当前位置:文档之家› 第2章 第4节 直流电动机斩波调速——脉宽直流调速系统

第2章 第4节 直流电动机斩波调速——脉宽直流调速系统

2.4直流电动机斩波调速——脉宽直流调速系统

直流电源电压基本不变

通过电子开关的通断

改变施加到电机电枢绕组的直流电压脉冲宽度

调节输入到电机的平均电压值实现调速

外加恒幅直流电源供电

用分合频率固定,分合时间(脉冲宽度)可调的电子开关

控制电动机电枢两端的平均电压控制电动机的转速直流斩波调速系统:

可逆与不可逆,有制动作用与无制动作用

电枢电感量大)

I a20

I i a

i a1i a2

I a20

I a10

i a

i a1i a2

U

b1=-U

b2

1

2

3

4

4 工作情况讨论1)正常负载电流0≤t ≤t 1, U b1(+),U b2(-)

VT1导通,VT2截止(关断),电路在模态I U a =U s ,若U s >E a ,电枢电流流入电机电机为电动状态,电流i a1模态I

M

E a

i a1

i a1

VD1

VT1

-

+

U s

t 1≤t ≤T, U b1(-),U b2(+)

VT1截止关断,切断电机电源

电枢电流i a 经VD2续流,电路工作在模态II 电枢电流方向未变,电机为电动状态,电流i a2。电路方程

1

1a s a a

di U L Ri E dt

=++模态II

M

E a

i a2

i a2

VD2

VT2

电路方程

2

20a a a

di L Ri E dt

=++0 t 1

T T +t 1

时区0 t

1T T+t1

0 t3 t1 t2T t3t1

模态IV

0 t3 t1 t2T t3t1

2.4.2可逆脉宽(斩波)调速系统

可逆斩波调速系统主电路的结构形式有两种

H型

T型

H 型可逆斩波调速系统组成:4个大功率晶体管VT 1、VT 2、VT 3和VT 4

4个续流二极管VD 1、VD 2、VD 3和VD 4组成桥式电路U s 为直流电源电压

M 为电机

H 型可逆斩波调速系统调制方式:

单极性、双极性脉宽调制方式

2.4.2.1 单极性脉宽调制方式

U c >0 输出到电机的电压为B(+),A(-)U c <0 输出到电机的电压为A(+),B(-)

1、单极性调制方式控制信号?输出电压U a 极性控制信号U c

输出电压极性通过控制电压U c 改变?脉宽调制信号--基极控制信号VT 1、VT 2、VT 3和VT 4

的基极驱动控制信号U b1、U b2、U b3和U b4

?极性控制信号与脉宽调制信号配合

12340c U VT VT VT VT <一直不导通,一直导通,、交替导通

34120

c U VT VT VT VT >一直不导通,一直导通,、交替导通

VT4

模态

U b1U b4

IGBT直流斩波调速系统设计

摘要 本设计采用一个直流斩波电路实现直流调压,以此控制直流电动机的转速。主电路包括:整流电路、斩波电路及保护电路。控制电路的主要环节是:触发电路、电压电流检测单元、驱动电路、故障保护电路。由于要求电机能稳定运行并能实现无极调速,IG BT绝缘栅双极晶体管作为斩波电路的组成元件。 关键词:整流电路;斩波电路;驱动电路;直流电动机

目录 摘要....................................................................................................................................................................................... I I 第1章绪论 .. (1) 1.1电力电子技术及IGBT概况 (1) 1.2本文设计内容 (1) 第2章由IGBT构成的直流斩波调速系统的电路设计 (1) 2.2整流电路设计 (2) 2.3 RC滤波稳压电路 (3) 2.4升降压直流斩波电路设计 (3) 2.5控制与驱动电路 (4) 2.6保护电路 (5) 2.7系统总电路图 (6) 2.8系统各参数计算及器件选择 (6) 第3章系统调试及仿真 (7) 第4章课程设计总结 (9) 参考文献................................................................................................................................................ 错误!未定义书签。附录I系统主电路图. (9)

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

直流电动机调速系统

创新设计创新设计名称: 直流电动机调速系统设计

目录 目录 (1) 1 引言 (2) 1.1 设计背景 (2) 1.2 系统可实现的功能 (2) 2 总体方案设计 (3) 2.1 单片机选型方案 (3) 2.2 转速测量方案选择 (4) 2.3直流电机驱动电路介绍 (5) 2.4 PWM调宽方式的选择 (6) 2.5键盘的选择 (6) 2.6整体方案设计框图 (6) 3 硬件电路设计 (7) 3.1 系统的整体硬件框图 (7) 3.2 按键模块电路设计 (7) 3.3数码管显示模块电路设计 (8) 4系统软件设计 (10) 4.1 PWM输出程序设计 (10) 4.2 数字PID算法程序设计 (11) 4.3速度采集模块程序设计 (12) 4.4 按键设定程序设计 (13) 4.5 速度显示模块程序设计 (15) 5 总结 (16) 6参考文献 (17) 附录A系统原理图 (18)

