当前位置:文档之家› 工控网络协议Fuzzing测试技术研究综述_熊琦

工控网络协议Fuzzing测试技术研究综述_熊琦

小型微型计算机系统Journal of Chinese Computer Systems 2015年3月第3期Vol.36No.32015

收稿日期:2013-11-25收修改稿日期:2014-06-01基金项目:国家自然科学基金项目(90818021,61472448)资助.熊琦,男,

1983年生,博士,副研究员,研究方向为工控信息安全;彭勇,男,1974年生,博士研究生,副研究员,研究方向为隐患分析;伊胜伟,男,1977年生,博士,助理研究员,研究方向为工控风险评估;戴忠华,男,1979年生,博士研究生,助理研究员,研究方向为网络与信息安全;王婷,女,1986年生,硕

士,实习研究员,研究方向为信息安全.

工控网络协议Fuzzing 测试技术研究综述

琦,彭

勇,伊胜伟,

戴忠华,王婷

(中国信息安全测评中心,北京100085)E-mail :xiongq@itsec.gov.cn

要:随着信息化和工业化的深度融合,控制系统在工业生产过程中得到了越来越广泛的应用,很多研究者开始针对工控系统,特别是具有控制功能的工控网络协议的安全性展开研究,漏洞分析则是其中较为活跃的领域之一.由于工控网络协议具有

专用性和面向控制的特点,通常在封闭环境下运行,无法直接应用传统Fuzzing 测试技术进行网络协议的漏洞挖掘.本文阐述了工控网络协议的特点以及Fuzzing 测试的困难,讨论并比较了现有各种Fuzzing 测试技术应用于工控网络协议的优缺点,提出工控网络协议的专用Fuzzing 测试工具的设计准则,最后展望了工控网络协议Fuzzing 测试技术的未来研究方向.关键词:工业控制系统;工控网络协议;漏洞挖掘;模糊测试中图分类号:TP393

文献标识码:A

文章编号:1000-

1220(2015)03-0497-06Survey on the Fuzzing Technology in Industrial Network Protocols

XIONG Qi ,PENG Yong ,YI Sheng-wei ,DAI Zhong-hua ,WANG Ting

(China Information Technology Security Evaluation Center ,Beijing 100085,China )

Abstract :with the deep integration of informatization and industrialization ,the Industrial Control system (ICS )becomes more and more popular in the industrial production ,a great amount of researchers start to focus their research interest on the security of industrial network protocols and vulnerability detecting becomes one of the hot points in this field.Due to the specific features of ICS ,like process control o-riented and proprietary ,traditional Fuzzing technology cannot be directly applied to vulnerability detecting for industrial network proto-cols ,which runs in the closed envirnment.This paper described the features of industrial network protocols first ,then investigated the fea-tures of industrial control protocols and the difficulties of Fuzzing test on them ,discussed the current research achievements presented in this field ,introduced the design guidelines of general Fuzzing tools for industrial control protocols.Finally ,the further research direction of this field is discussed in detail.

Key words :industrial control system ;industrial network protocol ;vulnerability detecting ;fuzzing test

1引言

自从2010年伊朗核电站“震网”病毒事件[1,2]

爆发以来,

作为国家关键基础设施的重要组成部分,工业控制系统(In-dustrial Control System ,ICS )安全逐渐成为网络安全领域的研究热点.ICS 主要包括数据采集与监控(Supervisory Control and Data Acquisition ,SCADA )系统、分布式控制系统(Distribu-ted Control System ,DCS )、可编程逻辑控制器(Programmable Logical Controller ,PLC )、远程终端单元(Remote Terminal Unit ,RTU )等,其通信方式主要包括工程师站、操作员站等上位机与PLC 等工控设备之间的通信、工控设备与生产装置之间的通信以及上位机与OPC 、数据库等服务器之间的通信,所采用的协议包括以太网和总线通信方式,总线协议主要使用RS232和RS485接口,采用硬接线作为通信介质,基于串行协议,适合于低速率、间歇性数据通信;工业以太网采用RJ45接口,使用双绞线作为传输介质,基于TCP /IP 协议栈,适合于进行生产过程数据传输,具有速率快、兼容性好的特点.

ICS 目前已广泛应用于石油石化、交通控制、电力设施、制造业以及核工业等各工业领域,用于数据采集、远程控制、

生产过程控制,对提升企业的生产和管理水平,实现工业生产自动化、绿色化,实现节能降耗、减排、增产增效和可持续发展发挥了重要的作用.

传统ICS 由于相对封闭和专用,在设计上较少考虑安全问题,防护能力薄弱.随着工业化和信息化的深度融合,越来越多的工控设备集成以太网通信功能与ERP 甚至互联网连接,在提高数据共享效率,改进企业管理水平的同时也引入了黑客、病毒、木马等安全风险,一旦受攻击容易导致产品质量下降、生产过程破坏、环境污染等严重后果,对社会稳定造成重大威胁.

与传统面向数据传输的网络协议相比,工控网络协议具

有更强的控制功能[3]

,通过发送特殊功能码的指令,能够控制PLC 等物理设备的启停,甚至上传恶意程序,或者影响控制中心的生产过程监测视图.因此,研究工控网络特别是工业以太网协议的脆弱性成为工控系统信息安全的首要内容.

工业以太网与总线协议的部署方式、应用场合和传输速率具有较大的差异,为了明确研究范围,根据美国仪器仪表协会提出的ISA99参考模型[4,5],可将ICS整理为如图1所示的5个层次:

1)第4层—企业系统层.企业系统层包括组织机构管理工业生产所需业务相关活动的功能,使用的都是传统的IT技术.2)第3层—运行管理层.运行管理层负责管理生产所需的工作流,它包括运行/系统管理、具体生产调度管理、可靠性保障等.

3)第2层—监测控制层.监测控制层包括监测和控制物理过程的功能,它包括操作员人机接口、监测控制功能、过程历史数据收集和存储等功能.

4)第1层—本地或基本控制层.本地或基本控制层主要包括传感和操作物理过程的功能,典型设备包括DCS、PLC、RTU等.

5)第0层—过程层.过程层是实际的物理过程.在这一层中包括各种不同类型的生产设施,典型设备包括直接连接到过程和过程设备的传感器和执行器等.在工业控制系统参考模型

中,过程层属于物理空间,它同各工业控制行业直接相关

图1工业控制系统分层参考模型

Fig.1Hieratical model of industrial control system

本文所讨论的工控网络协议,限定于图1第1层中的PLC、DCS等控制设备与2、3、4层次组件之间通信所使用的通信协议,通常基于TCP/IP协议封装,与交换机、路由器等通用网络设备兼容,其中最具代表性的包括:用于电力行业配电网主-从站通信的IEC60870-101/104协议、IEC61850[6]、主-从设备通信协议DNP3和主站间通信协议ICCP;用于石油石化行业参数采集的Modbus TCP、Profinet协议族;用于管道数据传输的Ethernet/IP;用于轨道交通的MMS协议;用于协议转换和数据共享的OPC协议等.

工控系统的协议种类繁多,不同厂商对协议有不同的扩展和实现方式,而很多设备由组态软件进行控制,组态软件都是由厂商定制,自成体系,比如:西门子全系列工业控制产品就使用Profinet协议族,罗克韦尔专注于EIP,三菱则使用私有协议,相互之间不兼容.鉴于工控以太网协议的特殊性,传统基于Fuzzing的设备测试方法无法直接应用,需要进行针对性的修改.

本文在介绍工控网络协议特点的基础上,综述了基于Fuzzing的工控网络协议的测试方法.论文其余部分组织安排如下:第2部分介绍了工控网络协议特点,引出了第3部将传统Fuzzing技术应用到工控网络协议存在的困难;第4部分介绍了工控网络协议Fuzzing在测试框架、协议解析方式、测试用例生成、异常检测和定位、测试性能评估等方面研究的国内外相关工作;第5部分总结现有的研究工作,提出了工控网络协议专用测试框架设计方面应该遵循的一些准则,对工控网络协议Fuzzing测试的研究方向进行了展望.

2传统Fuzzing测试技术介绍

Fuzzing是一种通过构造能够使得软件崩溃的畸形输入来发现系统中存在缺陷的安全测试方法,通常被用来检测网络协议、文件、Active控件中存在于输入验证和应用逻辑中的缺陷,其自动化程度高、适应性广的特点使其成为漏洞挖掘领域较为有效的方法之一.

1989年,美国威斯康辛大学的Barton Miller教授正式提出Fuzzing技术[7],通过随机地生成非结构化的输入来挖掘UNIX程序中的漏洞.此后,Fuzzing成为了信息安全中较为活跃的研究领域之一,研究者们通过构造更具结构性的输入来改进Fuzzing测试的效率.1999年,芬兰Oulu大学的研究团队开发了PROTOS测试套件[8],通过对网络协议的解析,创建模型并生成相应的Fuzzing测试;此后,出现了第一个基于块的Fuzzing测试器SPIKE[9],协议的描述被表示为一列数据块,使用SPIKE的Fuzz[10]函数库生成随机数据对块进行填充,生成测试数据.此外,中科大的张美超等人对测试用例生成方式进行优化,提出了基于漏洞库的Fuzzing测试框架[38];中科院的张玉清教授等人对FTP等协议客户端[39]进行了模糊测试.

