏=? >? 3 2 ()x f x e -= 7. 磁致伸缩换能器、鱼群探测换能器等器件的核心是两端自由的均匀杆,它作纵振动.研 究两端自由棒的自由纵振动,即定解问题。 200,0(,0)(),(,0)()0(0,)(,)00 tt xx t x x u a u x l t u x x u x x x l u t u l t t ?ψ?-=<<>? ==≤≤??==≥? 8. 散热片的横截面为矩形。它的一边y=b 处于较高温度V ,其他三边b=0,x=0,x=a 则 处于冷却介质中因而保持较低的温度v 求解这横截面上的稳定温度分布Ux,y)即定解问题 0;0(0,),(,)0(,0),(,)()0xx yy u u x a y b u y v u a y v y b u x v u x b V x x a +=<<<

数学物理方法习题

数学物理方法习题 一、 复变函数 1、 填空题 (1)函数 f (z)=e iz 的实部 Re f (z)=______________。 (2)ln1=_________. (3)=ix e _________。 (4)求积分 dz z z z ?=1 2sin =______ . (5) 求积分=?=1 cos z dz z z _________。 (6) 设级数为∑∞ =1n n n z ,求级数的收敛半径_______________。 (7).设级数为)21 1 n n n n z z + ∑∞ =( ,求级数的收敛区域 _________。 (8) 求积分 ?=1z z dz =___________. (9) 求积分 ? =1 z z dz =____________. (10)设f (z)= 9 cos z z , 求Resf (0)= _________。 2、计算题 (1)导出极坐标下的C- R 条件: ?????????-=????=???ρρ ?ρρu v v u 11 (2) 己知解析函数的实部u(虚部v),求此解析函数:

a 、,cos x e u y -= b 、22y x y v +-= c 、 ()y y y x e v x sin cos +=- (3)设 f (z) 是区域D 内的解析函数,且f (z) 的模 ∣f (z)∣为常数,证明 f (z) 在D 内为常数。 (4) 设 f (z) 是区域D 内的解析函数,且f *(z)也是区域D 内的解析函数,则f (z)必常数。 (5) 求函数 f (z)= ) 1(1 2-+z z z 在下列区域 ⅰ) 0<∣z ∣< 1; ⅱ) 1< ∣z ∣<∞ 的Laurent 展开。 (6)求出下列函数的奇点,并确定它们的类别 a 、z z cos sin 1 + b 、z z e 1 - c 、 n n z z +12 n 为正整数. (7) 求下列积分 a 、 ,)1(sin 0 2dx x x x ?∞ + b 、 ? =? ?? ? ? -2 2 2sin z dz z z π c 、b 且a b a dx x bx ax ≠≥≥-?∞ ,0,0,cos cos 0 2 d 、 ? ∞ ++0 2 2sin cos dx a x x x x a ω

数学物理方法第一章作业答案

第一章复变函数 §1.1 复数与复数运算 1、下列式子在复数平面上个具有怎样的意义? (1)z≤ 2 解:以原点为心,2 为半径的圆内,包括圆周。 (2)z?a=z?b,(a、b 为复常数) 解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。 (3)Re z>1/2 解:直线x=1/ 2右半部分,不包括该直线。 (4)z+Re z≤1 解:即x2 +y2 +x≤1,则x≤1,y2 ≤1?2x,即抛物线y2 =1?2x及其内部。(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数) 解: (6)0 0 x 2 2 + +( y y 2 + ? 1 1) 2 > 所以 ,即x <0,x2 +y2 ?1+2x >0 x 0

z -1 ≤(7)1, z +1

2 z-1 x 1 iy x y 1 4y ?+?+?? 2 2 2 ==+ ?? 解:()[()] +++++ iy 1 y2 2 2 z 1 x 1 x ?x 1 y ?+ 2 + 2 所以()[()] x+?+≤++ 2 2 2 y 1 4y2 x 1 y 2 2 2 化简可得x≥0 (8)Re(1 /z) =2 ????? 1 x iy x 解:Re( ?=R e 2 1/ z=? ) R e 2 == ???? ?iy? x ?x ++y+y ?x 2 2 2 即(1/ 4)1/16 x? 2 +y= 2 (9)Re Z2 =a2 解:Re Z2 =x2 ?y2 =a2 +z+z?z=2 z+2 z 2 (10) z 1

