当前位置:文档之家› 热力学大作业 水-乙醇共沸分析

热力学大作业 水-乙醇共沸分析

热力学大作业 水-乙醇共沸分析
热力学大作业 水-乙醇共沸分析

化工热力学结业小论文

课程名称:化工热力学

指导老师:

专业班级:

学生姓名:

学号:

日期:2012/12/3

1、计算101.325kpa 下,乙醇(1)-水(2)体系气液平衡数据

2、判断是否有共沸组成并计算该点组成及温度;并与文献数据对比

3、怎样才能从20wt%稀酒精得到无水乙醇以作为汽车燃料?

计算气液平衡数据方法(步骤): 1、由C2H5OH 以及H2O ,查得两物质临界参数Tc1、Tc2、Pc1、Pc2、ω查得antonio 方程中C2H5OH 和H2O 参数A1,B1,C1,A2,B2,C2,进入2 2、利用总压强P 总=101.325kpa ,带入antonio 方程i

i

i s i C T B A p +-

=ln 得T1,T2,进入3 3、假设x1,x2数据,从小到大假设,并取0.01为间隔,逐次递增,由T=T1*x1+T2*x2,

并另各V i

??初值均为1,进入4 4、将T 值带入antonio 方程i

i

i s

i C T B A p +-

=ln 可得Ps1和Ps2,进入5 5、选择NRTL 方程,计算γi ,进入6

6、利用两物质临界参数以及T 、P 值计算Tr1,Tr2,Prs1,Prs2,再利用对比态法(计算逸度系数的对比态法)计算气态混合物各组元i 的逸度系数,进入7

7、利用平衡方程,V

i s

i S i i i i P P x y ?

?γ?=计算y1、y2,进入8

8、计算y1+y2的值,并判断是否进行迭代

9、将yi 归一化,利用混合物维里方程(计算混合物逸度系数的维里方程)结合

混合规则计算各V

i

??,返回7 10、判断y1+y2是否与8的值不同,“是”返回6,“否”进入11 11、计算y1+y2,判断是否为1,“否”进入12,“是”进入13

12、调整T 值,如果y1+y2大于1,则把T 值变小,如果y1+y2小于1,则把T 值变大,并返回4

13、得出T 、所有yi 值,并列出表格,进入14

14、将所有按从小到大顺序假设的Xi 值所对应的Yi 值求出,并作出T-X-Y 图,进入15 15、结束

x-y与温度、泡点、露点的数据

X-Y图

T-X-Y图

从文献查值,常压下,乙醇的沸点为78.1℃,水的沸点为100摄氏度,乙醇和水的二元共沸沸点为78.1摄氏度,二元共沸组成:水4.4%,乙醇95.5%。

而由aspen模拟可得,乙醇和水的共沸点为78.14529摄氏度,组成为乙醇90%,水10%,为最高压力共沸点和最低温度共沸点,与文献值差别不大,可以认为可靠。

以下为稀酒精得到无水乙醇的方法,以及无水乙醇作为汽车燃料的发展状况

备注:无水乙醇即乙醇含量≥99.0%的乙醇

NRTL方程与SRK方程在非理想体系的气液平衡计算

参考文献:

[1] 孙学文,赵锁奇.The application of ionic liquid in petrochemical technology[J].石油化工.2002,31(10):855-860

[2] Trevor M,Letcher N D.Ternary liquid-liquid equilibria of mixtures of 1-methyl-3-octyl-imidazolium chloride+benzene+an alkane at T=298.2 K and 1 atm[J].Journal of Chemical Thermodynamics.2003,35(01):67

[3] GmehlingJ,OnkenU,ArltW.Vapor Liquid Equilibrium Data

Collection[M].NY:Flushing.1977

[4] Hirata M,OheS,https://www.doczj.com/doc/ec15102037.html,puter Aided Data Book of Vapor-Liquid Equilibrium[M].Tokyo:Kodansha Ltd.1975

[5] 田中华,华贲,王键吉.Recent advances in the physico-chemical properties study of room temperature ionic liquids[J].化学通报-网络版.2004,67:1-10

[6] 王波,杨立明.Epoxidation of α,β unsaturated carbonyl compounds in ionic liquid water biphasic system under mild condition[J].化学学

报.2003,61:285-290

[7] 乔焜,邓友全.Blanc chloromethyl reaction in chloroaluminate ionic liquids[J].化学学报.2003,61:133-136

[8] 孙仁义,孙茜.Effect of non-volatile solutes on boiling point and vapor pressure of mixed solvent[J].化工学报.2002,53(09):885

[9] 易波,许峥,雷志刚.Solvent for extractive distillation to separate ethane/ethylene[J].化工学报.2001,52(06):549

[10] 李春喜,宋红燕,李以圭.Calculation activity coefficients of electrolyte aqueous solution with perturbation theory-based equation of state[J].化工学报.2001,52(04):363

无水乙醇生产工艺的探讨

参考文献:

[1]李立硕,韦藤幼,杨海敬,童张法;共沸精馏生产无水乙醇的敏感性分析[J];酿酒科技;2005年02期

[2]陈俊英;马晓建;楚德强;刘国际;韩秀丽;;降低酒精生产能耗的关键技术[J];酿酒科技;2006年08期

[3]梁会珺;吲哒帕胺的合成以及四氢呋喃—水体系在分子筛上的吸附研究[D];浙江大学;2006年

[4]王文华;萃取精馏技术强化与应用[D];天津大学;2006年

[5]李立硕;共沸精馏分水新技术制备无水乙醇[D];广西大学;2005年

[6]祝春进;KL-Ⅲ型吸附剂在固定床吸附器中的吸附特性研究[D];郑州大学;2005年

[7]赵淑芳;燃料乙醇分离工艺的流程模拟及换热网络的最优综合[D];天津大学;2006年

[8]雷志刚,周荣琪;溶剂加盐对醇水汽液平衡的影响[J];精细化工;2000年05期

[9]封瑞江,赵崇峰;共沸法生产无水乙醇中共沸剂配比的研究[J];抚顺石油学院学报;2000年03期

[10]李文秀;间歇精馏塔理论板数的一种确定方法[J];化工设计;1995年04期

[11]刘永新,费德君,涂敏端;用NRTL方程预测部分互溶体系的汽液平衡[J];化学工业与工程;2002年03期

[12]郭章红;萃取精馏萃取剂分子设计的研究[D];河北工业大学;2002年

无水乙醇制备的方法(石河子大学黄津津)