一般来说,除测试用例执行外,Fuzzing测试包括协议解析、测试用例生成、异常捕获和定位三个步骤;协议解析是通过公开资料或者对网络数据流量的分析,理解待测协议的层次、包字段结构、会话过程等信息,为后续测试用例的生成打下基础;测试用例生成依据上阶段整理出来的字段结构,采用变异的方式生成畸形测试用例,发送给待测对象;异常捕获和定位的目的是通过多种探测手段发现由测试用例触发的异常,保存异常相关数据信息,为后续异常的定位和重现提供依据,其流程如图2所示

图2Fuzzing通用测试流程

Fig.2General workflow of fuzzing test

按照测试用例的生成方式,Fuzzing可以分为两类:

1)基于生成的Fuzzing.这种方法基于与有效输入结构和协议状态相关的生成规则进行建模,构造模糊输入.最简单的基于生成的模糊测试器使用随机的方式构造长度字符串(包含随机字节)的模糊输入[7].有些基于生成的模糊测试工具,例如Sulley[11]和Peach[12]也集成了基于块的特性.最新的基于生成的模糊测试器,例如EXE[13],通过编码的方式来产生成功概率高的测试用例.基于生成的Fuzzing需要用户对协议格式有非常深的了解,并需要大量的人工参与.

2)基于突变的Fuzzing.这种方法通过在已有数据样本中插入畸形字节以及(或者)变换字节来修改正常输入,制造模糊输入.一些现代的突变Fuzzing测试器基于输入层的描述构

894小型微型计算机系统2015年

造其模糊决策(例如:Peach的突变[12]).其他突变测试器,例如通用目标模糊测试器(GPF)[14]不需要任何先验知识,仅仅使用简单的启发式来猜测域边界,并进行对输入进行突变.CFG模糊测试器[15]对其进行了折衷,通过使用推论算法从足够规模的网络流量中推导协议的近似生成模型,然后使用变异算法来生成突变的输入.该方法对变异的初始值有着很强的依赖性,不同的初始值会造成代码覆盖率差异很大,从而会产生截然不同的测试效果.

此外,根据Fuzzing测试器的部署方式,可以分为内联和普通方式.目前绝大多数现有的Fuzzing测试器均属于普通范畴,将自身作为客户端,测试作为服务器端的对象;内联,如QueMod[16],则采用中间人的方式,将自身部署在服务器和客户端之间,对截获的包进行分析,估计协议帧的有效区域,并分别进行变异,实时生成畸形报文,发送给测试对象,同时接受返回结果,判断对象的状态,决定下一步变异策略.两者之间的区别在于,内联Fuzzing测试器能够实现对Server和Cli-ent端的双向测试,普通Fuzzing测试器只能对Server端进行测试.

3使用传统Fuzzing测试工控协议的困难

由于工控网络协议的特殊性,直接使用传统Fuzzing测试器在协议解析、异常捕获以及部署方式上存在以下几方面困难:

3.1工控协议解析

根据信息公开的程度,工控网络协议大致可以分为两种:(1)私有协议,例如Harris-5000以及Conitel-2020设备的协议,这些协议资料不公开或者只在有限范围内半公开,数据包和字段的含义未知,协议会话过程功能不清晰;(2)公有协议,例如:Modbus TCP、DNP3[17]等,协议资料公开,标准化程度较高.

对于公有的控制协议,虽然可以使用现有Fuzzing技术进行测试,但由于工控协议面向控制,高度结构化,控制字段数量较多,使得需要构造大量的变异器,测试效率不高.对于私有的控制协议,需要先弄清楚协议的结构才能进行模糊测试.一般来说,有两种思路:(1)对协议栈的代码进行逆向分析,整理出重要的数据结构和工作流程;(2)抓取协议会话数据包,根据历史流量来推测协议语义.

对于运行环境较为封闭的工控设备来说,内嵌协议栈组件无法导出,很难对其进行逆向分析.相比之下,采用基于数据流量的协议解析方法更实际.然而,工控设备具有时间敏感、面向会话的特点,使得部署需要大规模网络流量输入的Fuzzing测试工具不现实.

3.2工控协议异常捕获和定位

目前在网络协议Fuzzing测试中常用的异常检测手段主要有返回信息分析、调试器及日志跟踪3种方法:

1)对于返回信息分析,主要通过分析请求发送后得到的返回信息判断目标是否出错,其优点是处理简单,但由于某些工控协议栈进程具有自修复和守护能力,在发生异常后网络进程会自动重启,如果请求收发频率不够高,将无法捕获发生的异常;

2)对于调试器跟踪,主要通过监视服务器进程,在进程出错时抓取进程异常信息,但由于工控设备难以安装第三方监测软件,因而该方法只适用于上位机协议测试,无法应用在工控设备上;

3)对于日志跟踪,主要通过解析日志记录,判断测试对象是否发生异常,但由于工控设备属嵌入式系统,计算、存储和网络访问均受到严格的制约,在工控设备上难以实现对异常事件的日志记录和审计,因而该方法也只适用于上位机程序协议栈.

3.3Fuzzing测试工具的部署方式

目前,对于传统IT系统,C/S模式中Client端漏洞利用较困难[18],价值不高,因而传统网络协议Fuzzing测试技术主要针对Server端软件,较少涉及Client端.但对于工控系统来说,上位机通常作为Client端,对作为Server端的物理设备进行数据采集同时对操作员提供监视控制功能,其网络协议栈存在的漏洞可能导致重要数据传输实时性和可用性丧失,产生上位机视图显示错误等故障,导致丧失视图(LoV,Lost of View),影响操作员的正常决策,甚至破坏生产控制过程运行,根据国际著名工控漏洞库Delphi的统计结果[41],主要位于上位机协议栈的LOV型工控漏洞占比高达68%,因此只能测试Server端的协议Fuzzing测试工具不能满足工控协议安全性测试的需求.

4现有工控网络协议Fuzzing测试的相关工作

虽然专门针对工控协议设计的Fuzzing工具尚未出现,随着网络攻防的阵地逐渐从网络空间朝着网络物理空间扩展,包括工控系统在内的国家关键基础设施信息安全受到越来越多的关注,一些Fuzzing工具也开始支持工控网络协议,最具代表性的有以下两类:

4.1开源Fuzzing项目

2007年黑帽大会上,专门为Sulley设计的ICCP(包括TP-KT和COTP)、Modbus和DNP3模糊测试模块(例程)被美国TippingPoint公司的信息安全研究员Devarajan发布出来[19],可用来检测上述工控网络协议在非授权命令执行、非授权数据传输、可能的拒绝服务等方面存在的安全漏洞.

美国Digitalbond公司[20]的研究员McCorkle和BillyRios 以Modbus TCP为例,使用工具Scapy截获完整通信会话(包括所有请求和有效的返回信息),开启上位机软件的日志记录功能,并对请求的返回信息进行随机变异,使用伪造CRC 校验码和计数值的方式保持协议状态,通过日志分析发现上位机在处理畸形返回数据时发生的错误.

德国奥格斯堡应用技术大学的Roland Koch等人推出了ProFuzz[21],一种在Python版本Scapy fuzzer[22]基础上开发的Fuzzing工具,兼容Sulley的fuzz模块,专门针对Profinet协议族进行模糊测试,目前支持包括告警帧随机afr(Alarm Frame Random)、告警帧排序afo(Alarm Frames Ordered)在内的五种协议类型.同时,该成果的部分内容也被集成到开源入侵检测软件Snort[23]中,用于对Profinet系列协议进行预处理.Wurldtech公司的Eric J.Byres研究员提出了BlackPeer 测试框架[24],该框架由代码生成器、测试用例生成器和执行

994

3期熊琦等:工控网络协议Fuzzing测试技术研究综述

器三部分组成,输入由扩展BNF 逻辑定义的测试用例期望,

能够更好地描述测试用例的上下文依赖关系,在给定变量初始化文件的前提下,会生成递归定义的测试用例语法描述,根据交互语义对协议PDU 进行变异,生成有序的测试用例序列PTS ,然后在配置文件约束下执行测试用例序列,捕获异常并记录结果,流程如图3所示,

Wurldtech 公司利用该框架对两款PLC 设备的Modbus TCP 协议栈进行了5000次测试,发现了六十多类错误

图3BlackPeer 测试用例的生成和执行

Fig.3BlackPeer test cases generation and execution 4.2商业Fuzzing 项目

SecuriTeam 在其beSTORM 模糊测试工具中整合了DNP3

协议

[15]

,成功发现了Wireshark

[25]

DNP3模块的拒绝服务攻击漏洞,验证了工具的有效性;2007年,美国能源部下属的

Digital Bond 公司则开发了ICCPSic [26],一种商业的ICCP 协议

测试套件;Mu Dynamic 公司提供了Mu 测试套件[27],使用结构化语法分析的方法来生成畸形测试数据,目前支持包括

IEC61850、Modbus TCP 和DNP3在内的工控网络协议,并可通过其附带的Studio Fuzz 功能分析PCAP 包,重构会话流程,实现对未知协议的扩展;Wurldtech 公司推出了Achilles 模糊测

试平台[28]

,基于专家经验生成最可能造成对象协议栈崩溃的畸形测试数据,已经实现对包括MODBUS 、

DNP3、ICCP 、MMS 和Ethernet /IP 在内的多种工控协议的支持;Codenomicon 公

司在PROTOS 项目[8]

的基础上推出了Defensics 模糊测试套件[29],兼容ModbusTCP 协议.