1 引言 1.1 设计背景 现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。本设计主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。 1.2 系统可实现的功能 设计一个直流电机调速系统,要求系统具有如下功能:通过按键设定转速的大小,然后由单片机产生PWM控制信号,控制直流电机驱动器L298N,使电动机以一定的转速旋转,为实现闭环控制,通过外围器件为单片机提供测量转速的电平变化信号,单片机测得转速后,与设定的转速值相比较,通过数字PID算法产生控制信号,改变PWM输出的占空比,从而改变电动机转速,从而实现闭环控制,使电动机在一个转速值上较稳定的旋转。

电力电子课程设计 直流电动机的直流斩波调速

电力电子技术课程设计 题目:直流电动机的直流斩波调速For personal use only in study and research; not for commercial use 姓名: 班级: 学号: 指导教师: 完成日期:

辽宁工程技术大学 课程设计成绩评定表

摘要 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域和高开关频率、全控型第二代电力半导体器件的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。直流电动机转速的控制方法可分励磁控制法与电枢电压控制法两类。励磁控制法控制磁通,其控制功率虽然小,但低速时受到磁饱和的限制,高速时受到换向火花和换向器结构强度的限制;而且由于励磁线圈电感较大,动态响应较差。所以常用的控制方法是改变电枢端电压调速的电枢电压控制法,调节电阻R 即可改变端电压,达到调速目的。这种传统的调压调速方法效率低。 目前,市场上用的最多的IGBT直流斩波器,它是属于全控型斩波器,它的主导器件采用国际上先进的电力电子器件IGBT,由门极电压控制,从根本上克服了晶闸管斩波器及GTR 斩波器的缺点。该斩波器既能为煤矿窄轨电机车配套的调速装置,针对不同的负载对象,做一些少量的改动又可用于其它要求供电电压可调的直流负载上。与可控硅脉冲调速方式和电阻调速方式相比,具有明显的优点。 关键字:直流电动机、调速、直流斩波

目录

第一章系统工作原理 直流电机斩波调速控制系统的原理框图如图1-1所示: 图1-1 原理框图 1.1 结构与调速原理 直流电机由定子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。 直流电机斩波调速原理是利用可控硅整流调压来达直流电机调速的目的,利用交流电相位延迟一定时间发出触发信号使可控硅导通即为斩波,斩波后的交流

直流无刷电动机及其调速控制

直流无刷电动机及其调速控制 1.直流无刷电动机的发展概况与应用 有刷直流电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间内一直在运动控制领域占据主导地位。但是,有机械接触电刷-换向器一直是电流电机的一个致命弱点,它降低了系统的可靠性,限制了其在很多场合中的使用。为了取代有刷直流电动机的机械换向装置,人们进行了长期的探索。早在1917年,Bolgior就提出了用整流管代替有刷直流电动机的机械电刷,从而诞生了无刷直流电机的基本思想。 1955年美国的D.Harrison等首次申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,标志着现代无刷直流电动机的诞生。无刷直流电动机的发展在很大程度上取决于电力电子技术的进步,在无刷直流电动机发展的早期,由于当时大功率开关器件仅处于初级发展阶段,可靠性差,价格昂贵,加上永磁材料和驱动控制技术水平的制约,使得无刷直流电动机自发明以后的一个相当长的时间内,性能都不理想,只能停留在实验室阶段,无法推广使用。1970年以后,随着电力半导体工业的飞速发展,许多新型的全控型半导体功率器件(如GTR、MOSFET、IGBT等)相继问世,加之高磁能积永磁材料(如SmCo、NsFeB)陆续出现,这些均为无刷直流电动机广泛应用奠定了坚实的基础。在1978年汉诺威贸易博览会上,前联邦德国的MANNESMANN公司正式推出了MAC无刷直流电动机及其驱动器,引起了世界各国的关注,随即在国际上掀起了研制和生产无刷直流系统的热潮,这业标志着无刷直流电动机走向实用阶段。 随着现代永磁材料和相关电子元器件的性能不断提高,价格不断下降,无刷电动机的到了快速发展,并被广泛应用于各个领域,例如,在数控机床、工业机器人以及医疗器械、仪器仪表、化工、轻纺机械和家用电器等小功率场合,计算