1 共沸精馏法

共沸精馏(恒沸精馏)工艺是在常压无法制取无水乙醇的情况下,通过向乙醇-水溶液添

加夹带剂(如苯、环己烷、戊烷等)进行精馏的,夹带剂与乙醇溶液中的乙醇和水形成三元共沸物,该三元共沸物与纯组分酒精(或水)之间的沸点差较大,从而可获得纯度很高的乙醇。以环己烷为例:环己烷、乙醇和水形成三元共沸物,沸点62.1℃,比乙醇的78.3℃或乙醇—水溶液的恒沸点78.15℃都要低得多,在精馏时从塔顶馏出。三元恒沸物的组成(质量比W﹪)为环己烷76﹪,乙醇17﹪,水7﹪,其中水对乙醇的质量比为0.41,比乙醇—水恒沸物的这一质量比0.046要大得多。故只要有足量的环己烷作为夹带剂,在精馏时水将全部集中于三元恒沸物中从塔顶馏出,塔底产品为无水酒精。该方法能实现规模化生产、机械化程度高、产量大、质量好。当然,这种成熟的生产工艺也有缺点, 主要是能耗还不是太理想,且夹带剂在生产操作不当时会引起环境污染。

2 萃取精馏法

萃取精馏法是通过加入某种添加剂来改变原溶液中乙醇和水的相对挥发度,从而使原料的分离变得容易。在乙醇水溶液中添加萃取剂(如乙二醇、醋酸钾、氯化钙、氯化钠、氯化铜、乙二醇的盐溶液等)可以改变其平衡曲线,从而可以使难分离物系转化为容易分离的物系、分离成本降低。盐的种类、溶剂比、原料进料位置等的不同对精馏有很大的影响。溶盐萃取剂在溶剂比为1.2 时可得99.7% 的无水乙醇产品, 而加碱萃取剂在溶剂比为1 时即可得到

同样的产品。加碱萃取精馏过程可以在溶剂比下降20%的情况下,得到相同质量的产品。萃取精馏塔内液体负荷降低、塔板效率提高, 溶剂回收过程处理量减少。萃取精馏法因具有低能耗、无污染、设备简单、操作方便等优点而备受关注。

3 膜分离法

膜分离技术具有高效、节能、无污染的特点,是一种很有前景的新技术,分为渗透汽化和蒸气渗透。渗透汽化(Pervaporation。简称PV)是在液体混合物中组分蒸汽压差推动下,利用组分通过膜的溶解与扩散速率的不同来实现分离的过程。渗透汽化作为一种新兴膜分离技术,由于具有相变质量小、效率高、能耗低、设备简单、工艺放大效应小等优点,逐渐在化学工业、石油化工、食品工业、制药工业和环境保护中得到应用,尤其在酒类生产、醇类脱

水和化学药剂、食品中成分分析、酯水体系分离等领域发挥着重大的作用。渗透汽化利用膜对液体混合物中各组分溶解扩散性能的不同而实现其分离的,是膜分离技术的热点研究,适

宜于用蒸馏法分离分离难以分离或不能分离的近沸物、共沸物。渗透汽化过程中存在浓差极化和膜污染等问题,特别在发酵生产中发酵副产物(如无机盐离子)、死细胞、非挥发性代谢产物的累积不利于生物反应器的连续运行,并且受到膜的强度、耐久性以及膜组件性能的制约,其生产规模比较小。渗透通量和分离因子是衡量膜性能的2个重要指标。

4 吸附法

4、1 分子筛吸附法

分子筛对H2O、NH3、H2S、CO2 等高极性分子具有很强的亲和力,特别是对水,在低分压或低浓度、高温等十分苛刻的条件下仍有很高的吸附容量。分子筛可用于高温吸附,用于乙醇脱水的典型分子筛为间隙通道的平均?为0.3nm,水分子的?为0.28nm,能进入分子筛的内部被吸附;而乙醇分子?为0.44nm不能进入孔内,直接从外面流出不被吸附。分子筛法自动化程度高,劳动强度小,产品质量好,无环境污染,适合大规模的工业化生产,但再生时能耗较高。

参考文献:

[1] Gonzalez—Vlseo,JuanR;Lopez—Dehesa,cristina;Gonzalez一Marcos.Jourmal of applied

Polymer Science[J].2003,90(8),2255-2259.

[2] MARDLRP, JAIME A J. Modeling and simulation of saline extractive distillationcolumns for the

production of absolute ethanol [ J ]. ComputChemEngi, 2003, 27: 52725491

[3] TSUIEM, CHERYANM. Characteristics of Nanofiltration membranes in aqueous ethanol [ J ]. J

Membrane Sci, 2004, 23 (1-2) : 61-91

[4]张泽志,江华,毕先钧,等.硅藻土在云南白酒生产中的应用[J].云南师范大学学报(自

然科学版),2003,23(增刊):82-83.

[5]毕先钧,江华,林敏.云南先锋硅藻土制备钒催化剂[J].云南师范大学学报(自然科学

版)。2002。22(2):39-41.