这些研究成果大都基于原有Fuzzing 框架进行扩展,缺乏

针对性的功能设计,仅仅覆盖结构公开的工控网络协议,或者仅仅支持以手工标注的方式支持私有协议,对测试人员的要

求较高.在同等情况下,对ICCP 、Ethernet /IP 等结构及会话较为复杂协议进行Fuzzing 测试比Modbus TCP 、

DNP3等简单协议耗时高一个数量级以上[30]

.此外,工控协议种类多的特点,现有Fuzzing 测试工具支持的数量极为有限,且在框架上基本沿用原有的方式,几乎不对Client 端进行测试,适用范围受到制约,因此急需面向工控协议特点设计专用Fuzzing 测试框架.

5工控专用Fuzzing 测试框架的设计准则

基于工控网络协议的特点,结合已有工控协议Fuzzing 测

试的研究成果,从模糊测试的步骤和部署方式来看,工控网络协议专用Fuzzing 测试框架应该遵循以下几点准则:5.1支持对私有工控协议的测试

由于大量工控协议结构不公开,对私有工控协议[31]

的支

持成为工控协议Fuzzing 测试框架的首要需求,由于PLC 等核心工控设备的可执行代码难以导出,基于二进制逆向分析的“Tainted Data ”方法难以部署,主要采用基于网络流量的“Network Trace ”方法.根据分析技术的差异,基于“Network Trace ”的私有工控协议的模糊测试思路可以分为以下两

种[32]

方式:

5.1.1离线分析

首先梳理协议的结构和内容,生成协议模型,即先将私有协议变成公有协议,这种方法主要适用于使用容易理解的ASCII 语言,对协议数据包头进行区域描述的工控网络协议,如Modbus 等.首先采用类型匹配,将不同的网络流量数据文件(PCAP )中同类型的报文序列提取出来,作为一个报文组,然后对该报文组合进行多序列比对,将不变域和可变域分离出来,生成初步的报文域划分,再对报文区域进行识别,进一步得到的ANSI 字符串域,生成较为准确的报文格式,再使用基于生成的方法产生测试数据,具体过程如图4所示

图4基于离线分析的模糊测试

Fig.4Fuzzing test based on offline analysis

5.1.2

在线分析

不进行离线分析,只是通过智能算法[33]

对工控网络协议

的结构进行在线学习[34-36]

,具体流程如图5所示.其中具有代表性的有Marshall A.Beddoe 等人设计的PI 协议解析器,通

过引入生物信息学的思想,在线提取包结构中的常量,生成协议结构描述;此外,Dartmouth 学院的Sergey Bratus 设计了Lz-fuz 协议分析器,使用Lempel-Ziv 算法维护令牌表,对于每个数据包,提取并记录其中的最长不变子串,周期性地更新表记录,实时标注包的数据区域,生成并逐步完善协议的语义结构

图5基于在线分析的模糊测试

Fig.5Fuzzing test based on online analysis

方法(1)虽然生成的测试用例质量较高,但需要积累相当数量的历史网络数据流量作为原始样本,且初始阶段需要耗费大量的人力,对协议分析经验要求较高且实时性差.相比之下,方法(2)虽然在测试初期生成的模型较为粗糙,需要耗

005小型微型计算机系统2015年

费大量计算资源,但随着学习过程的不断深入,模型也会逐步成熟,测试用例的质量也会不断提升.5.2

不依赖本地调试进行异常捕获和定位

作为工控系统的核心组件,

PLC 等物理设备运行环境封闭且存储计算资源受限,无法通过附加调试组件的方式记录

异常事件并保存日志,只能依赖其他方式进行检测,较为可行的方法包括:

(1)基于网络流量的异常检测.使用心跳机制,以间歇性“发包—响应”的形式探测目标是否出错,同时结合异常隔离机制,在每传输一组测试用例后通过发送心跳包的方式检测对象是否发生异常,如果超过一定的时间阈值未收到回复包,

则认为测试对象发生了异常,需采取逐步隔离[27]

的方式,如图6所示,从该组用例中找出触发异常的单个测试用例,并保存异常产生的流量数据,以便进一步分析.此外,对于构建于TCP 之上的工控网络协议,捕获用于重建连接的TCP RST 和非正常重复出现的SYN 请求也可以用来发现测试对象的网络异常

图6基于心跳检测的故障隔离技术

Fig.6Fault isolating technology based

on heart-beat detecting

(2)使用基于I /O 的异常检测.PLC 设备在正常运行时会不断与下层生产过程进行数据I /O 交互,如果工艺处理机制受到协议栈影响发生异常,会波及到下层I /O 信号.该方法需要使用具有D /A 或者A /D 转换功能的接口卡,将工控设备的I /O 输出线外接到工控机上,同时在平台上运行流程仿真程序,部署监测程序不断轮询I /O 口的信号交互情况,当发生异常时一方面发送消息给Fuzzing 测试端以便保存场景信息,另一方面本地保存I /O 异常情况和流程断点以便进一步分析,如图7所示

图7基于I /O 的异常检测技术

Fig.7Anomaly detecting technology

based on I /O of PLC

5.3

具有对网络协议进行双向测试的能力

由于工控系统要支持双向网络协议测试,且对工控私有网络协议客户端而言,由于其会话时间较短、时间敏感性强,对要求大量历史数据流量的传统Fuzzing 测试工具基本免疫,

可行的方法之一是采取内联的部署方式,通过ARP 欺骗[40]

将Fuzzing 测试工具插入到服务器和客户端之间,使用重放的

方式对截获的网络数据包进行突变,产生畸形数据,如图8所示

图8工控网络协议的双向模糊测试Fig.8Fuzzing test for industrial network protocol in bidirectional

5.4

具备实时异常重启能力

对于OPC 等[37]

多层次、结构复杂的工控网络协议来说,

执行一次Fuzzing 测试往往耗时较长,一旦发现异常导致测试对象崩溃,无法继续测试过程,需要重启测试对象,重新开始,如果测试用例的选择机制不支持断点续传,则容易陷入死循环,导致测试覆盖率差.为了避免这一问题,通常有两种方法.

1)对于上位机软件,可采用监测环境启动,一旦发生故障则自动保存断点,重新启动测试对象进程,同时通知Fuzz-ing 测试端恢复断点,继续原来的测试过程,如使用Xen 等带监测功能的虚拟化环境;2)对于物理设备,由于运行环境封闭,无法在监测环境中直接部署,则可采用电源控制的方式,在设备发生崩溃的时,保存测试进度,通过硬件控制将测试对象断电并再加电,

重启对象,完成剩余的测试用例,而不需要重新开始,提高测

试效率.

6总结及展望

Fuzzing 测试技术经过多年的发展,为网络协议安全性分

析提供了有效的工具.随着网络技术在工控领域得到了广泛的应用,传统Fuzzing 测试技术由于在设计上面向传统网络协议,在异常捕获、定位和分析上存在一定的局限性,无法满足具有典型行业和专用特点的工控网络设备的测试要求.本文深入分析了工控网络协议的特点,分析使用现有fuzzing 测试器进行工控网络协议测试存在的困难,对现有工控网络协议Fuzzing 测试领域的成果进行了综述,总结其优缺点,基于分析结果提出了工控协议专用Fuzzing 测试器应该遵循的设计准则.

在未来的研究中,将结合本文提出的观点,对现有的开源Fuzzing 测试器进行扩展,实现专用的工控系统模糊测试框架.References :

[1]The repository of security incidents [EB /OL ].June 2012.http ://

www.securityincidents.net /index.php /products /indepth /risi annu-alreport /,Accessed ,2013:31.

[2]Farwell J P ,Rohozinski R.Stuxnet and the future of cyber war [J ].

Survival ,2011,53(1):23-40.[3]Edmonds J.Security analysis of multilayer protocols in SCADA net-works [D ].Department of Computer Science ,University of Tulsa ,Tulsa ,Oklahoma ,2006.

[4]Peng Yong ,Jiang Chang-qing ,Xie Feng.Research progress of the se-

1

053期熊琦等:工控网络协议Fuzzing 测试技术研究综述

curity technology for industrial control system[J].Tsinghua Universi-ty Journal of Natural Science,2012,10:1396-1408.

[5]ISA99Committee.ISA99committee on industrial automation and control systems security[EB/OL].http://isa99.isa.org/ISA99%

20Wiki/Home.aspx,Accessed,2012.

[6]Keshav S,Rosenberg C.How internet concepts and technologies can help green and smarten the electrical grid[C].ACM SIGCOMM

Computer CommunicationReview,2011.

[7]Miller B,Fredriksen L,So B.An empirical study of the reliability of UNIX utilities[J].Communications of the ACM,1990,33(12):32-44.

[8]Roning J,et al.PROTOS:systematic approach to eliminate software vulnerabilities,presented at microsoft research[EB/OL].http://

www.ee.oulu.fi/research/ouspg/PROTOSMSR2002-protos,Access-ed,2013.

[9]Aitel D.An introduction to SPIKE,the fuzzer creation kit,presented at the blackHat USA conference[EB/OL].http://www.blackhat.com/

presentations/bh-usa-02/bh-us-02-aitel-spike.ppt,Accessed,2013.[10]Biyani A,Sharma G,Aghav J,et al.Extension of SPIKE for en-crypted protocol fuzzing[C].Third International Conference on

Multimedia Information Networking and Security(MINES),2011.