直流电动机的调速

一概述 随着电力电子器件的发展,大功率变流技术前进到一个以弱电为控制,强电为输出的新时代。直流电机调速系统由于它在技术性能与经济指标上具有优越性,实施技术上也比较成熟,因此在冶金、机械、矿山、铁道、纺织、化工、造纸及发电设备等行业都得到了广泛的应用,已成为工业自动控制领域一个及其重要的组成部分。一般工业生产中大量应用各种交直流电动机。直流电动机有良好的调速性能,三相交流桥式全控整流是目前在各种整流电路中应用最为广泛的电力电子电路,在运用到在直流电机调速时可以采用这种电路。 三相交流桥式全空整流最初用途是传动控制,但目前应用的新领域是各种直流电源设计。前者是三相交流桥式全控整流电路的传统领域,后者则是它当前和未来发展的新领域。而高频、大功率、高可靠性开关电源是当今电源变换技术发展的重要方向之一。 从我国的实际情况来看很好地采用三相桥式全控整流给直流电机调速仍然有很广泛的应用市场。这对改善我国科技现状水平,提高经济效益将起着重要作用,所以研究三相桥是全控整流直流调速系统有着深远的意义,它不仅能够大大改善各种机车的调速系统,为其提高安全、快速、低损耗的调速装置,在解决目前国际各国所面临的能源无谓的消耗起到立竿见影的效果。

二设计的总体思路 2.1 直流电动机的调速方法 采用改变电动机端电压调速的方法。当额定励磁保持不变,理想空载转速 n随U减小而减小,各特性线斜率不变,由此可实 现额定转速以下大范围平滑调速,并且在整个调速范围内机械特性硬度不变。变电压调速要有可调的直流电源,根据供电电源的种类分两种情况:一是采用可控变流装置,将交流电转变为可调的直流电。二是采用直流斩波器,在具有恒定直流供电电源的地方,实现脉冲调压调速由于工矿企业中大多为交流电源,因此前一种情况应用最广。 晶闸管变流装置输出的直流脉动电压 U加在电抗器L和电动 d 机电枢两端,L起滤波作用以及保持电流连续。改变晶闸管触发电 U,就可改变触发脉冲的控制角。,从而改变输路的移相控制电压 g U的大小,实现平滑的调压调速。 出平均电压 d 2.2 调速系统的确定 双闭环调速

直流电动机调速系统设计方案

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流内环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗 器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.北京:中国电力出版社, 2005:41-49、105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1概述 0 2转速、电流双闭环直流调速系统的组成及其静特性 0 2.1转速、电流双闭环直流调速系统的组成 0 2.2 稳态结构框图和静特性 (1) 3双闭环直流调速系统的数学模型与动态过程分析 (2) 3.1双闭环直流调速系统的动态数学模型 (2) 3.2双闭环直流调速系统的动态过程分析 (3) 4转速电流双闭环直流调速系统调节器的工程设计 (5) 4.1转速和电流两个调节器的作用 (5) 4.2调节器的工程设计方法 (5) 4.2.1设计的基本思路 (6) 4.3 触发电路及晶闸管整流保护电路设计 (6) 4.3.1触发电路 (6) 4.3.2整流保护电路 (7) 4.3.2.1 过电压保护和du/dt限制 (7) 4.3.2.2 过电流保护和di/dt限制 (8) 4.4 器件选择与计算 (8) 5心得体会 (13) 参考文献 (14) 附录:电路原理图 (15)

直流电动机启动、调速控制线路

实验题目类型:设计型 《电机与拖动》实验报告实验题目名称:直流电动机启动、调速控制线路 实验室名称:电机及自动控制 实验组号:指导教师: 报告人:学号: 实验地点:实验时间: 指导教师评阅意见与成绩评定

一、实验目的 1、掌握并励直流电动机电枢电路串电阻起动的方法。 2、掌握并励直流电动机改变电枢电阻和改变励磁电流调速的方法。 3、掌握并励直流电动机的制动方法。 4、提交实验成果。 二、实验设备 三、实验技术路线 实验前预习要点: 1.直流电动机的起动 起动的方法 a)串电阻起动 串电阻起动就是在启动时将一组启动电阻R串入电枢回路,以限制启动电流,而当转数上升到额定转数后,再把启动变阻器从电枢回路中切除。 串电阻起动的优点是启动电流小;缺点是变阻器比较笨重,启动过程中要消耗很多的能量。 b)降电压起动 降电压起动就是在启动时通过暂时降低电动机供电电压的办法来限制启动电流,当然降压启动要有一套可变电压的直流电源,这种方法只适合于大功率直流电机。

2.直流电动机的调速 调速的种类与方法: a)调节电枢供电电压 改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 b)改变电动机主磁通 改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 c)电枢回路串电阻调速 电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3.直流电动机的制动方 法 能耗制动 并励直流电动机在能耗制动时要保持励磁电流不变,在电枢两端从电源断开的同时,其立即接到一个制动电阻上。这时电动机内主磁场保持不变,电枢因机械惯性继续旋转,电动机由电动机状态立即转至发电机状态,此时电枢电流反向。从而产生的电磁转矩与原来反,称为制动转矩,故转速迅速下降,直到停转。电动机机械系统所储存的动能,全都转为电能而消耗在制动电阻上,所以称能耗制动。 反接制动