[6]曹福禄.分子筛法无水酒精生产工艺探讨.LIQUOR—MAKING SCIENCE&TECHNOLOGY 2006

No.8(Tol.l46)

[7]胡华俊,陈砺,王红林,等. 燃料乙醇加盐萃取精馏的试验研究及机理探讨[J]. 可再生能

源, 2007, 25 (5) : 242301

[8]Development of Chemical Industry. Vol.38 No.12Dec.2009

[9]韩秀丽,鲁锋,董科利,刘冰.赵雅光.生物质吸附法制取无水乙醇的研究进展. 酿酒科技

2007年第1期(总第l5l期)

[10]马心如,赵芙荣.恒沸精馏法生产无水酒精.酿酒科技,2002年第2期(总第110期)

[11]林军,顾正桂.加碱萃取精馏制取无水乙醇.Chemical Research andApplicationVol. 16,

No. 2Apr.,2004

[12]吴晓莉,靖恋,尹卓容.加盐萃取蒸馏生产无水乙醇. 酿酒,第30卷,第6期2003年11月

分离乙醇、水溶液的渗透汽化膜材料

参考文献:

加碱萃取精馏制取无水乙醇

参考文献:

热工基础大作业

核电站在中国的兴起发展 能源是现代社会发展的重要物质基础,是实现经济增长最重要的生产要素之一。一个国家(或地区)经济增长率和生活水平与能源消耗、与当地人均用电量有直接的(正比)关系。世界各国的能源消费结构存在比较大的差异,主要取决于该国的资源构成、经济发展水平以及能源战略. 由于化石燃料对环境的污染及不可再生性,各国积极发展可再生能源,核电作为安全经济的清洁能源受到各国的普遍重视。 现代电力工业的发展状况是一个国家是否发达的重要标志之一,而核电技术的发展程度则在一定意义上反映了该国高新技术水平的高低。 核能发电的能量来自核反应堆中可裂变材料(核燃料)进行裂变反应所释放的裂变能。裂变反应指铀-235、钚-239、铀-233等重元素在中子作用下分裂为两个碎片,同时放出中子和大量能量的过程。反应中,可裂变物的原子核吸收一个中子后发生裂变并放出两三个中子。若这些中子除去消耗,至少有一个中子

能引起另一个原子核裂变,使裂变自持地进行,则这种反应称为链式裂变反应。实现链式反应是核能发电的前提。核电站由核岛(主要包括反应堆、蒸汽发生器)、常规岛(主要包括汽轮机、发电机)和配套设施组成。核电站与一般电厂的区别主要在于核岛部分。 核电之所以能成为重要的能源支柱之一,是由它的安全性、运行稳定、寿期长和对环境的影响小等优点所决定的。大部分核电发达国家的核能发电比常规能源发电更为经济。核电在我国也具有较强的潜在经济竞争力,目前它的经济性已可以与引进的脱硫煤电厂相比较。 据科学家分析,我国煤电燃料链温室气体的排放系数约为1302.3等效CO2克/千瓦时,水电燃料链为107.6等效CO2克/千瓦时。核电站自身不排放温室气体,考虑到它在建造和运行中所用的材料,其燃料链温室气体的排放系数约为13.7等效CO2克/千瓦时。可见,核电站向环境释放的温室气体,只是同等规模煤电厂的百分之一。而且世界上有比较丰富的核资源,核燃料有铀、钍氘、锂、硼等等,世界上铀的储量约为417万吨。地球上可供开发的核燃料资源,可提供的能量是矿石燃料的十多万倍。核能应用作为缓和世界能源危机的一种经济有效的措施有许多的优点,其一核燃料具有许多优点,如体积小而能量大,核能比化学能大几百万倍;1000克铀释放的能量相当于2400吨标准煤释放的能量;一座100万千瓦的大型烧煤电站,每年需原煤300~400万吨,运这些煤需要2760列火车,相当于每天8列火车,还要运走4000万吨灰渣。同功率的压水堆核电站,一年仅耗铀含量为3%的低浓缩铀燃料28吨;每一磅铀的成本,约为20美元,换算成1千瓦发电经费是0.001美元左右,这和目前的传统发电成本比较,便宜许多;而且,由于核燃料的运输量小,所以核电站就可建在最需要的工业区附近。核电站的基本建设投资一般是同等火电站的一倍半到两倍,不过它的核燃料费用却要比煤便宜得多,运行维修费用也比火电站少,如果掌握了核聚变反应技术,使用海水作燃料,则更是取之不尽,用之方便。各种能源向环境释放的放射性物质也相差很大。科学家调查证实,从对公众和工作人员产生的辐射照射看,煤电燃料链分别是核电燃料链的50倍和10倍。 我国在1971年建成第一艘核潜艇以后,立即转入了对核电站的研究和设计。经过几十年的努力,我国迄今已经建成核电机组8套,还有3套正在建设之中,到2005年将全部建成,届时我国的核电装机容量将达到870万千瓦。从我国的第一套核电机组———秦山30万千瓦核电机组并网发电以来,到目前为止,我 国核发电总量已超过为1500亿千瓦时。 秦山核电站是我国大陆第一座核电站。它 是我国自行设计建造的30万千瓦原型压水堆 核电站,于1985年开工建设,1991年12月15 日首次并网发电,1994年投入商业运行,已有 十多年安全运行的良好业绩,被誉为“国之光荣”。 我国自行设计、建造的秦山二期核电站,装有两台60万千瓦压水堆核电机组,于1996年6月2日开工建设。1号机组于2002年2月6日实现首次并网,2002年4月15日提前47天投入商业运行。它的建成为我国核电自主化事业的进一步发展奠定了坚实的基础。

(完整版)哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+???蜒? 因为 0du =??,()0d pv =?? 所以 0dh =??, 因此焓是状态参数。 而对于能量方程来说,其循环积分: q du pdv δ=+???蜒?