[11]Amini P.Sulley:pure python fully automated and unattended Fuzzing framework[EB/OL].http://code.google.com/p/sulley,Access-ed,2013.

[12]Eddington M.Peach fuzzing platform[EB/OL].Peachfuzzer.com,Accessed,2013.

[13]Cadar C,Pawlowski V G P,Dill D,et al.EXE:Automatically genera-ting inputs of death[J].ACM Transactions on Information and Sys-

tem Security,2008,12(2):1-38.

[14]VDA Labs.General purpose fuzzer[EB/OL].http://www.vdalabs.com/tools/efsgpf.html,2013.

[15]Kaminsky D.Black ops:Pattern recognition,presented at the Black-Hat USA conference[EB/OL].http://www.slideshare.net/daka-mi/dmk-blackops2006,2013.

[16]GitHub.QueMod[EB/OL].http://github.com/struct/QueMod,2008.

[17]West A,Hagge J W,Grigsby L.Securing DNP3and modbus with AGA12-2J[C].Pittsburgh,PA,United States:Inst.of Elec.and

Elec.Eng.Computer Society,2008.

[18]Kang D J,et al.Analysis on cyber threats to SCADA systems[C].Seoul,Korea,Republic of IEEE Computer Society,2009.

[19]Devarajan G.Unraveling SCADA protocols:using sulley fuzzer,pres-ented at the DefCon15Hacking conference[EB/OL].http://www.

defcon.org/html/defcon-15/dc-15-speakers.html,2012.

[20]Michael Toecker:Response fuzzing[EB/OL].http://www.digital-bond.com/blog/2013/05/08/response-Fuzzing/,2013.

[21]KochRProfuzz[EB/OL].https://github.com/HSASec/ProFuzz,2013.

[22]Philippe Biondi.Scapy,python interactive packet manipulation framework[EB/OL].http://www.secdev.org/projects/scapy/,2012.

[23]SNORT[EB/OL].http://www.snort.org,2013.

[24]Byres E J,Hoffman D,Kube N.On shaky ground-a study of security vulnerabilities in control protocols[C].In:5th American Nuclear So-

ciety International Topical Meeting on Nuclear Plant Instrumenta-tion,Controls,and Human Machine Interface Technology,American

Nuclear Society,Albuquerque,2006.

[25]Wireshark Foundation[EB/OL].Wireshark.http://www.wire-shark.org/,2013.

[26]DigitalBond.ICCPSic assessment tool set released,sunrise[EB/ OL].www.digitalbond.com/2007/08/28/iccpsic-assessment-tool-set-released,2013.

[27]Dynamics M.Mu test suite[EB/OL].http://www.mudynamics.com/products/mu-test-suite.html,2013.

[28]Wurldtech.Achilles test platform[EB/OL].http://www.wurldt-ech.com,2013.

[29]codenomicon.Defensics test platform[EB/OL].http://www.code-nomicon.com/products/protocols.shtml,2013.

[30]Patel S C,P Sanyal,Securing SCADA systems[J].Information Man-agement and Computer Security,2008,16(4):398-414.

[31]Proell T.Fuzzing proprietary protocols:a practical approach[C].Presented at the Security Education Conference Toronto(www.sec-tor.ca/presentations10/ThomasProell.pdf),2010.

[32]Wen T,Aifen S.Secure protocol lifecycle and its application in power industry[C].Nanjing,China:Inst.of Elec.and Elec.Eng.Computer

Society,2008.

[33]Jajodi S,Zhou J(Eds.).Hidden markov models for automated protocol learning[C].SecureComm2010,LNICST,2010,50:415-428.

[34]Sergey Bratus,Axel Hansen,Anna Shubina.LZfuzz:a fast compres-sion-based fuzzer for poorly documented protocols[D].Dartmouth

College,Hanover,NH,2008.

[35]Butts J,Shenoi S(Eds.).Identifying Vulnerabilities in Scada Sys-tems Via Fuzz-Testing[C].Critical Infrastructure Protection V,IFIP

AICT,2011,367:57-72.

[36]Marshall A Beddoe.Network protocol analysis using bioinformatics algorithms[EB/OL].http://www.4tphi.net/awalters/PI/PI.pdf,2013.

[37]Franz M.ICCP exposed:assessing the attack surface of the utility stack[C].In:Proceedings of SCADA Security Scientific Symposi-um,Florida,USA,2007:245-249.

[38]Zhang Mei-chao,Zeng Fan-ping,Huang Yi.Fuzzing testing based on vulnerability database[J].Journal of Chinese Computer Systems,2011,32(4):651-656.

[39]Liu Qi-xu,Zhang Yu-qing.TPTP vulnerability exploiting based on fuzzing[J].Computer Engineering,2007,33(20):142-144.

[40]Raynal F,Detoisien E,Blancher C.arp-sk:a swiss knife tool for ARP [EB/OL].http://sid.rstack.org/arp-sk,2013.

[41]Kube N,Yoo K,Hoffman D.Automated testing of industrial control devices:the delphi database[C].In Proceedings of the6th Interna-tional Workshop on Automation of Software Test AST'11,ACM,New

York,NY,71-76.

附中文参考文献:

[4]彭勇,江常青,谢丰.工业控制系统信息安全研究进展[J].清华大学学报(自然科学版),2012,10:1396-1408.

[38]张美超,曾凡平,黄奕.基于漏洞库的fuzzing测试技术[J].小型微型计算机系统,2011,32(4):651-656.

[39]刘奇旭,张玉清.基于Fuzzing的TFTP漏洞挖掘技术[J].计算机工程,2007,33(20):142-144.

205小型微型计算机系统2015年

网络协议分析期末

网络协议分析 Chap 1——TCP/IP 概述 1.用IP实现异构网络互联(IP能够屏蔽底层物理网络的差异,向上提供一致性) 2.通用的协议分层思想: (1)第N层实体在实现自身定义的功能的时候,只能使用第N-1层提供的服务 (2)N层向N+1层提供服务,该服务不仅包括N层本身所具备的功能,还包括由下层服务提供的功能总和 (3)最底层只提供服务,是提供服务的基础;最高层只是用户,是使用服务的最高层,中间各层既是下一层的用户,又是上一层的服务提供者 (4)仅在相邻层间有借口,且下层服务的实现细节对上层完全透明 3.TCP/IP分层模型 分层优势:简化问题,分而治之,有利于软件升级换代 应用层、传输层、IP层、网络接口层、物理层 分层缺点:效率低 1.各层之间相互独立,都要对数据进行分别处理 2.每层处理完毕都要加一个头结构,增加了通信数据量 TCP/IP的分层原则:信宿机第n层收到的数据与信源机第n层发出的数据完全一致。 应用层:提供通用的应用程序,如电子邮件、文件传输等。 传输层:提供应用程序间端到端的通信 ①格式化信息流②提供可靠传输③识别不同应用程序 IP层:负责点到点通信 ①处理TCP分层发送请求 ②为进入的数据报寻径 ③处理ICMP报文:流控、拥塞控制 ④组播服务 网络接口层:接收IP数据报并通过选定的网络发送。 总结:TCP/IP模型是在1个硬件层上构建的4个软件层 4.TCP/IP 中协议依赖关系

CHAP 2 点到点PPP协议 1.最大接收单元:用以向对方通告可以接受的最大报文长度; 2.PPPoE定义了在以太网中使用PPP协议的规范,主要用于城域以太网以及个人用户基于以太网连接ADSL接入设备的场合 CHAP 3 Internet地址及地址解析 1.IP地址:网络号+主机号 2.IP地址的寻路特点: (1)指明了主机所在的网络,标识了对象位置 (2)标识了到达对象的路径,机先投递到对象所在网络,之后投递到相应的主机 3.IP地址分类 A类:0 —8位网络号首字节1—126 B类:10 —16位网络号首字节128—191 C类:110 —24位网络号首字节192—223 D类:1110 —组播地址首字节224—239 E类:11110 -- (保留未用)首字节240—247 特殊IP地址: 网络地址:主机号全0;广播地址:主机号全‘1’ 有限广播地址:32位全‘1’;回送地址:127.*.*.*,网络软件测试及本机进程间的通信。 4.从IP地址中提取网络部分,过程如下: (1)提取首比特位,为0则是A类地址,第一个字节是网络号 (2)首位为1,则提取第二位,为0则是B类地址,前两个字节是网络号 (3)第二位为1,则提取第三位,为0 则是C类地址,前三个字节是网络号 5.ARP的基本思想是“询问”。 6.ARP步骤: (1)发送方发送一个ARP请求,该报文以广播方式发送,包含接收方的IP地址。 (2)网络上所有主机都会受到这个请求,比较请求中的接收方IP与自己的IP,若相同,则向发送方回应,回应中包含自己的物理地址,否则不作回应。 总结:广播请求,单播回应! 话外:在TCP/IP协议中,每一个网络结点是用IP地址标识的,IP地址是一个逻辑地址。而在以太网中数据包是靠48位MAC地址(物理地址)寻址的。因此,必须建立IP地址与MAC地址之间的对应(映射)关系,ARP协议就是为完成这个工作而设计的。 7.ARP欺骗。(P31) (1)嗅探器的原理:在共享网络环境下,所有数据通过物理广播方式投递,在网卡工作于混杂模式下不会进行地址检查而直接接收数据,主机可以修改网卡的工作模式嗅探网断内的所有通讯数据。(被动攻击) (2)基于ARP欺骗的嗅探器:在同一网段中可以通过ARP询问知道网段内任意主机的IP地址和MAC地址映射关系。在交换式网络环境下,一台主机H若想截获A、B主机间的通讯,可以首先向A发送一个ARP应答报文,里面包含IPb/MACh,A收到后会更新