直流电动机调速系统设计综述

概述 (2) 1 设计任务与分析 (3) 1.1 任务要求 (3) 1.2 任务分析 (3) 2方案选择及论证 (4) 2.1 三相可控整流电路的选择 (4) 2.2 触发电路的选择 (4) 2.3 电力电子器件的缓冲电路 (5) 2.4 电力电子器件的保护电路 (5) 3主电路设计 (7) 3.1 整流变压器计算 (7) 3.1.1 U2的计算 (7) 3.1.2一次侧和二次侧相电流I1和I2的计算 (8) 3.1.3变压器的容量计算 (8) 3.2 晶闸管元件的参数计算 (9) 3.2.1晶闸管的额定电压 (9) 3.2.2晶闸管的额定电流 (9) 3.3 电力电子电路保护环节 (10) 3.3.1交流侧过电压保护 (10) 3.3.2直流侧过电压保护 (11) 3.3.3晶闸管两端的过电压保护 (11) 3.3.4过电流保护 (11) 4触发电路设计 (11) 4.1 触发电路主电路设计 (11) 4.2 触发电路的直流电源 (13) 5电气原理图 (14) 小结与体会 (15) 参考文献 (16) 附录 (16)

直流电动机具有良好的起动和制动性能,广泛应用于机械、纺织、冶金、化工、轻工等工业系统。随着电力电子技术的发展,晶闸管在直流电动机的调速系统中得到广泛应用。晶闸管直流电动机调速系统,可实现电动机的无级调速,具有调节范围宽,控制精度高,使用寿命长、成本低等优点。正确掌握晶闸管直流电动机调速系统的设计方法,对系统的可靠运行及应用有重大意义。 本设计以晶闸管直流电动机调速装置为主,介绍了系统的各个部件的组成及主要器件的参数计算。调速装置以可控整流电路作为直流电源,把交流电变换成大小可调的单一方向直流电。通过改变触发电路所提供的触发脉冲送出的早晚来改变直流电压的平均值。 关键词:可控整流晶闸管触发电路保护电路

直流电动机调速设计

综述 直流电机是人类最早发明的和应用的一种电机。与交流电机相比,直流电机因结构复杂、维护困难、价格较贵等缺点制约了它的发展,应用不如交流电机广发。但由于直流电动机具有优良的起动、调速和制动性能,因此在工业领域中仍占有一席之地。随着电力电子技术的发展,直流发电机虽有可能被可控整流电源取代的趋势,但从供电的质量和可靠性来看,直流发电机仍具有一定的优势,因此在某些场合,例如化学工业中的电镀、电解等设备,直流电焊机和某些大型同步电机的励磁电源仍然使用直流发电机作为供电电源。 直流电动机主要分为四类:1他励直流电动机,2并励直流电动机,3串励直流电动机,4复励直流电动机。本文对他励直流电动机的调速进行设计,主要介绍了他励直流电动机的调速原理以及调速方法。

1 直流电动机调速原理 1.1直流电动机的定义 输入为直流电能的旋转电动机,称为直流电动机,它是能实现直流电能向机械能转换的电动机。 1.2直流电动机的基本结构 直流电机由定子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。 图1-1直流电动机的基本结构 1—直流电机总图;2—后端盖;3—通风器;4—定子总图;5—转子(电枢)总图;6—电刷装置;7—前端盖。 1.3直流电动机的工作原理 直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 电刷上不加直流电压,用原动机拖动电枢使之逆时针方向恒速转动,线圈两边就分别切割不同极性磁极下的磁力线,而在其中感应产生电动势,电动势方向按右手定则确定。这种电磁情况表示在图上。由于电枢连续地旋转,,因此,必须使载流导体在磁场中所受到线圈边ab和cd交替地切割N极和S极下的磁力线,虽然每个线圈边和整个线圈中的感应电动势的方向是交变的.线圈内的感应电动势是一种交变电动势,而在电刷A,B端的电动势却为直流电动势(说得确切一些,是一种方向不变的脉振电动势)。因为,电枢在转

直流电动机开环调速MATLAB系统仿真

东北石油大学MATLAB电气应用训练 2013年 3 月 8日

MATLAB电气应用训练任务书 课程 MATLAB电气应用训练 题目直流电动机开环调速系统仿真 专业电气信息工程及其自动化姓名赵建学号 110603120121 主要内容: 采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB /SIMULINK 仿真模型。分析系统起动的转速和电流的仿真波形,并进行调试,使双闭环直流调速系统趋于合理与完善 基本要求: 1.设计直流电动机开环调速系统 2.运用MATLAB软件进行仿真 3.通过仿真软件得出波形图 参考文献: [1] 陈伯时. 电力拖动自动控制系统—运动控制系统第3版[M]. 北京:机械工业出版社, 2007. [2] 王兆安, 黄俊. 电力电子技术第4版[M]. 北京:机械工业出版社, 2000. [3] 任彦硕. 自动控制原理[M]. 北京:机械工业出版社, 2006. [4] 洪乃刚. 电力电子和电力拖动控制系统的MATLAB仿真[M]. 北京:机械工业出版社, 2006. 完成期限 2013.2.25——2013.3.8 指导教师李宏玉任爽 2013年 2 月25 日