热力学作业

第三章 热力学作业 3-9 0.32kg 的氧气作如图3-36所示的循环,循环路径为abcda , V 2= 2V 1, T 1= 300K ,T 2=200K ,求循环效率。设氧气可以看做理想气体。 解: mol M M mol 10032 .032.0===ν 氧气为双原子分子, R c v 25= a-b 为等温过程,0=?E J V V RT A Q 412 11110728.12ln 30031.810ln ?=???===ν 此过程系统从外界吸热J 410728.1?,全部用来向外做功。 b-c 为等体过程,A =0 () J T T c E Q v 4122100775.2)300200(31.82 510?-=-???=-=?=ν 此过程系统向外放热J 4100775.2?,系统内能减少J 4100775.2?。 c-d 过程为等温过程,E ?=0 J V V RT A Q 42 1 22310152.121ln 20031.810ln ?-=???===ν 此过程外界对系统做功J 410152.1?,系统向外放热J 410152.1? d-a 为等体过程,A =0 () ()J T T c E Q v 4214100775.220030031.82 510?=-???=-=?=ν 此过程系统从外界吸热J 4100775.2?,使内能增加J 4100775.2?。 热机效率为 ()()%14.150775 .2728.1152.10775.20775.2728.1==-吸放吸++-+=Q Q Q η

3-14 一个卡诺致冷机从0℃的水中吸收热量制冰,向27℃的环境放热。若将 5.0kg 的水变成同温度的冰(冰的熔解热为 3.35×105J /kg ),求:(l )放到环境的热量为多少?(2)最少必须供给致冷机多少能量? 解: 设高温热源温度为T 1,低温热源温度为T 2 T 1=27+273=300K ,T 2=0+273=273K (1) 设此致冷机从低温热源吸热为Q 2,则 J ==Q 65210675.11035.30.5??? 设此致冷机致冷系数为ε,则 11.10273300273212 == -T T T =-ε 由212 -Q Q Q =ε,可得放到环境中的热量为 J ==Q Q =Q 666 22 110841.110675.111.1010675.1???++ε (2) 设最少必须供给致冷机的能量为A ,则 J =-Q Q A 566211066.110675.110841.1???=-=

化工导论69道简答题作业答案,可能有一两题的答案不怎么对

课程考核分成两部分,一是完成问答题,二是完成一份文献和网络检索总结小论文。 问答题部分: 1. 解释中文“化工”的含义,它包括哪些内容在现代汉语中,化学工业、化学工程 和化学工艺的总称或其单一部分都可称为化工,这是中国人创造的词。 化工在汉语中常常是多义的,化工可以分别指化学工业、化学工程和化学工艺,也可指其综合。 2. 解释中文“化工”的含义。说明“工程”与“工艺”的关系,并举例说明。 (1)化工在汉语中常常是多义的,化工可以分别指化学工业、化学工程和化学工艺,也可指其综合。 (2)应该说明的是化学工程为化学工艺、生物化工、应用化学、工业催化等学科提供了解决工程问题的基础。 3. 化学工业按原料、产品吨位、和化学特性各如何分类 (1)按原料分:石油化学工业、煤化学工业、生物化学工业、农林化学工业 (2)按产品吨位分:大吨位产品和精细化学品 (3)按化学特性分:无机化学工业、有机化学工业 4. 简述化工的特点是什么 (1)品种多(2)原料、生产方法和产品的多样性和复杂性 (3)化学工业是耗能大户 (4)化工生产过程条件变化大 (5)知识密集、技术密集和资金密集 (6)实验与计算并重 (7)使用外语多 5. 指出按现行学科的分类,一级学科《化学工程与技术》下分哪些二级学科它们的 关系如何在我国当前的学科划分中,以一级学科“化学工程与技术” 概括化工学科,并又分为以下五个二级学科:化学工程、化学工艺、应用化学、生物化工、工业催化。 化学工程为化学工艺、生物化工、应用化学和工业催化等学科提供了解决工程问题的基础。 6. 简述化学工程与化学工艺的各自的学科定义与研究内容 化学工程研究以化学工业为代表的过程工业中有关化学过程和物理过程的一般原理和共性规律,解决过程及装置的开发、设计、操作及优化的理论和方法问题。

建筑物理2热工学大作业

班级建筑141 姓名钟诚 学号3140622027 指导老师Tony

建筑物理2热工学大作业 1.查资料得:宁波市冬季日平均气温在5℃~13℃之间,则取室外温度为t1=7℃,室内适宜温度取为t2=22℃,室内外温差15℃. 2.建筑维护结构材料的选取 ①墙体:墙体分外墙、保温层和内墙外墙(d1=240mm)和内墙(d2=140mm)材料 为灰砂石砌体,λ=1.10;保温层材料(d3=60mm)为矿棉板,λ=0.050 ②屋顶:钢筋混凝土(d1=30mm)λ=1.74;保温砂浆(d2=20mm)λ=0.29;油毡 防水层(d3=10mm)λ=0.17 ③楼地面:钢筋混凝土(d=150mm)λ=1.74 ④门:胶合板(d=50mm)λ=0.17 ⑤窗:单层玻璃材料取平板玻璃(d=5mm)λ=0.76 窗框窗洞面积比25%

3.传热阻计算 ①墙体:R1=0.24/1.10=0.218(㎡·K/W) R2=0.14/1.10=0.127(㎡·K/W) R3=0.06/0.05=1.2(㎡·K/W) R(wall)=Ri+R1+R2+R3+Re=0.11+0.218+0.127+1.2+0.04=1.695(㎡·K/W) ②屋顶:R1=0.03/1.74=0.017(㎡·K/W) R2=0.02/0.29=0.069(㎡·K/W) R3=0.01/0.17=0.059(㎡·K/W) R(roof)=Ri+R1+R2+R3+Re=0.11+0.017+0.069+0.059+0.04=0.295(㎡·K/ W) ③楼地面: R1=0.150/1.74=0.086(㎡·K/W) R(floor)=Ri+R1+Re=0.11+0.086+0.08=0.276(㎡·K/W) ④门: R1=0.05/0.17=0.294(㎡·K/W) R(door)=Ri+R1+Re=0.11+0.294+0.04=0.444(㎡·K/W) ⑤窗:R1=0.005/0 .76=0.0066(㎡·K/W) R(window)=Ri+R1+Re=0.11+0.0066+0.04=0.1566(㎡·K/W)

工程热力学作业.