网络协议分析与仿真课程设计预习报告

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 网络协议分析与仿真课程设计预习报告 甲方:___________________ 乙方:___________________ 日期:___________________

(计算机学院) 网络协议分析与仿真课程设计 预习报告 专业名称:__________ 网络工程_________________ 班级:_______________________________________ 学生姓名:____________________________________ 学号(8位): ________________________________ 指导教师:____________________________________ 设计起止时间:2013年12月2日一2013年12月13日

题目一网络流量分析 一、课程设计目的 里加深对IP、DNS、TCR UDP、HTTP等协议的理解; 里掌握流量分析工具的使用,学习基本的流量分析方法。 二、课程设计地点及时间 二号实验楼442网络实验室,12月2日至12月6日,每天8: 00-14: 00 三、课程设计实验条件 工具:Wireshark (Windows 或Linux), tcpdump (Linux) 要求:使用过滤器捕获特定分组;用脚本分析大量流量数据(建议用perl)。 内容:Web流量分析 四、课程设计原理 1、DNS域名解析:首先,客户端的应用层会封装数据到达传输层,在传输层标识源端口号 与目的端口号(源端口号为大于1023随机,目的端口号为UDP5狒口)及应用层服务(这 里因该是请求DN硒询服务吧)。传输层封装数据产生数据段传给网络层,在网络层标识源IP地址及目的IP地址(源IP地址为客户端IP ,目的IP地址为DNS服务器IP地址),网络层将数据段封装为数据包传给数据链路层,在数据链路层将会在数据包里加入源MACM址及目的MA砸址(源MACM址为客户端网卡MA弛址,目的MAC%址为DNS服务器MACM址),这里应该查询MA或存。数据链路层根据客户端与DNS服务器之间的链路,将数据包封装成 帧,传给物理层。物理层会将数据帧转化为电信号放到物理介质上。 电信号到达DNS服务器后会从物理层到达应用层(这里和客户端发送数据差不多,只不过这 个过程变成了解封装),DNS服务器做完域名解析后再将数据传给客户端,传输过程同客户端发送数据。 2、建立TCP/IP连接:客户端知道WE囹艮务器IP地址之后,在网络层产生建立TCP/IP三次握手的数据包(TCP/IP三次握手:客户端向服务器端发送SYN信息,服务器端收到SYN信 息后回复给客户端SYN+AC褊认信息,客户端收到确认信息后再向服务器发送ACK信息建立 连接),应用层标识HTTP服务将数据发送到传输层,传输层将数据+源端口号(大于1023)、目的端口号(80)+上层服务WW如装为数据段传给网路层。网络层将数据段+源ip与目的 ip (WW服务器的ip地址)封装为数据包发送到数据链路层。数据链路层参照ARP缓存表确定源MAC%址(本机MACM址)及目的MACM址(客户端与路由B相连端口的MACM址)将数据包封装成数据帧。这里还需要CR破验。。。。。。数据帧到达物理层后变成电信号发送 到介质上(这里还需要访问控制方法DSMA/CD 路由B收到电信号后传给路由器的数据链路层,这里还需要CRC,FC眼验。。。…确定数据 帧没有损坏后查看目的MACM址与路由器端口地址是否相同,如果相同将解封装,将数据包 发送到路由器B的物理层,路由器查看路由表确定数据包的转发端口,路由器B确定与路由 A之间的链路,创建帧。 路由B与路由A可以看成是点对点,即路由B将创建PPP帧。路由A收到电信号后,确定帧的完整性,如果完整即将数据帧解封装发送到网络层,路由A查询路由表将数据包转发到与WEBf连的路由端口。 路由A的数据链路层将查询ARP缓存表确定WW服务器的MACM址,路由A将创建源MAC 地址

网络协议分析题库

第一章练习 1 OSI和ISO分别代表什么含义?它们是什么关系? 2 OSI/RM模型没有被最终采用的原因是什么? 3下面哪些协议属于应用层协议?() A. TCP和UDP B. DNS和FTP C. IP D. ARP 4 Internet最早是在( ) 网络的基础上发展起来的? A. ANSNET B. NSFNET C. ARPANET D. MILNET 5 当网络A上的主机向网络B上的主机发送报文时, 路由器要检查( ) 地址? A.端口 B. IP C.物理 D.上述都不是 6.下面哪一个是应用层提供的服务? ( ) A.远程登录服务 B.文件传送 C.邮件服务 D.上述都是 7要将报文交付到主机上的正确的应用程序, 必须使用( )地址? A.端口 B. IP C.物理 D.上述都不是 8. 网络应用访问操作系统的常用接口是,实现IP地址到物理地址映射的协议是。 9. 在TCP/IP协议族中,能够屏蔽底层物理网络的差异,向上提供一致性服务的协议是;实现异构网络互联的核心设备是。 10. 在TCP/IP网络中,UDP协议工作在层,DNS协议工作在层。 11判断对错:TCP/IP是一个被广泛采用的网际互联协议标准,仅包含TCP和IP两个协议。() 第二章练习 1 PPP协议是什么英文的缩写?用于什么场合? 2 ISP验证拨号上网用户身份时,可以使用哪些认证协议?

3.PPP协议的通信过程包括哪几个阶段? 4.LCP的用途是什么? 5.PPP是Internet中使用的(1),其功能对应于OSI参考模型的(2),它 使用(3)技术来解决标志字段值出现在信息字段的问题。 (1) A. 报文控制协议 B. 分组控制协议 C. 点到点协议 D. 高级数据链路控制协议 (2)A. 数据链路层 B. 网络层 C. 传输层 D. 应用层 (3)A. 透明传输 B. 帧 C. 控制 D. 字节填充 第三章练习 1求下列每个地址的类别: 227.12.14.87 193.14.56.22 14.23.120.8 252.5.15.111 2 假设一段地址的首地址为146.102.29.0,末地址为146.102.32.255,求这个地址段的地址数。 某地址段的首地址为14.11.45.96。假设这个地址段的地址数为32个,那么它的末地址是什么? 3下列哪个地址是C类地址?() 哪个是E类地址?() A. 00000001 00001011 00001011 11101111 B. 11000001 10000011 00011011 11111111 C. 10100111 11011011 10001011 01101111 D. 11101111 10011011 11111011 00001111 4下列哪个IP地址能用于Internet上的主机通信?() A. 192.168.120.5 B. 172.30.10.78 C. 186.35.40.25 D. 10.24.25.9 5 一个主机有两个IP地址,一个地址是192.168.11.25,另一个可能是() A. 192.168.13.25 B. 192.168.11.0 C. 192.168.11.26 D. 192.168.11.24 6下列哪种情况需要启动ARP请求?()

《网络协议分析》教学大纲

《网络协议分析》课程教学大纲 课程代码: 课程名称:网络协议分析 英文名称:The network protocol analysis 课程类型:必修课 总学时:48学时讲课学时:32 实验学时:16 学分:3 适用对象:计算机科学与技术、网络工程、软件工程、信息管理与信息系统等专业 先修课程:计算机基础、程序语言设计等 一、课程性质 《网络协议分析》是计算机科学与技术、软件工程、网络工程、信息管理与信息系统等专业的必修课程。网络的重要性和普及性已毋庸置疑。在网络通信的方方面面中,网络协议发挥着基础的支撑作用。TCP/IP协议族是目前使用最广泛的协议族,也是Internet出现、发展和普及的基础。 用户新的应用将不断出现,新的协议标准及现有标准(包括TCP/IP)的新版本仍在不断涌现。而TCP/IP的设计者和研究者们也在不断这种发展速度而推陈出新。这个时候,掌握各个协议的思想、原理及流程等方面显得尤为必要了。 二、教学基本要求 开设此门课能够让网络工程专业的学生深入理解TCP/IP协议族各个协议的本质思想,会使用网络协议分析工具对一个协议作出评价,以便应用到以后的网络应用和工作当中。 三、教学内容及要求 页脚内容1

第1章TCP/IP概述 本章教学内容:网络互联与TCP/IP;网络协议的分层;TCP/IP发展过程;TCP/IP协议的标准化 本章教学目的及要求:掌握网络互联的概念,TCP/IP的分层思想。 本章重点:网络协议的分层和网络互联的概念。 本章难点:网络互联的理解。 第2章点到点协议PPP 本章教学内容: PPP的流程及报文格式;认证协议PAP及CHAP;PPPoE的应用、流程及报文格式。本章教学目的及要求:掌握PPP的流程及报文格式;LCP、IPCP协议以及认证协议PAP及CHAP。本章重点: PPP流程以及LCP、IPCP协议的规定。 本章难点: LCP、IPCP协议的规定。 第3章Internet地址及地址解析 本章教学内容: Internet地址;地址解析协议ARP;反向地址解析协议RARP。 本章教学目的及要求:掌握地址解析协议ARP,反向地址解析协议RARP。 本章重点:掌握地址解析协议ARP。 本章难点:地址解析协议ARP。 第4章互联网协议IP 本章教学内容: IP数据报;IP分片及重组;IP选项;IP安全问题和IP选路。 本章教学目的及要求:掌握IP数据报;IP分片及重组;IP选项。掌握IP选路。 本章重点: IP数据报;;IP选项和IP选路。 本章难点: IP分片及重组,IP 选项。 页脚内容2