目录 1课题背景 (1) 2直流电动机开环调速系统仿真的原理 (2) 3仿真过程 (5) 3.1仿真原理图 (5) 3.2仿真结果 (9) 4仿真分析 (12) 5总结 (13) 参考文献 (14)

1课题背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。 由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。 MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。 Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型,如现实世界中的摩擦、空气阻力、齿轮啮合等自然现象;它可以仿真到宏观的星体,至微观的分子原子,它可以建模和仿真的对象的类型广泛,可以是机械的、电子的等现实存在的实体,也可以是理想的系统,可仿真动态系统的复杂性可大可小,可以是连续的、离散的或混合型的。Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代起,就开始

直流调速系统复习题库

一、填空题 1.双闭环的调速系统的特点是:利用(ASR的饱和非线性)实现了(“准时间最优”)控制,同时带来了(转速超调)。 2.在设计双闭环系统的调节器时,先设计(内环的ACR),然后设计(外环的ASR)。 3.在双闭环调速系统中,电流调节器主要是对(电网电压波动)起调解作用;而转速调节器主要是对(负载扰动)起抗扰调节作用。 4.变电压调速是直流调速系统用的主要方法,调节电枢电压常用的三种可控制电源分别为(旋转变流机组)、(静止可控整流器)及(脉宽调制器和直流斩波变换器)。 5.直流电动机的调速方法有三种,即为(改变电枢电压调速)、(弱磁调速)和(电枢回路串电阻)调速。 6.直流调速系统的静态技术指标有(调速范围D)和(静差率S),它们的表达式分别为(D n n max)和(s n ncl),它们之间的关系式为( D (1n s n)oms n)。 n min n omin (1 s) n nom 7.脉中宽度调制简称(PWM,)它是通过功率管开关作用,将(恒定直流电压)转换成频率一定,宽度可调的(方波脉冲电压),通过调节(脉冲电压的宽度),改变输出电压的平均值的一种变换技术。 8.调速控制系统是通过对(电动机)的控制,将(电能)转换成(机械能),并且控制工作机械按(给定)的运动规律运行的装置。 9.用(直流电动机)作为原动机的传动方式称为直流调速,用(交流电动机)作为原动机的传动方式称为交流调速。 10.电气控制系统的调速性能指标可概括为(静态)和(动态)调速指标。11.在电动机微机控制系统中,电动机是(被控对象),微型计算机则起(控制器)的作用。 12.总的来说,在电动机微机控制系统中,计算机主要完成(实时控制)、(监控)和(数据处理)等工作。 13.模拟信号到数字信号转换包括(采样)和(量化)两个过程。 14.PID 控制中P、I 、D的含义分别是(比例)、(积分)和(微分)。 15.脉冲式传感器检测转速的方法有(M法测速)、(T 法测速)和(M/T法测速)。 16.从系列数据中求取真值的软件算法,通常称为(数字滤波算法)。17.与模拟控制系统相比,微机数字控制系统的主要特点是(离散化)和(数字化)。18.数字控制直流调速系统的组成方式大致可分为三种: 1. 数模混合控制系统 2. 数字电路控制系统 3. 计算机控制系统 19.常规PID控制算法中可分为(位置式PID算法)和(增量式PID 算法)。 20.微机数字控制双闭环直流调速系统硬件结构主要包括以下部分:(主电路)、(检测电路)、(控制电路)、(给定电路)和(显示电路)。 二、判断题 1.双闭环调速系统中,给定信号Un 不变,增加转速反馈系数α,系统稳定运行时转速反

单片机课程设计完整版《PWM直流电动机调速控制系统》

单片机原理及应用课程设计报告设计题目: 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日 目录

设计题目:PWM直流电机调速系统 本文设计的PWM直流电机调速系统,主要由51单片机、电源、H桥驱动电路、LED 液晶显示器、霍尔测速电路以及独立按键组成的电子产品。电源采用78系列芯片实现+5V、+15V对电机的调速采用PWM波方式,PWM是脉冲宽度调制,通过51单片机改变占空比实现。通过独立按键实现对电机的启停、调速、转向的人工控制,LED实现对测量数据(速度)的显示。电机转速利用霍尔传感器检测输出方波,通过51单片机对1秒内的方波脉冲个数进行计数,计算出电机的速度,实现了直流电机的反馈控制。 关键词:直流电机调速;定时中断;电动机;波形;LED显示器;51单片机 1 设计要求及主要技术指标: 基于MCS-51系列单片机AT89C52,设计一个单片机控制的直流电动机PWM调速控制装置。 设计要求 (1)在系统中扩展直流电动机控制驱动电路L298,驱动直流测速电动机。 (2)使用定时器产生可控的PWM波,通过按键改变PWM占空比,控制直流电动机的转速。 (3)设计一个4个按键的键盘。 K1:“启动/停止”。 K2:“正转/反转”。 K3:“加速”。 K4:“减速”。 (4)手动控制。在键盘上设置两个按键----直流电动机加速和直流电动机减速键。在