1-1 一立方形刚性容器,每边长1m ,将其中气体的压力抽至1000Pa ,问其真空度为多少毫米汞柱?容器每面受力多少牛顿?已知大气压力为0.1MPa 。 解:p = 1 000 Pa = 0.001 MPa 真空度mmHg Pa MPa MPa MPa p p p b V 56.74299000099.0001.01.0===-=-= 容器每面受力F =p V A = 9 900 Pa×1m 2 =9.9×104 N 1-2 试确定表压力为0.01 MPa 时U 形管压力计中液柱的高度差。(1)U 形管中装水,其密度为1 000 kg/m 3;(2) U 形管中装酒精,其密度为789 kg/m 3。 解: 因为表压力可以表示为p g =ρgΔz ,所以有 g p z g ρ= ? 既有(1)mm m s m m kg Pa g p z g 72.101901972.1/80665.9/10001001.02 36==??=?=水ρ (2) mm m s m m kg Pa g p z g 34.129729734.1/80665.9/7891001.02 36==??=?=酒精 ρ 1-7 从工程单位制热力性质查得,水蒸气在500℃、100at 时的比体积和比焓分别为v =0.03347m 3/kg 、h =806.6kcal/kg 。在国际单位制中,这时水蒸气的压力和比热力学能各为多少? 解: 水蒸气压力p =100at×9.80665×104Pa/at = 9.80665×106Pa=9.80665MPa 比热力学能u=h-pv=806.6kcal ×4.1868kJ/kcal)/kg-9806.65kPa ×0.03347m 3/kg = 3377.073kJ-328.228kJ =3048.845kJ 2-1 冬季,工厂某车间要使室内维持一适宜温度。在这一温度下,透过墙壁和玻璃等处,室内向室外每一小时传出0.7×106kcal 的热量。车间各工作机器消耗的动力为是500PS(认为机器工作时将全部动力转变为热能)。另外,室内经常点着50 盏100W 的电灯,要使该车间的温度保持不变,问每小时需供给多少kJ 的热量? 解:要使车间保持温度不变,必须使车间内每小时产生的热量等散失的热量 Q = Q 机+Q 灯+Q 散+Q 补 = 0 Q 机 = 500PSh = 500×2.647796×103 kJ = 1.32×106 kJ Q 灯 = 50×100W×3600s = 1.8×107J = 1.8×104 kJ Q 散 = -0.7×106kcal =- 0.7×106×4.1868kJ = -2.93×106 kJ Q 补 = -Q 机-Q 灯+Q 散 = -1.32×106 kJ-1.8×104 kJ+2.93×106 kJ = 1.592×106 kJ

热力学作业答案

热力学作业答案 The pony was revised in January 2021

第八章 热力学基 础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0 >?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ.

【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为 E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。 [ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. 【提示】如图。等温AC 过程:温度不变,0C A T T -=; 等压过程:A B p p =,根据状态方程pV RT ν=,得: B A B A T T V V =,2B A T T ∴=,B A A T T T -=

理想气体状态方程和范氏气体方程的关系

理工大学 化工热力学论文(大作业) 题目:理想气体状态方程和氏气体方程关系姓名: 专业:化学工程 学号:31307022 指导教师:乃文

理想气体状态方程和氏气体方程的关系 摘要:一般认为氏气体方程在大体积极限下和理想气体状态方程一样.不过理想气体还要求满足焦耳定律等,也就是能对体积的偏导数为零.由于能对体积的偏导数可以化为物态方程的一阶导数,是否能在状态方程一阶导数这一层次上也要求氏方程的大体积极限和理想气体一致就值得探讨.结果表明:如果在一阶导数层次上比较,氏气体方程在大体积极限下不能再回复到理想气体.推广氏方程让氏系数依赖于温度,可以得到实际气体在大体积极限下的一个渐近形式.关键词:理想气体方程;实际气体状态参数;氏气体

一、理想气体状态方程 在工程应用的围之,空气或一般气体,在压强不太大(与大气压 相比),温度不太低(与室温相比)的条件下,遵守5个基本实验定律, 可以称为理想气体。理想气体模型的微观特征:①分子间不存在相互 作用力。②分子的大小如同几何点一样,本身不占有体积。 气体热力学的5个基本实验定律是建立理想气体概念的实验依 据。气态方程是在基本实验规律的基础上直接得出的实验公式,克拉 珀龙方程则是在气态方程的基础上利用“摩尔体积”、“摩尔质量”等 概念进一步推导而成。气态方程的研究对象是一定质量的理想气体, 且与气体的状态变化过程相联系,克拉珀龙方程的研究对象是任意质 量的理想气体,它只与气体的某一状态相联系,因此,克拉珀龙方程 比气态方程具有更广泛的用途。从气态方程到克拉珀龙方程是人们的 认识从感性到理性,从特殊到一般的深化过程。 理想气体状态方程是最简单的状态方程。在工程设计中,可以用 理想气体状态方程进行近似的估算。它还可以作为衡量真实气体状态 方程是否正确的标准之一,当压力趋近干零或体积趋于无穷大时,任 何真实气体状态方程都应还原为理想气体状态方程。 根据克拉珀龙方程推导理想气体状态参数之间的函数关系。 g m PV nRT RT m T M R === (1) m m V V ρρ= ?= (2) V V v m m v =?= (3)

工程热力学习题解答

1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h p v =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者的数学本 质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而对于能量方程来说,其循环积分: q du pdv δ=+??? 虽然: 0du =? 但是: 0pdv ≠? 所以: 0q δ≠? 因此热量q 不是状态参数。 4. 用隔板将绝热刚性容器分成A 、B 两部分(图2-13),A 部分装有1 kg 气体,B 部分为高度真空。将隔板抽去后,气体热力学能是否会发生变化?能不能用 d d q u p v δ=+ 来分析这一过程?