《物联网技术与应用》考试题库

物联网测试题目 一、单选题(80) 1、通过无线网络与互联网的融合,将物体的信息实时准确地传递给用户,指的是()。 C A、可靠传递 B、全面感知 C、智能处理 D、互联网 2、利用RFID 、传感器、二维码等随时随地获取物体的信息,指的是()。B A、可靠传递 B、全面感知 C、智能处理 D、互联网 3、()给出的物联网概念最权威。 D A、微软 B、IBM C、三星

D、国际电信联盟 4、(d)年中国把物联网发展写入了政府工作报告。 D A、2000 B、2008 C、2009 D、2010 5、第三次信息技术革命指的是()。 B A、互联网 B、物联网 C、智慧地球 D、感知中国 6、IBM提出的物联网构架结构类型是()。C A、三层 B、四层 C、八横四纵 D、五层

7、欧盟在()年制订了物联网欧洲行动计划,被视为“重振欧洲的重要组成部分”。 B A、2008 B、2009 C、2010 D、2004 8、物联网的概念,最早是由美国的麻省理工学院在()年提出来的。 A A、1998 B、1999 C、2000 D、2002 9、计算模式每隔()年发生一次变革。 C A、10 B、12 C、15 D、20 10、权威的物联网的概念是()年发布的《物联网报告》中所提出的定义。D

A、1998 B、1999 C、2000 D、2005 11、2009年10月()提出了“智慧地球”。A A、IBM B、微软 C、三星 D、国际电信联盟 12、智慧地球是()提出来的。 D A、德国 B、日本 C、法国 D、美国 13、三层结构类型的物联网不包括()。 D A、感知层 B、网络层

《网络协议分析》课程标准

《网络协议分析》课程标准 课程名称、代码:网络协议分析、 总学时数:36(理论课学时数:18 实践课学时数:18) 学分数:2 适用专业:计算机网络技术、计算机应用技术 一、课程的性质 1、必修课; 2、专业课。 二、课程定位 该课程是作为计算机网络技术专业和计算机应用专业的专业必修课。通过该门课的学习,使学生深入学习TCP/IP协议体系结构和基本概念,分析各个协议的设计思想、流程及其所解决的问题。通过该门课程的学习,进一步提高学生作为网络管理员的技能水平。学生能够胜任中小型企业的网络维护的日常工作。学生应先修《计算机网络基础》一课,掌握计算机网络技术的基础知识后,方可修此门课程。 三、课程设计思路 本课程的设计思路是以计算机专业学生就业为导向,着重培养学生的动手能力。通过调查研究社会对计算机专业学生在网络安全技术方面的要求,制定相关的理论教学内容和实践内容。课程整体结构按照网络管理员工作岗位所涉及到的工作任务,维护中小型局域网正常运作、检测网络故障等工作技能的培养安排课程项目。在学时分配上,理论课时与实践课时各占一半,注重实践教学,有利于提高学生的动手能力,同时也加深了对理论知识的理解,做到知其然并知其所以然。 四、课程基本目标 1、知识目标: (1)知道TCP/IP协议以及工作原理; (2)知道PPP协议以及工作原理; (3)知道Internet地址及地址解析; (4)知道IP协议以及工作原理; (5)知道ICMP协议以及工作原理; (6)知道UDP协议以及工作原理; (7)知道TCP协议以及工作原理; (8)知道Internet地址扩展技术。 2、职业技能目标: (1)能分析PPP协议; (2)能分析ARP协议; (3)能分析IP协议; (4)能分析ICMP协议; (5)能分析UDP协议; (6)能分析TCP协议; (7)能分析HTTP协议。 3、职业素质养成目标

RFID技术与应用试题库含答案精编

R F I D技术与应用试题库 含答案精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

《RFID技术与应用》试题库(含答案) 一、填空题(共7题,每题2分,共14分)【13选7】1.自动识别技术是一个涵盖【射频识别】、【条码识别技术】、【光学字符识别(OCR)】技术、磁卡识别技术、接触IC卡识别技术、语音识别技术和生物特征识别技术等,集计算机、光、机电、微电子、通信与网络技术为一体的高技术专业领域。 2.自动识别系统是应用一定的识别装置,通过与被识别物之间的【耦合】,自动地获取被识别物的相关信息,并提供给后台的计算机处理系统来完成相关后续处理的数据采集系统,加载了信息的载体(标签)与对应的识别设备及其相关计算机软硬件的有机组合便形成了自动识别系统。 3.条码识别是一种基于条空组合的二进制光电识别,被广泛应用于各个领域,尤其是【供应链管理之零售】系 统,如大众熟悉的商品条码。 4.RFID技术是20世纪90年代开始兴起的一项自动识别技术,即利用【射频】信号通过空间【耦合】(交变磁场或电磁场)实现【无】接触信息传递并通过所传递的信息达到识别目的的技术。 5.国际标准(国际物品编码协会GS1),射频识别标签数据规范版(英文版),也简称【EPC】规范。

6.射频识别标签数据规范给出包括【“标头”】和【“数字字段”】的标签通用数据结构,所有的RFID标签都应该具有这种数据结构。 7.ISO14443中将标签称为邻近卡,英语简称是【PICC】,将读写器称为邻近耦合设备,英文简称是【PCD】。8.ISO15693与ISO14443的工作频率都是【】Mhz。9.ISO15693标准规定标签具有【8】字节的唯一序列号(UID)。 10.对于物联网,网关就是工作在【网络】层的网络互联设备,通常采用嵌入式微控制器来实现网络协议和路由处理。 11.控制系统和应用软件之间的数据交换主要通过读写器的接口来完成。一般读写器的I/O接口形式主要有【RS-232串行接口】、【RS-485串行接口】、【以太网接 口】、【USB接口】。 12.电子标签按照天线的类型不同可以划分为【线圈型】、【微带贴片型】、【偶极子型】。 13.125KHz RFID系统采用【电感耦合】方式工作,由于应答器成本低、非金属材料和水对该频率的射频具有较低的吸收率,所以125KHz RFID系统在【动物识别】、工业和民用水表等领域获得广泛应用。

网络协议课程设计报告

目录 1.课程设计目的 ---------------------------------------------------- 2 2.课程设计要求 ---------------------------------------------------- 2 3.课程设计题目分析 ------------------------------------------------ 2 3.1 网卡设置 -------------------------------------------------- 2 3.2 程序设计 -------------------------------------------------- 3 3.2.1 使用原始套接字------------------------------------------ 3 3.2.2 接收数据包---------------------------------------------- 4 3.2.3 定义IP头部的数据结构---------------------------------- 4 3.2.4 IP包的解析 --------------------------------------------- 5 4.解析IP数据包设计相关知识 -------------------------------------- 5 5.程序流程图------------------------------------------------------- 6 6.程序设计--------------------------------------------------------- 7 6.1 协议的定义 ------------------------------------------------ 7 6.2捕获处理--------------------------------------------------- 7 6.3 运行界面 -------------------------------------------------- 8 7.实验结果--------------------------------------------------------- 9 8.自我评析和总结 -------------------------------------------------- 9 8.1 实训心得-------------------------------------------------- 9 8.2 实训日记-------------------------------------------------- 9 9.主要参考资料 -------------------------------------------------- 10 [2]《网络协议分析》寇晓蕤罗俊勇编著机械工业出版社--------- 10 [3]《C语言程序设计》张建伟李秀琴主编科学出版社--------- 10 [4]《C++程序设计教程——面向对象分册》郑秋生主编 --------- 10电子工业出版社 -------------------------------------------------- 10 10.附录 ---------------------------------------------------------- 10

《RFID技术与应用》试题库(含答案)