手动状态下,每按一次键,电动机的转速按照约定的速率改变。 (5)*测量并在LED显示器上显示电动机转速(rpm). (6)实现数字PID调速功能。 主要技术指标 (1)参考L298说明书,在系统中扩展直流电动机控制驱动电路。 (2)使用定时器产生可控PWM波,定时时间建议为250us。 (3)编写键盘控制程序,实现转向控制,并通过调整PWM波占空比,实现调速; (4)参考Protuse仿真效果图:图(1) 图(1) 2 设计过程 本文设计的直流PWM调速系统采用的是调压调速。系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构。PWM调制部分是在单片机开发平台之上,运用汇编语言编程控制。由定时器来产生宽度可调的矩形波。通过调节波形的宽度来控制H电路中的GTR通断时间,以达到调节电机速度的目的。增加了系统的灵活性和精确性,使整个PWM脉冲的产生过程得到了大大的简化。 本设计以控制驱动电路L298为核心,L298是SGS公司的产品,内部包含4通道逻辑驱动电路。是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。可驱动2个电机,OUTl、OUT2和OUT3、OUT4之间分别接2个电动机。5、7、10、12脚接输入控制电平,控制电机的正反转,ENA,ENB接控制使能端,控制电机的停转。 本设计以AT89C52单片机为核心,如下图(2),AT89C52是一个低电压,高性能 8位,片内含8k bytes的可反复擦写的只读程序存储器和256 bytes的随机存取数据存储器(),器件采用的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。 图(2) 对直流电机转速的控制即可采用开环控制,也可采用闭环控制。与开环控制相比,速度控制闭环系统的机械特性有以下优越性:闭环系统的机械特性与开环系统机械特性相比,其性能大大提高;理想空载转速相同时,闭环系统的静差(额定负载时电机转速降落与理想空载转速之比)要小得多;当要求的静差率相同时, 闭环调速系统的调速范

直流电动机的电气调速方法

直流电动机的电气调速方法 直流电动机的电气调速方法下的调速性能及其应用。关键卸电机调违方法性能化较基本调速方法电机的电磁转炬和转速是表征电机运斤状态的主要物理量直流他励电机的电磁转矩和转速。 在恒负载转矩始下,若改变电枢回路所串联电阻化,改变电枢两端电压,或改变磁通,都可改变直流电机的机械特性,达到调速的目的。 因此,人为的改变电机的运行参数而实现的调速方法有:电枢回路串联电阻调速;改变电枢电压调速;减弱通调速这种人为的改变电机的运斤参数而得到的机械特性称人工机械特化电枢回路串联电阻调速持电源电压和磁通H为额定值不变,控制触点。 接通或断开可得到定负载转矩下电机的不同转速,电枢回路串接不同电阻下的空载转速。保持不变,而负载时的转速降将随电枢串联电阻的增加而大,电机的转速随电枢回路串联电阻的加而减小。 由于电枢电阻为恒值旧而电机的转速只能在额定转速下调整,电机的机械特性变软,在负载转炬变化时,转速降落较大,保持磁通为额定值,电枢回路不串入电阻,通过改变调压装置改变电枢电压,使其在额定电压凹下变化,其调速特性改变电枢电压的人工机械特性为条平行于自然机械特性的直线。随着电枢电压下降电机的空载转速降低,负载时的转速降保持不变,电机转速随电枢电压降低而下降。由

于电枢电压只能在额定电压化判下变化,因此改变电枢电压调速只能在额定转速下调整,电机的机械特性硬,在负载转矩变化时,转速降落较小。 以上两种调速方法在拖动恒转矩负载,稳定在不同转速下运行时,在采用电枢回路串入电阻调速或改变电枢电调速时,力辉电动机的负载能力具有恒转矩特化改变域通调速于额定磁通下,磁路系统已接近饱和,因此改变磁通只能在额定磁通巧下减小。在某负载转矩化下,保持电枢电压为额定电压化,电枢回路不串入电阻,调整励磁电阻况使励磁电流减小,从而减小磁通。随着磁通的减小,电机的空载转速将加内,电机的转速将随着磁通的减弱而增加内内减弱磁通调速只能得到高于额定转速的转速,且电机的机械特性变软,在负载转矩变化时,转速降落较大采用弱磁调速方法时,若拖动恒转炬负载,电动机运行于不同转速下的电枢电流。 调速的相对稳定性调速的相对稳定性亦称静差率,是衡量调速精度的指示它是指负载转矩变化时,转速变化的程度,其定义为:电动机由理想空载到额定负载时转速降落n.与理想空载转速《之比的百分数,常用来表示式中心电动机的额定转速。越小调速的相对稳定性越好,越大调速的相对稳定性就越差。电动机受负载变化所引起的转速降。系统的相对稳定性就越好,调速的精度就越高;电动机的理想空载转速。越低,义就越大,系统的相对稳定性就越差,调速的精度就越低。