作业(热力学答案)

作业8(热力学) 一、选择题 [ ] 1. 有A 、B 两种不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积内的内能之间的关系为: (A) A B E E V V ????< ? ?????; (B) A B E E V V ????> ? ?????;(C) A B E E V V ????= ? ?????;(D) 无法判定 [ ] 2. 对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比W/Q 为: (A) 1/3; (B) 1/4; (C) 2/5; (D) 2/7 [ ] 3.“ 理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”。对此说法有如下几种评论,其中正确的是: (A) 不违反热力学第一定律,但违反热力学第二定律; (B) 违反热力学第一定律,但不违反热力学第二定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律 [ ] 4.在给出的4个图像中,能够描述一定质量的理想气体在可逆绝热过程中密度随压强变化的图像为: (A) (B) (C) (D) [ ] 5. 一定质量的理想气体经过压缩过程后,体积减小为原来的一半,如果要使外界所做的机械功为最大,那么这个过程应是: (A) 绝热过程; (B) 等温过程;(C) 等压过程;(D) 绝热过程或等温过程均可 [ ] 6. 关于可逆过程和不可逆过程的判断:(1)可逆热力学过程一定是准静态过程;(2)难静态过程一定是可逆过程;(3)不可逆过程就是不能向相反方向进行的过程;(4)凡有摩擦的过程,一定是不可逆过程。以上4种判断正确的是: (A) (1)(2)(3); (B) (1)(2)(4);(C) (2)(4);(D) (1)(4) [ ] 7. 你认为以下哪个循环过程是不可能的: (A) 绝热线、等温线、等压线组成的循环; (B) 绝热线、等温线、等容线组成的循环; (C) 等容线、等压线、绝热线组成的循环; (D) 两条绝热线和一条等温线组成的循环 [ ] 8. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出进行自由膨胀,达到平衡后: (A) 温度不变,熵增加; (B) 温度升高,熵增加; (C) 温度降低,熵增加; (D) 温度不变,熵不变

工程热力学课后作业答案(第三章)第五版

3-1 安静状态下的人对环境的散热量大约为400KJ/h,假设能容纳2000人的大礼堂的通风系统坏了:(1)在通风系统出现故障后的最初20min内礼堂中的空气内能增加多少?(2)把礼堂空气和所有的人考虑为一个系统,假设对外界没有传热,系统内能变化多少?如何解释空气温度的升高。 解:(1)热力系:礼堂中的空气。 闭口系统 根据闭口系统能量方程 Q+ = ? U W 因为没有作功故W=0;热量来源于人体散热;内能的增加等于人体散热。 ? Q=2.67×105kJ 2000? = 20 60 / 400 (1)热力系:礼堂中的空气和人。 闭口系统 根据闭口系统能量方程 ? = Q+ U W 因为没有作功故W=0;对整个礼堂的空气和人来说没有外来热量, 所以内能的增加为0。 空气温度的升高是人体的散热量由空气吸收,导致的空气内能增加。 3-5,有一闭口系统,从状态1经a变化到状态2,如图,又从状态2经b回到状态1;再从状态1经过c 变化到状态2。在这个过程中,热量和功的某些值已知,如表,试确定未知量。 解:闭口系统。 使用闭口系统能量方程 (1)对1-a-2和2-b-1组成一个闭口循环,有 ??=W δ Qδ

即10+(-7)=x1+(-4) x1=7 kJ (2)对1-c-2和2-b-1也组成一个闭口循环 x2+(-7)=2+(-4) x2=5 kJ (3)对过程2-b-1,根据W U Q +?= =---=-=?)4(7W Q U -3 kJ 3-6 一闭口系统经历了一个由四个过程组成的循环,试填充表中所缺数据。 解:同上题 3-7 解:热力系:1.5kg 质量气体 闭口系统,状态方程:b av p += )]85115.1()85225.1[(5.1---=?v p v p U =90kJ 由状态方程得 1000=a*0.2+b 200=a*1.2+b 解上两式得: a=-800 b=1160 则功量为 2.1 2.022 1 ]1160)800(21[5.15.1v v pdv W --==?=900kJ 过程中传热量 W U Q +?==990 kJ 3-8 容积由隔板分成两部分,左边盛有压力为600kPa ,温度为27℃的空气,右边为真空,容积为左边5倍。将隔板抽出后,空气迅速膨胀充满整个容器。试求容器内最终压力和温度。设膨胀是在绝热下进行的。 解:热力系:左边的空气 系统:整个容器为闭口系统 过程特征:绝热,自由膨胀 根据闭口系统能量方程 W U Q +?=

工程热力学课后作业答案第五版(DOC)

工程热力学课后答案 2-2.解:(1)2N 的气体常数 28 8314 0==M R R =296.9)/(K kg J ? (2)标准状态下2N 的比容和密度 101325 2739.296?==p RT v =0.8kg m /3 v 1= ρ=1.253 /m kg (3) MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv =p T R 0 =64.27kmol m /3 2-3.解:热力系:储气罐。 应用理想气体状态方程。 压送前储气罐中CO 2的质量 11 11RT v p m = 压送后储气罐中CO 2的质量 2 2 22RT v p m = 根据题意 容积体积不变;R =188.9 B p p g +=11 (1) B p p g +=22 (2) 27311+=t T (3) 27322+=t T (4) 压入的CO 2的质量 )1 122(21T p T p R v m m m -= -= (5) 将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg 2-5解:同上题 10)273 325 .1013003.99(287300)1122(21?-=-= -=T p T p R v m m m =41.97kg 2-6解:热力系:储气罐。 使用理想气体状态方程。 第一种解法: 首先求终态时需要充入的空气质量 288 2875 .810722225???==RT v p m kg 压缩机每分钟充入空气量 288 28731015???==RT pv m kg 所需时间 == m m t 2 19.83min 第二种解法 将空气充入储气罐中,实际上就是等温情况下把初压为0.1MPa 一定量的空气压缩为0.7MPa 的空气;或者说0.7MPa 、8.5 m 3 的空气在0.1MPa 下占体积为多少的问题。 根据等温状态方程 const pv = 0.7MPa 、8.5 m 3 的空气在0.1MPa 下占体积为 5.591 .05 .87.01221=?== P V p V m 3 压缩机每分钟可以压缩0.1MPa 的空气 3 m 3 ,则要压缩 59.5 m 3 的空气需要的时间 == 3 5 .59τ19.83min 2-8解:热力系:气缸和活塞构成的区间。 使用理想气体状态方程。 (1)空气终态温度 == 11 2 2T V V T 582K (2)空气的初容积 p=3000×9.8/(πr 2 )+101000=335.7kPa == p m RT V 1 10.527 m 3 空气的终态比容