数学物理方法第二篇第2章

第二章 数学物理方程和二阶线性偏微分方程分类 §2.2.1数学物理方程 数学物理方程(简称数理方程)通常是指从物理模型中导出的函数方程,特别是偏微分方程,我们这里着重讨论二阶线性偏微分方程. 数学物理方程一般可以按照所代表的物理过程(或状态)分为三类: 1.振动与波(机械的、电磁的)称为波动方程.例如,在各向同性的固体中传播的横波或者纵波的方程.有一维波动方程xx tt u a u 2=(自由振动方程),),(2t x f u a u xx tt +=(强迫振动方程),这里u =u (x ,t )代表平衡时坐标为x 的点在t 时刻的横向或者纵向位移,a 是波的传播 速度.tt u 表示22t u ??,xx u 表示22x u ??;二维波动方程u a u tt ?=2,?是拉普拉斯算符2222y x ??+??≡?(二维的),22 2222z y x ??+??+??≡?(三维的). 2.输运过程称为扩散方程,热传导方程.例如,有一维的热传导方程xx t u a u 2=其中u =u (x ,t )表示x 点在t 时刻的温度,2a 称为扩散率或温度传导率.方程),(2t x f u a u xx t +=表示有热源的传导方程. 3.稳定(或者静止、平衡)过程(或状态)称为拉普拉斯方程. 02222=??+??≡?y u x u u . 在数学中,把二阶线性偏微分方程进行分类,其中有三种最重要

的类型,分别称为双曲型方程、抛物型方程和椭圆型方程,而上面所指出的那些数理方程都是二阶线性偏微分方程.波动方程可以作为研究双曲型方程的模型,热传导方程可以作为研究抛物型方程的模型,拉普拉斯方程可以作为研究椭圆型方程的模型. 对于仅有数理方程这类偏微分方程还不足以确定物体的运动,因为物体的运动还与起始状态以及通过边界所受到外界作用有关.从数学的角度考虑,物体运动的起始状态称为初始条件,物体运动的边界情况称为边界条件.求一个微分方程的解满足一定的初始条件或边界条件的问题称为定解问题.而初始条件、边界条件称为定解条件.若定解条件仅有初始条件的,则称该定解问题为初值问题,又叫哥西(Cauchy)问题;若定解条件为边界条件的,则称为边值问题. 边界条件一般有三种类型,以一维的为例:在x =0点的第一边界条件:)(),0(t t u μ=;第二边界条件:)(),0(t v t u x =;第三边界条件:)(),0(),0(t t hu t u x θ=-,这里h 为已知常数,)(t μ,)(t v ,)(t θ为已知函数.如果)(t μ,)(t v ,)(t θ恒为零的边界条件称为齐次边界条件,一般将边界条件写成)()],(),([t f t M n u t M u D M =??+?∈βα,D ?表示区域D 的边界,n 是D ?的外法线方向,这里α,β不同时为零的常数,则是这三种边界条件的综合表述. 如果一个定解问题中既有初始条件又有边界条件,则称为混合问题. 例1.在杆的纵向振动时,假设(1)端点固定;(2)端点自由;(3)