他励直流电动机的调速

摘要 随着工业的不断发展,电动机的需求会越来越大,电动机的应用越来越广泛,电动机的操作系统是一个非常庞大而复杂的系统,它不仅为现代化工业、家庭生活和办公自动化等一系列应用提供基本操作平台,而且能提供多种应用服务,使人们的生活质量有了大幅度的提高,摆脱了人力劳作的模式。而电动机主要应用于工业生产的自动化操作中是电动机的主要应用之一,因此本课程设计课题将主要以在工业中电动机调速方法的应用过程可能用到的各种技术及实施方案为设计方向,为工业生产提供理论依据和实践指导。 关键词:他励直流电动机;调速;机械特性

目录 1 引言 (1) 2 直流电动机 (1) 2.1 直流电动机的介绍 (1) 2.2 直流电动机的分类 (1) 3 他励直流电动机 (2) 3.1 他励直流电动机的基本工作原理 (2) 3.2 他励直流电动机的机械特性 (3) 4 他励直流电动机的调速 (5) 4.1 调速的基本概念 (5) 4.2 调速的指标 (5) 4.3 调速的方式 (7) 4.3.1 电枢串电阻调速 (7) 4.3.2 改变电枢电源电压调速 (7) 4.3.3改变励磁电流调速 (8) 5实例分析 (9) 6结论 (11) 参考文献 (12) 致谢 (13)

1 引言 现代工业中,有大量的生产机械,要求能改变工作速度。例如金属切削机床,由于加工工件的材料和精度要求不同,速度也就不同。又如轧钢机,当轧制不同品种和不同厚度的钢材时,也必须采用不同的最佳速度。所谓调速就是在一定的负载下,根据生产的需要人为地改变电动机的转速。这是生产机械经常提出的要求。调速性能的好坏往往影响到生产机械的工作效率和产品质量。所以直流电动机的调速在生产工作中起着至关重要的作用。 2 直流电动机 2.1 直流电动机的介绍 直流电动机是人类最早发明和应用的一种电机。直流电动机以其结构复杂、价格较贵、体积较大、维护较难而使得其应用受到了影响。随着交流电动机变频调速系统的发展,在不少应用领域中已为交流电动所取代。但是直流电动机又以起动转矩大、转速性能好、自动控制方便而著称,因此,在工业等应用领域中仍占有一席之地。在四种直流电动机中,他励直流电动机应用最广泛。 2.2 直流电动机的分类 根据直流电动机的励磁方式,可以将其分为以下几种类型。 1、他励直流电动机 励磁绕组与电枢绕组采用两个电源供电,各有了各的电源开关,没有直接的电源联系,如图2-1(a)所示,电枢电流Ia由电枢端电压U决定,而励磁电流I f由励磁绕组端电压 U1决定。 2、并励直流电动机 励磁绕组和电枢绕组并联,采用同一个电源U供电,由一个开关控制,如图2-1(b)所示。其特点是励磁绕组的电压即为电枢电压,电源电流为电枢电流Ia与励磁电流I f之和。为了降低损耗,并励直流电动机的励磁电流一般较小,约为电枢电流的5%;为保证足够的磁通,励磁绕组一般导线较细,匝数多,电阻大。 3、串励直流电动机 励磁绕组与电枢绕组串联之后,外接一个直流电源,由一个开关控制,如图2-1(c)所示。其特点是励磁电流I f与电枢电流Ia相同,这个电流一般较大,所以串励直流电动机的励磁绕组导线较粗,匝数少,电阻小。 4、复励直流电动机 这种电动机中既有串励又有并励,一部分励磁绕组与电枢绕组串联,另一部分励磁绕组再与电枢绕组并联,如图2-1(d)所示。其特点是电动机的主磁通由这两个励磁绕组共

直流小电动机调速系统

题目直流小电机测速系统 一.题目要求 设计题目:直流小电动机调速系统 描述:采用单片机、uln2003为主要器件,设计直流电机调速系统,实现电机速度开环可调。 具体要求:1、电机速度分30r/m、60r/m、100r/m共3档; 2、通过按选择速度; 3、检测并显示各档速度。 实验器件: 实验板、STC89C52、直流电机、晶振(12MHz)、电容(30pFⅹ2、10uFⅹ2)、)uln2003、小按键、按键(4个)、、数码管、以及 电阻等 二.组分工

摘要 在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了十分广泛的应用。 本文设计了直流电机测速系统的基本方案,阐述了该系统的基本结构、工作原理、运行特性及其设计方法。本系统采用PWM 测量电动机的转速,用MCS-51单片机对直流电机的转速进行控制。本设计主要研究直流电机的控制和测量方法,从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。 ·关键词:直流电机单片机 PWM 转速控制 硬件部分 1.时钟电路 系统采用12M晶振与两个30pF电容组成震荡电路,接STC89C52的XTAL1与XTAL2引脚