《RFID技术与应用》试题库(含答案) 一、填空题(共7题,每题2分,共14分)【13选7】 1.自动识别技术就是一个涵盖【射频识别】、【条码识别技术】、【光学字符识别(OCR)】技术、磁卡识别技术、接触IC卡识别技术、语音识别技术与生物特征识别技术等,集计算机、光、机电、微电子、通信与网络技术为一体得高技术专业领域. 2.自动识别系统就是应用一定得识别装置,通过与被识别物之间得【耦合】,自动地获取被识别物得相关信息,并提供给后台得计算机处理系统来完成相关后续处理得数据采集系统,加载了信息得载体(标签)与对应得识别设备及其相关计算机软硬件得有机组合便形成了自动识别系统。 3.条码识别就是一种基于条空组合得二进制光电识别,被广泛应用于各个领域,尤其就是【供应链管理之零售】系统,如大众熟悉得商品条码. 4.RFID技术就是20世纪90年代开始兴起得一项自动识别技术,即利用【射频】信号通过空间【耦合】(交变磁场或电磁场)实现【无】接触信息传递并通过所传递得信息达到识别目得得技术。 5.国际标准(国际物品编码协会GS1),射频识别标签数据规范1、4版(英文版),也简称【EPC】规范。 6.射频识别标签数据规范给出包括【“标头”】与【“数字字段”】得标签通用数据结构,所有得RFID标签都应该具有这种数据结构。 7.ISO14443中将标签称为邻近卡,英语简称就是【PICC】,将读写器称为邻近耦合设备,英文简称就是【PCD】。 8.ISO15693与ISO14443得工作频率都就是【13、56】Mhz。 9.ISO15693标准规定标签具有【8】字节得唯一序列号(UID). 10.对于物联网,网关就就是工作在【网络】层得网络互联设备,通常采用嵌入式微控制器来实现网络协议与路由处理. 11.控制系统与应用软件之间得数据交换主要通过读写器得接口来完成。一般读写器得I/O接口形式主要有【RS—232串行接口】、【RS-485串行接口】、【以太网接口】、【USB接口】。 12.电子标签按照天线得类型不同可以划分为【线圈型】、【微带贴片型】、【偶极子型】.13.125KHz RFID系统采用【电感耦合】方式工作,由于应答器成本低、非金属材料与水对该频率得射频具有较低得吸收率,所以125KHzRFID系统在【动物识别】、工业与民用水表等领域获得广泛应用. 二、判断题(叙述完全正确请在题前括号内填入“对”字或打上“√”符号,否则填入“错" 字或打上“╳”符号)(共20题,每题1分,共20分)【30选20】 1.【对】自动识别技术就是物联网得“触角"。 2.【对】条码与RFID可以优势互补。 3.【错】IC卡识别、生物特征识别无须直接面对被识别标签. 4.【错】条码识别可读可写。 5.【对】条码识别就是一次性使用得。 6.【错】生物识别成本较低。 7.【对】RFID技术可识别高速运动物体并可同时识别多个标签。 8.【错】长距射频产品多用于交通上,识别距离可达几百米,如自动收费或识别车辆身份等。9.【对】只读标签容量小,可以用做标识标签. 10.【错】可读可写标签不仅具有存储数据功能,还具有在适当条件下允许多次对原有

网络协议分析实验报告

课程设计 课程设计题目网络协议分析实验报告学生姓名: 学号: 专业: 2014年 6 月 29日

实验1 基于ICMP的MTU测量方法 实验目的 1)掌握ICMP协议 2)掌握PING程序基本原理 3)掌握socket编程技术 4)掌握MTU测量算法 实验任务 编写一个基于ICMP协议测量网络MTU的程序,程序需要完成的功能: 1)使用目标IP地址或域名作为参数,测量本机到目标主机经过网络的MTU; 2)输出到目标主机经过网络的MTU。 实验环境 1)Linux系统; 2)gcc编译工具,gdb调试工具。 实验步骤 1.首先仔细研读ping.c例程,熟悉linux下socket原始套接字编程模式,为实验做好准备; 2.生成最大数据量的IP数据报(64K),数据部分为ICMP格式,ICMP报文为回送请求报 文,IP首部DF位置为1;由发送线程发送; 3.如果收到报文为目标不可达报文,减少数据长度,再次发送,直到收到回送应答报文。 至此,MTU测量完毕。

ICMP协议是一种面向无连接的协议,用于传输出错报告控制信息。它是一个非常重要的协议,它对于网络安全具有极其重要的意义。[1] 它是TCP/IP协议族的一个子协议,属于网络层协议,主要用于在主机与路由器之间传递控制信息,包括报告错误、交换受限控制和状态信息等。当遇到IP数据无法访问目标、IP路由器无法按当前的传输速率转发数据包等情况时,会自动发送ICMP消息。ICMP报文在IP帧结构的首部协议类型字段(Protocol 8bit)的值=1.

ICMP原理 ICMP提供一致易懂的出错报告信息。发送的出错报文返回到发送原数据的设备,因为只有发送设备才是出错报文的逻辑接受者。发送设备随后可根据ICMP报文确定发生错误的类型,并确定如何才能更好地重发失败的数据包。但是ICMP唯一的功能是报告问题而不是纠正错误,纠正错误的任务由发送方完成。 我们在网络中经常会使用到ICMP协议,比如我们经常使用的用于检查网络通不通的Ping命令(Linux和Windows中均有),这个“Ping”的过程实际上就是ICMP协议工作的过程。还有其他的网络命令如跟踪路由的Tracert命令也是基于ICMP协议的。 ICMP(Internet Control Message,网际控制报文协议)是为网关和目标主机而提供的一种差错控制机制,使它们在遇到差错时能把错误报告给报文源发方.是IP层的一个协议。但是由于差错报告在发送给报文源发方时可能也要经过若干子网,因此牵涉到路由选择等问题,所以ICMP报文需通过IP协议来发送。ICMP数据报的数据发送前需要两级封装:首先添加ICMP 报头形成ICMP报文,再添加IP报头形成IP数据报 通信术语最大传输单元(Maximum Transmission Unit,MTU)是指一种通信协议的某一层上面所能通过的最大数据包大小(以字节为单位)。最大传输单元这个参数通常与通信接口有关(网络接口卡、串口等)。 实验2 基于UDP的traceroute程序 实验目的 1)掌握UDP协议 2)掌握UDP客户机/服务器编程模式 3)掌握socket编程技术 4)掌握traceroute算法

网络协议分析期末考试

2008-2009学年第一学期 网络协议分析 期末试卷(A卷)参考答案 第一题判断题(20小题,共20分,对打错打X) 1. 没有完成两个数据包握手称为双向“握手”,是一种不安全的进程。(V) 2. 查阅网上对象所有域名和地址的术语称为统一资源定位符URL (X ) 3. 动态端口也叫临时端口。(V) 4. 用于描述DNS数据库段的数据是一种ASCII文本数据。(V) 5.SOCKS!—种Socket 的实现机制。(X ) 6. 区分服务也叫分用服务,传输层用于向上传送通信数据。(X ) 7. RIPV2最多有15个网络直径,OSPFv2最多有128个网络直径。(X ) 8. DHCP向应消息包含DHCP#求消息。(V) 9. 定界符是PDU的有效数据。(V ) 10. ARPA是一种与Mac地址及IP地址相关的一种协议。(X ) 11. 地址请求是一种ARP服务请求。(X ) 12. 可接收的使用策略AUP是一种格式文档策略。(V ) 13. Apple Talk是一种组安全策略协议。(X ) 14. 权威服务器是PKI中一种发放安全证书的服务器。(X ) 15. 自治系统是一组单一管理权限下的路由器。(V ) 16. 区分服务也叫分用服务,传输层用于向上传送通信数据。(X ) 17. 带宽是一种跨网络信息数量的评估数据。(V ) 18. 绑定确认是一种必选数据。(X )

19. 定界符是PDU的有效数据。(V )

20. 黑洞是数据包无记录丢失的网络节点。 第二题 单项选择题( 20 小题,共 20 分) 面关于 ARP 协议的功能论述正确的是( C )。 协议边界和 OS 边界; C 、数据单元边界和协议边界; A 、 ICMP 协议同 IP 协议一样位于网络层; B 、 Traceroute 和Ping 命令进行网络检测时使用ICMP 报文; C 、 ICMP 协议可以被黑客用来探查主机的开放端口; D 、 ICMP 协议可以完成主机重定向功能。 7、下面关于 IP 协议和 UDP 协议论述正确的是( B ) 1、 A 、ARP 协议根据本地主机的 IP 地址获取远程主机的 MAC 地址; B 、ARP 协议根据远程主机的 MA C 地址获取本地主机的 IP 地址; C 、ARP 协议根据本地主机的 D 、 A RP 协议根据本地主机的 IP 地址获取本主机的 MAC 地址; MAC 地址获取本主机的 IP 地址; 2、 计算机网络体系结构在逻辑功能构成上存在有两个边界,它们是( B )。 A 、 协议栈边界和操作系统边界; B 、 D 、 3、 操作系统边界和协议栈分层边界; 下面 WAN 或 LAN 网络中关于主机数量论述不正确的是( C )。 A 、 网络中使用的协议类型越多,网络中的主机数就越少; 网络中划分的物理区域越多,网络中的主机数就越少; C 、网络中划分的广播区域越多,网络中的主机数就越少; B 、 D 、网络中使用2层交换机越多,网络中的主机数就越少; 4、 B 类网络 172.16.0.0的广播地址是( C )。 A 、172.16.0.1 B 、172.16.0.255 C 、172.16.255.255 D 、172.16.255.0 5、在进行网络 IP 地址配置时,有时会发生 IP 地址是否冲突的网络协议是( A ) IP 地址冲突, TCP/IP 协议族中检查 A 、ARP 协议 B 、PARP 协议 C 、 IP 协议 D 、 802.x 协议 6、下面关于 ICMP 协议论述不正确的是( C )。