工程热力学课后作业答案(第七章)第五版

7-1当水的温度t=80℃,压力分别为、、、及1MPa时,各处于什么状态并求出该状态下的焓值。 解:查表知道t=80℃时饱和压力为。 因此在、、、及1MPa时状态分别为过热、未饱和、未饱和,未饱和、未饱和。焓值分别为kg,kJ/kg,335 kJ/kg,kJ/kg,kJ/kg。 7-2已知湿蒸汽的压力p=1MPa干度x=。试分别用水蒸气表和h-s图求出hx,vx,ux,sx。解:查表得:h``=2777kJ/kg h`= kJ/kg v``=kg v`=m3/kg u``= h``-pv``= kJ/kg u`=h`-pv`= kJ/kg s``= kJ/ s`=kJ/ hx=xh``+(1-x)h`= kJ/kg vx=xv``+(1-x)v`= m3/kg ux=xu``+(1-x)u`=2400 kJ/kg sx=xs``+(1-x)s`= kJ/ 7-3在V=60L的容器中装有湿饱和蒸汽,经测定其温度t=210℃,干饱和蒸汽的含量mv=,试求此湿蒸汽的干度、比容及焓值。 解:t=210℃的饱和汽和饱和水的比容分别为: v``=kg v`=m3/kg h``=kg h`= kJ/kg 湿饱和蒸汽的质量: 解之得: x= 比容:vx=xv``+(1-x)v`= m3/kg 焓:hx=xh``+(1-x)h`=1904kJ/kg 7-4将2kg水盛于容积为的抽空了的密闭刚性容器中,然后加热至200℃试求容器中(1)压力;(2)焓;(3)蒸汽的质量和体积。 解:(1)查200℃的饱和参数 h``=kg h`= kJ/kg v``=kg v`=kg 饱和压力。 刚性容器中水的比容: =m3/kg

化工热力学大作业

化工热力学大作业

1、计算下,乙醇(1)-水(2)体系汽液平衡数据 (1)泡点温度和组成的计算 计算气液平衡数据方法(步骤): 1、由C2H5OH 以及H2O ,查得两物质临界参数Tc1、Tc 2、Pc1、Pc2、ω查得antonio 方程中C2H5OH 和H2O 参数A1,B1,C1,A2,B2,C2,进入2 2、利用总压强P 总=,带入antonio 方程i i i s i C T B A p +-=ln 得T1,T2,进入3 3、假设x1,x2数据,从小到大假设,并取为间隔,逐次递增,由T=T1*x1+T2*x2, 并另各V i ??初值均为1,进入4 4、将T 值带入antonio 方程i i i s i C T B A p +-=ln 可得Ps1和Ps2,进入5 5、选择NRTL 方程,计算γi ,进入6 6、利用两物质临界参数以及T 、P 值计算Tr1,Tr2,Prs1,Prs2,再利用对比态法(计算逸度系数的对比态法)计算气态混合物各组元i 的逸度系数,进入7 7、利用平衡方程,V i s i S i i i i P P x y ??γ?=计算y1、y2,进入8 8、计算y1+y2的值,并判断是否进行迭代 9、将yi 归一化,利用混合物维里方程(计算混合物逸度系数的维里方程)结合 混合规则计算各V i ??,返回7 10、判断y1+y2是否与8的值不同,“是”返回6,“否”进入11 11、计算y1+y2,判断是否为1,“否”进入12,“是”进入13 12、调整T 值,如果y1+y2大于1,则把T 值变小,如果y1+y2小于1,则把T 值变大,并返回4 13、得出T 、所有yi 值,并列出表格,进入14 14、将所有按从小到大顺序假设的Xi 值所对应的Yi 值求出,并作出T-X-Y 图,进入15 15、结束

工程热力学课后作业答案(第十一章)第五版 .

11-1空气压缩致冷装置致冷系数为2.5,致冷量为84600kJ/h ,压缩机吸入空气的压力为0.1MPa ,温度为-10℃,空气进入膨胀机的温度为20℃,试求:压缩机出口压力;致冷剂的质量流量;压缩机的功率;循环的净功率。 解:压缩机出口压力 1)12(1/)1(-= -k k p p ε 故:))1/(()11(12-+=k k p p ε=0.325 MPa 2 134p p p p = T3=20+273=293K k k p p T T /)1()3 4(34-==209K 致冷量:)41(2T T c q p -==1.01×(263-209)=54.5kJ/kg 致冷剂的质量流量==2q Q m 0.43kg/s k k p p T T /)1()1 2(12-==368K 压缩功:w1=c p (T2-T1)=106 kJ/kg 压缩功率:P1=mw1=45.6kW 膨胀功:w2= c p (T3-T4)=84.8 kJ/kg 膨胀功率:P2=mw2=36.5kW 循环的净功率:P=P1-P2=9.1 KW 11-2空气压缩致冷装置,吸入的空气p1=0.1MPa ,t1=27℃,绝热压缩到p2=0.4MPa ,经冷却后温度降为32℃,试计算:每千克空气的致冷量;致冷机消耗的净功;致冷系数。 解:已知T3=32+273=305K k k p p T T /)1()1 2(12-==446K k k p p T T /)1()34( 34-==205K 致冷量:)41(2T T c q p -==1.01×(300-205)=96kJ/kg 致冷机消耗的净功: W=c p (T2-T1)-c p (T3-T4)=46.5kJ/kg 致冷系数:==w q 2ε 2.06 11-3蒸气压缩致冷循环,采用氟利昂R134a 作为工质,压缩机进口状态为干饱和蒸气,蒸发温度为-20℃,冷凝器出口为饱和液体,冷凝温度为40℃,致冷工质定熵压缩终了时焓值为430kJ/kg ,致冷剂质量流量为100kg/h 。求:致冷系数;每小时的制冷量;所需的理论功率。 解:在lgp-h 图上查各状态点参数。 ,p1=0.133MPa h1=386kJ/kg s1=1.739 kJ/(kg ?K) ,p2=1.016 MPa h2=430 kJ/kg ,h3=419 kJ/kg h5=h4=256 kJ/kg

热力学作业 答案

第八章 热力学基础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体 积 V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A → C 等温过程;A → D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0 >?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板 抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=, ∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过