2.按键电路 三个按键分别控制电机的不同转速,采用开环控制方法 3.电机控制与驱动部分 电机的运行通过PWM波控制。PWM波通过STC89C52的P2.4口输出。

显示部分 采用4位共阳极数码管实现转速显示。数码管的位选端1~4分别接STC89C52的P2.0~P2.3管脚。 完整仿真电路图

IGBT直流斩波调速系统设计

IGBT直流斩波调速系统设计

摘要 本设计采用一个直流斩波电路实现直流调压,以此控制直流电动机的转速。主电路包括:整流电路、斩波电路及保护电路。控制电路的主要环节是:触发电路、电压电流检测单元、驱动电路、故障保护电路。由于要求电机能稳定运行并能实现无极调速,IGBT绝缘栅双极晶体管作为斩波电路的组成元件。 关键词:整流电路;斩波电路;驱动电路;直流电动机

目录 摘要 .................................................................................. I II 第1章绪论 (1) 1.1电力电子技术及IGBT概况 (1) 1.2本文设计内容 (1) 第2章由IGBT构成的直流斩波调速系统的电路设计 (1) 2.2整流电路设计 (2) 2.3 RC滤波稳压电路 (3) 2.4升降压直流斩波电路设计 (3) 2.5控制与驱动电路 (4) 2.6保护电路 (5) 2.7系统总电路图 (6) 2.8系统各参数计算及器件选择 (6) 第3章系统调试及仿真 (7) 第4章课程设计总结 (9) 参考文献.................................................................. 错误!未定义书签。附录I系统主电路图.. (9)

第1章绪论 1.1电力电子技术及IGBT概况 电力电子技术应用于整个电能产生、传输及利用的各个环节。分布式电源及微电网技术、高压直流输电与灵活交流输电技术、电能质量控制技术及为数众多的电源技术都是电力电子技术应用的范例。电力电子技术为功率强大,可供诸如电力系统那样大电流、高电压场合应用的电子技术,它与传统的电子技术相比,其特殊之处不仅仅因为它能够通过大电流和承受高电压,而且要考虑在大功率情况下,器件发热、运行效率的问题。IGBT直流斩波,对电力电子技术的发展起到重大推动作用,它打开了电力电子技术向高频大功率化发展的新纪元,使其应用产品的自动化、智能化、高效化和机电一体化做出了显著贡献。市场上用的最多的IGBT直流斩波器,它是属于全控型斩波器,由门极电压控制,从根本上克服了晶闸管斩波器及GTR斩波器的缺点。中国电力系统具有地域跨度大、结构复杂、控制要求高的特点。中国资源特别是一次能源相对紧缺、环境问题突出。因此,中国电能的安全稳定、可靠供应及高效环保利用成为当务之急,电力电子技术必将发挥重要作用,而IGBT在电力电子中的作用不可忽视。 在80年代后期,以绝缘栅双极晶体管(IGBT)为代表的复合型器件异军突起。IGBT是MOSFET和BJT的复合。它把MOSFET的驱动功率小、开关速度快的优点和BJT的通态压降小、载流能力大的优点集于一身,性能十分优越,使之成为现代电力电子技术的主导器件。目前,市场上用的最多的直流斩波器,它的主导器件采用国际上先进的电力电子器件IGBT,由门极电压控制,从根本上克服了晶闸管斩波器及GTR 斩波器的缺点。该斩波器,它是属于全控型斩波器,既能为煤矿窄轨电机车配套的调速装置,针对不同的负载对象,做一些少量的改动又可用于其它要求供电电压可调的直流负载上。与可控硅脉冲调速式和电阻调速方式相比,具有明显的优点。 直流斩波电路的功能是将直流电变为另一固定电压或者可调电压的直流电,也称为直接直流-直流变换器。直流斩波电路一般是只直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。我们要研究的就是各种斩波电路的工作原理、掌握它们的工作的输入输出关系、电路解析方法和工作特点。 1.2本文设计内容 IGBT 组成的直流斩波调速系统,对一台额定电压110V、功率为1kW的直流电动机提供直流可调电源,本文设计一个由以实现直流电动机的调速。要求输出电压在0~110V连续可调,斩波输出最大电流10A.本系统设计多个电气部分组成整体结构有变压部分,整流部分,保护部分,反馈部分及由IGBT为主的控制部分等部分所组成。本电机调速系统采用直流斩波调速方式, 与晶闸管调速相比技术先进, 可减少对电源的污染,而且本系统有着过电流保护与过电压保护,安全并且实用。 第2章由IGBT构成的直流斩波调速系统的电路设计 2.1 总体设计方案 本设计采用升降压直流斩波电路实现直流调压,以此控制直流电动机的转速。采用220V 单相交流电源经降压变压器降压输出的交流电,再经感容滤波单相桥式全控整流电路整

相关主题
文本预览
相关文档 最新文档