《物联网技术与运用》考试题库含答案

《物联网技术与运用》考试题库01 单选题 1、物联网的英文名称是(B)B.Internet of Things 2、(D)首次提出了物联网的雏形 D.比尔.盖茨 3、物联网的核心技术是(A) A.射频识别 4、以下哪个不是物联网的应用模式(C) C.行业或企业客户的购买数据分析类应用 5、按照部署方式和服务对象可将云计算划分为(A) A.公有云、私有云和混合云 6、将基础设施作为服务的云计算服务类型是(C) C.PaaS错误:改为B.IaaS 7、2008年,(A)先后在无锡和北京建立了两个云计算中心 A.IBM 8、(A)实施方案拟定了在未来几年将北京建设成为中国云计算研究产业基地的发展思路和 路径 A.祥云工程 9、智慧城市是与相结合的产物(C) C.数字城市物联网 10、可以分析处理空间数据变化的系统是(B) B.GIS 11、智慧革命以(A)为核心 A.互联网 12、迄今为止最经济实用的一种自动识别技术是(A) A.条形码识别技术 13、以下哪一项用于存储被识别物体的标识信息?(B) B.电子标签 14、物联网技术是基于射频识别技术发展起来的新兴产业,射频识别技术主要是基于什么方 式进行信息传输的呢?(B) B.电场和磁场 15、双绞线绞合的目的是(C ) C.减少干扰 16、有几栋建筑物,周围还有其他电力电缆,若需将该几栋建筑物连接起来构成骨干型园区网, 则采用(D )比较合适? D.光缆 17、下列哪种通信技术部属于低功率短距离的无线通信技术?(A) A.广播 18、关于光纤通信,下列说法正确的是(A ) A.光在光导纤维中多次反射从一端传到另一端 19、无线局域网WLAN传输介质是(A) A.无线电波

1--TCP-IP协议分析复习题

TCP/IP协议与联网技术复习题 一、选择题 1.以下哪个地址段不属于私有网络地址段( D )? A. 10.0.0.0-10.255.255.255 B. 172.16.0.0-172.31.255.255 C. 192.168.0.0-192.168.255.255 D. 192.168.0.1-192.168.0.255 2.RIP路由协议每隔( B )秒进行一次路由更新。 A. 40 B. 30 C. 20 D. 50 3.Telnet协议的熟知端口号是( D )。 A. 20 B. 21 C. 25 D. 23 4. 在TCP/IP协议簇中,TCP提供(C ) A.链路层服务 B.网络层服务 C.传输层服务 D.应用层服务 5. 对于有序接收的滑动窗口协议,若序号位数为3位,则发送窗口最大尺寸为(C ) A.5 B.6 C.7 D.8 6. 以下各项中,属于数据报操作特点的是(A ) A.每个分组自身携带有足够的信息,它的传送是被单独处理的 B.使所有分组按顺序到达目的端系统 C.在传送数据之前,需建立虚电路 D.网络节点不需要为每个分组做出路由选择 7. 提供链路层间的协议转换,在局域网之间存储转发帧,这样的网络互连设备为(B ) A.转发器 B.网桥 C.路由器 D.网关 8. 常用IP地址有A、B、C三类,IP地址128.11.3.31属于(B ) A.A类 B.B类 C.C类 D.非法IP地址 9.邮件服务器之间使用的通信协议是(C )。 A.HTTP B.POP3 C.SMTP D.IMAP 10.以下哪个是合法的URL( A )? A. B. C. telnet://https://www.doczj.com/doc/e114672883.html,:80/ D. smtp:// 二、填空题 1.计算机网络的基本功能是数据传输和数据共享。 2. MAC称为__媒体访问控制__.其是用来解决广播网中__接收地址__的问题。 3.188.80.16 4.82/28的网络地址是188.80.164.80。 4. 目前因特网中子网掩码同IP地址一样是一个32比特的二进制数,只是其主机标识部分全为“0”。判断两个IP地址是不是在同一个子网中,只要判断这两个IP地址与子网掩码做逻辑与运算的结果是否相同,相同则说明在同一个子网中。 5. 按交换方式来分类,计算机网络可分为报文交换网、分组交换网和__虚电路交换__。

网络协议分析课程设计-流量分析报告模板-http

西安邮电大学 (计算机学院) 网络协议分析设计报告题目:Web流量分析 专业名称:网络工程 班级:1201 学生姓名:司联波 学号(8位):04122007 指导教师:孙韩林 设计起止时间:2014年12月15日—2014年12月19日

网络协议分析与仿真课程设计报告 网络流量分析 一、课程设计目的 加深对IP、DSN 、TCP、UDP、HTTP等协议的理解; 掌握流量分析工具的使用,学习基本的流量分析方法。 二、课程设计内容 流量分析 工具:Wireshark(Windows或Linux),tcpdump(Linux) 要求:使用过滤器捕获特定分组;用脚本分析大量流量数据(建议用perl)。 内容:Web流量分析 清除本机DNS缓存,访问某一网页(https://www.doczj.com/doc/e114672883.html,/),捕获访问过程中的所有分组,分析并回答下列问题(以下除1、3、8、11外,要求配合截图回答): (1)简述访问web页面的过程 (2)找出DNS解析请求、应答相关分组,传输层使用了何种协议,端口号是多少? 所请求域名的IP地址是什么 (3)统计访问该页面共有多少请求IP分组,多少响应IP分组?(提示:用脚本编程实现) (4)找到TCP连接建立的三次握手过程,并结合数据,绘出TCP连接建立的完整过程,注明每个TCP报文段的序号、确认号、以及SYN\ACK的设置。 (5)针对(4)中的TCP连接,该TCP连接的四元组是什么?双方协商的起始序号是什么?TCP连接建立的过程中,第三次握手是否带有数据?是否消耗了一个序 号? (6)找到TCP连接的释放过程,绘出TCP连接释放的完整过程,注明每个TCP报文段的序号、确认号、以及FIN\ACK的设置。 (7)针对(5)中的TCP连接释放,请问释放请求由服务器还是客户发起?FIN报文段是否携带数据,是否消耗一个序号?FIN报文段的序号是什么?为什么是这个 值? (8)在该TCP连接的数据传输过程中,找出每一个(客户)发送的报文段与其ACK 报文段的对应关系,计算这些数据报文段的往返时延RTT(即RTT样本值)。根 据课本200页5.6.2节内容,给每一个数据报文段估算超时时间RTO。(提示: 用脚本编程实现 (9)分别找出一个HTTP请求和响应分组,分析其报文格式。参照课本243页图6-12,在截图中标明各个字段。

信息安全技术工业控制网络安全隔离与信息交换系统安全技术要求.doc

《信息安全技术工业控制网络安全隔离与信息交换系统安全技术要求》(征求 意见稿) 编制说明 1 工作简况 1.1任务来源 2015年,经国标委批准,全国信息安全标准化技术委员会(SAC/TC260)主任办公会讨论通过,研究制订《信息安全技术工业控制网络安全隔离与信息交换系统安全技术要求》国家标准,国标计划号:2015bzzd-WG5-001。该项目由全国信息安全标准化技术委员会提出,全国信息安全标准化技术委员会归口,由公安部第三研究所、公安部计算机信息系统安全产品质量监督检验中心(以下简称“检测中心”)负责主编。 国家发改委颁布了发改办高技[2013]1965号文《国家发展改革委办公厅关于组织实施2013年国家信息安全专项有关事项的通知》,开展实施工业控制等多个领域的信息安全专用产品扶持工作。面向现场设备环境的边界安全专用网关产品为重点扶持的工控信息安全产品之一,其中包含了隔离类设备,表明了工控隔离产品在工控领域信息安全产品中的地位,其标准的建设工作至关重要。因此本标准项目建设工作也是为了推荐我国工业控制系统信息安全的重要举措之一。 1.2协作单位 在接到《信息安全技术工业控制网络安全隔离与信息交换系统安全技术要求》标准的任务后,检测中心立即与产品生产厂商、工业控制厂商进行沟通,并得到了多家单位的积极参与和反馈。最终确定由北京匡恩网络科技有限责任公司、珠海市鸿瑞软件技术有限公司、北京力控华康科技有限公司等单位作为标准编制协作单位。 1.3编制的背景 目前工业控制系统已广泛应用于我国电力、水利、石化、交通运输、制药以

及大型制造行业,工控系统已是国家安全战略的重要组成部分,一旦工控系统中的数据信息及控制指令被攻击者窃取篡改破坏,将对工业生产和国家经济安全带来重大安全风险。 随着计算机和网络技术的发展,特别是信息化与工业化深度融合,逐步形成了管理与控制的一体化,导致生产控制系统不再是一个独立运行的系统,其接入的范围不仅扩展到了企业网甚至互联网,从而面临着来自互联网的威胁。同时,随着工控系统产品越来越多地采用通用协议、通用硬件和通用软件,病毒、木马等威胁正在向工控系统扩散,工控系统信息安全问题日益突出,因此如何将工控系统与管理系统进行安全防护已经破在眉捷,必须尽快建立安全标准以满足国家信息安全的战略需要。 1.4编制的目的 在标准制定过程中,坚持以国内外产品发展的动向为研究基础,对工控隔离产品的安全技术要求提出规范化的要求,并结合工业控制系统安全防护中产品的使用,制定切实可行的产品标准。标准可用于该类产品的研制、开发、测试、评估和产品的采购,有利于规范化、统一化。 2 主要编制过程 2.1成立编制组 2015年7月接到标准编制任务,组建标准编制组,由公安部第三研究所检测中心、珠海鸿瑞、匡恩网络、力控华康联合编制。检测中心的编制组成员均具有资深的审计产品检测经验、有足够的标准编制经验、熟悉CC、熟悉工业控制安全;其他厂商的编制成员均为工控隔离产品的研发负责人及主要研发人员。公安部检测中心人员包括邹春明、陆臻、沈清泓、田原、李旋、孟双、顾健等;其它厂商包括刘智勇、陈敏超、张大江、王晓旭等。 2.2制定工作计划 编制组首先制定了编制工作计划,并确定了编制组人员例会安排以便及时沟通交流工作情况。

相关主题
文本预览
相关文档 最新文档