数理方程大作业

数学物理方 080803214 刘阳 在课堂上,樊老师曾多次问到我们:“大家喜欢学什么课程,大家最喜欢学习什么科目?”等等诸如此类我们同学兴趣爱好的问题,他十分注重从我们自身兴趣的角度激发我们学习的激情,培养我们学习的好习惯。下面,我就根据我的兴趣,从数学史和方法论的角度,结合课堂所学谈谈我学习数理方程的心得体会。 描述许多自然现象的数学形式都可以是偏微分方程式,特别是很多重要的物理力学及工程过程的基本规律的数学描述都是偏微分方程,例如波的传播、热的传导、电磁学的基本定律都是如此。数学物理方程主要就是指从这些物理学及其他自然科学中、技术科学中产生的偏微分方程。它是数学联系实际的一个重要桥梁。 人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支也有了迅速发展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势: 一、在许多自然科学及工程技术中提出的问题的数学描述大多是非线性偏微分方程,即使一些线性偏微分方程作近似处理的问题,由于研究的深入,也必须重新考虑非线性效应。对非线性偏微分方程研究,难度大得多,然而对线性偏微分方程的已有结果,将提供很多有益的启示。 二、实践中的是由很多因素联合作用和相互影响的。所以其数学模型多是非线性偏微分方程组。如反应扩散方程组,流体力学方程组电磁流体力学方程组,辐射流体方程组等,在数学上称双曲-抛物方程组。 三、数学物理方程不再只是描述物理学、力学等工程过程的数学形式。而目前在化学、生物学、医学、农业、环保领域,甚至在经济等社会科学住房领域都不断提出一些非常重要的偏微分方程。 四、一个实际模型的数学描述,除了描述过程的方程(或方程)外,还应有定解条件(如初始条件及边值条件)。传统的描述,这些条件是线性的,逐点表示的。而现在提出的很多定解条件是非线性的,特别是非局部的。对非局部边值问题的研究是一个新的非常有意义的领域。 五、与数学其他分支的关系。例如几何学中提出了很多重要的非线性偏微分方程,如极小曲面方程,调和映照方程,方程等等。泛函分析、拓扑学及群论等现代工具在偏微分方程的理论研究中被广泛应用,例如空间为研究线性信非线性偏微分方程提供了强有力的框架和工具。广义函数的应用使得经典的线性微分方程理论更系统完善。再就是计算机的广泛应用,计算方法的快速发展,特别是有限元广泛的应用,使得对偏微分方程的研究得以在实践中实现和检验。

数学物理方法 课本答案第五章 Bessel 函数

第五章 Bessel 函数 5.2 基础训练 5.2.1例题分析 例1 试用平面极坐标系把二维波动方程分离变量: 2()0tt xx yy u a u u -+= (1) 解 先把时间变量t 分离出来,令)(),(),,(t T U t u ?ρ?ρ=,代入方程(1) 22(,)''()(,)()0U T t a U T t ρ?ρ?-?= 两边同乘以 21 a UT 并移项得 22''T U a T U ?= 上式左边仅是t 的函数;右边是ρ,t 的函数。若要使等式成立,两边应为同一个常数,记为2k -,则有 22''0T a k T += (2) 220U k U ?+= (3) (3)式为二维亥姆霍兹方程,它在平面极坐标系下的表达式为: 22 1 1 0U U U k U ρρρ??ρ ρ + + += 进一步分离变量,令(,)()()U R ρ?ρ?=Φ,代入上式得 22 11 '''''0R R R k R ρρ Φ+ Φ+ Φ+Φ= 两边同乘以 2 R ρΦ ,并整理得 222'' ' ''R R k R R ρρρΦ= +=- Φ

同上讨论,等式两边应为同一常数,记为2m ,则有 2''0m Φ+Φ= (4) 2222'''()0R R k m R ρρρ++-= (5) 对(5)式作代数变换x k ρ=后变为贝塞尔方程 222'''()0x R xR x m R ++-= (6) 其通解是 ()()()m m R AJ k BY k ρρρ=+ 其中,, m m A B J Y 为任意常数和为第一类和第二类Bessel 函数。 由周期条件,方程(4)的解为 ( )c o s s i n 0,1,2 m m m A m B m m ??Φ=+= 由波动问题及解在0ρ→有限的条件,方程(2)的解为 cos sin n n n n n T C k at D k at =+ 例2 用()J x ν的级数表达式证明: (1) x x x J cos 2)(2 1π=-; (2) x x d x J sin cos )cos (200=?π θθθ 证明:(1) 因为20(1)()()!(1)2 k k v v k x J x k k v ∞ +=-=Γ++∑, 所以 12221002220(1)()( )()1 22 !(1) 1)(222)223)12k k k k k k k k k k x x J x k k k x π∞ ∞ --==∞ ∞==-==Γ-+--==?∑ 2k k k x ∞ ∞=====

相关主题
文本预览
相关文档 最新文档