化工热力学

热力学第三定律的数学表达式为S*(完美晶体,0 K)=0 关于偏摩尔性质,下面说法中不正确的是(T,P一定,偏摩尔性质就一定) 吉布斯函数的定义式为G =H -TS 溶液中挥发性溶质在气相中分压力与液相组成的关系符合亨利定律 纯物质临界点时,其对比温度Tr(=1 ) 真实气体在如下哪个条件下,可以近似作为理想气体处理(高温、低压) 下列不属于高压下影响气体混合物中组分逸度的因素的是:液相组成 总性质用符号表示为Mt 偏摩尔性质的物理意义为在给定的温度、压力和组成下,向含有组分i的无限多的溶液中加入1mol 的组分i所引起系统的某一热力学性质的增加量 吉布斯相律的表达式是f=C-φ+2 等温等压下,在A和B组成的均相体系中,若A的偏摩尔体积随A浓度的减小而减小,则B的偏摩尔体积将随A浓度的减小而( 增加) 理想气体模型的基本特征是(分子间无作用力,分子本身无体积) 下列状态方程精度比较正确的是多参数状态方程>立方型状态方程>理想气体状态方程 在373.15K和2atm下水的化学位与水蒸气化学位的关系为(μ(汽)>μ(水) ) 焓的定义式为H =U +PV 隔离系统是指与环境既没有能量交换,又没有物质交换的系统 在温度为T、体积恒定为V?的容器中,内含A、B两组分的理想气体混合物,它们的分压力与分体积分别为pA、pB、VA、VB。若又往容器中再加入物质的量为?nC?的理想气体C,则组分A的分压力pA(不变)? 关于理想溶液,以下说法不正确的是( 符合Lewis-Randall规则或Henry规则的溶液一定是理想溶液) alton分压定律的适用条件是什么实际气体混合物(压力不太高)和理想气体混合物 把200mL的水与100mL的乙醇混合,混合后的溶液中,下列关系成立的是(m-液体的质量、V-液体的体积、ρ-液体的密度):混合后溶液的质量:m混=m水+m乙醇 对于一均匀的物质,其H和U的关系为(H>U)

工程热力学实验报告

水的饱和蒸汽压力和温度关系 实验报告

水的饱和蒸汽压力和温度关系 一、实验目的 1、通过水的饱和蒸汽压力和温度关系实验,加深对饱和状态的理解。 2、通过对实验数据的整理,掌握饱和蒸汽P-t关系图表的编制方法。 3、学会压力表和调压器等仪表的使用方法。 二、实验设备与原理 456 7 1. 开关 2. 可视玻璃 3. 保温棉(硅酸铝) 4. 真空压力表(-0.1~1.5MPa) 5. 测温管 6. 电压指示 7. 温度指示8. 蒸汽发生器9. 电加热器10. 水蒸汽11.蒸馏水12. 调压器 图1 实验系统图 物质由液态转变为蒸汽的过程称为汽化过程。汽化过程总是伴随着分子回到液体中的凝结过程。到一定程度时,虽然汽化和凝结都在进行,但汽化的分子数与凝结的分子数处于动态平衡,这种状态称为饱和态,在这一状态下的温度称为饱和温度。此时蒸汽分子动能和分子总数保持不变,因此压力也确定不变,称为饱和压力。饱和温度和饱和压力的关系一一对应。 二、实验方法与步骤 1、熟悉实验装置及使用仪表的工作原理和性能。 2、将调压器指针调至零位,接通电源。 3、将调压器输出电压调至200V,待蒸汽压力升至一定值时,将电压降至30-50V保温(保温电压需要随蒸汽压力升高而升高),待工况稳定后迅速记录水蒸汽的压力和温度。 4、重复步骤3,在0~4MPa(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 5、实验完毕后,将调压器指针旋回至零位,断开电源。 6、记录室温和大气压力。

四、数据记录 五、实验总结 1. 绘制P-t关系曲线将实验结果绘在坐标纸上,清除偏离点,绘制曲线。

化工热力学作业答案

一、试计算一个125cm 3的刚性容器,在50℃和18.745MPa 的条件下能贮存甲烷多少克(实验值是17克)?分别比较理想气体方程、三参数对应态原理和PR 方程的结果。 解:查出T c =190.58K,P c =4.604MPa,ω=0.011 (1) 利用理想气体状态方程nRT PV = g m RT PV n 14872.0=?== (2) 三参数对应态原理 查表得 Z 0=0.8846 Z 1=0.2562 (3) PR 方程利用软件计算得g m n mol cm V 3.1602.1/7268.1223=?=?= 二、用virial 方程估算0.5MPa ,373.15K 时的等摩尔甲烷(1)-乙烷(2)-戊烷(3)混合物的摩尔体积(实验值5975cm 3mol -1)。已知373.15K 时的virial 系数如下(单位:cm 3 mol -1), 399,122,75,621,241,20231312332211-=-=-=-=-=-=B B B B B B 。 解:混合物的virial 系数是 44 .2309 399 212227526212412022231 132332122132 3222121313 1 -=?-?-?----= +++++==∑∑==B y y B y y B y y B y B y B y B y y B ij i j j i 298.597444.2305.0/15.373314.8/=-?=+=B P RT V cm 3 mol -1 三、(1) 在一定的温度和常压下,二元溶液中的组分1的偏摩尔焓如服从下式2 211 x H H α+=,并已知纯组分的焓是H 1,H 2,试求出H 2和H 表达式。 解: ()112221 2 2121121222dx x dx x x x dx dx H d x x H d x x H d αα-=-=???? ??-=- =得 2122x H H α+= 同样有2211 x H H α+= 所以 212211x x x H x H H x H i i α++==∑ ()()1,,o r r r r Z Z P T Z P T ω=+323.1518.745 1.696 4.071190.58 4.604r r T P = ===0.88640.0110.25620.8892Z =+?=30.88928.314323.15127.4/18.745 ZRT V cm mol P ??= ==1250.9812127.4t V n mol V ===15.7m g =

相关主题
文本预览
相关文档 最新文档